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1. INTRODUCTION

Suppose a functional relationship
n = g(x)

exists between a response n and an independent variable x, where x Ties
in the interval [0,1]. The problem to be considered is to estimate g
using n measurements of n. At each Xi’ i=1,...,r, ni = Nu; measure-
ments are taken. The probability measure assigning mass i to the
point Xi(zui = 1) is referred to as the design and will be denoted by
U(n). In observing the response n we assume that an additive experi-

mental error, denoted by e, exists so that, for each observation

s d=1,...,n., 1 =1,...,r; we can write

Y i

1J
Voo = nX.) + .. = g(xi) + €4

We assume that ¥ are uncorrelated and identically distributed with mean
zero and an unknown common variance 02 independent of x.

If it is known that the true functional relationship n = g(x) has
a certain form depending on a few parameters, then the problem is
usually to estimate these parameters. If the form of the true functional
relationship is unknown, the problem is to approximate the function
g(x) by some graduating function. In this paper we are interested in
the latter problem. In the absence of the knowledge of the true func-
tional relationship, it has been a common practice to use a polynomial
as an approximating function. But when the degree of polynomial is
high, a number of unpleasant features begin to appear, one of which -is
the high oscillatory behavior of the approximating polynomial. Spline
functions, to be defined presently, are considerably less oscillatory.

As an example see Jupp (1978) where he has fitted a polynomial of degree



9 as well as a cubic spline to the data of world sugar prices over a
31 year period taken from Guest (1961, p. 194). The improvement in
the fit to the data achieved by cubic splines is somewhat obvious since
it shows less oscillation compared to the polynomial fit. Furthermore,
the behavior of a polynomial in an arbitrary small region defines,
through the concept of analytic continuity its behavior elsewhere. This
seems to manifest itself in situations where the function g, behaving
poorly in a small region, gives rise to a polynomial approximation be-
having poorly everywhere. On the other hand, the spline functions passess
the property of having local behavior that is less dependent on their
behavior elsewhere. Because of these properties spline functions are
more and more being used in the exploration of response curves for
pnysical processes. Low order splines are commonly used in geophysics
in the form of Tayered earth models (for example, see Vozoff and
Jupp (1975) and Jupp and Stewart (1974)). In astrophysics, Holt (1974)
has used piecewise linear splines to model the radiation profile of the
sun's atmosphere. Lawton, Sylvestre, and Maggjo (1972) have also used
Tinear splines as "empirical functions" in approximating shape invariant
models. These kind of models arise in the studies of hearing response,
or EKG's in the human population, or when one measures spectrophotometric
curves from sampled product, or observes reaction curves in designed
chemical experiments. Wold (1971, 1974) has used spline functions in
the analysis of response curves in pharmacokinetics.

We assume that the function g(x), defined on [0,1], is such that
g €Cd[0,1] i.e. g has d continuocus derivatives. Here the function
g(x) will be approximated by a function s(x) in the class Sg. The set
Sg is the collection of all polynomial splines of order d (degree d-1)



having k knots £ S &y < L. < Ek in the interior of the interval
[0,1]. That is, s(x) is a polynomial of degree at most d-1 on each
interval (gi, €i+1> and belongs to Cd'2[0,1]. For d=1, Sg consists
of functions which are constant on each interval (and suitably defin-
ed at each gi). For d=2, Sg consists of functions s which are linear

on each interval (gi gi+]) and continuous on (0,1). For general d,

the function s(x) esg has the representation

6.N.(x)

k+d
(1.1) s(x) = 7§ ;N
i=]

where N.'s are normalized B-splines. The polynomial splines and their
B-spline basis will be discussed further in Section 2.

Let yi denote the average of the ns observations taken at X
Estimates which are linear in y = (y],...,yr)' will be used in nearly
all cases. Thus the vector of parameters o = (61""’6k+d)| will be
estimated by
(1.2) 6 = Cy
where C is a (k+d) x r matrix. As our criterion for the goodness of
the estimate we shall use an integrated mean square error (IMSE); the
integration being taken with respect to a measure A which has a con-
tinuous strictly positive density with respect to Lebesgue measure.
Our estimate is then
(1.3) N'(x)e = N'(x)Cy,
where N(x) = (N](x),Nz(x),...,Nk+d(x))'. The mean value of N'(x)6 is

N'(x)Cgr where g, = (g(xT),...,g(xr))'. The variance is
E(N ()8 - 1 (x)¢g,)% = (Z/mnt (x)eo™ (M yerngn),

where D(p(n)) is an rxr diagonal matrix with diagonal elements



S EERRIS T The mean square error is then variance plus squared bias
and the integrated mean square error is
2 -1, (n) ! 2
(1.4) INSE = V4B = (g /n)TrCD™ " (4 )C'M(A)+f(g(x)-N'(x)Cgr) da(x)
0
where M()) is the (k+d)x(k+d) matrix

(1.5) MOA) = [ NCGON' (x)da(x).

Note that V and B denote the integrated variance and integrated squared
bias respectively.

The IMSE involves three variables (1) the design U(n) (i1) the
knots g],gz,..,ggk and (iii) the estimate or choice of C. It is diffi-
cult to minimize the IMSE given in (1.4) directly with respect to these
variables. The approach used is to first consider the asymptotic be-
havior of the IMSE for Targe n and k under some regularity conditions
and then perform the minimization.

The purpose of studying (1.4) is to attempt to utilize the choice
of these three "variables".

With regard to the choice of C we study mainly the Teast square
estimator (LSE). Some consideration is given to a bias minimizing esti-
mator (BME) which resembles the estimator minimizing the totaT'IMSE for
known g.  Further comments on the BME estimator are given in Section- 4.

An explanation of how the design and the knots are chosen is given
after Theorem 3.2. We have as yet not exploited the choice of the order
d of the splines.

