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INTRODUCTION

Until about 1950's, the statistical inference problems were
primarily formulated as problems of the estimation of parameters
and tests of hypotheses. Estimation problems, in general, are
decision problems with infinitely many actions whereas hypotheses
testing problems are two actions problems. For problems of comparing
k populations (k >2), usually, more than 2 actions should be
considered. Thus it is not quite realistic to treat them only
as hypotheses testing problems. The classic tests of homogeneity
were found to be inadequate in two respects. First, the formulation
is not designed to answer many questions which are of real interest
to the experimenter. Second, we almost always reject the null
hypothesis which says all the parameters are equal if enough data
are collected. To e11minate the shortcomings, one should
formulate the problems as multiple decision problems. Mosteller
(1948), Paulson (1949), Bahadur (1950) and Bahadur and Robbins
(1950) were among the earlier researchers to do so, thus laying
the groundwork for the investigation of selection and ranking
procedures.

'"Indifference zone' approach, proposed by Bechhofer (1954)
is one of the two basic formulations for ranking and selection

problems. In this approach, a single population (or a fixed



size of populations) is selected and is guaranteed to be the one of
interest with probability P* if the parameters lie outside some
subset, the zone of indifference. Another basic formulation, which
is due to Gupta (1956, 1963, 1965), is the 'subset selection' approach.
In this approach, one wishes to select a subset which contains the
population (or populations) of interest with a minimum probability
P* over the whole parameter space. The size of the selected subset
depends on the outcome of the experiment and is not fixed in
advance. Using these two approaches, a large number of contributions
have been made. A complete bibliography can be found in a forthcom-
ing monograph of Gupta and Panchapakesan (1979).

Bayes approach for selection and ranking problems has also
been considered. Recent contributions made in this framework are
Hsu (1977), Gupta and Hsu (1978), Miescke (1978) and Kim (1979).
Bayesian analysis is attractive if a prior distribution for the
unknown parameters can be specified exactly. However, it is
often that one can only have partial prior information. In this
case, the prior is restricted in some sub-class I of all prior
distributions. The r-minimax criterion then requires the use of
decisions which minimize the maximum Bayes risk over r. Such a
principle has been used in multiple decision problems by Randles
and Holland (1971), Gupta and Huang (1975, 1977), Berger (1977),
Miescke (1979) and Kim (1979). The first two chapters in this
thesis are related to r-minimax rules.

There are situations where a statistical decision problem

occurs repeatedly and independently. Then frequently, empirical



Bayes approach becomes appropriate for consideration. In this
approach, one assumes no prior information about the parameters
except for the existence of a prior distribution . By use of

this empirical Bayes approach, one can then guarantee that the rules
one uses are almost as good as the Bayes rule with respect to t for
large samples. Empirical Bayes rules for multiple decision problems
have been derived by Deely (1965), Van Ryzin (1970), Huang (1975).
Van Ryzin and Susarla (1977) and Singh (1977).

Besides the comparison of k populations among themselves,
sometimes, in practice, one wishes to compare them with a control
population (or a standard population). There are many situations
where one wants to select populations better than a control. But
there are other cases where one is interested in selecting
populations close to a control. Contributions related to these
topics can be found in Chapter 20 of Gupta and Panchapakesan
(1979).

In this thesis, some results about the r-minimax rules and
empirical Bayés rules have been obtained. In Chapter I, a problem
of selecting populations close to a control is considered. Under
the assumption that populations are normally distributed, our goal
is to select the 'good' populations. A '0-1' fype loss 1is
introduced. When the control parameter is known, we derive a
r-minimax rule. When it is unknown, a restricted r-minimax rule
is derived. We also find Bayes rules and minimax rules for the
unknown parameter case. A comparison among these three rules is

made. For r-minimax rules, we show some optimal properties and



some general distributions for which r-minimax rules can be found.
The problem of selecting the t-best populations is discussed
in Chapter II. It is shown that if the populations have PF2
densities, then the natural selection rule ] which selects the
populations with the largest t sample values - is a r-minimax rule.
This result has also been extended to the case where the populations
are not necessarily independent. Also, by a simultaneous selection
of the t-best populations for all 1 < t < k-1, a r-minimax rule
for the complete ranking of k populations is derived.
Chapter III deals with a problem of selecting populations which
are 'better' than a control. Under a linear loss, we derive a
sequence of empirical Bayes rules for uniformly distributed
populations. When the priors are assumed to have bounded
supports, empirical Bayes rules are obtained for more general
distributions. Based on Monte Carlo studies, tables are computed
for the smallest sample size required for the empirical Bayes rules

to be 'close' to the true Bayes rules.



CHAPTER I
I-MINIMAX PROCEDURE FOR SELECTING
POPULATIONS CLOSE TO A CONTROL

1.1 Introduction

Problems of selecting populations close to a control arise frequent-
1y in inductrial production such as to match parts or to imitate some
popular goods in the market. This may be the first step for quality con-
trol, since after knowing the "good" populations, we may find ways to
improve production so that all products are "exactly" alike to a fairly
good degree of precision. Thus the selection problem is interesting and
challenging.

Many authors have considered the problem of comparing populations
with a control under different types of formulations. Paulson (1952),
Bechhofer and Turnbull (1974) discussed problems of selecting the best
population if the best population is better than the control. Dunnett
(1955), Gupta and Sobel (1958) considered the problem of selecting a
subset containing all populations better than the control. Lehmann (1963),
Randles and Hollander (1971) dealt with the problem of selecting popula-
tions better than a control. Bhattacharyya (1956, 1958), Tong (1969),
Seeger (1972), Huang (1975), and Kim (1979) have considered partitioning
a set of populations with respect to a control. Non-parametric procedures
related to some aspect of the problem have been studied by Rizvi, Sobel

and Woodworth (1968), Puri and Puri (1969). However, very few papers



have been devoted to the discussion of selecting populations close to a
control.. A. K. Singh (1977) considered this problem and derived Bayes
rules and empirical Bayes rules for Poisson, Geometric and Binomial
populations. Except in rare situations, information concerning the prior
distribution of a parameter is 1ikely to be incomplete. Hence the use
of Bayes rules is hard to justify. The use of partial or incomplete
prior information in statistical inference has Jed to the development of
the 'so-called' T-minimax criterion, a term initially employed by Blum
and Rosenblatt (1967). The original idea of P-minimaxity is due to
Robbins{1951). To be more precise, although we may not know the prior
distribution completely we may have enough information to specify that
the prior is a member of a subset TI' of the class of all priors.
I-minimax criterion then requires one to use the decision rule which
minimizes the maximum expected risk over T. It is interesting to note
that if T contains only a single prior, then the T'-minimax rule is
Jjust the Bayes rule for that prior. At the other extreme, when T con-
sists of all priors, the T'-minimax rule reduces to the minimax rule. In
this chapter, we will consider the I'-minimax decision rule for selecting
populations close to a control and compare it with the Bayes rule and the
minimax rule. In so doing, it will be shown how good these rules are.

In Section 1.2, definitions and notations used in this chapter are
introduced, and a decision-theoretic formulation of the probTem is given.
In Section 1.3 and Section 1.4, we derive a TI-minimax decision rule
for both cases when the control parameter 6, 1s known and when it is
unknown. It should be pointed out that Randles and Hollander (1977)

considered a T-minimax procedure for selecting populations better than



a control. When 6, is unknown; they applied the Hunt-Stein theorem to
prove the T-minimaxity of their rules for the component problem. However,
the proof given by them does not justify that the I'-minimax rule of the
component problem will give us a I'-minimax rule for the whole problem.
Miesche (1979) gave another technique which can be applied to our problem
to solve for the T-minimax rule when 6, is unknown; this is done in
Section 1.4.

In Section 1.5 some optimal properties of I'-minimax rules are found.
In Section 1.6, we generalize the results of Section 1.3 and 1.4, and
derive I'-minimax rules for some more general distributions besides the
normal. A I'-minimax rule for selecting the populations with large
entropy is given as an example. In Section 1.7, under the assumption
that the prior distributions are N{aj, 812), we find the Bayes rules
and we also find the minimax rules. These rules and the T'-minimax rules
found in Section 1.4 are compared in Section 1.8 in terms of the Bayes
risk, the maximum risk over T, and the overall maximum risk for all
possible choices of the prior distributions.

Numerical tables are given for selected values of variables for
comparison of these rules. Finally, in Section 1.9,we give an example
in which we apply the optimal selection rules. Conclusion about the
robustness of each rule discussed in this chapter are also given in

Section 1.9.

1.2 Notation and formulation of the problem

Let Iy Tyseenslly be (k+1) 1independent normal populations with
2

means 60, 61""’6k and common known variance o¢°, respectively.



I, is the control population, the other populations are defined: as

0
good or bad by

Definition 1.2.1. Let A >0, € >0 be two given numbers, then

(1) Population I, 1is good iff |86 <&

(i1) Population I; s bad iff ]60—611 > A+ e

Note that we do not define ; as good or bad if A < 161'60! <A+te,
which allows us to regard it as an indifference zone between good and
bad populations. Throughout this chapter, A and e will be assumed
given and fixed. We are interested in selecting as many as possible
good populations, and rejecting as many as possible the bad ones. We
formulate this problem in the framework of multiple decision theory.

Let
/ {9: (609619...96k) [ -® <61' < o for all i = 03~"3k}

if 60 is unknown

® = parameter space =<
{6= w]”..ﬁk)l -o < g <oforall is= T,...,k}

~

\ if 8, 1is known

Let oy(1) = {g ¢0 |65-8g] < A}, @ (1) = {8 e@j 10;-8g] 2 & + €},

Let Xi]’ X12"“° Xin be the observations from IL (0 < i< k). Since
vy -1 1N . .. .. -k
X, = = . <}

it jg] X1J is the sufficient statistic for 6; and {X]}1=0 are

independently normally distributed with means 60, 8],..., ek and

2
common known variance ( = %T')’ so without Toss of generality (wlog)



we can assume that there is only one observation Xi from each population

Hi' Then
1 2
o1 xeBiy L] “757 (%-84)
X1 Eqb( g ) = - e
Ven O
and
(XO’Xl""’Xk) for %o unknown
X:

(X1""’Xk) for o9 known.

The sample space X 1is defined as follows:
/ { %= (xgokysoaaXy )| - < x; < = forall i=0,1,...k}

if 60 is unknown

{x = (X]9~--:Xk) | -0 < X3 < w  forall i=1,...,k}

\ if 60 is known.

Let (XﬁB) be the usual Lebesque-measurable space. Let

D={§-= (51""’6k) | 8, ¢ X - [0,1] 1is a measurable function,

for all 1 <1 <k }.

Then D is the set of all selection rules and 61(5) is the probability

of selecting I, when we observe X = X.

Let L. denote the loss incurred when we fail to select a good popula-

1
tion and Lo the loss for each bad population selected. We define the

loss L(6,8) of using selection rule & when § 1is the true state

of parameter as follows:
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K. -
Definition 1.2.2.  L(8.8(x)) = £ L{T) (g,5.(x))

L(1-65(x)) if g €eg(i)
(x) if geoy(i)
0 otherwise.

(1.2.1)

Finally, we will assume that our partial information is that Hi has
probability Ai to be good and probability A{ to be bad. Also, Ai

and A; are known to us with 0 < Ays A; & Ayt A; < 1.

Definition 1.2.3. T ={t | 1 is a prior distribution on ® &

Plog(i)] = Aps PLBR(1)] = X; . for all Osick}
(1.2.2)

One can see that T 1is the class of all possible prior distributions on
® which summarizes our information about 6.,6

..8 Let PT denote

0* 1" ke
the Lebesque-Stieljes measure corresponding to T, then for any Lebesque-

measurable set Ace@, PT[A] = JA dr(9).

Definition 1.2.4, For all 1 €T and § € D, we define
r(r,8) = E_[R(9,8)]

where @ is a random variable distributed as t(g) and R(9,8) =

EQ[L(Q,~(Z)]-

Arule §" €D is said to be a I-minimax rule iff

sup r(T,8%) = inf sup r(T,d).
€T §€D €T
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Definition 1.2.5. Forany i (1 < i < k), the ith component

problem is to treat the above problem as if we only pay for the loss for
wrong decision about I, Hence, the iEﬂ - component problem is only
concerned with 63,{61(5)}, L(i)). Similarly, we will use

R (e,6) = £l (0,6,007 and r((e,5) = £ R (0,607 to
denote the ris; of izb-— component problem. We see that

R(9,8) = _g R(i)(Q,Si) and r(t,8) = .g P(i)(T,ﬁi). This suggests
that in 0;8;r to find the T-minimax ru};jwe may treat the 132._
component problem separately. In the next section, a I'-minimax rule

is derived for the case when 80 is known.

1.3 Derivation of a T-minimax rule when 60 is known
In this section, 60 is treated as known. We consider the 122—-

component problem first.

Lemma 1.3.7. Let 61(5) be an 132-- component decision rule, if

inf  Eg[8.(X)] = Fo,=0 b8 ()7 = 9. =6 a8 (%)

QGJG(i) ~ 0 0

and

SU?. E[éi(X)J = Eei=e +A+€[61(x)] = Ee =eO_A_€[6'(X)]a

0 i )
(1.3.7)
then for

ro(i) = {w€ T| P_[6,=0,+a] + P_[8.=0,-A] = A,
and P [6,=0,+a+e] + P [0.=0,-4-¢] = 2]},

we have

ié? r(i)(r,éi) - r(i)(To’ai) for all 1, € 14(1).
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Proof: vy t€r,

r(i)(T55i) = JSG(i) Eglly (1-6,(X)7 d(g)

¥ ﬂsB(i) EQ[LZ Si(X)] dt(6)

< Lyxs - Lo, (dinf E.[8:(X)]) + La7( sup E (.01
17 171 %@G“) - i 21Q@Bﬁ)@ it~
= L1A1 - L1PTO[91 = 60 + A] Eei=eo+ﬂ[61(g)]

L.P[o.=0,-A1 E, _.  [6.(X)]
1 TO i 0 61 eo A 1

+

L2P10[61=80+A+€] Eei=e i

e [8;00]

4=

LoP.. [8;70--c] Fo <0 --c [5;(1)]

[ty Blty (26,0007 dry(o) + s () Eglip;01 drg(0)

= o e ).
The following Temma has been widely used to solve for the I'-minimax

rule. It is stated here without proof.

Lemma 1.3.2. (Randles and Hollander (1971))
If there exists a prior distribution t* € T such that the Bayes rule

6:(5) for the i§h~- component problem wrt t* satisfies
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sup r(]) (t,6%) = r(T) (t*,8%) for all i =1,2,....k,
ot i i

then &% = (57,...,5E) is a T'-minimax decision rule.
Combining Lemma 1.3.1 and Lemma 1.3.2, we get the following

theorem:

Theorem 1.3.1. If for i =1,2,...,k, 5:(5) is a Bayes ru]ﬁ for the

ith component problem wrt the same prior distribution T* € fn i)
']:
and assume that 6? satisfies (1.3.1), then §* = (6:,...,6;) is a

T-minimex rule.

Proof: Since T € Fo(i) for all i, hence by Lemma 1.3.1,

(1.3.1) = sup r(]) (T,S:) = r(i) (T*,ﬁ:) for all 1.
T€T

Then by Lemma 1.3.2,

* * *

§ = (6],...,6k) is a I'-minimax rule.

Remark: For Lemma 1.1.2 and Theorem 1.3.1 to hold, we do not need

to assume that the populations are normally distributed. But to satisfy
condition (1.3.1), we will restrict ourselves to normal popuiations
from now on. Some results for general distributions will be discussed

in Section 1.6.

To verify (1.3.1), some tools which transfer the monotonicity of
functions on X to the nonotonicity of function on ® are needed. We

quote some definitions and theorems from Karlin (1968).
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Definition 1.3.1. X ~ fe(x) is said to be TPn (Totally Positive of

order n) iff for any e] < 62 < ... < en, Xy < Xp < e < Xos we
have
[
fo (x]) - £y (xm)
Xq5 X 1 T
K B : >0
845 8
1 *“m
£y (%) foo(x )
em 1 em m

for all 1 <m < n.

Definition 1.3.2. If X~ fy(x) is TP for all n=1,2,..., then

X s said to be TP (Totally Positive).
Lemma 1.3.3. If fe(x) = a(e) b(x)‘ea(e)s(x), where af{e) > 0,
b(x) >0, and o(6), 8(x) are increasing functions, then fe(x) is

TP.

Definition 1.3.3. For any real-valued function h, let S(h) denote

the number of sign changes of h; we define S(h) = n iff there exist

Xy <Xy <Ll <X such that either

n+l

(-1)3*1 n(x) >0y §=1,2,...,04
or

(*1)j h(xj) >0 ¥ j=1,2,...,n+1,

but for any Yy < ¥y <l < Ye1? the above two inequalities do not

hold.
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Theorem 1.3.2. (Karlin) Variation Diminishing Property

If X~ fe(x) is TPn and h is a piecewise-continuous function. Let
g(e) = Ee[h(X)], then

s(h) <n -1 = 5(g) < S(h).
Furthermore, if S(g) = S{(h) = n -1, then g and h change signsin

the same order.

Corollary 1.3.1. If h(x) = I[a,b](x) where I is the indicator
function and X ~ f (x) = a(6) b(x) e(0)8(x) iy a(e), B8(x)
increasing in @, x, respectively, then if g(g) = Ee[h(X)] and
9(60+8) = g(eo-e) for some 6,, we have g is increasing for o < R

and decreasing for 6 > 6o

Proof: X TP (by Lemma 1.3.3) = X is TP,.
Now, for O0<c <1, let

h.(x) = h(x) - c and g (6) = g(6) - c,

then

£ [h.(X)1 = g (6).
Since S(hc) =2<3-1, we get S(gé) < 2 (by Theorem 1.3.2)
YO0<c<1. Now, if g 1is not increasing for 6 < 60, then there

exists 8y < 6, <, and g(e]) > g(ez). Let

e{ = 260 - e] and eé = 260 - 62,

we get
g(07) = g(6;) and g(63) = g(6,), but 6 < 6.

Now let

1

977

(9(6]) + 9(62)), then 0 < ¢y < 1.
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5 1

i |
. i ; i
6] 82 80 6 6]
Figure 1. Number of sign changes of function g.

/]
TN

As we can see, S(gc ) > 2 = S(gCO) = 2. But then by Theorem 1.3.2,
0

should change sign in the same order as h_ does,which is not

9c C

0
true for 9o and hC. This completes the proof.

Remark: For Corollary 1.3.1 to hold, we only need X to be TP But

3
since we will consider the distributions which are mainly TP, so we

have this stronger assumption included.

Corollary 1.3.2. Let X ~ N(6,0%). If

§(x) =1 ](x) for some t >0, and g(8) = Ee[a(x)],

then we have
g(e) is increasing for @ < 6y and

g{0) 1is decreasing for @ > 6g-

Proof: Let Z ~ N(0,6%), then Z ~ -Z.

it

Now, g(e+6,) = Pri-t + 8 SZ+8+0,<t+0,]

=Pr[-t-06<Z<t-~0]
=Prl-t+0<~-Z<t+ 0]
=Prl[-t+08<Z<t+0]

i

Pri-t + 60 < Z+ 60 -9<t+ GO]

g(eo - 9)
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then by Corollary 1.3.1, we proved g(6) is increasing for 9 < eo and

decreasing for 6 > eo. This completes the proof.

Note that Corollary 1.3.2. is important for us to justify condition

(1.3.1). Now, we turn to the main theorem of this section.

Theorem 1.3.3. Let X, ~ N(ei,cz) for i =1,2,...,k be independent

. . 2 * * *
random variable with o¢¢ known. If § = (61""’6k) where

ST(x.) = 1 (x.)
NP = X.
i\ ['ti 6, 0y ¥ ti] i

and +t., are determined by the equation

t++A+ -
LATe( 22y 4 o 22y
tytA ty-A | -
=Ly ol T=) v el =) 1, (1.3.2)

0 . P
then ¢ s a T-minimax rule.