In Sections 3 and 4 we have discussed the asymptotic behavior of
the IMSE for two kind of estimators, namely, the least square estimator

(LSE) and a bias minimizing estimator (BME). An example is given in



Section 5 to illustrate the behavior of the procedure (for choosing
the design and knots) which is proposed in Section 3. In order to
facilitate the presentation of the results, we have deferred the proof
of all theorems to Section 6.

The main idea for the approach used here is from Dodson (1972),
Rice (1969), and Burchard (1974) where non-statistical approaches were
used. Further discussion of the results can be found in Agarwal (1978),

and Agarwal and Studden (1978a).
2. SPLINES AND B-SPLINES

Let
(2.1) (g0=)0 <Ep S ees < g < 1(=gk+])
be a subdivision of the interval [0,1] by k distinct points. These
points are the "knots" of the spline function which is defined as
follows: a spline function, s ESE , is a function which (i) in each
open interval (51—1’gi) for i=1,...,k+1 is a polynomial of degree
<(d-1), (ii) has (d-2) continuous derivatives in the open interval
(0,1).

For each (fixed) set of knots of the form (2.1), the class Sd of

k
such splines is a linear space of functions of dimension (k+d). A
basis for this Tinear space is provided by B-splines, or Basic splines

(Curry and Schoenberg (1966)). As well as being a powerful theoretical

tool in spline theory, these elementary spline functions provide

stable methods for computing with spline functions (see deBoor (1972)

and (1978)). One of the desirable property about B-splines is that ;

their support consists of a small fixed, finite number of intervals

between knots.



SR TSR NepeaRp T e

For d=1, the Ni(x) are simply the indicator functions on the inter-
vals (ii_T,Eij, For d=2 the support consists of two consecutive intervals
(except for the first and last function) and on these intervals is given
by

g/(x-éi_])/(ii—f;i_ﬂ i <X <&,
Ni+](x) =
(¢

_l+']'x)/(g.i+']"g_i) E;, < x < g-i.{_'l

j

For equally spaced knots the Ni are proportional to the density of the
sum of d uniform random variabies on (0,1) appropriately scaled and
translated.

Explicit expressions for the B-splines will not be needed. For
completeness we give a precise definition and 1ist some of their proper-
ties below. |

We write T for the nondecreasing sequence {ti}k+2d obtained from

1
{ai}g+1 by repeating £0 and Ere] each exactly d times. The B-spline
basis for the family SS is formed by the following k+d normalized
B-splines

(2.2) Ni(X) = <t1+d~ti)[ti""’t1+d](t—x)$—}

i=1,...,k+d, where [ti""ti+d]¢ denotes dth-order divided differences
on the (d+1) points ti""’ti+d of the function ¢, and ag means a" 1f
a > 0 and zero otherwise. For two or more than two coincident ti's,
the differences in (2.2) are taken to be confluent divided differences
(cf. Milne-Thomson (1951)). The Ni are, apart from a constant factor,
the B-splines of Curryand Schoenberg (1966).

The Ni defined in (2.2) satisfy

(2.3) 0 < Ni(x) <1 for x E(ti’ti+d) and Nj(x) = 0 otherwise;



e oL . . )
(2.4) {Ni}i=j is Tinearly independent over the interval [tj+d—]’tj+g+]]

for any 2 > d-1 and any 1 < j < k+d-2;

k+d d

(2.5) {N;}{27 spans S5
k-+d
(2.6) y Ni(x) =1 for all x;
i=1
1
(2.7) é Ni(x) = (ti+d"ti)/d’ i=1,...,k+d

For (2.3), (2.5), (2.6) and (2.7) see Schoenberg (1966). DeBoor
and Fix (1973) proved (2.4).

For d > 1, Ni(x), as given by (2.2), are well-defined continuous
functions. For d=1, (2.2) makes sense only for x # tj, 1 < j < k+2d,
because of the jump discontinuity of (t-x)g at t=x. So in this case we
assume the definition (2.2) to be augmented by the (admittedly arbitrary)
demand that Ni(x) be right continuous everywhere. Thus for d=1, we let

Tty 2 X<ty

0, otherwise .
3. ASYMPTOTIC VALUE OF IMSE FOR LSE

In considering the asymptotic behavior of the IMSE, we shall be
concerned with the sequences Tk = {go,g],...,gk,gk+]} of knots defined

by
&5

(3.1) [ op(x)dx = 1/(k+1),  i=0,1,...,k+]
0

o

where p(x) is a positive continuous density on [0,1]. Sacks and Ylvisaker
(1970) call the sequence {Tk,k > 1} so defined as a Regular Sequence

generated by p{RS(p)}.



It will be convenient to introduce the following notation: for

each fixed k, and i=1,...,k+1 Tet

"

S, = £3765_7> 6 = max 5?’ and A S/m?n 5i

1

it

p___, wWe see that

Letting 0 < Ppin = Min p(x) < max p(x) nax

X

(3.2) 6 <p__./p

max’ “min

Also in view of the definition of tj's in terms of gi's we see that

/p

(3.3) {mgx(t

; t)/m::n(t.l_,_d’t.i)} <d A < d p

i+d 79 max’ “min °
In this section we discuss the asymptotic behavior of the IMSE
when the estimator used is the least square estimator (LSE).
In the classical problem of regression theory, the analytic form of

the function g(x) is supposed to be known. In our case g would be assum-

9.N.(x). The estimator & = Cy is re-

+
ed to be of the form g(x) = ¥ ;N
=1

stricted to be unbiased. The unbiasedness of § = Cy restricts C so

that

I

CF' I

where F is the (k+d) x r matrix F (N(x]),...,N(xr)) and I is the
(k+d) x (k+d) identity matrix. The quantity V in (1.4) is then mini-
mized by the usual Teast square estimate

-1 n
(3.4) c=n (e )y
(n)

Here represents the design measure placing mass Hy On ., i=1,...,r,
M) s the (k+d) (k+d) matrix MNOON' (x)du™ (x).  The estimator

0 = Cy can then be represented by

~

(3.5) GLSE = Cy = M_](u(n))fN(x)&Xdu(n)(x)

where }X is the average of the observations taken at the point x.



The LSE estimator gives a value of V and B as follows:

(3.6) V=) = e (Mo,
and

(3.7) B = B(n,k) = % (9(x) = g, (x))Pan(x)
where g 06) = 0 n™ () iy a(y)an M (y).

In order to make concrete asymptotic statements about V and B
we assume (1) U(n) converges to a design measure u, where y has density
h, continuous and positive and (ii) the rate of convergence is deﬁermined
by k or rather by § = max(gi—gi_]). More specifically we let n = ny
be such that

(3.8) sup [H (x) - H(x)| =
X k
(ny)
where Hn and H are the cumulative distribution function of u
k
and u respectively.

Theorem 3.1, let ¢ ECd[O,l], u and A have continuous strictly positive

densities h and f respectively. If {Tk} is RS(p) and condition (3.8)
(n )
is satisfied by the designs u k , then as k » =,

(A) V=~ (ko*/n )f (F(x)/h(x))p(x)dx
) B~ (/K270 (g D 0)2/ (p(x))23 £(x) dx

where the symbol ~ indicates that the ratio tends to one. The constant

dth

b equals lBZd]/(Zd)!, where B, , is the 2 Bernoulli number (see Norlund

2d
(1924) or Ghizzetti and Ossicini (1970)).
The above theorem says that

(3.9) IMSE ~ (koz/nk)[(f(x)/h(x))p(x)dx

+ (/2N 1106 (0027 (p ()28 (x ) dx
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This asymptotic value depends upon (i) h(x), the allocation of obser-
vations, (ii) k, the number of knots and (ii1) p(x), the displacement
of knots. The results of minimizing the asymptotic value of the IMSE
in (3.9) are given in the following theorem.

Theorem 3.2. The IMSE given in (3.9) is absolutely minimized by

h, p and k given as follows:

-1
(3.10) hx) = o Tc{(f(x))Zd”(g(d)(x))Z}MdH) ,
-
-1
(3.12) k = B;zf{(Zbdn/gz)ag’f}(2d+]) ,

1 -1
where ué] = {(f(x))2d+1(g(d)(x))z}(4d+]) dx, and
0

AP BEBTRCIRI RN
0

For a proof of this theorem we refer to the proof of a theorem
in Section 3 of Agarwal and Studden (1978b) in which parallel results
are proved for the case f(x) = 1.

The knot displacement in (3.11) indicates that the knots should
be placed where f(x)(g(d)(X))4 is large. Using (3.10) and (3.11) (or
going back to (3.9)) we see that h o V/fp so that h is usually more
dispersed than p.

Equation (3.12) indicates that k is decreasing in ¢ and of order
n(2d+])—]. For example for d=2 this gives n « k? This indicates that
there should be many more observations than knots.

The minimized value for the asymptotic expression for V+B is used
as follows. First, for a given n we iteratively choose the number

and placement of the knots. Second, the function g is estimated
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sequentially and at each stage a better design or allocation of future
observatidns is chosen. This is illustrated for the case d=2.

For a given set of observations on g we estimate 02 and g(z). The
number of knots k is calculated from (3.12) and their displacement is

(2)

determined by 5 in (3.11). Then 02 and g are reestimated and the
knots are readjusted. For a fixed n, two or possibly three iterations
seem to be sufficient. 1In choosing the observations sequentially, we
attempt to choose future observations so that the allocation of the total
set resembles the design ﬂ given by (3.10) with the most recent estimate

of 9(2).

The above cycle is then repeated. A brief illustration of
the above procedure is given by an example in Section 5.

REMARK 3.7. We have proposed choosing k and Epseesky and the design
by estimating g. Other methods for choosing k and the knots Epsenesly
are certainly possible. One such method is the technique of cross-
validation proposed and studied extensively by Wahba. See for example
Wahba (1977) or Golub, Heath and Wahba (1979) or references therein.
REMARK 3.2. In minimizing the asymptotic expression for IMSE = V+B

(n(2d+1)"]).

we showed k = 0 When this is inserted into the expression

for the IMSE in (3.9) we find that IMSE = 0(n"2%/(2d*1)y (1 1 and k are

2d+1)° we should also keep in mind that condition

chosen so that n, = 0(k
(n,)

(3.8) should be satisfied by the design u .). This is the same rate
obtainable for smoothing splines (see Wahba (1978)). This rate appears
to be the best possible as indicated by recent results of £.J.Stone

concerning rates of convergence for nonparametric estimators. This gives
considerable support for using splines in practical nonparametric

work because they achieve the best possible convergence results and

have in addition some nice properties as indicated in Section 1.



12

REMARK 3.3.  We have imposed rather strong conditions on the functions
g and f. These, of course, can be weakened somewhat. In particular

g 15 assumed to be in Cd. That is, g(d) is assumed to be continuous.

_])

The rates involved seem to be attainable if g(d is only assumed to

be absolutely continuous and g(d) is in L2. However, the constants
involved in the bias term B would appear to change. Numerous results,
concerning the rates, are available in the Titerature on Spline theory
without the constants. Exact constants are given, for example, in |
Barrow and Smith (1978a) and they also assume g ecd. Although the
exact constants are desirable in minimizing the IMSE, they do not, how-
ever, appear to be overly important. For example, if the bias is
multiplied by a factor of ¢ then k changes.by a factor of c]/(2d+])

which, say, is 1.58 if ¢=10 and d=2.
4. ASYMPTOTIC VALUE OF IMSE FOR BME

The IMSE, given in (1.4), is minimized if
1
(4.1) E(CY) = tM'](f)(g N(x)g(x)F(x)dx)
where M(f) = M(x) = fN(
a = .00 ")g = fg(x)

is given in Agarwal and Studden (1978a). Some discussion of the matrix

XN (x)F(x)dx, t = q/((c°/n)+q), and
(
dy

n)(x). This minimization is easy to show and

C which actually minimizes the IMSE is given in Remark 4.2 below.