Proof: We define T° to be the prior in T such that 61’92""’ek

are independent and satisfy

h
= = = = .__l.
PT*[ei =6y-A- e] = PT*[ei By * A+ e] 5
3 . . _ M
Prlfy = 8g - 81 = Prulfy = 6 + a1 =
= oN R - A7
PT*[ei = 90 tAt 3 1 =1 Ay - AT
* k .
for all i =1,2,...,k. Then it is easily seen that 1 € fj]FO(T)-
":
Now, let
k
fole) = I £, (x))



where

1 -
fe (X') _8 (:0(—__——
then we have

) (er5) = ﬁ; JX L (8,8,000) 7,00) ax ar*(e)

' jlﬁi-eole+e jX Ly 6;(x) fg(x) dx dv (@)

< L O-sx))  : £ (x) P(8) dx
JX L gelo,=0,-01 & T

+ | L(1-8,(x)) = fo(x) P_«(8) dx
fx ! ! ge{0,=0,*A} g t

; j L,8:(x) = fo(x) P_«(8) dx
X "2 @E{Gi=eO-A-€}g v

* [ Lossa) 1 fo(x) Prale) dx.
Xoen ge{6,=0,*A%e} e e

Now we may notice that

L fo(x) Prx(8) z fo(x) P_s(0)
gelo4=0,-0) ~ ge{o =64ta} =
s = s
oo (x.) S5- fooL (x;) 20
z z f.(x) P_.(8)
octo;=0g-a-ct 00X Prxl®) ecrg g ppeey O T
f (x;) 21 M
Bombme 17 3 fo rare*i) 2

Any of the above four expressions is denoted by

c(x],...sxi_l,x ..,xk). Hence,

i+1°”

18
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eO-A 1
1 1
A
) 4 A
= JXL]C(X],...,xi_],x1+],...,xk) [feO-A(Xi) + f60+A(X1)] - dx

L] -y
¥ Jx. [f O~A—e(xi) ¥ f60+A+€(X1)] - _ZT_'[feO—A(X1)+fe (%3]

. 6i(§) . c(x],...,x1_1,x1+1,...,xk) dx .

Thus, we find that the Bayes rule is given by

A S S CH I P CRA ETRN SR L A OB}
§¥(x) =

0 3F LA a1 pnre (KT > LA TRy (xg)+Fg 4 (xp)].

0 0 0 0
(1.3.3)
Let
) [fe =) ¥ Fo tare (X9
h,(x,) = -
it L A1 [feO-A(Xi) + feo+A(Xi)]

_ —l?-(A+e)2[: - x,-8) (a¥e) ;%(xi-eo)(A+€;]
LaA? 20 o] 1 o
271 e e +e -

s T 2 - 1, 1, o
g e g

¢
e + e
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. 1 1
LoAs —?ET'(2A+€)€ cosh[jaz (Xi"eo)(A+€)]

Li2y cosh(ré%(xi-eo)A]

Since cosh(y) = cosh(-y), we see that

h1(60+x1) = hi(GO—Xi)' (].3.4)
d cosh ax b .
Moreover, - = sinh[(a-b)x].
dx cosh bx cosh2 bx
cosh ax

Hence, for a > b > 0, “osh bx 1s decreasing for x < 0 and increasing
if x > 0. This shows that hi(xi) is decreasing for X; < 80 and

increasing for X; >0 Hence 1t follows that hi(xi) =]

0"
has two solutions, + ti * 6. Then, from (1.3.3),
1 if h(xi) <1

§¥(x) = 6¥(x.
5 (x) 5 (x5) 0 i hix) > 1

i

0 otherwise

and ti‘s satisfy (1.3.2).

Finally, Tet g(ei) = E6 [Sf(Xi)], then from Corollary 1.3.2,
i

9(0i+90) = 9(60_61) and g 1is increasing for 6, <8 and decreasing

0

for ei > eO. This proves that
inf  g(0,) = g(65+a) = g(6,-4)
and



i.e., condition (1.3.1) is satisfied. Now, Theorem 1.3.1. shows that

*

* o=
&% = (a7,

*
..,Gk) is a I'-minimax decision rule. This completes the

proof.

Note that it may happen (1.3.2) does not have a solution for some

Ass
i

A;, A, . In this case, the T'-minimax rule implies that all popula-
tions are bad.

The solutions ti depend on Ai and A; only through their
ratio v = Ai/ A; (see (1.3.2)), hence §* is actually a I'-minimax

rule for T = {1] Prlog(i)] / P leg(i)] = v, for i =1,2,...,k}.

]’
1.4 Derivation of a restricted I'-minimax rule when 60 is unknown

In this section, 60 will be treated as an unknown parameter. As
mentioned in Section 1.2, ®, X, and X will include one more component

and one observation XO is taken from HO.

Definition 1.4.1. Let D] c D be the class of rules such that the iEﬂ

decision rule depends only on X0 and Xi’ i.e.,

D, = {§ = (6],...,6k) €D | 8, = Gi(XO’Xi) ¥ 1 <1<k}

(1.4.1).

We derive a T-minimax rule in the class D]. The problem whether
our rule is also I'-minimax in D when 60 is unknown is not solved.

Ferguson (1967, P. 90) gives two theorems to provide solutions for
the minimax rule. Lemma 1.3.2. is similar to his Theorem 1 to solve for
a I'-minimax rule, and the following lemma (due to Miescke) is similar

to Ferguson's Theorem 2.
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Lemma 7.4.1. (Miescke) 1If {Tn € szq is a sequence of priors and

O o0

{6;.1 is a sequence of Bayes rules corresponding to T, for the

n=1
1§ﬂ—- component problem for all i = 1,2,...,k, then §0 = (5?,...,68)

in

is a I'-minimax rule iff
vim inf (e 60 ) s sup r{T)(0,69) for a1 = 1,..L k.
R0 n - 1in el 1
(1.4.2)

Proof: Llet § = (6]°""5k) be any selection rule. Then

k

sup r(1,8) = sup 3z r()(g,6,)
€T €l =] 1
kK. ko,
(1) (i) 0
> sup T or Mt ,86.) > sup oz orM(r ,87)
nEN =] n e N i=1 non
ko . k .
> lim inf % r(*)(rn,a?n) > % lim inf r(1)(Tn,5?n)
N0 i=1 i=1 oo

kK. |
> sup I P(1)(T,6?) = sup r(r,60) .
i= Tel -

. 0 . -
This proves ¢  is a T'-minimax rule.

To use the preceeding lemma, we need to find a sequence of priors

and their rules so that (1.4.2) holds. Now, each prior distribution

T on @O XOq X ... X(Ek can be specified by the marginal distribution
To on ®, and the conditional distribution w, on ®, X ... X®

0 0 eo 1 k
given 0g = 0p- We will use 7 = (To,we ) to denote such prior

0
distributions. Let

T, = (Tn,weo)

where
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(i) T, is the marginal distribution on @, which is assumed to
be uniform over [-n,n].

(ii) Given 9y = 8p° i.e., under Wy s B1s---50, are independent

0
and
s
PwGO [6, =8y & - e [85] = Pygq 0[ei =6yt A t+el 8yl =
A
Pwe [o; =65 - 4] 8y = P le; = 8y + al6gl = &
0 0

- € _ -
Py [6; =6t a+5 |85l =1-2 -27

We will also use the notation w61 to denote the conditional marginal
0

distribution of 6, under w, -

i 60

Lemma 1.4.2. Let T, be defined as above, then under the Toss function

as defined by (1.2.1), the Bayes rule in the class D] wrt T for the

1Eh'— component problem is

n
VAT ALy [ [fg pee )4y ()R, (1)
-n 70 0 0
0 " e, L (x)IF (%)
- < Al J f X, )+f x: )1, (x,)do
850 (Xgo%s) = T )t egta i eg-at i e 00
0 >
(1.4.3)
- b X=
where fe(x) == o == )
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proot: V(e 6= [ L8y o 308300 X Dy (6)
roof: Ty 8y ‘.ﬁn [lﬁi—eolfA 111780, 81 Kook weo(ei

+f191-eoliﬁ+€ LzE(eO,e )[éi(XO’Xi)]dwe;(ei?} dT;,(8g)

o g e ()
L f {?TLl(] 03 (o X; D yp (%) + Fo,-a0117q (xo)

- CO

A

* i?’L251<Xo’xi)[feo+a+e<xi) * feo—A-e(Xi)]} dTp (85 ) dx;dx,

0 L.
) A ]
i f_mf_mf_n?T'Ll[feo+A(xi) ¥ feO-A(Xi)]feO(xo) AT (09 )dx;dxg

A{Lz n _ 1
) L [. Xp%3) ) J_n[fe sare(Xg) + T 4 (X)1Fy (xg)5ndey

AsL n

i1 - ]

o | R aalxs) * Fy ()1, (rg)dey L ox ang.
0 0 0

Hence, the Bayes rule is as shown in (1.4.3).

Now we find the Bayes risk of 6?n wrt 7, is

D 0= 062 (e ) T TE (o )+.  (x)TF. (x)dT (6,)
notin)T] ) gt oG ) [fe sa(x3)+F _a(x4)1fg (xo)dT, (0
0 A{LZ n
" Sinlxgoxy) ‘7?"[_ o grare(Xi) 4o _p.c (X117 (x)dT, (89) dxydg

0 o] )\11__] fn
i J_m[_mmin{—?—*J_n[feO+A(xi)+feO_A(x1)]feO(xO)dTh(eo) ,

—n[fe sare (X3 )y _A_E(xi)]feo(xo)dTh(eo{E dxdxq
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If we consider the change of variables gxi Tyt Y

Xo Ty T Y
of the two outside integralsa then change 90 =ny. =g for the
5 ( XX
C e . i O
inside integral. Since l i and f. (x) = f.(x-0),
a(y ,YO) 8 0
we get
. © .L n(yﬂ)
0 A
e 00 =1 1 win L7 T Iy )+ g (vgtng )]
-~ n(y;-1)
fo(no"yO) dnoa
Ail, n(y.+1)
i 2 i
T—' fn (y 1 )[fo(yO+no‘A‘€>+f0(yO+nO+A+E)]fo(no"\yO)an}dy-,d.yO
1 nlyy+1)
> f fﬂﬂn{ f ( ])[fo(y0+nO'A)+fO(y0+nO+A)]fO(nO‘yO)an,
-0 - n y.—
j
Ail, n(y,+1)
i72 i
—5/ [f o (ygtng-a-e)+fo (ygtngtate) If  (ng-yq)dngdy;dyg.

n(‘y’i--‘)
(1.4.4)

To find a lower bound of Tim inf r(rn,ao ), we need to use

N o> e in
the following facts:
(i) Fatou's Lemma. 2
1 z-b ® ] Emﬁ
(i) — f (=) = [ f,(x-z)f,(x-b)dx, where f,(x) = e
z s w0 0 0 /7

From (i), (ii) and (1.4.4), we get

Tim inf r* (o ,6 > [ [ min{—— [f

(ZyO—A 2yO+A
n -+ o - '--l 2/— O \/2_
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A_%LZ ZyO-A—e 2_yO+A+e
- [fo(~—;§—-) * fol—=—)11dy,dy,
o AL 2 n =4 2y A+A AL 2Yn—h=-g 2y ~HA+e
= ] winGh [ (2 (=27, B2 e (TO e (0T
e 2/2 V2 V2 2v2 V2 V2
d(2y,)
AsL YA Yata Al Ya-A-g Yatite
= [ minE b [ () (212 e (PO e (2 Ty,
—eo 2v2 V2 2 2/2 V2 VZ
(1.4.5)

Now, we are ready to prdve the following theorem.

Theorem 1.4.1. If 9 s unknown, let L(e,s(x)), T and D; be as defined

in (1.2.1), (1.2.2) and (1.4.1), respectively, then the r-minimax

rule in D] is given by

£ (2,0,
where
(X.=xn)¥ate (X:=Xn)-A-¢
Tif Lonilel 0 )+ o L?‘O )]
(Xs=Xn)¥A (X:=Xn~)=A
0 i "0 0
§:(X =x,) = < Loas + '
0%, <Lyl + (0
0 > . (1.4.6)

e = t 2 = —
Proof: Let Y, = X;-Xg» then Yo N(ni’o )» where n; = 6.-65 and
o' = /25. Let g(ni) = En.[ég(Yi)]’ then as was shown in the proof
i
of Theorem 1.3.3., g(nj) is increasing for n; < 0 and decreasing

for n.i > 0, and 9(n1) = 9('%), SO
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and

Now, VT = (To,we )€ T,

0
(1), 0y . [ 0 .
rnsy) {m{{e.-eol ¢ o 11 Fo ot Xy g (04)
'] -—
v [ L,E, [Gg(xi-xo)]dwg (8:)3dry(0,)
85-60] > ate < %i7% 0o
. 0 ® i
<L (1- inf E 8% (x.=x,)0f { dw, (6.)dr.(6.)
1 6.-6.""1'"1 "0 B
lo-04] <2 7170 - Jo.-0,] <8 C0 ! 0%0
0 ” i
+ L sup E (85 (Xx:=xA)] dw. (8.)dt. (8
Zlei-ao[ >oade 037% 1170 {m 0.-0.] > Ate eO< 1147 (%)
i 0" —
= Lo (1= inf g(n.))+al sup g(n.)
a Injliﬂ ! 21ln.i[_>_A+e !
- _ g(a)+g(-a) v 9(ate)+g(-a-¢)
Lyas (1 ) Ly 7
Lo s Loxs
Bt s PN i 0 2M 0
7 (1B Loy (Y IH1-E_ Tos (YO )+ —=5(E, , D6 (V) HE_
0
[o5(Y,)1)
o Lo Ya~A Yit+A
_ 1%, .0 i i 1
- {w 2 \]'6-’()/-!))[(1)( U' )+¢(—O—‘_—)] ?‘
Loxs Yai-O-¢ Yitiate
271 0, i i vp ]
& 2 61\‘)/1){(1)( o' )+¢( o )] gl_d}/.l
o Ly y.-4 Y.FA LAy  y.-A-e yithte
= [ mint o (e (5] I S (e ()] Ly,
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L]Ai y;-h yitb LZA% y;-h-e yitite
/2 V2 2 2/2 V2 V2

= [ min{

N 0
< 1im inf r(rn,éin) by (1.4.5).

1l > o

Hence, we have proved that sup T(T)(T,S?) 5_1%m inf r{t
Tel ‘

i=1,2,...,k. By Lemma 1.4.1., we conclude s° = (s

r-minimax rule in D]. This completes the proof.

By the same reason as mentioned in the last paragraph of

Section 1.3, 60 is also a r-minimax rule in D] for
T = {T]PTE)G(i)]/PTBDB(i)] = Vs for all i = 0,1,...,k},
where Vs = Ai/xi for i = 0,1,...,k.

1.5 Optimal properties of the r-minimax rule

As mentioned in Section 1.2, wlog we can reduce the sample
size to T for each population. If, in fact, we observe Xi]""’xin
from Tis the T-minimax rule remains the same with the substitution

5. =17 :
of Xi by Ain <Xin = ﬁ-jz] Xij)' We now prove the following theorem.

Theorem 1.5.1. When eO is known,

Tim inf E [6*%(X. )] =1
oo fo.-00] <4 5 1M

and

Tim sup E [s¥(X. )]= 0.
o [6.-00] > a+e O 1T

The above theorem says that as n becomes sufficiently large, the



probability of selecting a good population approaches 1 uniformly,
and the probability of selecting a bad population goes to 0
uniformly.

To prove Theorem 1.5.1, we need the following lemma.

Lemma 1.5.1. For any sample size n, the r-minimax rule §* =

(6%

],...,dﬁ) can be written as

54,0 = I[-ti(n),ti(n)](iin'eo)’
then

. - £
Tim ti(n) =4t
N->o0

Proof: From the proof of Theorem 1.3.3., we know ti(n) is the

positive root of the equation

- D(anre)e COSNTg(ave)]
b () = 2, 200 o 1= 0.
n LAy cosh[— ax]
174 2
[e)
Now, consider
n —n—(A'H:)X
Loyt~ “"—2‘(2A+€)€ 2
_ 2 20 e’
fn(x) T € n -1
174 vl AX
eG
n
Lt "o (2nre)e —pate)x
g (X) - 2 1 e 20 eO _ -‘
n L12 D ax
2e°

Because for x > 0, we have
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E?(A+E)X D§(A+e)x - B§1A+E)X ﬂﬁ(A+E)X
eG . eG +e o . eO
ﬂé‘AX - D§~Ax - Dﬁ-Ax h D§~AX
2e° e +e ¢ e?
0 gn(x) i.hn(x) 5_fn(x) for x > 0. Let ri(n) and si(n) be the

only positive roots of g (x) = 0 and f _(x) = 0, respectively, we
n n

get
ri(n) > t;(n) > s;(n),
but
Lodd
LA
Lo(2nte)en talmi) o2y
r.{n) = 20 LI I PARDY:
i n_ . 2 ne
2
and g
LA L.
2
(20t el 5) o5 )
S(n)ZZG ]i:A+E_ ]1
i n_ . 2 ne ’
O2
hence,
. _ . _ € ‘
1im ri(n) = 1im si(n) = At for any L1, L2, Ais Ais 05 Sse.
Mo N->co
So, 1im t.{(n) = a+ %3 which completes the proof.
N |
Now we give the proof of Theorem 1.5.1.
Proof (of Theorem 1.5.1.):
2
Now, X v N(e, gﬁ). For [o.-85] < 8, Tet
9(6]') = Ee_[5?<xin)] = Pr[—ti(n) < Xin-GO < t'i(n)]

i
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t.(n)+s,-6. -t.(n)+e.~6.
= of i mp 1) - o i 0 i
a/vn a/v/n

).

If we recall that g(ei+eo) = g(eo—ei), and g is decreasing for

85 > 05> then inf g(ei) = g(eO+A) = g(eO—A). Hence,
[85-801 < &
] tn)-a -t(n)-s
inf £ [e3(R; )] = o(———) - o(——).
|61—GOI <A o/ /n a/Vn
So,
Tim inf B, [e¥(X; )] = e{=)-0(-=) =1

Nse |65-0g] < & i

Similarly,

sup gle;) = glggtate) = glep-a-e).
l65-0q] > ate
Hence,
- tj(n)‘(A+€)
Tim sup E, [5?(Xin)] = limf¢(—————)
N l@i~60[ > Ate i N o/ /n

o/ /n

This completes the proof of Theorem 1.5.1.

Remark: If 60 is unknown, Theorem 1.5.1. becomes

Tim inf Ey g [6 (X, )1 =1

in” On
nve [0.-60] <& 71

and

-ty ()= (a+e)
ey

31
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. 0,~
Tim sup E [8:(X, -X,. )1 =0.
n-eo |61—60|3A+€ 8;=8p 17 In "On

The proof is similar to that of Theorem 1.5.1 and hence it is omitted.

*
Theorem 1.5.2. T1im sup r(t,8*) = 0, where &§* = (6?,...,6k) is the T
nseo TET - ~
minimax rule we found in Theorem 1.3.3. with X; replaced by Q}n‘
. k (1) *
Proof: sup r(t,8%) < ) supr (1,61).
€T - i=1 €T
Now,
(1) * _ *
sup v/ (T,8.) = suplf, _ L (1-E, [8.(X. )1dt(s;)
€T i r | 1857651287 0,71 in i

*
¥ f[61—60[2A+gL2E6i[éj(xjn)]dT(ei)

* *
< L x (1 - inf E. I8, (X, )]) + L,AZ sup E. .08, (X, )1,
— 717 g.-7i*"in 271 8,71 *"in
[8:-05]<8 7 [ei—eO[3A+e i
then
k . *
Tim sup r(t,8%) < )} T1im sup r(1)(1,61)
neeo €T ~ i=1 n»e €T

k. I
< Lyas(1-Tim  inf  E, [8.(X..)7])
] b o [9_1-60|_<_A 81 1 in

*
+ Lo Tim sup E.[6.(X, )] =0".
27T oo |65-84 | >0%e 6y 1 n

Again, when 9 is unknown, 1im sup r(r,éo) = 0 is also true.
n-o TET ~

Theorem 1.5.3. When 90 is known, the T-minimax rule

* *
§* = (61""’6k) is admissible.
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Proof: Let t* be as defined in the proof of Theorem 1.3.3., then,

any Bayes rule § = (6],.,.,6k) of t* is of the form

1 if LZA%[feD~A*€(Xi)+f60+A+e(xi)]

8 (x) = <Lhilfo o Ox)¥Fy 1 (xp)]
vi(g) if =
0 if >

However,

{xiIszi[feo_A_E(xi)+feo+A+€(xi)] = L1Ai[feo_A(xi)+feo+A(xi)]}

and

PLX; = + £, = 0 since X, ~ N(o,, o).

This shows that the Bayes rule of t* is unique up to equivalence.
It follows that all Bayes rules of t* are admissible (Ferguson p. 60

[1967]). Particularly, §* (with v1(§) = 1) is admissible.

0

When 90 is unknown, the T-minimax rule 8§° is also admissible.

To prove this, we need to consider the generalized Bayes rule.

Definition 1.5.1. If T is a measure on ®, and if 60 satisfies

inf fo L (8,8(x))f(x|6)dr(8) = fs L(e,éo(x))f(xle)dr(e) <,
§

then 60 is said to be a generalized Bayes rule for T.
Remark: &, is a generalized Bayes rule can't guarantee r(t, 60) < o,

Lemma 1.5.2. If |L(®,a)|<M for some constant M, then 8 1s a generalized

Bayes rule=> for all§, [® [R(e,é)—R(G,SO)]dT(GQ > 0.
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Proof: For any 6§,

/XLDEL(6,6(X)) - L(e,éo(x))]f(xle)dT(e)dx >0 .
But since L(6,8(x)) - L(e,GO(x)) is bounded from below, by Fubini's

Theorem,

Jo Iy [L(8,6)-L(8,8,) 1f(x|6)dxdt(6) > O ,

i.e.,

[@[R(e,a) - R(6,64)1dt(8) > 0 .

Definition 1.5.2. A generalized Bayes rule 60 wrt T is unique up to

equivalence iff for any rule §,
é)[R(e,é) - R(8,84)]dt(e) = 0
=> R(8,8) = R(8,8,) >y 6.
Remark: Let 60 be a unique generalized Bayes rule according to

definition 1.5.2., then if § is any other generalized Bayes rule for T,

we have R(6,8) = R(e,@o) for all s.

Lemma 1.5.3. If L(@,a) is bounded and if the generalized Bayes rule 60

of 1 is unique up to equivalence, then 60 is admissible.
Proof: Let & be such that R(6,8) < R(e,SO) then
ﬁD[R(e,a) - R(e,@o)]dT(G).i 0.
By Lemma 1.5.2,
Jg[R(8,8) - R(8,84)1dt(8) = O .

Now by the uniqueness of 8g» we get R(8,8) = R(e,éo), which completes

the proof.
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Theorem 1.5.4. When 60 is unknown, the I'-minimax rule

0_,.0 0
§ - (619--->6k)

is admissible in D].

Proof: Let T = (To,we ) be the measure on @ such that g is Lebesque
0 .
measure on ®O’ and with 80 given, 61’82""’ek are independent,

such that
A
= = = =1
Pwe [e; 60+A]80] =P, [o; eO-AleO] 5
0 0
N
Pwe [6, = 60+A+€]60] = P“e [, = eO-A-e[eO] =5
0 0
= £ =7 - -2\
Pwe [ei = eO+A+2 [eO] 1 Ai AT
0

k A
= 3 o Ly (1=8, (X D IF () +F () TF, (%)
=1 oo 2 1 0’1 60+A i 60 ANV 60 0
A |
o b 61(XO’Xi)[feO+A+e(xi)+feo-A-e(xi)]feo(xo) dey
ko A, |
=] J 2 L1lfg (x40 _a(x;)1fq (xq)dog
i=1 /- 0 0
% %1? (xi—x0+A+e (x.—xO—A-e)
£V 8 (Xgaxs N LR 4 f -
A X.=XA+A X=X~
/2 V2 /2
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Hence, if 6?(xo,xi) is defined by (1.4.6), then

60 = (6?,...,68) is a generalized Bayes rule wrt t. Now, if

f® R<99§> - R(?a§0)dT(9) = O 5
i.e.,

[ IL(8:80x)) = L(8,67(x)) I (x]0)dr(8)dx

t
O

by Fubini's Theorem, so

k o0 ,00 AL X=X FAte X;=Xn=A-g
) f f [5, (xg>x;)-8 O(xo,xi)Ji?;AL2[f0< L0 e (23

j=1/ - V72 /2
X. =X X =XnmA
- L,[f, (-J~—ll——)+f (—3——11——)]§dx.dx0 =0 .
VZ VZ !
Hence,
X xO+A+€ x1 xO A-e
- I Ly lel ) ¢ (g
x =X~ A “XA=A
0 0
L A +
< ;Lo /—U) (/—6)] .
61(x0,x1)
vi(XO’Xi) if =
0 if >
Again,
- X —XO+A+€ X1~XO—A £
((x %) Ly o )+ o )]
o V2 o
X xd+A X;=Xq=A
= L]Ai[¢( ) + ¢< )] < {X.-XO = + ti}
2 G V2 o -
and
X. 6. 2
0]
P[X,-X. = +t.]=0, si AN (), (@ ,
[Xs-Xy =+ t.] since (XO) ((eo) (& 02))
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So,

_ .0
61(X1’XO) = Gi(xj,xo) a.e.

Then,
R(6,8) = R(6,8

e}

By Lemma 1.5.3., &

is admissible. This proves Theorem 1.5.4.

When % is unknown, we have restricted the decision rules to the
class D1. It isquite natural and reasonable for us to do this. However,
we may still like to know:

a. Is §O = (6?,...,68) a T'-minimax decision rule in D rather
than only in D]?

b. 1Is ¥ admissible in D?

We Teave these questions as open for further research.

1.6 Relaxing the assumption of normality
As was remarked in Section 1.3, the assumption of normality is some-
what restrictive to our problem. In this section, we will investigate

some more general distributions for which T-minimax rules exist.

Theorem 1.6.1. Assume 60 is known. Let

Ay = 1 IA{Lz[feO+A+e(Xi)+feo—A-e(X1‘)] = x1‘L1[’ceom(xi)J”ceO—A(Xi)]}‘

Let

g(ei) = E@i[IAi(Xi)] where X1~fei(x). If 9(9i+90) = g(eo-ei) and

g(ei) is decreasing for 85 > 0> then § = (61""’6k) is a T-minimax

rule where 61(5) = IAi(Xi) for i=1,...,k.
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Proof: Let 1% be defined as in the proof of Theorem 1.3.3., then the
Bayes rule for the ith-component problem wrt t* is given by Si(xi) =

IAi(xi) for i=1,2,...,k.

Now, since 9<ei+eo) = g(eo-ei) and g(ei) is decreasing for 6, > 8ys SO

sup Q(ei) = g(eO+A+€> = g(eo'A'e)
|6,-6|>4te :

and

inf g(8;) = g{8,+) = g(8,-4) ,

[ei-eolfA

i.e., di satisfies (1.3.1). Hence by Theorem 1.3.1., § is a T-minimax

rule.

The following example applies Theorem 1.6.71. to select some

binomial populations with large entropy.

Definition 1.6.1. For a binomial distribution b(n,p), itsentropy is

defined as
Y(p) = - [pLnp+(1-p)en(1-p)] .

Note that y(p) is associated with the uncertainty or randomness of that

population. The larger the y(p), the stronger the randomness.

Example 1.6.1.: Suppose H1’H2"“’Hk are k independent binomial popu-

Tations with My ~ b(n,pi). We define
Hi is positive iff w(pi) > B+ e”

and I; is negative iff w(pi) <B.
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Figure 2. Graph of (p).

Equivalently, we can say that

A
>

m, is positive iff |p, - x| <

and T, is negative iff [pi - % >A+e,

where (% + A) =g+ €' and y(x + A+ ) = B.

It is seen that 60 = 4 in this problem. Let T be given by (1.2.2) and

the loss given by (1.2.1) with 6, = % and 05 = P> then

0
Ay = OGPy )P (3T < Ly Py ()90 (04D
where pe(x) = (g)ex(1—e)n'x , we find Xs € Ai iff

LA (o oy N 7% X e
2M (3-p-e) '(tive)  +(3+Ave) +(%-A-e) = h(x;) <1
L X n-x X n-x; =

L (%ﬂ)i(¥ﬂ) Teiarn) To(amn)

Also, it is obvious that h(g-~ Xi) = h(%—+ Xi)' After some messy compu-

tation, we get

X n-x,-1 X n-x.-1
h(x;#1)-h(x;) = c(a-n-e) ' (sracte) fe(a-0) (i)

[(%+A+€ ° ;ﬂ'A)Zx.H-lﬂ“]]-}‘(2A+ )(%+A)xi(%_A)n-x._1
b=A-g h-A €
2x1+1-n
A=A htAte _
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then
. n-1
h(x1+1) > h(xi) iff X; > 5
- ; - n-1
h(xi+1) = h(xi) iff X, 5
. n-1
h(X_]+1) < h(X_I) iff X'i <—‘2—
Hence,
= = n_ <n
Apm Dglh(xg) <13 = g g - my < xSz emed
for some integer ms. It follows that
g(p:) = E_[I, X)] =P -m <X, <2+ m.]
1 Ps Ai i 2 i i—2 i’ 2
n
7t m " X n-x,
] (x ) ps (1—p1) if n is even
= n_ i
)N TN
i LELN
2 My n X n-x,
! () Py (1-py) if nis odd .
N L I
i 2 i
= 9(1-p;)
ie., g(%+p1) = g(%- pi). Since
p.
X, n-X. X 2 ()
n Tq. T _ (1. (N 4N LR B
(X1> p; (1-p;) (1-ps) (xi) e

) is

P,
and fn (Tj%fo is increasing in p., so by Corollary 1.3.1, g(pi
i

decreasing for Py > % and increasing for Py < %

Now, by Theorem 1.6.1., § = (8y,...,6,) with 6.(x;) = I (x

[n n

5~ Mysptml

is a I'-minimax rule.

i

)
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Definition 1.6.,2. X ~ fe(x) is sajd to be a PF density (pé]ya

frequency) if fe(x) = f(x-6) is TP.

Thedrem 1.6.2. (Karlin) If X ~ fe(x) js a PF density and f(x) = f(-x),

then |X| is TP (hence TPZ) for 6 > 0.

Remark: The density of |X| is [fe(x)+fe(~x)] I[O m](x), so by Theorem
1.6.2, we can assert that

f(x—ez) + f(x+82)

Flx-8y) + Fx¥67) (1.6.1)

is increasing in x for x > 0 and 6, > e] .

Theorem 1.6.3. If X has a PF density fe (x) = f(x—ei) and f(x)=f(-x),
i
then the assumptions of Theorem 1.6.1 are satisfied.

Proof: We need to show g(6j+60) = g(eo—ei) and g is decreasing for

8. > 0 Let y; = Xi—GO’ then

i 0°
LZA{ f(yi+A+e) + f(yi—A—e)
A = il Ox Fly 78 1.
Let .
f(yi+A+€) + f(yi—A-e)
h(y;) = fly ¥a) * fy,-a)  °
then

f(x) = f(-x) = h(y;) = h(-y;) .

Also, from (1.6.1), h is increasing in Y; for y; > 0,

so A= {yi+60’"ti <y; < t;}. Then

a(ey) = Eg 1, (4;)]

PL-t.,+6q < 740, < ty+6.1,

0
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where 7 ~ fe =O(x). Since Z ~ -7, hence
9(91+60) = g(eo'ei) .

Now, by the remark of Corollary 1.3.1., we get g is decreasing in ei

for 6, > eo. This completes the proof.
C. —C1|X_i'e_il

Example 1.6.2.: If f, (x) = —Zle for i=1,2,....k ,
1 )

where Cils are known constants, then the T'-minimax rule is

§ = (61,...,6!() with [ | l
- -C; |X,=6,-A-g] ~C; | X, =0FAte
AL, [e i 0 +e it 0 ]

172 <1

-C.[X:-64=A] =Ci[X.-0,FA] =
i 0 o 1 0 T

if

5.(x.) = Aby [e

Proof: The result follows directly from Theorem 1.6.3.
1.7 Bayes rule and the minimax rule for selecting populations close

to a control

In Section 1.3, we assumed that partial prior informations about ®
are known and that they are summarized in the class I'. In this section,
we will consider two extreme cases, namely, either complete information
or no information about ® is known. Correspondingly, we are looking
for the Bayes rule or minimax rule. The problem will be treated under

the assumption that 8o is unknown.
The following lemma may have been used by many people implicitly,

but it is worth stating it out explicitly.

Lemma 1.7.1. If (®,D,L) is a decision problem and if for any §eD,

k.
8= (8y5...,8,) and L(8,8) = ] L(T)(e,ﬁi) [i.e., the Toss is additive],
i=1
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then for any prior distribution t on @, §O is a Bayes rule of T if 6?

is a Bayes rule of t for the ith component problem.

Y‘(i) (T, 6 Z r (T 6?) = Y‘(T,§O)-

Ho~1x .

Proof: r(t,8) =
i=1
Let us assume 6, ~ Ti(e) ~ N(ai,Bi) and ei's are independent
(0<i<k), then since Xiloy ~ N(o 1.,02), we get
06102 + X1812 02 B? 2
i1 ~ N =5 =% ———) = N(a;. b))

o+ B. o + R,
B B

The Bayes rule of the ith component problem is to minimize

fX[L1(]”51(5))f[ei-eoffAdT(915) ¥ Lzﬁi(i)f|ei-eole+edT<ﬂx Im{x)dx -,

(1.7.1)
where
b e ) " (x)
mx) = f T o (x)drg(6;) = 1 [7F, (x.)dri(0) = I m,(x,
Z . B 1T §20"c0 O Mt
and
k

Hence, (1.7.1) reduces to

L1fxf|ei_eoliAdr(glg)m(f)dg + fX[szlei_eOIEA&EdT(GO[XO)dT(Bi]Xi)

k
SOIXO)dT(eiIxi)Jai(f)jgodT(ejlxj)m(f)df
Jj#

- L1f]e1.-eO|§AdT(

So the Bayes rule is

B _ o1 LPLIeg -8y oave xguxs ] < P 6-0] <0 xg5x,]
8:(xq5x%:) =
1Y70°% 0 z
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2 2
But ei~60[x0,xi ~ N(a;-ag, by + bo), thus we have

Ateta,-a., -A-etan-a.
1A L[T-a(——20) + o 0 i
b0+bi b0+b
B -
6‘i(XO’Xi) B Atag-ag -btag-a,
< Ly Lo ) - of ) ]
0 >
LyL1-o(y;+a'+e' Jto(y;=a"-e")]
1if oh(yy) = <1
] oy +a')- By -A")
0 >
. B B 2
Toif Jy.l <s 1 if Jag-agls<ts = Si’b0+b?
0 > 0 >
(1.7.2)
where |
a~—-a.
i = 01, - S , and g' = £

; .
2.2 2 .7 2.2
/b0+bi \/b0+bi /bo+bi

The last equality holds because h(yi) = h(—yi) and the fact that h(yi)

is increasing for Yi > 0. We have

Theorem 1.7.1. Assume ei has independent prior distribution N(ai’Bi)’

B . (5?,...,5E) with 6? defined by

i=0,1,...,k, then the Bayes rule is 8
(1.7.2).



k
Proof: 6? is the Bayes rule for ith component problem, since L = )
Hence Lemma 1.7.7 asserts that SB is a Bayes rule.

The following lemma is essential when we search for minimax rules.

5 and f(x) = f(-x), then
t

f(yo) gAf(xO) if Yo 2 X > 0. Let F(t) = f f(x)dx, then for t > 0

Lemma 1.7.2. If fe(x) = f(x-6) is PF

and €y 2 &y > 0, we have

(]) F('t'g") + F("t+g']) f_ F("t‘gz) + F('t"'gz)

o (%)
80
Proof: (i) Let 6, = y,-Xx, > 0, then is increasing in X,
— 60 0 0 "0 fofxi
But when x = 5
e 6
0 0
feo(7§0 f(-"2‘")
= = .]
6 6 ?
0 0
f0(77> f(j;?
_ 0
e} fO(X > 1 for all x > 5 % > , hence
fo (¥)
0 . —
W _>_ 1 s 1.€8., f(yo—eo) = 'F(XO) _>_f(y0) .
Now, ,,_-t_g_l rgz__g]
F(~t-£]) - F(—t-gz) = | f(x)dx = | f(x—t—EZ)dx
—t—gz 0
L2785 ~t-5,
< | f(x~t-g1)dx = [ f(x)dx = F(—t-EZ)—F(-t—g1)
0 -t-8,

(ii) Similar to (i).
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Theorem 1.7.2. Let A;=a and K;=1—a. Also, let & = (61""’6k)’
where 6i(xi'xo) = I[ti,ti](xi"xo)’ be the corresponding I'-minimax rule

in D]. IT a is chosen so that

L To(——) + o
/2 o /2 o

then § is a minimax rule.
Proof: For 0 ¢ @G(i) s

(1) _
R*7(6,6;) = L P[!xj—xol 3-ti|60°91]

-t.-(6.-6,) -t.+(0,-6,)
= Ly To(——1 00y 4 o1 1 0%
/2 o V2 o
-t.-A -t.+A
<Ly lo(—=—) + o(——) 1,
/2 a V2 a
by Lemma 1.7.2(i). For 6 6(38(1) ,

. t.-(6.-6,) -t.-(6.-6,)
(1) L i ‘700 i ‘io0’
R*W/(6,8,) = L, [o( ) - 8 )]
(” ! 2 V2 o V2 o

t.+A+e ~-t.+A+e
<L [o(-) - o(——)]
/2 o /2 o

by Lemma 1.7.2(i1). And for 8¢ @,(i) Ue. (i) ,

r(1) (8,8,

1) =0 .

But in the proof of Theorem 1.4.1, we have shown
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vim inf e (o 60 ) > Lal16, (6. (v) T + Ly(1-a)E, L6, (V)]

n->co

_ti+A ~ti—A ti+A+€ ~t1+A+€

- Ljalo(——) + o(——)] + Ly(1-a)[6(—-—) - ao(——)]
/2 a V2 a V2 a V2 a
ti+A+€ -ti—A

SN A R W
/2 a V2 a
ti+A+€ —t1+A+€

= Lz[ ( - ®( )]
/2 a V2 a

Hence,
o, . K (i
Tim inf r(t 8.) > Yo Tim inf e (1,685 )
n-reo ~ i=1 N0
k k
> ) sup R(1><9’6i) > sup ) R(T)(e,éi)
i=1 9 ~ 9 i=1 -
= sup R(e,§)

This proves & is a minimax rule.

One may wonder the existence of such ana (0O<a<1), so that (1.7.3)
holds. We will show that they do actually exist. We know ti's are the

positive roots of the equation

1 T
Ly(1-a) ~ Z;?'(2A+€)E COSh(g;g‘(A+€)X)
ha(x)=——-—-——-———e 1 - 1= 0.
L.a cosh{—» Ax)
1 ) 2
o
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Figure 3. Graph of ha(x) for a = .1, .5 and .9.

One can see ha(x) is decreasing in a for fixed x, this implies ti is

increasing in a. And when a ~ 1, we have ti + @, S0

~t.+A ~-t.-A
LLe(—=) + o(—1)7 » 0
V2 o V2 o
and
t.+A+e -t.+A+e
L2[®( ! ) - @(—1———)] - Lz .
V2 o V2 o

On the other hand, when a = 0, ha(x)—1 is positive for all x, so there

exists some ag such that ti = 0, then

-t.+A -t.-A

Lilo(——) + o(=197 = LjTa(=2) + o(-2297 = 1,
2 o /2 o /2 o V2 o
and
t,+A+e -t.+A+e
Lylo(——) - o(———)] =0 .
/2 o /2 o
It is clear that
Y R R Y it
) + @ )] - LLo{ - (———
e Vx 2 p o 7o

is continuous in a, hence there exists a* (a0< a* < 1) such that

(1.7.3) is true.



49

In the next section, a* will be found for some selected values

of A and €. (L1 =L, =1).

1.8 Comparison among Bayes, I'-minimax and minimax rules

When we face a decision problem, the prior information has a very
important influence on our choices of the optimal rules. In general,
one would use the Bayes rule if the prior distribution is known, use
the T-minimax rule for incomplete prior information, and use the minimax
rule when no prior information is available. The comparison of these
rules will give us some idea about how far our decision is from the
real optimal rule if the prior information we have is incorrect. In

other words, we are interested in the robustness of each rule.

In this section, we make a thorough comparison among these rules
in terms of Bayes risk, the maximum risk over T', and the overall maximum
risk. Because the loss is assumed to be additive, the comparison is
made for the TSt component problem only. Sub-index i will be omitted
from the notation and 58(5) = I[-t t ](a]—ao), 56(5) = I[-i t ](x]—x0)5

B>"B G’°G

and 6M(§) = I[-tMatM](XT~XO) will mean Bayes rule, I'-minimax rule, and
the minimax rule, respectively. It is also understood that

— 2y . .
dTB(60,67) = dTO(eO)dT1(61>’ where Ti(ei) ~ N<ui’8i) is the prior and
a.cz + X-B?
oM P9
G T T

o + Bi

for i=0,1. Also, A = PTB[‘91“901 <8l

~

Az = PTBHeTeof > Ate], x = (xo,x]), and 8 = (80,61)

will be used in this section. Now, the Bayes risk of the Bayes rule is
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r(TB,éB)

= LTP[Ia1—aOl > tgs 1097651 < 4]

+ LZP[]a]—aOI < tgs {e]-eol > Ae] .

Since ~
iy !/ 2 2 2
’Ai\ ) { ai o + Bi Bi
8. ol » 2
k d \ 3 B B
for i = 0,1, then
2 2 2 2
(a]—ao) \ (u1—ao> (wo + w1 wo + w])
6.-6 Ol =0 ? ?
170 170 2 2 2 2
wo + w] wo + w1
84
- i . - L
where w; = 02 ) 62 , for i = 0,1 let d = 4=ty s
i
2 2 2 2 2

a,-a,~d
“Noiga | M) - CF)
u
tp-d -t,-d
-A-d A-d
r(tgs8g) = L,PL(Z; > or ;< ) and (=<7, < =)
~tped to-d ~A-g-d Ate-d
+ LPL{ v Sy <) and | >, 0r Z, > — )]
-tB+d A-d -tB+d -A-d
= L'I[F( v s T “Q) - F( v ’ U s - p)
-tB-d A-d —tB—d -A=d ]
+F( v o p) - F ( v T p)]
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tB—d -A-g-d -tB-d ~A-g-d

+ Lz[F< Vv 9 u 3 p) 'F( v s u 5 O)
tB-d -A-e+d —tB—d ~-A-g+d

+ F( v b u s "Q) - F( Y H u s "p)-]

where
F(xgs¥gs ) = PIZy < %55 Z, < yol .
Similarly, we can compute

r(1.6g) = LPLIXy=Xgl < te, 109-64]> ate]

+ L]P[]x]—xol > teo ]@re.O]iA] .