The factor t does not seem to be important unless n is small relative

to 02 and q. We have not attempted to use t in our estimation of g.

The expression (4.1) with t=1 actually minimizes the bias B. Various
authors, for example, Box and Draper (1959) and Karson, Manson and Hader

(1969) have proposed attaching more importance to the bias part B.
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In general a matrix C cannot be found for which (4.1) holds even

if t=1, so instead we try to find a C* such that

(4.2) E(C*) = M1 (f) [ N(x)a(x)F(x)dx

Oy

The asymptote is in the sense that [lE(C*&)—M'](f)/N(x)g(x)f(x)dx][
goes to zero as n (number of observations) tends to infinity, where the
def

1
vector norm ||al| (a'a)® . We should emphasize here that k is fixed.

Let L'(x) = (L](x),...,Lr(x)), where Li(x), i=1,...,r are the
normalized B-spline (Section 2) of order 2 with knots at the observation
points Xis 1=2,...,r-1. The Li(x) is a "roof-like" function which has
a vé]ue one at Xis goes Tinearly to zero at adjacenﬁ knots 5.1 and
X341 and then remains zero. Let us define é(x) = 1.Z1g(x1.)L_i(x). Since
Lj(xj) = dij; i,J=1,...r, g(x) interpolates g at Xy 1=1,.00,r0 As
an approximation to g, the function g satisfies the following two prop-
erties (e.g. see Prenter 1975).

(i) If g is continuous then § converges to g as r{or n) - « in such

a way that n = mgx(xi—x1_1) tends to zero.
i

(i1) If g is twice continuously differentiable, then Il9-g]]_ =

max [g(x)-g(x)] svullg(z)lfmnz,where ais a constant indepen-
x €[0,1] :

dent of n.

Now if we take
1

Y0F) f NOOL' (x)F(x)dx
0

(4.3) C* = M

then in view of (i) and (i) we see that C* of (4.3) satisfies (4.2).

Hence our “bias minimizing" estimate (BME) is defined as

1
(4.8) gy = O - M”(f)(é NOOL (x) F(x)dx)
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In the following theorem we shall find certain asymptotic expressions

for the IMSE using the estimatoréBME.
(n)

i is assumed to have weight Hooon X; given by

For simplicity the design

1
(4.5) we = [ LoOGOR(X)dx,  i=1,...,r
0

for some continuous strictly positive density h(x).

Theorem 4.7, If the estimator 8 given in (4.4), is used, and the

BME”
design is chosen using (4.5) and {Tk} is RS(p), then
(A) Vim Vim (aV/keZ) = [(£(x)/h(x))p(x)dx

Koo poeo

(8) Tim Vi k%% = (18,,1/2) ) [1 ('Y 0N 2/ (p(x))2%) £(x)dx.

|

REMARK 4.1. In Theorem 4.1 the limits are taken in such a way that

n approaches infinity before k. Presumably the limits may be taken
together as was done in Theorem 3.1 provided a condition like equation
(3.8) holds. The condition which is imposed in equation (4.5) on the

(n)

design measure y does not seem to be necessary. It is imposed in
order to obtain the same asymptotic value for the variance term as
that obtained by the LSE. In the proof of Lemma 6.11 below it seems

that something of the form

(4.6) by = h(xi)Ii(1+o(1))

where Ii = fLi(x)dx is necessary. For a general sequence “(n) one
could use a slightly different set of points Z15ZpsneesZs instead of
X19%Xp50 . asX, 5 ON which to base our Li functions so that (4.6) holds.
In this case however one has further difficulties in showing the bias
term involving (4.4) (or sTight modifications) behaves properly.
REMARK 4.2.  The matrix C which actually minimizes the IMSE for known

g is given by
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_ o vn=1
(4.7) Cy = 17 (F)sguh

where s = [Ngfdx, A = [grg; + (oz/n)D;]] and Dn = D(u(n)). Instead of
starting with (4.1) in search of a good estimator one might try estima-
ting g by some preliminary means and inserting this value into the
matrix Cg from (4.7). It turns out that the resulting estimator is
efféctive]y (4.1) again with an estimate of guantity t.

Using (4.7) the minimum IMSE reduces to

1

(4.8) [ngdx - ts'M” ' (f)s.

With t=1 this is the minimum of the bias term. This gives some support
to placing more stress on the bias term if t is near 1. In evaluating
the performance of any estimator the quantity (4.8) (the unachievable

minimum IMSE) might be used as a comparison.
5. AN EXAMPLE

In the example below the.integrating measure f was taken to be
f = 1 and the function g was estimated by linear splines, i.e. d=2.

The function g was taken to be

g(x) = [0.014(2x-0.3)2]"] + [0.0144+(2x-1.2)%7"]
The choice of the above function is from Ichida, Kiyono and Yoshimoto
(1977). For this function 9(2)(x) varies considerably in the interval
[0,1]. The data errors were simulated by adding to g(xi) a number sampled
from the normal distribution with mean zero and variance one. To begin
with we took three equally spaced knots and took five observations at
each knot and the end points. We performed three cycles with the number
of observations n = 75,150, and 250 respectively. This was done for

both estimates namely 9 sp and OpME Recall that a number of internal
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iterations within each cycle (for fixed n) were done to select the number
and position of the knots. The linear spline obtained at the end of
cycle zero, cycle one and cycle two for GLSE and GBME are shown in

Figure T and Figure 2 respectively. The breaks (joints) in the graph

are the knots. We can see that the Tinear spline fits obtained by the
two estimates improved at each cycle. Once the fit started getting
better and hence the estimates of g and 9(2) were improved, the knots
were chosen at the points where 9(2) was large. Also the design (not
shown in the graph) was more dispersed than the knots. Both of these
things were expected (see the comments after Theorem 3.2 in Section 3).