Vi

Now,

2, .2 2 2 2 2
(X]-XO) ((}1—u0) (0 + BO + 0 4+ B] BO + B ))
~ N ,
9:-¢, oy oy 2+ 2

2, 2
Bo B By T By

o) %)

where r2 = 202 + u2. Then
-tG+d A-d -t +d  -A-d
r T r > Ty

r(TB,SG) = L1[F(

where p' = %—. Since 6G and SM have the same form except for the
constant tG and tM’ S0 when we replace tG by tM in the above formula,

we get Y’(TB,éM).
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The next thing we are going to compute is

sup r(])(r,s), for & = &,, &
TET

Now,

and §,,.

B> "6 M

P (r,8) = f[e1~60{£AL1[1-Ee(6(¥))]dT(9)
* f]91_@OIEA+€LZEQ[6(§)]dT(Q) : (1.8.1)

Lemma 1.8.7.

sup ri1)(7,8) = L (T inf B LSO + L, sup EIS(0) T
T€T |81-6gla ~ 7 161-6012A+€~ ~

Proof: < is trivial. To prove the other inequality, let us consider

two sequence {Qn}n:1 and {ga}nf1 such that 8. € o, (1) and o, e<aB(1),

and Ee [§(X)] - inf Eefé(ﬁ)] and Ee,[G(X)] > sup E [s(X)] .

~ ~

I~ |9-60 1< = %n 646/ >a%e 2

If we define r €r as PTn[9=6n] =y PTn[Q= en] =27

-~

and PTnLe QC)G(1) L)@B(1)J = 1-x]-xf, then we have

tim e (e 8) = L (- g E L6000 + L, sup E[8(X)T
N0 |64-64]<8 <~ |6y-6gl>ate <

Now, sup P(1)(T,5) 3‘r(1)(Tn’6) for all n, and if we take 1im ,
TET n-oo

we get the result.

From the above Temma and the proof of Theorem 1.4.1, we get

sup eDe,80) = Ly (146, 15,0 7) + LAE,, [6:(1)]
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where Y = X]—X0 N(e]-eo, 2¢°). So,
(1) = - -p.=
sup v/ (1.6;) LTATP[|X1.XO]>tG]e] 8p=4]
T€r ’
+ LZAfP[!X]—Xolgﬁele]—eO=A+e]
“tg-h ~teta te-A-e ~to-A-e
= Ligqlelt——) + o(——)] + Loaj[a(——) - o(——)].
/2 o V2 o /2 o /2 o

Hence we also get

-t,,-A -t A

sSup r(])(TasM) = L]X][Q( _v ) + ®( —” )]
TET Ve o V2 o
t~A-g ~ty~A-c
+ Lajlo(-—) - o(—2—)]
V2 o Ve o
-t~ =t A
= (}\-]"')\2) L][‘D( ___M ) + (I)( i )] .
V2 o /2 o

To find sup r(])

(T,SB) will need some more work. First note that
€T

a]'a0[61’90 ~ N(u,cz), where

8% 6 82 o o & an o
et A A St M I
B?i‘cz -BS-FGZ B?-Fcz Bg + 02
and
? B? 02 'Bé 02
- =  + —
(87 + 67 (8y#%)°
Then Tet
9(u) = Egl6p(¥)] = E [-tp < aj-ay < tp]
tL-u -t,-u
B B
= @ -
3() - o)

53
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th) - o i
C C

= @(

) s

we find g(u) = g(-u) and g(u) is decreasing in |u|, by Lemma 1.7.2(ii).

Now Tet us consider the following two cases.
2 2
i Bo

#
B$ + 02 Bg-&G

(a) If Bf 4 sg, then 5 . And if we Tet

0y = 6y > £ =, we have |u| > «. So we get

inf Ee[éB(X)] = Tim g{u) = 0. Also, when
l0.-8gl<a & BF Jufse

Bf 7 6(2) ., 18lp=01 N {9[l61-60| > Mel £ 4.

—=>

o

Ate ”=0

/1

Figure 4. Graph of u=0 on eoe]—p1ane.

Hence,
tp 1y
sup EGESB(X)J = g(0) = Q(jgﬂ - ®(—E*) .
]6.—6 ’>A+5 - ~ )
i 0=
By Lemma 1.8.1.,
t -t
(1) - By _ o_B
sup r (T,SB) =LAy + L2A1[®( C) o( z 1 . (1.8.2)

&l
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2 _ 2 _ .2 _ 5]
(b) If B] = BO = R" , then u = —§~—-§~(6]-60) t 5 -

(i) If oy > oy, then under 161-84124, lu] has its Targest value

82A+62(u]—a0)
when 6, - 6,=A. In this case, let uy, = s SO
1T 70 1 2 2
™ + o
Th-u -t,-u
inf  Egl6g (0] = o(-2-1) - o(—E1)
l6,-0,]<a 2 ° g g
1 70—
If oy < oy, under [e}-eglfA, |ul has its largest value if 6,-6,= -A , then
t,-u -t,-u
inf Eg[85(0] = 8(22) - o(-2H)
[61-GOI§A ~
where
82A+02(a0-a])
u, = 5
2 BZ + GZ
So we get
th-u -tp-u
inf Eglsp(0)] = o(2=2) - o(—)
l6.-0,]<a 2 ¢ 5
1 70—
where
2, 2
L AR +o [a]~a0[
0 BZ + 02
(1) To find sup Ee[é (X)], let us note that p=0 iff
[64-6g |20t ~ 7 7
2
9_

> (a0~a1) = 81-6g- Then
§]

2
(1) If ig]uo—oc][ilﬁs, then {u=0}N{[0,-64|>%e} # ¢ .

t -t
E,L85(X)] = o() - o(—2) .

So,
|6-0200e 2 ° " ¢ -



56

2
o
(2) If ;§¢ao—a]!<A+e, then under 161—6013A+€, |1 has the
82(—A-€)+02]a]—a0]
smallest value when u=p' = > > >
B” + o
then
t -t u]
sup Eglog(X)] = ) -
fe -0 {>A+e ~ ~
To sum up, if 6? = Bg = 82, then
-t,+u -th-u -t
BN B "0 B B
K1[@( z )+ ( z )]+ L,[o( 7 ) - @("75—)]

2
f EEJ@O—a1l3A+€

(1) ) oty -t T
sSup r (T,SB) = L1A1[®( B O)+_®( g 0 B

7€l

1f—-]a -u][<A+e
B

At Tast, Tet ®* = {7]t is a distribution on ®}, we want to compute
sup P(T)(T,SB)S sup <]) (1,8 ) and sup P(])(T,ﬁM) .
e * @ * @ *
Lemma 1.8.2.

sup r(])(r,ﬁ) = max[L](l— inf E [6( )]},L2 sup EG[S(X)]]
TE@* |66 ]<A ~ ]6]—60l2A+€~ ~

Proof: From (1.8.1), for all t€e*

(1) $ L.(1- inf E.LS(X)DP [164-64]<A |
r (T, ) < 'I( le]_eOIiA 9[ (N)]) T[’ 1 O[_]

+ L sup ELs(X )]PT[|e]-eO|3A+eJ
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< max (Ly(1- inf  E,[8(X)]), L,  sup EgLs(X) ).
[64-6l<a < 7 [6,-6] 24t ~ 7

Now, let en and 88 be the same as in Lemma 1.8.1, but we let T, be

such that
Pol=6,] = 1 A Ly(1-E, [8(0)1) > LyEy-[6()]
n n n
and
P [e=871 =1 if L (1-E; [8(X)] < LE[8(X)] ,
n <n n
then

1 (128) = max(ty (16, [8001), LyEg-L5(X))

> max(L](1~ inf Ee[é(X)], L, sup E6[6(X)]) .
’61-901§A =T |61-641>ate = 7

This finishes the proof.

From Theorem 1.7.2, we get

-t A -t A
sup r(])(r,ﬁM) = Ly [e( _w ) + o( _“ )]
pEB* /e o /2 o
t, ~A-g T s
= Lylo(-—) - o(——)7 .
V2 o V2 o
From Lemma 1.8.2., it is obvious that
-t - -t A
(1) - G G
sup r' 7 (1,8,) = max(L,[o( ) + o R
o * G 1 /2 o /2 o
t.~A-g -t A-A-E
Lolo(2—) - a(—2—)]).
/2 o V2 o
And if 82 # 82 ., then
07 5 . 4t
sup r(t,85)=max(L, L2[®(7?) - @c—gi)) : (1.8.3)

T *
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If Bg = B? = 82, then
T3y ~tg¥g B, %
max(Ly [o—50) + B0, 1ra(B) - o(CRy)
2
if gﬁ-[ao-a]l > Ate
sup r{t,8,) = ; - -
) i o 2 o B0, Lo - o 2,

2
( if—g‘? ]oco—a]! < Me .

Remark: A1l the risk computed in this section are based on one sample
from each population. If we have n samples from each population, by
reducing to sufficient statistic, we only need to change 02 to %T" and
all the formulas will remain valid. The formulas are used to compute

the following tables.

ITTustration of the table:
(1) The control parameter 60 is assumed to have prior distribution as
N(0,1), and 9 is assumed to be distributed as N(a,Bz), where (a,BZ)

are chosen as (1,1),(0,.5),(0,1) and (0,2) in the tables.
2

(2) %r~are chosen as .2 in Table I and as .5 in Table II.
(3) A are chosen as .5, 1., and 1.5.
(4 For a=.5, € are chosen as .2 and .4.

For A=1., € are chosen as .3 and .8.

For A=1.5, € are chosen as .5 and 1.
: 2
(5) When (a,BZ), g » A and e are fixed, A and A~ are computed so that

T.ET. t

n
, ps tp and tM are found, and r(TB,G), sup r{7,8), and

T€rlr

sup r(t,8) for § = st 8¢ 6M are computed.
€a* !
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They are arranged in the following manner:

sup r(T,GB) sup r(t,8
€T Teo*
tg| r(g:0p) sup rlr.bp) sup r(r.8g) | 1.0 Sip sy sup virys
' €T T oreEr
| r(ra60) sup r(easy) s r(nig) | eESE 10 b
r{tn, sup r(t, sup (T, ' .
6| "TBo0e’ SER M0 SR TT00) | T, 5 Egg;%(rfgé)
| gty sup rersy) s rln,ty) | ) < S
r{t,, sup r(T, su . )
M TR OM TE? T2 0 TE%*P T2%y r(TB,SB) ié? r(T,SG)

(6) A1l tables are computed under the assumption that L] = L2 .

To use the table:

2
(a) For the Bayes rule: For specified values of %T" (u,Bz), A and €,

Took for tB and the risks in the first row of each block.
2
(b) For the T'-minimax rule: For specified values of %;3 A, €, X and

2, look for tG and the risks in the second row of

each block.

(c) For the minimax rule: For specified values of %T” A and € , look

for the tM and the risks in the third row of each b1ock:
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Table I.1 1. The first column lists values of tB’ tG, and tM'

2. The second block of numbers are values of r(TB,é),

sup r(t,8) and sup r(t,8) corresponding to 6=6B,6F and 6M'
T€r TE@* §

3. The entries in the third block are values of ratios of the
risks in the second block (dividing each column by the
diagonal value).

2

O/n=°2 3 <069 82):(151)
c= .2, = 2174 A" = .6987
5657 | .1529  .5201 .5802 2.3924  1.299]
0. 2174 2174 1.0 1.4216 2.239]
6421 1598 .4001  .4466 | 1.0450 1.8818
A= 5 e = .4, )= .2174 A= 6177
6820 | .1193  .4440  .5661 2.0024  1.4642
0. 2174 2174 1.0 1.8224 2.5865
7261 1260 .3229  .3866 | 1.0562 1.485]
c= .3, = .4214 \" = 4679
1.1499 1224 4775 L6709 1.3280  1.6500
1.0166 1420 .3595  .4902 | 1.1593 1.2063
1.1503 312 .3614  .4064 | 1.0711  1.0052
a=1.0 e = .8, )= .4214 A = .3097
1.4000 | .0575 .2648  .5503 1.4065 2.0878
1.5542 | .0609 .1883 .3488 | 1.0593 1.3232
1.4001 L0649 1927  .2636 | 1.1297 1.0235
c= .5, %= .5996 A" = .2567
1.7500 | .0735 .3332 .6824 1.4156  1.9704
2.4287 0999 .2354 7511 1.3594 2.1687
1.7500 | .0827  .2966 .3463 | 1.1253 1.2600
A=1.5 c=1.0,% = .5996 A= L1511
2.0000 | .0308 .1655 .5628 1.5135  2.6227
2.5514 | .0390 .1093  .5324 | 1.2652 2.4808
2.0000 | .0383 .1611 .2146 | 1.2445 1.4733




Table I

(Continued)

o’/ = .2, (a,8%) = (0, .5)

, Table I.2

61

e=.2, A= .3169 A = .5676
(5731 2056 .7466 1.0 2.3559  2.239]
. 3169 .3169 1.0 5414 2.2391
6421 2097 .3950 4466 L0199 1.2465
A= e = .0, %= .3169 AT = L4624
6861 1539 .7043 1.0 2.4115  2.5865
4766 | 1931 2921 .5760 2540 1.4899
7261 1611 .3013  .3866 0464 1.0316
e=.3, A= .5858 A" = 2885
500 | .1303  .8687 1.0 3.0719  2.4606
0944 | .1798  .2828  .8955 3802 2.2034
1503 | .1512  .3553 4064 1608 1.2564
a=1 e= .8, A= .5858 A = L1416
.4000 | .0508 .7268 1.0 6.0236  3.7939
1098 | L0619 .1207  .6879 2167 2.6098
4001 0708 .1917  .2636 .3920  1.589]
e = .5, A= .7793 A" = .1025
7500 | .0524  .8818 1.0 8.6338 2.8875
.3731 0839 .1021  .9850 6986 2.8443
7500 | L0771 .3054 3463 4732 2.9901
A=1.5 e=1.0, » = .7793 A= L0412
2.0000 | .0169 .8206 1.0 21.3210  4.6599
3.1757 | .0264 .0385 .8573 | 1.5578 3.995]
2.0000 | .0351 .1761 .2146 0717 4.5754
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(Continued), Table I.3
o’/ = .2, (a, 82) = (0, 1)
= .2, ) = .2763 A = L6206
5657 1902 .4090  .472] 1.4800  1.0570
0. 2763 .2763 1.0 4525 2391
6421 1905 .4006 4466 0016 1.4496
A=.5 = 4, A= .2763 A= L5245
6820 1459 .3237  .4454 1.1791  1.1520
1873 2297 2745  .828] 5743 1419
7261 1479 3096 .3866 0132 1.1279
= .3, A= .5205 A" = .3580
1.1499 1337 .3397  .5503 1.0190  1.3540
1.6494 1461 .3333  .7097 .0928 7463
1.1503 1447 3570 .4064 0818  1.0711
A= = .8, A= .5205 A7 = .2031
1.4000 0576  .1597  .4247 1.0341  1.6114
1.8706 0619 .1545  .5444 .0743 0656
1.4001 0690  .1907  .2636 1979 1.2347
= 5, A= .7112 A= L1573
1.7500 0647 .2104  .5628 1.3610  1.6252
2.9570 1066 .1546  .9349 6478 ). 6995
1.7500 0804 .3008 .3463 2433 1.9453
A=1.5 = 1.0, A = .7112 A= L0771
2.0 0241 .0887  .4372 1.3378  2.0372
2.8887 0344 0663  .7306 4276 3.4045
2.0 0367 .1692  .2146 5211 2.5505
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Table I (Continued), Table I.4
02/n = .2, (a,BZ) = (0, 2)
€= .2, N = 2072 A" = 6861
5605 1627 .7000 1.0 3.0855 2.239]
0. 2272 2272 1.0 3966 2391
| 6421 1638 L4079 4466 0072 1.7954
A=.5 e = .4, A= 2272 A= L6033
6791 1271 6989 1.0 3.0764  2.5865
0. 2272 L2272 1.0 7876 5865
7261 1286 .3211 3866 0120 1.4134
£ = .3, A= .4363 A = 4529
1.1499 1260 .8724 1.0 2.4156  2.4606
1.1044 | 1350  .3612 4349 .0719 .0700
1.1503 1318 .3614  .4064 .0459  1.0006
A= e = .8, A= .4363 A = .2986
1.4000 .0588  .7317 1.0 3.9116  3.7939
1.5896 | .0597 .1871 .3697 0138 0026
1.400] L0648 .1937  .2636 1017 1.0357
€= .5, %= .6135 A= L2482
1.7500 0725 .8614 1.0 3.7480  2.8875
2.4739 0082 .2298  .7732 3543 .2326
1.7500 | .0810 .2984 3463 1174 1.2985
A=1.5 e=1.0, \ = .6135 A" = .1489
2.0 0304 .7624 1.0 7.0051  4.6599
2.5663 0375  .1088  .5418 2320 2.5246
2.0 0376 .1636  .2146 2364 1.5034




Table II.1

1.

64

The first column Tlist values of tB’ tG and t

2. The second block of numbers are values of r(fB,d),
sup r(t,8) and sup r(t,8) corresponding to 6=68,66 and Sy-
T T *

3. The entries in the third block are values of ratios of the
risks in the second block (dividing each column by the
diagonal value).

02/n = .5, (o, 82) = (1, 1)
e = .2, A= .2174 A7 = L6987
.3275 2104 .4242 7625 1.9511  1.6022
0. 2174 2174 1.0 1.0334 2.1013
.8054 .2382  .4360  .4759 1.1321  2.0051
h=5 e = .4, % = .2174 AT = L6177
.5571 .1848  .4761  .5985 2.1900  1.3432
0. L2174 2174 1.0 1.1767 2.2444
.8615 .2038  .372]1 L4456 1.1030  1.7115
e = .3, A= .4214 A7 = L4679
1.7441 L1951 .5559  .8143 1.4109  1.8320
.9872 .2358  .3940  .5286 1.2084 1.1892
1.1771 .2199 .3953 L4445 1.1270  1.0031
A= e =.8, A= .4214 A" = .3097
1.3980 L1148  .3597  .7869 1.4676  2.2599
1.8158 L1258 .24517 .5062 1.0958 1.4535
1.4117 L1404 2546 ,3482 1.2230 1.0385
e = .5, A = .5996 AT = 2567
1.7500 1264 3827  .8697 1.5118  2.1659
3.4468 L1864 2532 .9260 1.4749 2,3062
1.7509 .1578  .3438 .4015 1.2491  1.3581
h=T1.5 e =1.0, A = .5996 A= L1511
2.0000 .0674 .2222 .8413 1.5820 2.7259
3.3785 .0902  .1405 .8102 1.3382 2.6248
2.0003 0972 .2317  .3087 1.4427 1.6493




Table I1I (Continued), Table II.2
o’/ = 5, (a,8%) = (0, .5)
e = .2, A = .3169 A = 5676
4188 2880  .6136 1.0 1.9363  2.1014
0. 3169 .3169 1.0 1002 2.1014
.8054 2930 .4209 4759 0171 1.3283
A=.5 e = .4, ) = .3169 A= L4624
6014 2386 .6372 1.0 2.0105 2.2444
0. 3169 .3169 1.0 .328] 2.2444
8615 2443 3472  .4456 0236 1.0957
e = .3, A= .5858 A = 2885
1.1469 1968 .8594 1.0 2.9828  2.2499
3.5136 2654 .2881  .9866 3485 2.2197
1.1771 2522 .3886  .4447 2814 1.3487
A= e=.8, A = .5858 2= 1416
1.3991 0928 .7249 1.0 5.2358  2.8717
3.1767 1131 .1384  .9157 2183 2.6296
1.4117 1562 .2533  .3482 6830 1.8309
e= .5, A= .7793 A" = 4990
1.7500 0803 .8815 1.0 8.6025 2.4904
5.8077 1022 .1025  .9999 2727 2.4902
1.7509 1579 .3541  .4015 9662 3.4554
a=1.5 e=1., )= .7793 A= L0412
2.0000 0313 .8205 1.0 19.9395 3.2399
4.9393 .0398  .0412  .9926 | 1.2711 3.2161
2.0003 0979 .2533 3087 1252 6.1546
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Table II (Continued), Table II.3

02/n = .5, (a,BZ) = (0, 1)
e = .2, )= .0763 2= L6206
3275 2661 .3701 6643 1.3393  1.3958
0. 2763 .2763 1.0 | 1.0382 2.1014
8054 2728 .4268  .4759 | 1.0248 1.5447
A=.5 e = 4, A= .2763 A = 5245
5571 2206 .3541 4594 1.2814  1.0311
0. 2763 .2763 1.0 | 1.2034 2.2044
8615 2297 .3568 4456 1.0002  1.2913
e = .3, A= .5205 A = L3580
1.1441 2113 .3613  .660] 1.0278  1.485]
2.4180 2430 .3516  .8681 1.1500 1.9532
1.1771 2412 .3904 4445 1.1416  1.1106
A= e = .8, A= .5205 A = 2031
1.3980 1121 .1967  .6167 1.0427  1.7711
25834 1238 .1887  .7833 | 1.1044 2.2494
1.4117 1506 .2520  .3482 | 1.3437  1.3356
e = .5, A= 7112 A= L1573
1.7500 1066 .208]1  .7340 1.3237  1.8280
1.7675 517 L1572 L9972 1.4228 2.4834
1.7509 1592 .3487 L4015 1.4929  2.2177
A=1.5 e=1.0, = .7112 2= L0771
2.0000 0493 .1008  .6915 1.3240  2.2402
4.2218 0659  .0761 .9574 | 1.3379 3.1020
2.0003 0979 .2433  .3087 1.9879  3.1959
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Table II (Continued), Table 11.4
o’/ = .5, (0,8%) = (0, 2)
€= .2, A= 2272 A = 6861
2161 2251 .3855 1.0 1.6970  2.1014
0. 2272 0072 1.0 .009] 1014
8054 2817 4346  .4759 0739 1.913]
A=.5 e = .4, A= .2277 2 = L6033
5137 2011 .5377 1.0 2.3667  2.2444
0. 2272 L2272 1.0 .1298 2444
.8615 2061 .3700 .4456 0249 1.6289
e = .3, A= .4363 A = 4529
1.1409 2058 .8343 1.0 2.1109  2.2499
1.1754 2212 .3952  .4452 .0744 .0016
1.1771 2210 .3952  .4445 .0739  1.0000
A=1 e= .8, A= .4363 \* = .4895
1.3968 1205 .7177 1.0 2.9617 2.8717
1.8999 1230 .2423  .5397 .0205 .5498
1.4117 1409 .2559 3482 1686 1.0562
£=.5 A= .6135 A= L2482
1.7459 1269 .8574 1.0 3.4916  2.4904
3.5599 1833 .2456  .9406 .4440 3425
1.7509 1563 .3460  .4015 2312 1.409]
A=1.5 e=1, )= .6135 2 = 1489
2.0000 0679 .7615 1.0 5.4734  3.2399
3.4159 0878 .1391  .820] 2924 6572
2.0003 0967 .2353  .3087 4249 1.6915




68

1.9 An example and conclusion
After we study the tables computed in Section 1.8, some trends
can be found:

6
1. If (62> = (?), then the Bayes rule performs very well in terms

Q
of sup r(f,éB) and sup r(T,SB); this is because when (82) = (?),
T€r T€Q*
la,-as] = ~;L—-!x -X4| s hence Bayes rule has the same form as T-minimax
170 +02 170

rule and the minimax rule.
2. If BZ # 1, the Bayes rule does not perform as well. This was

shown in formula (1.8.2) and (1.8.3). One can also find that when
2 o

o” _ _ 0 - =
ru .5, (82) = (.5), A=1.5,and e =1,

sup r(T,éB)
€r

m@ = ]9.9390 .
TCr
This means a large increase in loss will occur if we need to consider

sup(r,ﬁB) instead of r(TB,é ).
TED

3. T-minimax rule is robust in terms of sup r(r,éc) if A1 and A{
T€e* !

are close to each other. This is because sup r(T,SG) = max (A,B),
TE@* )

but sup r(r,éC) = A1A + ATB. Also from the tables, for all A and A~,
el g

r(rB,dG) <2 r(rB,aB).

4. Minimax ru1e in general performs fairly well.

5. T-minimax rule is not necessarily better than the minimax rule .
in terms of the Bayes risk. This means that when the decision depends
on full information, sometimes incomplete information is worse than no

information.
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6. Uhen egets Targer, all risks become smaller.

Example 1.9.1: A company has type My machines to produce part P(p)
[p is the diameter of P] and pJHO ~ N(GOXTO"Z in., 1x107% sq. in.).
However, the same company also has type H], HZ’ H3 machines which produce

part Q(qg) and qui ~ N(@ixm"2 in., 1x10-4sq. in.). P and Q are matched

"4'5"(0i"00)
if |p-q|<.045 in. Since Iei—eO[§_1.5f >P[|p-q|<4.5] = p [——— 1
4.5-(ei—90) -6 3
SL<—I>P[= <7 <=7= .98, 50 we can define I as good
v 2 V2 V2
for M, iff 161—80[ < 1.5. Similarly, we would Tike to define 1, as bad
for 1, iff [61=eol > 2.5. The company claims:
P[l91-901 <1.5]=.78, P[le]-eof >2.51 = .04
P[Jez-eof <1.5]=.711, P[]ez-eol > 2.5] = .08
P[fe3—eof <1.5] = .61, P[[e3-eoj > 2.5] = .15.

Now, the company has machines s 2y 355 25 for sale, where aiEHi, for
1=20,1,2,3. If we are allowed to take 5§ sample parts from each

machine, which machines to produce part Q should we buy?

Solution: Let X., X., X

ERSERY X3 be the mean observation from 3ps a], Y a3,

respectively. Then %T" A=1.5,¢=1.0, and if we decide to use

F-minimax rule, the table 1.2, 1.3 and I.4 indicate
a; s good for a, iff |X1"X0f < 3.1757°
a, is good for ag 1ff ’XZ—XO] < 2.8887

ahd a; s good for ay iff [X3-XO[ < 2.5663 .
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If we feel the claims made by the company may not be correct and
we would rather assume there is no prior information, then we will
decide to use minimax decision rule. Then

a; 1s good for ag 1ff [Y}-Yb] < 2.0 for all i=1,2,3.

[T from another source, we know more informations such that
9y ~ N(c, 1), e] ~ N(c, .5), 62 ~ N{(c, 1), and 63 ~ N(c, 2), for some c,

then we would Tike to use the Bayes rule. So

c»% + X;(.5) c-%-+ XO(1)

a; is good for a, iff | - | <2.0
] 0 L, 1
5 5
2¢c + 5 X, c+5 X,
ie. | — - 1 <2.0

a, s good for a, iff X, - Xyl < 2.40

¢+ 10X, c+5 Yb

and a; is good for ag Iff | —5 - z | < 2.0.

If we suspect the definiteness of any prior information, we may then
use the rule which is most robust to the assumption of the prior distri-
bution. So from the table we use F-minimax rule on ay, use Bayes rule

on Py and use the minimax rule on a3.
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CHAPTER 11
I-MINIMAX RULES FOR SELECTING
THE t-BEST POPULATIONS

2.1 Introduction

In this chapter, we continue further investigations of the r—minimak
procedures. The problem considered here is to select the t-best popula-
tions out of & populations for some fixed t < k. Deverman and Gupta
(1969), Carroll, Gupta and Huang (1975) have discussed this problem under
the subset selection approach. Carroll and Gupta (1977) also provided an
algorithm which can be used to compute the ranking probability

P{(X ’Xt ) < (Xt +1""’Xt ) < ... < (th+1,...,Xk)}, where Xi has

1oe-
] 1
pdf f(x—ei) and 8, = ... =9, <9 = ..., < .. <0 T =0

1 t1 t]+1 t2 tS+]
For the problem of selecting exactly t population, Bahadur and Goodman
(1952) and Alam (1973) have shown some optimal properties of the natural
selection procedure.

In Section 2.2, it is shown that if the populations h&ve PF2 densities,
then the natural selection rule is a I'-minimax rule. This result is a]sq
extended to the case when the populations are not required to be indepen-
dent but have some particular form. This is done in Section 2.4. In
Section 2.3, our goal is to rank the k  populations through a simultan-
eous selection of the t-best populations for all 1 <t <k - 1. In order

that a T-minimax rule can be obtained, we need to change the loss function

we used in Section 2.2 slightly, so that an indifference zone is allowed.



The result obtained in this section justifies why we adopt midrank for
tied data. In the last section of this chapter, the result of Gupta and
Huang (1977) 4is generalized and it is shown that the I'-minimax rule for
selecting the best population can be found even if the populations are
not independent. We also prove a lemma which will help us to find the
F'~-minimax rules for testing hypotheses about multinomial distributions

and multivariate negative binomial distributions.

2.2 Selecting the t-best populations

Let H]""’Hk be k independent populations with Hi associated
with distribution function Fi(x) = F(x—ei), where 0 is unknown for all
T=1,2, ..., k. Denote by e[]] < 6[2] < ... < e[k] the true (unknown)
ordering of the parameters. Let ¢t < k, then we say that Hi is among
the t-best populations if 81 > 6[k—t+1]' We wish to select exactly t
populations such that any of them is among the t-best populations. The
problem will be formulated as follows:
Let X = {x = (x

> 1°°-
v o= {o = (@1....,Gp) | o < O < forail 4=71,2, ..., k}. Also let

.,xk) | - < X; < forall 1=1,2, ..., k} and

K= {0,2,.000kb , T =1{1,2,...,t}. Let S = {s s : T>K is 71 -1
function and s(i) < s(j) if i < Jj}, then for each s ¢ S,
{”3(1)""’Hs(t)} will denote a possible choice of the set of t-test
populations. It is clear that S contains (t) elements, we will denote

them by S5 Sps-i.s S where r = (E). In view of the definitions given

Y"
above, we use the Borel o-field for @ and X, and the discrete o-field

for S.
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Definition 2.2.1. A measurable function ¢: Xx S - [0,1] is a selection

rule if for each x = X, we have

Z¢(x,s) = 1.
)

It is understood that ¢(x,s) 1is the conditional probability of selecting

s(])""’ns(k)}’ having observed X. For 1 <i <k, let

it

S {ses|ics()

i1

i

S {s€S|i¢s(n)y,

i2
then Si1(812) is the collection of all subsets of size t which in-

cludes (does not include) Hi' For each given ¢» we have the following

definition.

Definition 2.2.2. The k functions defined by

i (2.2.1)
are the individual selection probabilities; éi(x) is the conditional
probability of including population Hi in the selected subset having

observed X. It follows that 5i(5) satisfies:

(i) 0 < S.(x) <1 forall 1<i< k, and all x.
(2.2.2)

(i1)
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Now, we have

Lema 2.2.7.  Given &(x) = (6](x),...,6k(x))’ satisfying (2.2.2), (2.2.3),

"
~ ~

there always exists at least one selection rule ¢ such that (2.2.1) holds.

Proof: (2.2.1) defines a simultaneous linear equation

Aer¢(§)rxl - §<§)kx]
(2.2.4)

where

(!>(§) = ((b(i(ss‘,)ﬁ (I)(X,SZ),-.., (PQ(’SP))/

A = (aij) is the matrix with

. ‘fo if 15,7

) for all i = 1,2,...,k.
1 [ 1 if iegj(T)

a

It is understood that for x fixed, §(x) is just a vector in Rk and

d{x) s Just a vector in Rr". For simplicity, they will be denoted by

v =(v],v2,...,vk)’ and u= (u],uz,...,ur) > respectively. Now, consider

v, = t} F)[O,]]k, then V is a closed and bounded convex set.

I >~ =
—

i
For v ¢ v, wlog, we can let v = (1,1,...,T,a1,...,aQ,O,.w.,O) where

~ ~

> oL az > 0. If g # 0, et e = 1T - a], €y = @ and

A 32), then

] )
v = §(7,...,1,a]+g,a2—g,...,aZm_]+g,a2m £,0,...,0) +

%{7,...J,a]—€,a2fg,...,azm_]—e,a2m+g,0,..f,0)

if o = 2m,

and



v = 5(1,...,],a]+e,a2-e,.”

+

N —

Hence if g # 0,
treme points of vV

(with t 1's),

(1,...,],a]~e,a2+a,....

V. 1S not an extreme point of V.
are the

and they are just the columns of A.

»Aomi1 TE A ptesay  0-2F)

omt1 5 8 omep sy, 3+26)

if 9=2m+ 3 .

This shows the ex-

permutations of (1,1,...,7,0,...,0)‘

Since points in v

can be expressed as a Tinear combination of its extreme points, this

proves that equation (2.2.4)

selection rule.

has at least a solution which is also a

Lemma 2.2.7 does not exclude the possibility that more than one

selection rules may have the same individual selection probabilities.

example, when k = 4, t =

¢; selects (H1’H2)
(HZ’HB)
(H3,H4)
¢, selects (my,11,)
(1,.1,)

then ¢] X ¢2;
¢] is better than ¢2

the true 2-best populations.

sense that ¢2

in the sense that ¢] has %

always selects one of the 2-best populations.

For

let 1, >0, > 1. > Il and if

1 2 3 42

with probability %

with probability %

with probabi]ity«%

with probability %

with probability §~ ,

but they have the same individual selection probabilities.

chance to select

However, ¢2 is better than ¢] in the

At this
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stage, it is hard to Jjudge which one of ¢] and ¢2 is better than the
other. For our convenience, we simply treat them as equivalent. Thuys,
we can consider decision rules in terms of the individual selection

probabilities.

Let D= {§ = (s ..,6k)’ | 0 < 51(X) <1 for 1 <4<k, and

12"
6.(x) = t}. For given & > 0 and s €S, let @ {6 €af min o,
i=1 1~ S~ ies(T) !
£ max_ 6, +el. Then, @ = [ U @S]lJKEO, where 9, =0 \( U 8,.).
1#s(T) SES SE€S
Note that & _ N O, =¢ if i # ],

1 S

H oo~ o=

Definition 2.2.3.  For any s €S, let Ag € [0,1] be given and

oA < 1. Then

s€s > T
I'={rt] T is a prior distribution on @ and
= < .
LDS dr(8) AS for all s € g } |
Definition 2.2.4. For any 8 €® and § €D, the loss function L s
defined as
< (s)
L{0,8(x)) = & oLV (e,8.(x)),
NS SE€S j=1 N A
where
0 for all j if 6¢®S
(s) . N .
L (Q’“j(f)) = LS](1~6j(§)) for j € s(T), 6 € 0,
L52 Sj(f) for j & s(T), 0 € 9

A similar loss function was considered by Gupta and Huang (1977). Let us

further assume that Hi has pdf fi(x) = f(x~ei) and let
k

fU(x) = fi(xi)' Then, we have

| i=1



Now, we can prove the following theorem:

Theorem 2.2.1. If for all s € S, there exists a Q: € b such that

sup E,[ 7 <%Q(x)]=56*[ 59007
co I ggs(T) I s 3gs(m) 1
and
inf Bl T 8201=6, [z 8201 ,
6co_ - jEs(T) I -5 jes(T)
where
f/——
1 if N.(x) < N[t](>§)
0 t2
S = . = : =t -
5(%) \ ry(x)3f N (%) = Npq(x), 3=t§1+1 nl(x) =t
[ 0 if Nj(§) > N[t](f)
and
N[]](l() < ... < N[t]+]](l() = 0. F 'J[t](?() Tl N[tzj()\()( . < N[k}()\()
is an ordered permutation of Nj(f)’ j=1,2, ..., k, and



Then, & =

Proof: Let
then for all

sup
TCT

n

T

sz(f) - Mj](f) , where
) L, A fo (x), M. (x)= = LA fa, (%)
s€S 52 s Qé - e 5ES, s17s ~§ ~
3l
6?,...,62) is a T'-minimax rule.
= * =

0 be such that PTO[Q Qs] Ag for all s €S,

§ €D,

k

X f " ( + 1 ) [L( >( 6](x)) Asﬁa*(x)] dx
j=1 "R™ s&€S.. s&S. v s 7 ~

J1 J2
+

z [ M 00+ 15000 8500 ax

k

) M + N
k3 i 5 G0+ 1500 6500

3 k (S) * O

D ohg ) TLUegs5 (X)) Fgx (%) dx

s€S R™ j=1 - *s T 7

séS

!
s€s "9 jes(T) st JQS(T ~

78



So,
0
sup - r(T,8) > sup r(t,8") .
€T ~ tel ~

0

This proves that &  1is a I'-minimax rule.

* =
Let us take 0% (61,62,...

,ek), where

79

6; = 0gte if 1 es(T) and 6, =0, if i€ s(T). (2.2.7)
The constant @O will be determined later. We would like to investigate
Nj(x) < Nj(x) first. We find that
Ns(x) > Ny (x)
if and only if
L (Ll o) A f  (x) > = (Ly+L_ o) A f . (x)
s€s,. o1 82T TS OELT T g Ts1Ts2n fsoxs
il Jl
If (L51+L52) A = Cs where ¢ 1is some constant, for all s € S, then
Nj(x) > Nj(x)<==> T fe* )2 % fe*(x
sESi]\S.] NS s&Sj]\Sﬂ ZS
Fo e (X4) Fo e (X2)
Fo 1) ses\S5p  2es(T\} To X
f60+e<xj) Tc60+s(xz)
> z i -~
- o OG) ses Ns.. ses(TINGE  To. (%)
0 JINT4] 0
But for all s € Sif\sj]’ (s(TIN{i}) U{j} = s'(T) for some S'esjf\51]3
and vise versa. So we get
feo+e(xz) S ; foo+g(xg)
bX I = ! .
56511\5j1 2Es(TIN(i} feo(xz) sésj]\si] pes(THI\N{ 3} f<O Xy,
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Hence,
Ny () < Ny (x) i fe geo(xi) > geo(xj) (2.2.8)
where
f60+€(x)
9 (x) = 0
0 60
Now, 9 is increasing in x for any 9, if fe(x) has monotone

0
1ikelihood ratio in x. Then,

It is well known that if X .»X, ~are independent and the density

1°° k
fo (x) of Xi has MLR in x for all 1 =1,...,k, then Ee[é(X)] is
increasing(decreasing) in 0. if &8(x) s increasing(decreasing) in X5

(Lehmann(1959))

We can now state the main theorem of this section as follows:

Theorem 2.2.2.  Let A "

that Xi has pdf fg (x) = f(x—ei), which has MLR in x. Furthermore,
o .
;

if for all s &« S, '(LS]+L32)AS = ¢, for some constant c, then

= (87,6%,...,6:)' is a I'-minimax rule, where

( . [t]

»-..,%  be independent random variables. Assume

§*

i 1 if x. > x
1 J
j t-t]
55 (x) = < R Y A
~ : t’_t/ J
; 271 (2.2.9)
L 0 ifox < x[t]



and

x[]] > .. x[t{+]] = ,., = x[t] = ... = x[té] >0 > x[k] is an

ordered permutation of x .

Proof: Let e: be defined by (2.2.7), then (2.2.8) holds. Now, we let
- L]

; , then we have

Hence, Ni (X)<"'§Ni co=N =N ool ()
1~ t7+1 7 t 7 t; k

Now, suppose that
N[]](x)<...<N[t]+]](§)=...=N[t](§)...=N[t2](§)<...<N[k](§) R

then

If in (2.2.6) we let

for j such that x. > XL > X

S
i SRS BT T
t]+1 t]
P
r.(x) = { —— for j such that x. > X, > X,
N ey e 7
< 0 for j such that x. > X, > X, ,
) 1téﬂ J 1t2

then ég(x) reduces to 6§(x) as shown in (2.2.9).

~

Now, for any s €S, Tet i ¥ s(T), consider

X = (X1""’xi—1’xi’xi+1""’xk)
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and

X" = (X1""’Xi—1’xi’xi+1""’Xk> ,
where Xs g x{ , then for all j € s(T) ,

§¥(x) > 5f(x’) = 3 S5 (x) > I 6f(x’) ,
J J o~ jEs(T) I~ T oges(T) I~

*
which shows that ) 6:(x) is decreasing in x., if 1 € s(T).
L, des(r) I !
2 aj(x) is increasing in X, if 1€ s(T), because
Jes(T) 4~ *

R 6§(x) + b 6j
jes(T) - Jgs(T) N
is decreasing in X for 1€ s(T) and ) .

j&s(T) 0~
x, for i€ s(T). It follows that E.[ = §%(X)] s an increasing

1 | Sigs(ry I |

function of 6, for i % s(T) and is a decreasing function of 0. for

Hence

(x) = t. Similarly, we can prove that 8

gs(T)
§.(x) s increasing in

i € s(T). Hence

sup Ee[ b 5f(x)] = sup Ee*[ X 6f(X)]
Beog = Es(T) 07T mcgpe 5 ggs(T) I

Now,

N R B > [t] -

Xj =X 1ff y; 2V where Ys X; 60

and the distribution of Xj - 80 does not depend on 60 any more. This
implies that EO*[ z §%(X)] s independent of the choice of 60,' S0

T ggs(T) I

. * *
sup EO[ % 6j(X)] = Ee*[ b 6j(X)]
Oco, = ges(T) Y ~s Jgs(T) Y -

By the same argument,

inf E[ 5 &5 (X)] = Bl 7 6:(0)]
bco. O jes(T) I % jes(T) I~

Hence, &% is a I'-minimax rule by Theorem 2.2.7.