At the start (cycle zero), the fit was bad. Actually, the bias
was very large compared to the variance. Both the estimators tried to
reduce the bias very fast. The BME shows some superiority over the
LSE in the sense that it reduces the integrated squared bias (B) faster
than the LSE does.

If in this example, we had chosen a larger 02 so that the integrat-
ed variance (V) is larger than B then the present set up does not show
a strong case for the LSE minimizing V faster than the BME does. This
is apparently due to the fact that after two or three cycles and a few
observations have been taken, these observations are considerably
dispersed (at least in this example), so that the LSE and the BME
cperate on V in a similar manner.

The details of the termination criterion, estimation of 9(2), etc,
are omitted here. A more complete report on this procedure and its use
is available in Agarwal and Studden (1978b). The Fortran program based
on this algorithm has been used on a few other examples. Further work

especially using d > 2 and more detailed comparisons between estimators
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and with other procedures seems appropriate
6. PROOF OF THEOREMS

Proof of Theorem 3.7A:
We first prove the following important result which will be used
in the proof of this theorem as well as in the proof of Theorem 4.1.

Theorem 6.1. Let M(¢) be the (k+d) x (k+d) matrix
1

(6.1) M(¢) = [ N(XIN'{x)¢(x)dx.
0

If ¢ and y and p are continuous strictly positive functions defined on

[0,17 and {Tk} is RS{p) (see (3.1)) then as k » o,

1
(6.2) Tr ™ (o)M(y) ~ K é (6(x)/6(x))p(x)dx.
Proof. Let us write
(6.3) M) = MyD(o) - E(4)

where MO is given by (6.1) with ¢ = 1, D(¢) is the diagonal matrix
with elements ¢(gi)’ i=1,2,...,k+d and the error term E(¢) is defined
through (6.3). The points ) €Ty < ... < g4 ave (k+d) arbitrary
points in [0,1] such that

(6.4) c; € support Ni’ i=1,...,k+d.

If we define
i+d-1
o= O] t))/(d-1), =T, ked
2=1+1
We can see that these Cils satisfy (6.4). Schoenberg (1966) calls

these points "nodes" and has used them in some other context. Using

(6.1) and (6.3), we can write
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[1-017' 107" (6)D()-V]

E(y) and T is (k+d) x (k+d)
-1

(6.5) M (o)M(p)
where U = D"](¢)M6] (6), V = D—](¢)M6

tdentity matrix. We want to expand (I-U)™' as a power series. This can

be done if the matrix norm of U is less than one. In the following Temma

we find ||U]| def pax (LU /X[ 1), where vector norm ||x|]| = (x'x)i.
X

Lemma 6.2.  [|{U]| < ow(¢,8), where o is a constant independent of k and

w(¢,8) is the modulus of continuity of 6 and 6 =  max (g.-gi_1).
T<i<k+] .

Proof of Temma. The proof consists of bounding the norms of Ma] and

E(p). Since MO is a positive definite matrix, it is easy to see that
-1 _ '
(6.6) My 1= (172 5.0

where . is the smallest latent (or characteristic) root of MO
given by

(6.7) Roin = mln{(x'MOx)/(x'x)}

Now to find an upper bound on []Ma]ll we use an inequality of deBoor
(1973, p. 273). The inequality states that

(6.8) oClvy) < (v'Ay) < (v'y) for all ye 1pK*

where o is a constant independent of k and depends only on d, and matrix
A, called as Gram matrix by deBoor, is related to matrix MO by

(6.9) MO = DAD

2
where D is the diagonal matrix with diagonal elements {(ti+d-t1)/d}k,

i=1,...,k+d. Using (6.6), (6.7), (6.8) and (6.9), we can show that

-1 2 . -1
(6.10) MO < (d/e®){ min (t,, -t.)}
0 1<i<k+d i+d i
Now we shall find an upper bound on ||E(¢)||. First of all since

E(g) = [eij(¢)] is a (k+d) x (k+d) band matrix of bandwidth d-1
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(i.e. eij(¢) =0 if |i-3| > d-15 i,j=1,...,k+d) it is easy to check

that
1 k+d E
(6.11) [E(o) || < (2d-1)3{ max ) e]..(qb)}2
1<i<k+d j=1 J

In view of (6.4), we have for i=1,...,k+d,

k+d k+d
(6.12) jz] !eij(¢)l < dw(¢,s) jz] fNi(x)Nj(x)dx = w(¢’6)(ti+d_ti)'

The equality in (6.12) follows from (2.6) and (2.7). The equations

(6.11) and (6.12) give

£
=

(6.13) [EGo)]] < (2d-1)2u(9,8) max (ts,qts)-
T<i<k+d
Finally since ]{D_](¢)]! = {mjn ¢(Ci)}_]’ we may combine (6.10)

;
and (6.13), to obtain

Y]]

IO

it

LRGBS

A

1 max(ti+d—ti)

. (2d-1)=d i w(¢,s
= p2 m$n(ti+d-ti57 m}n(¢(§1))

In view of the quasi-uniformity condition and the fact that ¢ is bound-
ed below, it follows that
LU < aw(4,8),
where the constant o does not depend on k. This proves the Temma.
Now since w(¢,6) ~ 0 as k+ = (or § ~ 0) we can make w(¢,8) < 1/a
and hence [[U][ < 1. We can then invert (I-U) using a power series
expansion,

I +U + U2 + .

(1-u)~!