1.

Remarks:

We are considering location parameters for continuous distribution,
hence the probability of ties among x's 1is 0. This means that
the natural selection rule (select the populations associated with
the largest t ordered statistics among X's) s a I'-minimax
selection rule.

Assume X.

il
is a sufficient statistic for 61. In this case, ei is still

"Xin are the observations from Hj, and X.=

a location parameter for Xi and hence the I'-minimax rule will select
the popultations associated with the t Targest sample means. One such
example is when Hj ~ N{ei,cz), where 02 is known.

The condition (Ls1+L = ¢ forall s &S holds if we let

sZ)Ks

L = | L = L and AS =) for all s &S, then I' reduces to

sZ 2

r, = {7} J dr(s) = » for all s € S}. I, 1is a small class of prior
A o, - A ’

distributions. But it is interesting to note that the T-minimax rule

sl

§* s actually independent of X. So if we let FI = U I'ys where

- ' S

I s a arbitrary subset of the interval J = [O,ﬁ%'], then &* s
(t) N

a I'-minimax rule for I = Iy

The loss function we used in this section (see Definition 2.2.4)
satisfies the monotonicity and invariance properties of Eaton's paper
(1967), and fe(f) has the M-property .(which is equivalent to MLR

if X's are i;dependentx so from Eaton's Theorem 4.1, ¢* s a
Bayes rule wrt t for any t &€ I'” = {t] t 1is an exchangeable prior

distribution on @} . Then, &* s also a I'-minimax rule for any

resro.
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5. It is easily seen that TcFJ, but T¥FJ. To see this, Tet k=2, t=1,

and let T~N((O),(] O)). Then, T¢I'" . However, P_[6, -6 2e]
0'°'0 2 ™1 2

= PT[GZ—G]EEJ = P[X>€], where X~N(0,3), so TEFJ. In this sense,

our result is slightly stronger than Eaton's (1967).

1

I - X ;
6. If ; has a scale parameter %, then X, @;f(e‘) I<O’w)(x) with

;

Oi> 0. In this case, we might Tike to define

0, = 0] (1-€) min 0, 2 max 61} and F=-&lﬁ9 dt(6) =X for all
' i€s(T) i#s(T) S

€S, for some A€J}. If we use the transformation v, o= KnXi, we

get Yi~g(y—n1), where g(y) = eyf(ey) and ny = Knei, also

I :{QI min n, 2 (1+€7) max ni}, where 1+e” = K”T%E_' Now, 1.
i€s(T) i#s(T) !

is a location parameter, therefore, to choose the t-largest ni‘s

(hence the t-largest Gi's), we will select those populations associa-

ted with the t-largest Y.'s (hence the t-Targest Xi’s).

In Section 2.4, we will see how Theorem 2.2.2 can be generalised if

X},Xz,...,x are not assumed to be independent.

k

2.3 Complete ranking and simultaneous selection problems

Let 1 -»II, be the same populations as described in Section?2.2

]’HZ"'
and ﬂ[]]<..ﬁ®[k] be the ordering or parameters. Let R:{H],HZ,...,Hk}
~0,7,...,k-1 be a 1-1 function suchas that R(IL) = 3-1 iff 0. =em.
R(”i> is called the rank ofT%. When 6]’62""ﬁk are unknown, the ranking
problem is to identify each population with its rank. A simultaneous
selection problem is to decide the t-best populations for all 1<t<k-1 at

the same time.

Definition 2.3.1. For ranking problem, Tet A={a]a=(a(1),...,a(k)) isa per-

mutation of (0,1,...,k-1)}. So when we take action a€A, we mean population

”i has vank a(i). Notice there are r=kl actions in A, which we denote by

r

?]3?2,...,6 .
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Definition 2.3.2. A measurable function &§: X - A is called a ranking

~

rule. A behaviorial ranking rule is a measurable function & : XxA~[0,1]
such that S(x,-) is a probability measure on A. Then,

oy (i() =

it s

S(x,ag)az(i) is called the rank of Il; generated by 8.

2=1 -

In the following, we would 1ike to show the relation between the
ranking problem and the simultaneous selection probTem. Achange of notation
is necessary here. From now on, all the notations used in Section 2.2 will
be added a sub-index t to specify that the selection is for the "t"

best populations. For example,
k

(x) <71, £6,.(x)=1t}, for 1<t <k-1.

Dy = 08y = (8- 58,)7 [ 05 8 I T

it

Definition 2.3.3. A general selection rule is a matrix § = (6],62,...,6k_]),

™

where §j = (éij,...,ékj)’ S Dj for all 1 <j <k -1. For any x € X,

é(i) = [6ij(5)]kx(k—1)’ where Sij(x) is the conditional probability of

~

selecting Hi as one of the j-best populations having observed x.

Definition 2.3.4. Let ¢ = [Gij] be a general selection rule, then
k-1 -

b= I 61j is called the rank of I (i=1,2,...,k) generated by S.
351 b

Now, we can prove the following Temma to establish a relation between

~

§(x) and g(x).

Lemma 2.3.1. Let & be a behaviorial ranking rule and

. g(x,a )a, (i) be the rank of 1. generated by §, then there
R ‘ k-1
exists a general selection rule & such that the rank Po(x) = 6, (x)

1 j=p 1S
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is the same as ai(x), for all 1 < i < k.

Proof: Since x is fixed, we will use a; for a.(x) to simplify

notation. The same goes for wi’ S, gij and
Wlog, Tet a, € A be such that

NO»

Let &(a)) = 8,,

-

then 0 < Bg <1 and b) 62 = 1.
2=1

a](i) =i -1 forall 1 <i <k, Then, for all a

c =
g = A e = Pag,

where P2 is some permutation matrix (2 <% <r). Now consider

0 0 0 1
1
& = .0 > ey = ’
01 . ' .
L R kx(k-T) 1/ k-1
then it is easy to check §]1k~] =, hence Pzgllk—] =3, Now, we

r

1 = = = <'Q')
define $ = QET BQPQQ] » where P] Ikxk' If we let P2 [pij ]kxk

and  §= [aij]kX(k—l)’ then we have
r k r
0 < éi' = BJZ z p(z) < I By = 1
Vo=l A omsk-gel im T ge
and
r r ( )
176 = 5 g 17P 8§, = T OB 1'§ = 1’§ = (1,2,...,k-1).
k= 01 gk ozl =1 2.kz1 k=]
k
i ) .= ] . € A P S R &
This proves 121 st J, hence 8 D, where §J (613 6k3)
follows that § s a general selection rule by Definition 2.3.3. Finally,
~ r r
ST = (Yyse0-5p, )" = £ B P §;1 1= £ p8.a
::'\’k‘] ] k /Q,z-l ,Q/ ,Q/N]’Vk ] Q,=-l /Q:'\'/Q;
Y\ ”~
= E 6(§£>§2 = (d]a---:dk)‘ [y
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hence wi = oy for all 1 < i < k.

We can also prove that given a general selection rule 8, there

~ Y‘/\
exists a behaviorial ranking rule § such that ¥ §(a )a2 =681

k-1

=1

The proof is very similar to the proof of Lemma 2.2.1. We consider that
V = {§1k~1l ¢ s a general selection rule}, then V is a closed,

k

bounded convex set in R". Now, if § = [6ij]’ but 61j are not all

O's and 1's, then élk-] is not an extreme point. It turns out that

the extre?e points of V are P2g1lk_] = 3,5 so for all Qlk_1 €V,

§1k~] = 2518292. Now, set 5(@2) = B,» thus completes the proof.

From the above discussion, the rank of II; -generated by behaviorial
ranking rule § or by general selection rule g can be treated as
equivalent. In the follwoing, we will consider the ranking problem through
the general selection rule g, Ai.e., we would Tike to select the t-best
populations for 1 <t < k - 1 simultaneously and hence to rank the
populations in ome order.

let D = {g[ g is a general selection rule}. The notation
Lt(§’§t(§)) and rt(T,§ ) wil mean the same thing as L(6,8(x)) and

~ o~ A

r(t,8) in Section 2.2. Because t is a variable rather than a fixed
integer in this section, a sub-index t is added to make the notations
clear.

An intuitive loss function for the simultaneous selection problem

k-1
is 2(0,8(x)) = : Lt(e,6 (x)). Since the loss is additive, so by
Y o A
Lemma 1.7.1 and Theorem 4.1 of Eaton (1967), §* = (g?,..., E_]) is

S
Bayes rule for any exchangeable prior distribution, where g: is as

given in (2.2.9) for 1T <t <k - 1. Then

sup r(r,§*) < sup r(t,§) for all § €D,
€er- w€r~ ~ ¥
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* 4s a r-minimax rule for ' = T'". However, when we use

i.e., 8

Q(Qgﬁ(g)) as our Toss function, we find that there is no indifference
zone for 83 but for each t (1 <t <k - 1), 8¢ has its own
indifference zone. If we feel we should not be penalized in the problem
of selecting the t-best populations (t fixed) when the t-best populations
are not distinguishable from the others, then neither should we be
penalized in the simultaneous selection problem if any two populations

are not distinguishable from each other. Thus, we need to have an

indifference zone for §, which is done as follows: Let
C={c| ¢ 1is a permutation on {1,2,...,k} },

and for ¢ € C, let
Oc = 1810 (1) > Bc(z) > o > Be() 2 Oc(q) T Bc(i4)

>e for T <i<k-113,

then

@y =8\ U ®; =1{6] min ]6,-6.] < e} serves as
0"\ & © 1gigisk 9

an indifference zone. Now let ij = {c| i = ¢c(j)}, then for all

) . . . . .th
€ .. € , = . .e., 0. e
c CU and 9 I e1 eC(J) is true, j.e e1 is the j

k
largest parameter. Note that C = U Ci" for all 1 < i < k. For
=1 t k
T<t<k, 1T<ic<k, let Git = U C,., B.,= U ¢C.,.

j=1 it jet+] ij®

then for 6 €@, and c € G, (B,  respectively), we have

it ‘Uit
0. is {is not) one of the t 1largest parameters. Now, we can define

the loss function as:
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Definition 2.3.5. For any 6€@® and 8§ € D, Tlet

T i=1 c€C ~ ~
and
0 if 6 ¢6c
(c) - - -
L (9’61t(§)) = L1(1'5it(§)) if c € Git and 8 €@,
L261t(§) if c¢€ Bit and 6 € 9, .

Let FA = {1] J®C

indifference zone for ¢§(x). Now, we can prove Theorem 2.3.1 which will

dt(e) = » for all c € C}. We see that 9, is an
be used to find a simultaneous T'-minimax selection rule.

Theorem 2.3.1. If for all c¢ € C, there exists a e: € @C such that

K o ko |
sup E.L = S8 piye DI =E [ = 8 /.y, (X)]
6€@, 8 j=t47 cld)t % 0% jofey cl)t 5
- (2.3.1)
and
0 (0] (260 (0]
inf EL 32 6 ,.v, (X)]1=Exl 2 6°,.y. (X ,
pce, 0 =1 It =TT Tecny et T
where
)
g = i = i z (x)=t-t
854 (x) = rig(x)AF NG () = Nppge (), with I rigomtr
1
0

if Nit(é) > N[t]t(é)
(2.3.2)




80

and
N[}]t(§)<"'<N[t]]t(§) i Nppge(x) = e, 1000 S (0
where
i) b gy fl) oy B T
it
If g is defined as P 0[9 = 9*] = x for all ¢ € C, then we have
rt(ro,§t) > Tt(T09§g) >r ( 6%) for all 84 € Dt and T € FX.

Proof: The proof is similar to that of Theorem 2.2.1, so we only write

down the main steps and skip the details.

‘{‘t<TO’6t) =

v

1

2

it

Ke #2 1§] LRk Nip(x) 85 (x) dx
k
Kt+ﬁ§1J£kN (x) s (N)df
c(1908y)
ko o
A e tht+i, eg[J Yop Selint (X
Eoo
- L, E C[Jz] Sc()t (01
. K 0
cgc ﬁac L]t ' LZ [J §+1 ac(j)t (
t o
- L E [Jz] S c(j)t (X)1 dr(e)
r(1,60)  forall TET,
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This completes the proof.

*
Now, for all c € C, we define g, = (91,9;,...,ek)’ € 9. as

0 i = 0y - je for all 1 < j < k. (2.3.3)

c(J

Again, will be determined Tater. We would like to examine

%

Nit(f) < th(x). We find

~

<
Nop(x) < Ngt(f) > céG feg(’f) 2 cez'e f@é(g)
it~ jt
==> 7 f (x) » = f . (x)
0%~ - S
Ceaif\ﬁjt =C CEGjt\\Git Mo

Now, for all ¢ € Git\\Gjt’ i =c(i”) for some 1<i” <t and j=c(i”
for some t + 1< j” < k. Ifwe let c” be such that c¢”(8) = c(n) if
e #i%, #3537, and c”(i”) =3, c?(j”) = i, then ¢~ € Gjt\\Git‘ The

correspondence c<+—c” is 1 - 1 between Git\\Gjt and ij\‘eit' So

if we Tet
gc(f) = fgé(g) - f?g,(ﬁ) for all c € Git\\Gjt’
we have
N.o(x) ¢ N (x) = & g (x) =0
it~ Jt~ c'e
CEGif\\Gjt
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Now,

gC(»)\() = [Q/;[])’Q,#J, feo'/Q:E(X/Q/)] [feo_1’€(x-i) feo_J’E(XJ)

- f -"e(xi)] .

e (xy) F
60 1777 ] eo J

If fe (x) has MLR for all 1 < i < k, then we have
..i

X; 2 xj = gc(x) >0 for all c € Gif\e

Z jt 2
x) . (2.3.4)

Theorem 2.3.2.  Let X1,X2,...,Xk be independent random variables, where

Xihas pdf‘fe(x) = f(x~ei) which has MLR in x. Let
.i

x[1]>...>x[t]/+1] = ... = x[tJ = ...0= x[t2] > ... >x[kJ
be an ordered permutation of x. If
1 if X5 > x[t]
t-t,”
5% (x) = ! if x, = xttd (2.3.5)
e t5-t7 1 :
2 1
0 if x, < xtH

then we have @*(5) = [S?t(ﬁ)]kX(k—l) is a I'-minimax simu]taneous selection

rule in D for T = FA'
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Proof: Let gz be defined by (2.3.3), then by (2.3.4) we see that
(2.3.5)can be considered as a special case of (2.3.2), as was shown in the
proof of Theorem 2.2.2. Also, by an argument similar to that in the
proof of Theorem 2.2.2, we can prove that (2.3.1) holds for any choice of

60. So by Theorem 2.3.1, we get

. * *
inf rt(10,§t) > rt(TO,§t) > sup rt(1,§ )

64EDy €T
for all 1 <t <k - 1. Hence,
k k «
inf r(t,,8) = inf © r (7,,8,) > £ inf r (7,,8,)
b O g w1 BOTE T gep BOTE
k
* *
2 § rt(TO’ét) r(TO’g )
t=1
Now,
k « k
sup r(r,¢*) = sup T ri(r,8.) < T osup v (1,8})
T€r ~ € =] i=1 TEF)\
A A
k
< I orulrgs8e) = r(tg,87) < inf r(7,,8)
R AU 0°¢ 5D 0’2
s rltgs8) < sup r(r,8)
2 er =
™A

for all § € D. So &* is a I'-minimax simultaneous selection rule for

= ™

Corollary 2.3.1. Let I < [o,ﬁ%} and T = U T

- then ¢ isa
T€l ~

I'-minimax rule for T = TI.
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Recall that our main purpose in doing the simultaneous selection is

to rank the populations. When there are no ties among xiis, i.e.

then the rank  y. (x) generated by §*(x) is j -1, and hence I,

g
1

j j
has rank j - 1. 1If ties occur, wlog, Tet us' assume that
Xq > > X, = =X > 0.2 X F .l T X Zeee 22X =
1 e+l £+ to+] totd, t +]
= X > > X N
t,rd k
then _
T
1
12 4 1
dy dq d
12 .Y
| 4 4 d
§7(x) = 1...1
q
O 12 .. %
d 4y dp
a2 %
‘ B d 94
L ke,
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So,
( k-1 N
va(x) = ¥ 8., (x)
12 t=1 1t e
ﬂ’ k-1 if tj + dj < i< tj+]+1 where t0=d0=0
T+d .,

J k-1t d, if ot,+1<ic<t,+d..
2 J J J o7

wi(x) is called midrank of x and this justifies why the midranks for
tied data should be used for rank test. For use of midranks for tied

data, see Lehmann (1975).

2.4 T-minimax rules for hypothesis testing in a multivariate case.
We start with a result in Lehmann (1955), which we state as a lemma

without a proof.

- -

, X7= (x{,...,xé) , we define

Definition 2.4.7. When x = (x1,...,xk)

~

X < x° iff X; < x; for all 1 <1 < k. A measurable set S 1is increas-

ing iff x €S and x < x~ implies x~ € S.

~

Definition 2.4.2. A family of distribution {Fe(x)}e€® is said to have

~

stochastically increasing property (SIP) iff when 6 < 6° and S is an

increasing set, we have jS dFe(g) < JS dFe,(g).

~

An example of SIP family is when Fe(x) = F(f—@), i.e., 6 is a location

~ ~

parameter. The following lemma is due to Lehmann (1955).
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Lemma 2.4.1. Let {Fo<x)}e6@ be a family of distribution with SIP. If

§ 1is a real-valued function such that 6&(x) < §(x*) for x < x”, then

~

E0[6(§)] < Ee,[é(g)] for 0 < 67

When @ 1is a location parameter, the above lemma can be generalized to

Lemma 2.4.2.

Lemma 2.4.2. Let {F(X‘g)%)E@

real-valued function such that &(x + ta) » &(x + sa) for t >s, then

be a class of distribution. If § is a

SO is Ee+ ta [6(%)] > Ee+ Sa[é(%)], where a is an arbitrary vector
in .Rka

Proof: let A be any non-singular matrix with a as its first column.
= A‘]

Let X and g(x) = §(Ax), then when X ~ f(x-8), we have

Y
~ ¢f(x-n) where c = |det AJ, %(x) = f(Ax) and n = A '8. Also, we

[

let g(p) = Ee[é(X)] and §(Q) = En[S(X)]. Now,

g(x + te,) = §(Ax + tAe]) = §(Ax + ta)

> §{Ax + sa) = §(x + seq)

~

for t=zs, so & 1is increasing in its first component. Since n is
the Tocation parameter of Y, this implies g(n + te]) 2 a(n + se,) if
t »s. But

9(8) = [s(x) Flx - 6) dx

= s(Ax) f(Ax - AA"1g) |det A| dx
= C I@(x) Flx - A~lo) dx
= g(ATe),
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hence,

-1 1

it

a) = g(A'g + te;)

g(6 + ta) g(A™'e + tA” :

> §(A—]6 + se

]) = g(6 + sa) for all t = s.

This completes the proof.

Remarks:

1. One may notice that if Fe(x) = F(x-8), then Lemma 2.4.1 s an

~

immediate result of Lemma~2.4.2.

2. If both &(x) and g(6) are differentiable, then we have
k ~ ~ k

5 oa, w0 S(x) >0 = 3 a. —§-g(e) >0 for any a.
o1 1 oaxy z o1 198y TN -

.

i

Example 2.4.1. Let the random variable X has pdf f(x-0)
= h(x) c(o) el 7% , where ¢ € Rk

vector in Rk. We want to test

is unknown. Also let g be any

HO : @’g >C+e

H] : @’9 < C

Suppose we know the prior distribution of e‘ is in the class
r = {1 Pr‘[9 € Hgd = 2, PT[Q € Hil = A"}, where 0 <2, »* and

A+ A7 < 1. If the loss is defined as:

ap a4

Hy 0 L

H, L, 0
(HOUH})C 0 0
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where a, 1 Means 'H1 is true'. To

determine the T-minimax rule, we proceed as follows:

means ‘Ho is true' and a

8
Solution: Llet B~ = (By,....8,), 6 = HC+E)§ nd 6, = JQHZ
. o le T i
Let Ty €T besuch that P_[e=06.]=2, and P [0 = ¢ 1= Xx". Also,
9~ ~0 T~ <

let D= {8 § s a measurable function on R" such that s(x) € [0,1]}.