I+ W, say

i
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where W = UJ. Therefore from (6.5) and the above expansion,

J
(6.14) Tr M

§Wo~18

1 1

(¢)M{p) =Tr D" "(¢)D(p)-TrV
+Tr wD'](¢)D(w)—Tr VW

Now using the definition of the nodes gi's and the mean value theorem
in the expression (3.1), we see that the first term on the right of
(6.14) divided by k (or k+d) will converge to the integral term in
(6.2). Therefore Theorem 6.1 will be proved if we show that, as k - »

(1) Tr V = o(k)

(i1)  TrunT{e)n(v) = ofk)

(1i1)  Tr WM =o(k).

Since V = D"1(¢)M61E(¢), from Lemma 6.2 we get

VI < Ba(y,6)

where B is a constant independent of k and w(¥,8) is the modulus of
continuity of ¥. Also |Tr V| < (k+d) ||v]|, where (k+d) is the order
of matrix V, hence (i) holds.

Using the matrix norm properties, namely

s+ TH < st + [Tl
and
HSTH < TIsT [Tl
we can show that
(6.15) Ll < Tlull7a-THelh
< aw(¢,8)/(1-0w(4,8)), by Lemma 6.2.
Now since
e woTke)o(w) [ < (ked) [l 7 (o) ] [1D(w) ],

the relation (i) holds in view of (6.15) and the fact that ¢ is bound-

ed below and ¥ is bounded above.



The proof for relation (iii) follows from the proof of (i)
and (i1). Q.E.D.

Now we come back to the proof of Theorem 3.1A. We can write

1

(nkV/oz) =Tr w1 (u

(n,)
Ko () m.

Since- the design measure u and the integrating measure ) have continuous

=Trm mMO) T T (s

strictly positive densities h and f respectively, in view of the above
Theorem 6.7, the first factor on the right of the above expression has

the asymptotic value kf(f(x)/h(x)p(x)dx. To complete the proof of the

theorem, we need to show that

a, o
(6.16) : TriM (u )-M (u)IM(A) = o(k) as k - .
(n,) (n,)
Introducing E(u Y o= M(u)-M{u ) we have
(n,) (n,) (n,)
e K ) = T e Ko,

and therefore

(n,)

(n,) (n,)
e e ) )| < Ged) [T KDL e KD

TN

The relation (6.16) will hold when we show that the followings are true:

Lemma 6.3. | [M(\)|] = 0(s)
(n)
Lemma 6.4. ||E(q )1 = o(s)
Lemma 6.5. |[M" (u)]] = 0(s™")
(n, )
Lemma 6.6, |7V K] = o).

Proof of Lemma 6.3. The matrix M(A) = M(f) = [N(x)N'(X)f(x)dx is a
band matrix. Therefore, as before (see (6.11)), we see that
1 k+d

M) ] jV(2d~])2{lm§x _E
i j=

2 00,
: mij(”}
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where mij(x) are the elements of M(x). Using equations (2.6) and

(2.7), we see that

MO ] < (2d-1)% max £(x) s.
X

This proves the lemma.

Proof of Lemma 6.4. We use condition (3.8) in finding the norm of

(nk)

E{u ) = [eij]' This being a band matrix, we have
(6.17) |E(u ) < (2d-T)*{max ) ef.} *
- i =1

Using integration by parts and the fact that Ni(ti) = Ni(ti+d) =0

(see (2.3)), we can easily check that

t
(6.18) e.. = { (H(x)-an(x))(Ni(x)Nj(x) + Nj(x)N%(x))dx.

Using a recurrence formula (deBoor 1978, p. 138) relating the deriva-
tives of B-splines with the lower order B-splines and the fact that the
knot sets determined by p are quasi-uniform, we can find a constant ¢

independent of k and i so that
(6.19) I <ed, gm0,1,. 0 de.

(Note: c=1 for j=0, see (2.3)).

Condition (3.8) says that there exists a sequence {ek}iz] tend-
ing to zero such that
(6.20) [H (x)-H(x)| < e, /k, for all x.
Ny - "k

Equations (6.18), (6.19) and (6.20) can be combined to get ‘eijl 5~2€k c

for all i and j, and therefore
k+d
(6.21) jz] [eij! E,Z(Zd“])gk c s



(n,)
K

is a band matrix. The proof of lemma now follows from (6.17) and (6.21).

In the above, the sum has at most (2d-1) nonzero elements since E(y

Proof of Lemma 6.5. Recall that M(u) = M(h) = /N(x)N'(x)h(x)dx. Let
us use the representation (6.3) with ¢ replaced by h, i.e.
M(h) = M.D(h)-E(h).

Now

-1 =141

w ) = (1-u)" o7 ()]

O 3

where U = D"](h)Mé]

similar manner as the proofs of Theorem 6.1 and Lemma 6.1. Actually,

E(h). The rest of the proof follows exactly in a

we can show that

[N [] < Const. {(T-aw(h,8)) (min h(z,))(min(t -

1 1

j+a7t))

The quasti-uniformity condition (3.3) and the fact that h is bounded

below implies that

i (n) ] = o(s™h).

Proof of Lemma 6.6. Writing M(n k ) as M{u) + (M(u

have (n )
(6.22) M (s "y - (1-u, 17 ),
k

-1 (ny)
where U =M (u)E(u
Mk

that is ||Un || < B> where g~ 0, as k »=. For sufficiently large
k

). Lemma 6.4 and Lemma 6.5 give [IUn || = o(1).,.
k

k, we can make |[U_ || <1 and then invert (I—Un ) using a power series
k k

expansion,

(1-u )= 7 v
k j=

Using properties of the matrix norm (see proof of Theorem 6.1), we
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']. The lemma now follows in view

find that [|(I-U )7 '] < (1-8,)
Ny k

of equation (6.22) and Lemma 6.5 which gives a bound on the norm of
M-] (n).

This completes the proof of Theorem 3.1A.

Before proving Theorem 3.1B, let us introduce some notation and
describe two important results of Barrow and Smith (1978a and 1978b).
These will be used in the proof of this theorem. Let L; = {y]

1
wz(x)dv(x) < «} denote the L, space corresponding to measure v with
2

0
norm [[»(]v and let Pz denote the orthogonal projection operator

from L; to Sg. The omission of the index v will correspond to Lebesgue
measure.

Lemma 6.7, (Barrow and Smith 1978a). If g ECd[O,l], p is continuous

and strictly positive and {T } is RS(p), then

(6:23) Tin k% [o-Pal | = (8pgl/20)1) e(s ! 00) 2/ (p(x))P410x.

Note that the right side of the above expression differs from the asympto-

tic expression for kZdB by a factor of f in the integrand and that using

the LSE with design U(”), the bias B is given by ]]g-PE n)gllf (see

also (3.7)). It turns out that under the regularity condition (3.8),
,(n) (n)

the projection Pk g is asymptotically independent of U(n) =y
as the number of knots k - «. The error function g-Pi(n)g on each ip—
terval (gi,g1+]) begins to look proportional to a scaled version of

the dth Bernoulli polynomial Bd(x). A detailed discussion of polynomials
Bd(x) can be found in Schoenberg (1969), Ghizzetti and Ossicini (1970)

or Norlund (1924). We shall mention some of their properties momentarily.

To exploit the idea that Jocally the error g—Pkg looks approximate-

1y Tike a Bernoulli polynomial, Barrow and Smith define a sequence of
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operator Qk’ such that ng esg and is "close" to Pkg in the sense that

(6.24) Tim k%] | g-0,9] | - [lg-Pal]} = 0
k -so0
Let
d (J) d
g(x) = J (¢, )(XE)/J‘+0(6)
j=0
= 3(x) + o(s9)
(i) j k+d
and denote g J (gi)/j! by 9y - The spline ng = ) aQNQ is essentially
2=1

characterized by the requirement that on every dth interval (gi,gi+1)

(6.25) (3-0,9)(x) = g5B,((x-2,)/6. )69
Due to the fact that ng must have d-2 continuous derivatives at each

g., the above equation cannot be made to hold on every interval

(g, ,g1+]) but only on every dth interval. For example if d=2 we approxi-
mate g by a continuous broken line segment. The error g—Pkg is approxi-
matelyg(z)(gg times a scaled version of Bz(x) = xz—x+1/6. One considers
approximately the best line segment on every second interval and then

Joins the ends of these line segments on the intervals between. The

polynomials Bd(x) on (0,1) have leading coefficients one, satisfy

{0y = 84101y,  i-0,1,... .40
d d
.. 1,2
and minimize [ B%(x)dx.
0°d k+d
The coeffiecients a, for ng = Z a N can be determined explicitly
2=1
d-1 . J .
. - o2 =1)790 (d-1-3)
by setting ¢£,d(s) = rE](s—t”r), Ye.i *za-777'¢2 d (Ei) and
d-1 ;
(6.26) a, = JZO yg 1(g g1 1+1( ) ) 2=i+1,...,i+d

By taking i = 0 (mod d) for sufficiently many i, all of the coefficients
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a, can be determined. For d=2 these coefficients turn out to be

2

3, = 960018 (2))(6%12) + o(s?)

Barrow and Smith (1978b) have shown that the operator Qk’ defined
by the above scheme, satisfy (6.24) and the following.
Lemma _6.8.  (Barrow and Smith 1978b). Let g €c%[0,17, and £ ¢[0,1).

Let j be chosen so that gj <& < €j+] and let 5j+] = €j+1 - ij. Let
=y _ .d

(6.27) R (v>E) =k (9-Q9)(estye,,9),  yelo,T)

and

K(y.2) = (o' (@1 (p(EN ) (8, (y)/ar).

Then there exists a sequence of positive constants {Ek}:=1 tending to
zero and which may be chosen independently of £ such that

1852) = KD, = mex (R E) - K| < o

As indicated above this Temma says, in essence, that for k suffi-
ciently large, the error function g~ng is nearly equal (in a sup norm)
to a properly scaled Bernoulli polynomial on each subinterval (gj’€j+1)‘
Proof of Theorem 3.1B. Let us recall that

(n)
B=lg - Py glli

Since ng esi we can write

(n) u(n)
9-P. g =9-0,0 - P (g-Q,9).

Therefore, the proof of the theorem will be completed when we show that,

temma 6.9, Tim k°%||g-0,9/|% = C,. where

—co

'l .
Ce = (UBygl/2a)1) [ 109! ()% (p(x)) 28 b k.
0



29

2

N 0.

(n)
Lemma 6.10. lim kZdIIPE (g-ng)’I

ks
Proof of Lemma 6.9. Let us consider, using (6.27)

1

K2 ] (e-q,9)(x))

2f(x)dx

2d 2
KT le-Q 9l

k 1
_ 2

By Lemma (6.8), this equals
T L0t )2 (o )20 (80011 26 oy o )y,
where ]gj k' < agys for some constant o which depends only on d, g
and p. We also note that f(gj+y5j+1) = f(gj) L where ij[ < w(f,s).
Hence we have
190,001 = (] (8,002 s (6l (601 (e )2 e Yo (1)
|19-Q91 15 (G TR L AR S LA £

Let kK » » in such a way that & = max Gj + 0, then

. ., 2d 2 _
(6.28) l1m K™ 19-Qu 9] 15 = Cg-
00

We use here the fact that

(By(y)/d1)%dy = [B,4]/(2d)!