For 8§ €D, &(x) is the probability of saying HO is true having

observed X = x. Now,
r(fogé) = f

so tne Bayes rule wrt g is

L]A(]~6(§)) f(x-0

X ~ ~o) + L2>\/6(5) f(f"? )diE:

Sl = Tr (g el p Fx-,)] ()

But

2 Loacc(ey)
Flx- F (- sy » Al AL L.
HATx8g) 2 L TFxoey) = xp :

Ln
Lyx clgy) 0

Since (x + tB)"B > (x +sp)"g if txs, so so(x +tg) > so(x + sB),

nence by Lemma 2.4.2,
E@+t8[60(§)] 2 EG+SB[60(§)] 1f t 2 S

Now, let o € HO’ then 6 = v + ur where B°r = 0. Since

Cte

hence
2 H
Iel

B0z Cc+eg = v2

Falso0] 2 g, [55(00] -

But

B rurlSo(¥)] = PLUX-05-ur)"8 = ky - 68 - urg]

P[%ég 2 kO - 96@1 where %O ~ F(x)

Eeo[éo(g)] ;

~
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S0 we have proved that

inf ELL8,0071=E, [8,(X)]
oEH 60"~ 9 0

Similarly,
sup  E_[6,(X)] = E, [&,(X)]
ocH, 60"~ 670"~

Then we have for all T €T,

o) = fy LO-ELe(0] dn(e) + [H1L259[60<>91 ax(9)

[N

~

My (1-Eg [8,(0)7) + ATLZ!E?T[@O({()]

= r(TO,SO)

Hence 60 is a T-minimax rule.

We have now displayed many examples for deriving the Fminimax rules
(in Chapter 1: T-minimax rules for selecting populations close to a control;
in Section 2.2 and 2.3 of this chapter: T-minimax rules to select the t-best
populations). One might have noticed that the common setting of the
I'-minimax problems we have considered is that we have a partition on ©
such that @ = (.§ ®.) U @b, where @b serves as an indifference zone, and
I' is defined as1£;e class of prior distributions which put some known mass
on each @1 (1<isr). Then we will do the routine job of choosing a T S
In general, T is a degenerate prior distribution which puts all the mass

on the boundary of @H. If we can prove that TO is also the least favorable

distribution in I for its Bayes rule 50, then 60 is a I-minimax rule.
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ATl the problems that we have considered so far are under the assumption
that all populations are independent, but this condition can be relaxed in

certain problems. Let us Took at the following example first:

Example 2.4.2. Let X ~ Nk(e,z) where I = (1-p) Ik +p lklé’ o is

- k
known and p > k—} Let @ = (U C%)UQO where @1 = {Ql Gizmax 6.+ct,
i=1 k J#i
= {r] Jo de(9) = A}, with A, 20 and I A, <1 being given.
500 ! i=1
Define
C ©
0 if © OO
L(8,6(x)) =
Li(1—61(§))+21.2_ 6j(§) if 0¢ @i,
J#i
k
where § €D = {§] = 6i(x) =1 and Si(x) >0} .
- N

We want to determine the T-minimax rule.

This problem is known as the selection of the best population and it
was considered by Gupta and Huang (1977), for p= 0. When Xi's are
equi-correlated, we let 9: = (q),...,60+€,..., q)) for 1 <i £k. Also,
let 7, be the prior distribution such that P_[8 = 9?] = A, then the

15
0
Bayes rule wrt 0 is §O = (6?,...,52) where
1 If fae(x) (L4202, > max fa (L.+2.)2

I .. B%

o L A VO A
0,.
§ = . =
10 = 4 e
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Now, let z-] = [¢'91, then

i 1k §

Mt e for 1sisk

)
o

1J . -0
A RS P TGRS

then
<1 ~J
'%fQ) (H+%)%
= fe*fxi iL}+215A1 - G
~J

We see that 6?(5) is increasing in X; and is decreasing in xj for

Jj# 15 also, Gg(x) is independent of the choice of by Hence we get

0
inf E [5 (X)] = E [8:(X)],
oce, j\2 (0,...,0,e,0,...,0) %\

which proves that

0, . ¢ 0
r(esh) = T | (gL (-ELS00D) ele) < rlagssg),
i=1 ‘@ 2

0 . .
hence &  1is a T-minimax rule.

~
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The above example can be generalized to a more general theorem which

we state as follows:

Theorem 2.4.1. Let X has pdf as f(x-g). If the ratio

fx-ce,)

i Fx-ce.
(x ENJ)

1s an increasing function of x; and is a decreasing function of X5

keeping the other components fixed, then the problem of selecting the best

population has a T'-minimax rule 60 = (6?,...,68), where
% 1 if rﬁj(§)> CZj for all j # g
i
go(x) = (ﬂ r{x) if r (x) 2 Co. for all j # 2 and '=' holds for
L~ | L L3 ~ 3 some j # %
( 0 if er(§)< CQj for some j

Proof: Use the same argument as in Example 2.4.1 except the monotonicity

of rij(x) is now guaranteed by the assumption instead of computation.
Remarks:
k
1. The monotonicity of rij(x) is satisfied if f(x-¢) = I g(xi—ei)
~ ~o i=1
and g(x-8) has MLR in «x.
2. If Y1,Y2,...Yk,Z are (k+1) independent random variables and
8;p(Y)
Y, o~ g(y—@i) = c(ei)h(y)e P , where p(y) is a strictly increasing

function of y for 1< i <k, and Z 1is an arbitrary random variable

with pdf as g(z). MNow, if X, =Y, +Z, then letting X =(Xpsen X))y
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we have
ok
X ~ f(x-6) = J i g(xi—z~ei)q(z) dz
~ v meo j=1
and
f(g—ae.)

rigx) = Flx-ee.)

- eelP(xi)-p(x3)]

Hence, the assumption of Theorem 2.3.1 is satisfied, and the

I'-minimax rule is

. 1
f . . —_ ..
{’ 1 i p(x1) > ?;§ p(xJ) + . in i3

Naturally, Example 2.4.1 1is a special case in which Yi ~ N(ei,l-p)

and Z ~ N(0,p).

In Theorem 2.2.2, we assumed that Xi's are independent, because

by independence, we can prove

foe(x) (2.4.1)

X:2X, => I foe(x) > g X
<s

X
gx L
S€SiN\S5p s S€S\Ss 1
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> Ni(f) < Nj(f)

If X 's are not independent but Xi = Yi + 7 with Yi and Z as
1

defined in remark 2, one finds that when we choose =0,

%

ez PGl oy
ol = e 0 [T a0, EEIET o(a) 0z

Hence (2.4.1) holds, and Theorem 2.2.2 1is,. therefore, still true.

As the last part of this section, we would like to search for the
r-minimax rules for some hypothesis testing problems when X has a

multivariate density fe(x), but 6 s not a Tocation parameter.

Lemma 2.4.3. Let X = (X .,Xk) has pdf fa(x). If the marginal

10"

distribution of (XZ"“’Xk) has pdf g(ézs..',ek)(xz,...,xk) and

X}) XZ"“’Xk ~ hn(@)(x]! XZ""’Xk)’ where n(g) s an increasing

function of 8 and hn(x]I XZ""’Xk) has MLR in Xq - Then if §(x)

is an increasing function of Xys we have that EB[S(X)] is an -

increasing function of e].

Proof: Let 6 = (69:0,,....8, ), 87= (87.6,,...8,) with 6, 2 67,

then n(e) > n(6”), so

En(g)[6<§)l XpsoooaX ] 2 En(g,)[a(§)| XpseeosX,]

for ali X "’Xk' Now,

2%
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it

- [5007 -

Examples of fe(x) satisfying Lemma 2.4.3 are:

1. MuTtinomial distribution MN(n,6):

k
n! k X, k n—.E1x1
fol(x) = k k mo, ' |J1- 26 !
0 (1 x,1)(n- 2 x)l \ =1 \ i=1 !
i=1 i=1 (2.4.2)
k k
- : -
(n L i)' 5 " o\ 5
= k k ]"' k
x;1{(n- % x,)! 1- ¢ 8. 1- ¢ 8,
g j=2 | i=1
k
| n—ZX.
n! k X; : k oo 1
R K R R
(mx;1)(n- 2 x)! 7 "
i=1 §=2
%
We find that n(s) = K which is increasing in 6], and
1- % 6.
j=2 !
k
X][ Xps. .,Xk ~ b(n - 2 Xs s n(6)) which has the MLR, and the marginal
i=2 ~
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distribution of (XZ,...,Xk)’ ~ MN(n,(ez,...,ek)’), so that
Lemma 2.4.3 applies for this distribution. Furthermore, by
the symmetry of the density of multinomial distribution, we get

if §(x) s increasing (decreasing) in X then Ee(s(X)] is
increasing (decreasing) in 6; forany 1< i <k.

2.  Multivariate negative binomial distribution MNB(n,0):

k k
(e oD Ko\ Oz xg)
fe(x) = Hk RICH 1+ 3 8 i=1
~ <n“])! H (X.!) 1=.| 1_]
PR
i=1
" (2.4.3)
(n+ 5 x.-1)! X
i} i=1 | 5 !
k k
(nt = x:-1)! x,! 1+ % 8,
S ! j=2 1
k
[ 1+ 0 i=1
\\ 1+ 12281
k k
K I 0. 1+ 3% 8
j=p | i=2 !
(n-1)! 1 ox,! !
i=2
%
We find n (o) = k which is increasing in 61>
~ 1+ 7 61
i=2
; (6))
Xyl XpseeunX, ~ NB(n + 1 x., n(e)), and
12 k j2p 1 <
(XZ,...,Xk)’ ~ MNB(n, (92,...,ek)'), so the same result for multinomial

distribution also holds for multivariate negative binomial distribution.
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3.  Multivariate normal distribution Nk(e,z):

Let
o1 I3 /9 X

then

Yoo = Mg (8253pp) and Xq| X, ~ N(oy+z5y35,(X5-0,),

o171 = I21297pp)
So Lemma 2.4.3 holds. But in the multivariate normal case, since
6 s a location parameter, Lemma 2.4.2 is stronger than Lemma

2.4.3.

Example 2.4.3. Let 51’52""§m be iid MN(n,g) Kith pdf as in
(2.4.2). Let @ = {9]0 < 8, for 1 <1<k and 15167 < 1}.
We want to test
HO : j§1 ej >2a+e
t
H] jE] ej a |,

where t € {1,2,...,k} and O<a<a+e<l. IfbothT and the loss
are the same as in Example 2.4.1, we can proceed as follows to get a

I-minimax rule.
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Solution: Let
6. = ( ate ate  l-a-g 1-a-¢ )
-0 t >t k+1-t * k+1-t
and
- (8 a 1- 1-
6= (% * 0 KT ° Tt )

Let € T be such that P [6 = O] =x and P [o6=906,]=2r",

O O O~ ~
~
y O

00 =T ar () s Lt (0] @)

0 ~ 8y~
Now,
L Af (x) 2 Loa~f_ (x)
1 8 ~ 2 0~
t LA~ n
. ate T-a X 2 1-a
= .¥ ( a T-a-€ 2 X ( T-a-€ )
J=1 1
LA~
2 1-a
t n [;_X' + n Kn]—a-e
= Ty, > = C
N a+e 1-a n
3=1 Ln 3 + En]_ =
Then, do(x) =1 ¢ (x) s increasing in x. for all 1< j < t.
~ S ~ J
[ v x.>c ]
=1 37

Hence, EG[SO(X)] is increasing in ej for all 1 < j < t. Now, since
t ~ Tt t
L X, ~ b(n, X Gj), Ee[éo(g)] depends only on 2 6.. So we get

j=1 j=1 N j=1 9
inf E [5 (X)] = Ee [5 (X)]
Bt -
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and

E,[6,(X)] = E, [8,(X
gggl 9[ o(¥)1] 9][ o)1

It follows that r(T,éo) < r(ro,ﬁo) for all T € I'. If we consider

m m
z Xy as the sufficient statistic for 6and I x1~MN(mn,Q), we get the
i=1" SR S
I-minmax rule
SalXqsewuox ) =1 m ¢ (XqoeeesX )
0*~1 ~m [ Z % x..>c ] ~1 ~m

i=] g=1 7m0

where X; = (x "xik) for all 1 <1 g m.

i1’

Example 2.4.4. Let X],...,Xm ~ MNB(n,8) with density mass as in

(2.4.3), @ = {8] 0 < 6, for all 1< i<kl Wewant to find

I-minimax rule to test

+ €

™t
D@
v
Q

-
I 1t
@@
iIA
jo5)

where a >0 and t €{1,2,...,k}. T and the loss, again, are the

same as in Example 2.4.1.

— _ ¢ ate ate  l+ate 1+ate
Solution: Let 8, ( o0 ot T TheT Ut TRt )
and

_a a 1w T+a
=% ot s fr ) oo
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then we find

o (x)
9 - (/ T+ate | " E [ ate)(1+a } X3
1+ . +a+
_i:e (X) \ a ,Jz] a(l+ate
~0 7
Hence, if 19 s such that PTO[Q = 90] = X and PTO[Q =0 1=2x",
the Bayes rule of 0 is
LA~
t n fgi__+ n fn ]Tize
1 -
] it JE] xj 2 IZVI, [ a+€)(]+a) ] - bn
a({l+ate
8o(x) =
O <
t t
Since ¥ x. ~ NB(n, % ej), so everything is the same as in Example
j=1 j=1 m
2.4.3, i.e., sup r(r,éo) = r(TO,GO). If we consider I x. as the
€T 0 i=]
sufficient statistic for 6 and X5~ MNB(mn,0), we get the
- i=] - '
I'-minimax rule
60(%]5'--9’)&“) = I m t (Z(‘]: -3i(m) ?
[T Ixs.2b ]
i=1 =1 7 ™

where X, = (Xil""’xik) for all 1 <1 <m.
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CHAPTER III

EMPIRICAL BAYES RULES FOR SELECTING
GOOD POPULATIONS

3.1. Introduction

We assume that G 1is an unknown prior distribution on &, and de-
note the minimum Bayes risk in a decision problem by vr(G). Robbins, in
his pioneering papers (1955, 1964), proposed sequences of decision rules,
based on data from n independent repetitions of the same decision
problem, whose (n+1)st stage Bayes risk converges to r(G) as n » .
Such sequences of rules are called empirical Bayes rules. Empirical
Bayes rules have been derived for multiple decision problems by Deely
(1965), Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977),
and Singh (1977). However, the forms of densities of the populations
that these authors considered are either c(e)h(x)eex, for continuous
case or c(s8)h(x)e*, for discrete case, and the loss functions are

either squared error or merely max 8-, type. Fox (1978) discussed
12<k

some estimation problem under squared error loss, in which empirical
Bayes rule was derived for the first time for uniform distributions.
Barr and Rizvi (1966), and McDonald (1974) also considered selection
problems related to uniform distribution by the subset selection

approach. It is interesting to note that uniform density is a good

approximation to the central portion of normal density. We consider one
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industrial example. One often wishes to keep the resistance in a
circuit constant. If the resistance is normally distributed, then re-
sistors with resistance in 1% tolerance interval about the mean are
selected as "high quality". In this case, the uniform distribution can
be used as a model for these high quality resistors. In Section 3.2,
empirical Bayes rules are found for selecting populations better than

a known control when the populations are uniformly distributed. 1In
Section 3.3, the same problem is considered except that the control
parameter is unknown. In Section 3.4, we derive the empirical Bayes

rules for populations with densities of the form pi(x)ci(ei)l(O 6 )(x).
>4

Rate of convergence is also discussed in this section. Finally, Monte

Carlo studies are carried out for the prior distribution
N

G(e) = ~?’I(O C)(e). The smallest sample size N 1is determined to
C 2

guarantee that the relative error is less than e.

3.2. Known control parameter

Assume that we have k populations LPRY PPTERIS NN m»U(O,ei)

and 0y s unknown for 1 <1 < k. Let % be a known control para-

meter, we define:

Definition 3.2.1. Population T is good iff 8; > 6ps and population

s is bad iff 0, < 8-

Let A = {i]ei > 80} and B = {ilei 5_60}, then A(B) 1is the set of
indices of good (bad) populations. Our goal is to select good popu-
lations and reject bad ones. We formulate the problem in the empirical

Bayes framework as follows:



(1)

(3)

(5)

(6)

(7)
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Let &= {g = (o -,ek)lei >0 forall 1 < i <k} be the

.
parameter space.

Let #= {S|S < {1,2,.--,k}} be the action space. When we take
action S, we say Hi is good if i €S and H1 is bad if
igS.

Let L: @ x & +(0,) be the Toss function. We define

L(g.S) =Ly (05-80) + L, .Egns(eo—ei).
: i

k
Let G(g) = 1 G.(8;) be an unknown prior distribution on @,

where Gi(ei) has a continuous pdf gi(ei).

Let (611’Yi1)""’(@in’yin) be pairs of random variables

from I, and Yij] = 0,. ~»U(O,eij) for all 1 <1 <k and

%3 7 743
j . . = A . d
1<Jj<n. Let XG (Y1J YkJ) ~ then Xﬂ enotes the
previous j-th observations from H1""’Hk'
Let Xi be the present observation from Tss for all 1 <1 <k.

Let &L=1{x = (x coesx )X, > 0 for all 1 <i <k}, Also, Tet

1°
X = (X1""’Xk) and fg}z) = 121 5%'1(0,61)(xi)' Since the loss
function is bounded from below and we are interested in the Bayes
rule, we can restrict our attention to the non-randomized rules.
We have

D= {s]6: L« is a measurable function}. D is the collection of

decision rules. Llet

r(G) = inf r(G,8) = r(G,s*), ‘ (3.2.1)
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then 6% s the Bayes rule wrt the prior distribution G, and

r(G) s the minimum Bayes risk.

©

Definition 3.2.2. A sequence of decision rules {sn(ﬁfxﬂ""’xn)}n=1

is said to be asymptotically optimal (a.o.) or empirical Bayes (e.B.)

relative to G, if

l8,) = | TE] L6, 00t 2,0) 7, (0 d(e) ek

-+ r(’Q) (3.2.2)

as n - ». The expected value in (3.2.2) is taken wrt Xqﬂ"'91h°

Remark: For simplicity, an(ﬁﬁxq,---,xn) will be denoted as 6n(§)

from now on.

Let mi(x) be the marginal pdf of Xi and Mi(x) be the marginal

distripution of Xi' Then, we have

m.(x) = j gi-dGi(ei) for all x > 0, and
X i

it

fmfx 1 ded6. (6) + | * 1 deae (o)
Lo + [ L oy s
XO6 1 009 1

xmi(x) + Gi(x).
Hence,

Gi(x) = Mi(x) - xmi(x). ‘ (3.2.3)
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With the help of this formula, we are able to get a Sequence of a.o.
decision rules. As the first step, we would like to find r(g) and

the associated Bayes rule. To get the Bayes rule easily, we will change
the form of the Toss function to the following:

L(8,S) = 1%S[Lz(e()-e].)I(O’eoj(ei) - L1(ei“60)1(eo,w)(ei)]

+
i

il o~

L](ei"‘eo) (91) (3.2.4)

1 1(603“’)

It is easy to see that the second sum of (3.2.4) does not depend on the
action S. Hence, to find the Bayes rule, we can omit the second sum

and consider only the first sum in (3.2.4) as our loss function. Then,

(@) = [

L -8.)f dG
m;ieg(l)[feiiﬁo 2(60 91) Q}E) &)

; f L, (0,850, (x)d8(8) Tdx-
6_i>60 ~

So, if &*(x) = S* s the Bayes rule, then we find that i € S* if

1 ® 1
Ly (840, )z 6 (6. 5,f Ly (6;-80)5> 6. (0,).
1 GOVX.i 1

f(O,eojﬂ(xi,w)

Hence, i € S* 1if

(i17) x. < 8, and

S
0
1
Lo, fx. T 06;(6;) - L8 (0g)-6, )]
1

o

< L1(1-6,(80)) - Ly0, fe L de. (o). (3.2.5)

0 1
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The condition in (ii) is equivalent to Hi(xi) 5~Ci(60)’ where

Hi{x;) = L8,

i
—
D

0
1
fx Eg'dGi(ei) + LZGi(Xi)’ and
i

_ T
¢, (8g) = L,8;(05) + L (1-6.(80)) - Lyog fe st 464(0;).
0

Since Hi(xi) is decreasing in x; for x, <64, so0 (1) and (i1)
reduce to X, > 6,-b. where b, > 0 and satisfies H.(b,) = ci(eo).
This shows that for any G, Gupta type rules are Bayes rules. Now,
since G is unknown, the Bayes rule is not obtainable. To find a.o.
rules, we need to estimate §. In view of (3.2.3), we need to estimate

M. d m,.
; and m,

Let {Yi}:=1 be a sequence of iid random variables with a common

distribution function K(y). We also assume that K'(y) = k(y) exists

a.e.. Let
1 n
Kn(y) = h" ’iZ]I(_w"y](Y]) (3.2.6)
and
k (y) = MK (y+h) =K ()], (3.2.7)

Then, Kn(y) > K(y) uniformly in y with probability 1 (Glivenko-
Cantel1i Theorem) as n - ». The following lemma guarantees the

convergence of kn(y) to k(y).
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Lemma 3.2.1. (Parzen (1962))
(i) If h =nh(n) 1in (3.2.7) satisfies 1im h(n) = 0, then

n—>ee

Tim E[kn(y)] = k(y) for any continuous point y of k().