O —

(see Ghizzetti and Ossicini (1970)). This proves the lemma.

n
Proof of Lemma 6.10.  Denoting ||PE (g-ng)le by A, we have

1 (n) 1 (n,)
Ae weon (<) I M) (9-0,9) () K212 #(x)dx
(n,) (n,)
a6 K,

where the (k+d) x 1 vector a is given by
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(n,)
a = Ny)((g-09)(y))dy “ (y).
Using matrix norm properties, we see that
(n,)
(6.29) A a2 e

We have already found the bounds on the norm of the matrices M(f)
(n.)
k

(or M(1)) and M”](u ) in Lemma 6.3 and Lemma 6.6. Here we shall

find a bound on the norm of the vector a. The ith,element (i=1,...,k+d)

of this vector is,

g (n,)

P50 9 ) K (x)

t,

je3)
i

i+d-1 1 (nk)
Qgi é Ny (828,41 ) 0=y 9) (ttys ) ) b (£ 4ys, 1)

i

Using (6.27), we can write

i+d-1 1 (nk)

d
k a

i

Using Lemma 6.8, we get

g 11 (n,)
ey = L LN a8 ) (o By v) s ddn (e ys, ),

where o, = g(d)(tﬁ)/{(p(tz))d dl}, ?nd){sk}:=1 is a sequence of positive
n

numbers tending to zero. Writing u as p+(u -u), we can see that
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it

(6.30) k a

Now we show that the second factor on the right in (6.30) is o(s).
Since the sum involved in this factor is over d terms, it is enough to
show that each term in this sum is o(&§). Using integration by parts,

th

we can easily check that the g~ term (except for the quantity pz)

in the second factor equals

(6.31) N.(t,,q) By (an-H)(t2+1) - N, (t,)By (an—H)(tQ)
tz+1 -1
- { (an—H)(x){62+1 N, (x)Bj((x-t,) /8, 1)
2

+ N%(X)Bd((x-tz)/62+1)}dx.

h

In the above, we have used Bd(o)=Bd(1)=Bd, the dt Bernoulli number.

Using the upper bounds on (i) ]lej)l[m given in (6.19), (ii) ||Hn -HI L
k

given in (6.20) and the fact that the dth Bernoulli polynomial is bound-
ed above by a number independent of k, we find that the quantity (6.31)

is of order o(s). Now,
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where h is the density of measure u. On the interval (tﬁ,t2+]),
hix) = h(tg)+y2, where !YZI < w(h,8), the modulus of continuity of h.
We can write

d i+d-1 241

t
(6.32)k a; = in pzh(tﬁ) { Ni(x)Bd((x—tz)/62+])dx + 0o(s).
2

In the proof of their Lemma 2, Barrow and Smith (1978a) have an
expression similar to the first factor on the right in (6.32) with
h = 1. They show, using the continuity of g(d) and the condition (3.3),
that this quantity is of order o(s). Since h is continuous on [0,1], we

can similarly show that the first factor in (6.32) is of order o(s)

and therefore a, = o(6d+1). Now we have
k+d
2 2 2d+1
[al1” = ] a%=o(s"")
i=1
21, () -1
Also by Lemma 6.3, [|M(f)|]| = 0(s) and by Lemma 6.6, ||M (u )| ]=0(s "),

therefore (6.29) gives A = 0(62d). This completes the proof of the
lemma, and hence also the proof of Theorem 3.1B.

Proof of Theorem 4.1B. Since the estimator éBME’ given in (4.4),
satisfies (4.2), we can easily check that the bjas term is asymptotically
minimized, 1i.e.

v Tim K% = (18,41/(20)1) [1(a¢ (x))%/(p(x)) 23 (x) dx.

ko nooo
Proof of Theorem 4.1A. With the choice of éBME’ as given in (4.4),

it is easy to check that the integrated variance V is given by
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(6.33) (/%) =r c*0™' (M) )exmie)

= Te TR UNGOL (#0007 M) ()L () £y )dy)
L; ()L (y)

My

r
- Ty M’](f)(f/N(x)N'(y).E] f(x)f(y)dxdy)
"]:

For the proof of the theorem we need the following Temma.
Lemma 6.11.  Let u(x) and v(x) be continuous functions defined on

[0,1]. If n = max (Xi_xi-l) +- 0 as n > », we have
’ i

5) 1 | ] O LI NS
(6.34) nlm é é u(x)v(y) jz1 v dx dy = é h(x) dx.

The proof of the Lemma is deferred until the end of this section.
Assuming for the present the truth of Lemma 6.17 we compiete the proof

of the Theorem 4.1A. Let n + » in (6.33) and then use (6.34) to get

Vim (nV/6%) = Tr MV (F) M(F2/h).

Ny
where M(fz/h) = fN(x)N'(x)(fz(x)/h(x))dx. If we take ¢ = f and

P = fz/h in Theorem 6.1, we then see that

Vim (kK70 Te wT0R) MOFP/R)) = fOR(x)/h(x))p(x)dx.

ko0
which completes the proof of the theorem. Q.E.D.
Proof of Lemma 6.11. Let us denote by I, the double integral on left
of (6.34). Since Lj(x) has support on the interval <Xj-1’xj+])’ we
can express the integral I as
RIS E NP
L= 0w [ [ ul)v(y)L (x)L.(y)dxdy,
=1 3 X, . x. J J
Jj-1 “3-1
where x0=x]=0 and Xepl = Xp = 1. By use of the mean value theorem, we

get
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r X541 %541
I= ) fu;ulx)vix,) [ / Lj(x)Lj(y)dxdy}
) X5-1 %3-1

+(1/4)

J

15

-1 T2
oy (nstn
¥ vilngtng )

where ]le < a(w(u,n) + w(v,n)) where o depends only on u and v, and
w(u,n) and w(v,n) are the modulus of continuity of u and v. From
(4.5), for 1 <j <r,

Uj = (%) h(XJ)(nJ“FnJH)(HTJ)

where Ny T XgX5_1s J=2,...0reng = n g = 0, and ]Tj[ < pw(h,n) where
constnat p depends only on h. Therefore now I equals
r
. ) /h(x. .t 2} + o(1
j§1 tulxs)vix;)/ (x5)3t(ny4n5,7)72) + 0(1)

Now the proof of Lemma follows since this sum is a Riemann sum for the

integral on right of (6.34).
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