N

(ii) If in addition to (i), h{(n) also satisfies 1im nh{(n) = =,

N>

then Tim Elkn(y)—k(y)l2 = 0 for any continuous point y of

N

k(+).

Remarks:

o

1
6

dGi(e)’ hence m.(y) 1is continuous
Yy

1. In our problem mi(y) = f ;
at all y. So, (i) and (ii) in Lemma 3.2.1 hold for all y.
2. By Chebyshev's inequality and (ii), we have

Elk, )k
Tim LIk, (y)-k(y)] > €] < Tim 5 =0

> n-rco €

Hence, if h~0 and nh ~» 0, it is shown that kn(y) + k(y)

in (p).

Now, we state a theorem which provides a sufficient condition for

{6,(x)},.q to be empirical Bayes. Let
) = Hi(x;) - cy(eq) | (3.2.8)
and

Solx) = {i]x; < 8y and AGi(xi) < 0}.
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Now, for any 1 (1 <i <k), Tlet Ai,n(x ) = A (x Yiqoe "’Yin) for

all n=1,2,---, be a sequence of measurable real-valued functions,

we define
Sn(i) = {5IX1 < 8, and Ai,n(xi) < 0} (3.2.9)
and
6”(A/ = {1lx > 0} LJSn(i) (3.2.10)

Then we claim

Theorem 3.2.1. If for 1 <1 <k, [: eidGi(ei) < » and
Ai,n(xi) - AG.(Xﬁ) in (p) for almost all X; < 0. Then
{6:(5)}:=? defined by (3.2.10) is empirical Bayes.

Proof: For all S €4, let

de = {x € Alx; 285 if 1 €S and x; < 89 if 1 £ Sl

S

Now, for any x €, 6%(x) =S USy(x). Hence, for x € L

J o705 00800

- L,(6,-06.)F.(x)dG(0)- L -6,)f (x)dG(e)]
ki {e o 2070 0Bl fe% 1(85-60)F, (1)()

k

- L1(6:-04)F,(x)dG(e : (%)

1%5[ fe.>eo 1183700 T WD) I, Sg(%)éﬁi(x1)jf1 "50)
J#

Similarly, for x €4, we have
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fOL(Q,,S;]*(Q)fe(x)dQ(Q)

k
) iés[-fe.>eOL1(ei—eo)fQFZ)dgﬂQ)]+iESE(K)AGi(XT) g? £l
1

Hence, if

Ai,n(xi) +~AGi(xi) in (p), then

< fOL(Q,G;;(y)fe(ydg(g)—f@ug,a*(i))fe(ydg(g)

k
= 1esz(~) 6 ) Xi),jg1 "3 )
J#i )
+ - (. (x. 3.2.71
j#i

with probability near 1 for all n > N. Note that (3.2.11) is non-

positive by the definition of Sn(ﬁ)' Now, we have proved that
L(o, 6* f dG(s { L{g,8%(x)}f (x)dG(a
[ Lass30017,0048(8) » [ Lo 001, (0 da(e)

in (p), for almost all x. By Corollary 1 of Robbins (1964), we

conclude that {6*(x Y], --,Y )y

n=1 is empirical Bayes. Thus

completes the proof.
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We have reduced the problem of finding the empirical Bayes rules

to the problem of finding a consistent estimator of Bg (Xi) in (p).
i
If we recall that

i 9.

m(x;) - f: - d6;(0,) and 6,00 = M, (x)-xm (x),

.i

Then from (3.2.8) we get

AGi(xi) = Lzmi(xi)(eo'xi) + Lz[Mi(Xi)’Mi(eo)] + L][Mi(eo)—1].

Hence, if we define

B () = Lomy O (e3xq) + LIy (k)M (6]
+ LT (6g)-10, - (3.2.12)
where
-‘ n
M_l’n(X) = ‘n‘Jz] I(O,X]<Y1j) (3.2.]3)
and
n
my o (x) = gl )M ()] = %ﬁ-_X] Len](fig)  (3:279)
J:

N
—
v

then by Lemma 3.2.
85 n(x4) +-AGi(xi) in (p)

for all x. Thus, the sequence of rules {6:(5)}:=] which is defined

by (3.2.10), with 4, (x;) defined by (3.2.12), is empirical Bayes.
1,07

n
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3.3. 8 unknown

0

In this section, g is a control population which is distributed
as U(O,eo) with 60 unknown. Let YO]""’YOn be the past data
collected from HO’ and let XO be the present observation from HO.
Based on this further information, we will search for empirical Bayes

rules for selecting populations better than the control. Note that

=~

. Gi(ei)'

When the same loss function is used, the Bayes rule &% now becomes:

now 'QI: (eo,e],...,ﬁk)s ’)£= (XO,X-I,---,Xk) and ’Q(’e\) = .E

1

i€ ex(x) if

N 1
L — — (0,-0.)dG.(0.)dG.{6,)
2 fxo 60 f(oaeojﬂ(xi,m)ei 80 e] 1 e] 0 90

1

=4 f“ El'f 6
XO O (SO,W)H(X.] s°°) 1

(ei—eo)dsi(ei)dao(eo).

Hence, 1 € ¢*(x) if

. 1
(1) x. > X, and Mg G.(XO’XT) < 0, where

) mi(eo)deo(eo)+fw my(65)d6, (0.)]
i X

o) = L
- L1[1_Gi(xi)]m0(xo)+mi(Xi)[L2+(L]'L2)GO(Xi)_LlGO(XO)]’
(3.3.1)

(ii) T and Aé G.(XO’Xi) < 0, where
i

0



122

:Omi(eo)dso(eo)+f: mg(e;)dG (6]
0

2
Asaei(X0°Xi) = (Ll'Lz)[f
- mO(XO)[L1+(L2‘L1)Gi(XO)‘LZGi(Xi)J+L2m1(xi)(]—60(xo))'

(3.3.2)

When L1 = L2 = L, the Bayes rule is greatly simplified. Then we

have 1 € S*(x) if

G_(xosx.i) = mo(xo)[1”G] (X.i)]"m.i (X1)[1”G0(X0)] > 0.

A
GO’ i

Now, a consistent estimator of b g (XO’Xi) is obtained by
.i

O’
by nXgxg) = my (Op)IN-6; G )J=my () 0-6g | (%0)]

where m, n(x) is defined by (3.2.13) and (3.2.14), and

Gi,n(x> = M?Sn(x) - Xmi,n(x) for all 0 <1 <n. Let

Su(x) = {i]a; [ (x;.x5) > 03, then
{62(5)};:} are empirical Bayes by Theorem 3.3.2.

When L] # LZ’ we need to find consistent estimators of

f: m, (9g)d6y(a,) and f: my(0,)d6, (0,).

The next theorem provides us with such estimators.

Theorem 3.3.1. Let Mi n(x) and m, n(x) be defined by (3.2.13) and

(3.2.14), respectively, for all 1 <i<k. If h>0, h-0, and

2 .
nh™ »o as n >, and if
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f 0,dG.(6,) <« for all 0 <1 <k, then
g TN

(o]

- [: xmi’n(x)dmoan(x) - fa mi(x)dGO(x) in  (p)

n o

n
Lok L 90y g )

02772702

n
Y (U, -V. ), where

U, = (Y, -h)I (Y, -h)I (Y..), and
j2 0% (a,=)‘ 02 (YOQ’h’YOQJ ij

Vig = YOzI(a,w)(YOQ)I(YOQ,YO£+h](Yij)‘

Now, since Yoo ~'M0(x) and Yij «fMi(x) for all 1< j, & <n,

we have

= g pxth ]
= f X ﬁ-f dMi(y) ﬁ-[mo(x+h)-m0(x)]dx. Also, because

1 X+h 1 X+h oo 1
Hf dMi (y) = Y fx fy ry dGi(G)dy

x+h o
f dy fx Lde(6) < & (1-6,(x)) (3.3.3)

X s

SO,



h X

hence by LDCT, we get

1im E f: xmi’n(x)dmosn(x) = f: xmi(x)mé(x)dx

N>
- f m, (x)de, (x).
a
Now,

“ n n _ 1T 1
Var {a xmi(x)dmo(x) = Var ~5 5

1
-{ )} Var(U, -V, )+ ) } Cov(U,
) JE IR 52 2,74,

n
+ ¥ ) Cov(U. Us =V )3
Z:] J]#JZ J]l J]»Q/ \]22 JZ

1
27 Var(Uy V) + =5 4 Cov(Uy1-Vy75Uq,-

n"h nh

=Vo1,Up=V

— Cov(Uy1-Vy75Up

11 21)’

)

24 _ 2 2
but Var(U11—V}]) 5_E[(U]]—V]]) 1= E(U11) + E(V]]),

Tew2y={ 21 X dM. (y)dM. (x+h)
h =1 ah A3 WAy

{ve)

iEXZ%U$#Mﬂ L 46, (o)

X+h o

1

x*+h x+h
g [ ) F Dng G mg G0l < H

12)

and

124

dGO(e),

(3.3.4)

(3.3.5)
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5_!w [1—Gi(x)]dx

a

i_f edGi(e)’ by (3.3.3)
0

SO %-E(U$1) is bounded for all h. Similarly, we can prove that

_-E(Vf]) E_fo edGO(e), hence

H—Var(U1]—V1]) <2 fo edGO(6). (3.3.6)
Meanwhile,
Cov(U1]—V]],U]2—V]2) = Cov(U]],U]Z) + Cov(V]],V]Z)

and

1 1
I;?-COV(U]1,U12)I §'H§-{E(U]],U12)+E(U]1)E(U12)} 5_2(1—M1(a)).

Similarly, we can prove that 2(1—Mi(a)) is also an upper bound for

1 1 1
lgﬁ-Cov(V11,V]2)l, |E§-COV(U]],V12)[ and |;§-COV(V]1,U12)[. Hence

1
Igﬁ-Cov(U1]—V]],U]2—V]2)| 5_8(1—M1(a)). (3.3.7).

Finally, };1—]2— Cov(Uy;-VypoUpg-Vpp)| < 8011, (a)). (3.3.8)

Hence, from (3.3.5) we get

Jve)

Var f xm. (x)dm
a

1,N O,n(x) >0
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if nhz >« and h >0 by (3.3.6), (3.3.7) and (3.3.8). The fact

that the variance goes to 0 and the expected value converges to
- [ mi(x)dGO(x) as shown in (3.3.4) implies that
a

{ee]

f: Xmi,n(x)dmo,n(x) > - fa mi(x)dGO(x) in (p)

by Chebyshev's inequality. This finishes the proof.

Recall that the Bayes rule is

1t

: i
§%(x) (] x; > Xg and 4. Gi(xo,xi) < 0}

0

. 2
¢ {1'Xi < Xq and Aaoei(xoxi) < 0}

I1H

S¥(x) Uss(x),

1

Gy »G; 0

(3.3.2) respectively. Now, Theorem 3.2.] has a similar version for

2

where & (XO’Xi) and be ,Gi(XO’Xi) are defined by (3.3.1) and

OO unknown.

Theorem 3.3.2. Assume that f edGi(e) <= forall 0<1i<k. If
0

. 1 1 .
for all 1 <4 <k, Ai,n(XO’Xi) - AGi,GO(XO’Xi) in (p) for X; 2 Xgs
2 2 . . ’
and Ai,n(xO°xi) - AGisGO(XO’Xi) in (p) for X; < Xg- Then if we Tet

- I 1
§%(x) = {ilx; > x; and Ai,n(XO’Xi) < 0}

C

. 2
{1lxi < xO and Ai,n(XO’Xi) < 0}

Sp(0) U S2(x),
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* [223 . 0 3
we have {s*(x)} _; 1s empirical Bayes.

Proof:

f L(8,8% (), (x)dg(a)

1
= YA (XX )

[Py )

and

| JEERHEIANE 0

k
2
L ' m.(x.,) + . 22 AGj’Go(XO’Xi)jE] mj(xj).
1500 i TSt i#i

Now, following the same method as in the proof of Theorem 3.2.1, we can

show
[ k . k
Lt GO(Xi o) o LFLCD e GO(Xi Xg) L ms(x;)
ool i’ j= - i’ j=
1€Sn(§) J# 1LSR(%) Jj#i

in (p) for 2 = 1,2. Hence by Lemma 3.2.2, {6;(5)}:=] is empirical

Bayes. This completes the proof.

Now, let

00

A},n(xi’xo) = (LZ-L])[[X-xmi’n(x)dmo’n(x)
i

; [:.xmg,n(x)dmi’n(x)]-L][1—Gi’n(xi)]mo’n(xo)
1

+ mi,n(xi)[L2+(L1“L2)Go,n(xi)—L]GO,n(XO)] (3.3.10)
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and

(ool

A? (xi,xo) = (LZ—L])[f

i,n Xmi,n(X)dmO,n(x)

X0

; f: g ()am | GOTLI1-6) ()T, (x,)
0

- mOsn(XO)[L1+(L2-L1)Gi,n(xo)-LZGi,n(xi)]’ (3.3.11)

then by Theorem 3.3.7, the conditions of Theorem 3.3.2 are satisfied.
Hence, (3.3.9), (3.3.10) and (3.3.11) define a sequence of empirical

Bayes rules.
3.4. Generalization and simulation

Let pi(x) be a positive continuously differentiable function

which is defined over (0,») for all 1< i < k. Also let

6
c;(0)7" = fo Pi(x)dx for 6> 0, then fi(x]e) = p;(x)e;(0)1(y ) (x)

is a density function. In this section, we assume that population

P «ffi(x[ei) for all 1 <1 < k. Under the formulation of Section 3.2,
we wish to find the empirical Bayes rules for these more general

density functions. For simplicity, we assume that L] = L2 =L and

that % is known. Also, we assume that Gi(e) has a continuous

density g.(e) with a bounded support [0,s.], and «. is known for
i i i

all 1 <17 < k. Now,
(o Y

f; 7,(x]0)de, (6) = p, (x) f 1ci(e)dGi(e).

X

=
~—~

=
[

Hi
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If we follow the same discussion as in Section 3.2, we can show that

the Bayes rule ¢&* dis: 1 € &§*(x) iff
(i) X; > 83, oOr

O s [« 2
i i

(i1) X; <85 and e, fx‘ci(x)dGi(x) i'fx xci(x)dGi(x).
i

. e X ) e
Hgnce, we find i € s*(x) iff x; > e5-d. where d; satisfies

i
fd (eo—x)ci(x)dGi(x) = 0. Let di, = d. (Yi1""’Y' ) be a con-

n 1,0 m

1

. . 0,0y _ ;. :
sistent estimation of d;, then & (x) = {1'Xi Z-QO“di,n} defines a
sequence of empirical Bayes rules, and these are (weak) admissible in

O(.

the sense that 6 (-,Y;,--+,Y ) 1is an admissible rule for the non-

empirical problem for all XJ,...,Xﬂ and n (see Houwelingen (1976),

Meeden (1972)). However, to find such a sequence {d. }.

is ve
i,n"n=1 ry

difficult, hence in view of Theorem 3.2.1, the more practical way to

find the empirical Bayes rules is to estimate
o .

i
f xc, (x)dG, (x).
W« i i
i
Lemma 3.4.1. Let pi(x) and Gi(x) be defined as above. If

m, n(x) is defined by (3.2.14) with h = 0, nh + =, then we have

A . o s

1 1
X
sy g 00 > fx xe (x)de, (x)
. P .

1

1,0

fai 2 l

X; P

in (p).

Proof: Since
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o . O s
1 . 1 Lo
X - X 1 -
SRR CEROR [, s gm0
i 1
o .

i
X
N fx' Egzgj—dmi(x) by LDCT,

i

but
@1 . ] n
Var fx' —m]_ " dmian(x) = Var{— JZ](uj—vj)}, where
i
Yi'_h
UJ = > Yij‘h I[X1 1](Yij—h), and
Yij
RGN ).
v, G [Xi’ui](YlJ) hence
8
1 1 2
Var < dm. (x) = ~ Var(Uy=Vy) <~ E(U;-V,)
in p.(x) Ti.n nh2 17 =7 B
= L i X __X= 1 X
= n fx.+h[h(Pi(X7 pi(x'h))] dMi(X) + nh fa. H{BETEZETJ dMi(X)
! i
L2
o dM. (x
nh f 2 i
Xs Pi(x)
! d_x 42, 2 X 42
<5 max [“*‘“-z—jﬂ +—  max [ ]
RECENR by x h XX, 50, ] p; ()
+ 0 if nh + «,
We see that

. oy
o i

]
[X‘ p—if(%a—dm].,n(x) +th aﬁ—ﬂdmi(x) in (p).
i

i

Similarly,
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i xp;(x) oLWI..xpi‘(x)
f > n(x)dx - f 5 mi(x)dx in (p).
Xy pylx) X plx
Since
i %4 g s (x)
R O
i i
9 xps:(x) %4
i X
) m. (x)dx - f dm; (x)
fx. p2(x) | x, PO
i i i
the proof is completed.
Now, Tet
om. (x.) % %1 xps(x)
0i,n*"d X i
A% (x.) = 2 + f dm, (x) - f m, {x)dx,
T,n 71 p.{X. p.ixi i,n 2 i,n
i xg X pi(x) |
(3.4.1)

then

* o s .
8% (x) {1|xi z_eO}U{1|x1 < 8y and A?,n(xi) < 0}
defines a sequence of empirical Bayes rules.

Empirical Bayes rules are useful only if we can control the rate of
convergence. Johns and Van Ryzin (1971, 1972), Houwelingen (1973, 1976),
Van Ryzin and Susarla (1977), and Gilliland and Hannan (1977) have de-
rived theoretical upper bounds for rn(g,s;) - r(G) under very general

assumptions. Applying Lemma 3 of Van Ryzin and Susarla (1977), we get
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o

Lemma 3.4.2. Let AG'(X) = Jx1 (eo—t)ci(t)dGi(t)I(O’ai)(x), then

k
0 < ry(Gsg) - rl@ = L i lag (pg00IPLaf () < 01dx
- 1

+ fH !AGi(X)pi(x)lP[A;:n(X) > 0]dx},
2

where A:,n(x) and &% are defined by (3.4.1) and (3.4.2),

respectively, and H, = {x|x < 6y and AGi(X) > 0} and

Hy = {x]x < 0y and AGi(X) < 0}. Now, let O(an) denote a quantity

0(c. )

such that 0 < Tim

< », Then since IAG (x)pi(x)l <M. for some
N O i

constant Mi’ SO

k
(&3 - rl® = ] W] PLa (0 < Ol
1

+ j P[a (x) > 0]dx}.
i,n
Ha

Therefore, if for all x>0 and n -+ «,
PLIaS" ((X)=0g ()] > 85 (0)]1 = 0o ),
’ i i
then

rn(gﬁéﬁ)—r(g) = O(an).

Now, by the inequality

Var[a;* (x)]
PLIaf (0t (0] > Jag (0] 2 ————Ln”

¥
i [IAGi(x)[—IAGi(x)—EAi,n

(x)] 12
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we get that if Var[Af n(x)] = O(an) for all x > 0, then

ro(8:6%)-r(8) = 0(a ).

In the last part of this chapter, we let X nfU(O,ei) for

i=20,1. o is treated as unknown. Assume that

0
_ 26 . - -
gi(e) = c2 I(O,c)(e) for i =0,1 and Ly =L, = 1. By Monte Carlo

studies, we determine the smallest sample size N such that

r(86%)-r(8) |

Relative error = r(ﬁ) < g

for N-4 <m < N. The values of N corresponding to selected ¢ and

1
¢ are shown in Table III.1 for h =n 4, Table 1I1.2 for h =n 5,
' -1

and Table III.3 for h =n 6, where h 1is used to define (3.2.14).
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TABLE III

Lists of values of the smallest N such that

|1 (8s85)-r(8)]

r(Q)

<e for N-4 <m < N, where the

density of priors is gi(e) = g%—l(o C)(e) for
C 3

i =0,1.
1
h =n 4
\E\E .25 .20 .15 .10 .05 .01
% 9 10 15 25 " —_
% 1 12 13 14 29 —
] 15 21 25 27 86 —_
2 45 60 80 122 187 —
3 61 172 174 360 - —
Note: "—" means that N > 400 (Monte Carlo study was curtailed

because of Timited resources).
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TABLE II1I
(continued)
i
h =n 5
N .25 .20 .15 .10 .05 .01
% 1 13 15 21 27 —
%— 10 13 15 21 48 _—
1 13 19 20 21 46 —
2 26 27 52 151 262 —
3 51 88 134 232 304 S
TABLE I11
(continued)
1
h =n
AN .25 .20 .15 .10 .05 .01
%- 9 10 15 25 M —
X 1 12 13 14 29 —_
1 11 15 20 27 97 —
2 19 31 59 60 212 —
3 51 61 136 171 302 —
Note: "—" means that N > 400 (Monte Carlo study was curtailed

because of limited resources).
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