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INTRODUCTION

The need for sequential estimation procedﬁres became evident
when Dantzig (1940) showed that a fixed-sample confidence interval
for the mean p of a normal distribution with unknown variance 02
cannot achieve both a fixed-width 2d and a specified coverage
probability 1-a for all values of u and 02. A two-stage sequential
estimator for u was proposed by Stein (1945), and Stein and Wald
(1947), Stein (1949), and Anscombe (1952, 1953), among others,
suggested some general sequential procedures.

For general univariate distributions, Chow and Robbins (1965)
give' a fixed-width conffdence intefva] procedure for the mean whose
stopping rule is required to have certain properties asymptotically
as d > 0 with o fixed. Serfling and Wackerly (1976) attack this same
problem with a different sequentié] approach whose asymptotic
analysis letso - 0 with d fixed.

To achieve a rational balance in choosing d and o when estimating
the parameter of a one-parameter family of distributions, Gleser and
“Kunte (1976) adopt a seqﬁentia] Bayes approach where the loss function
is a linear combination of the length of the interval, the indicator
function for noncoverage, and the sample size. They develop stopping

rules which are asymptotically pointwise optimal (A.P.0.) and



asymptotically optimal (A.0.) in the sense used by Kiefer and Sacks
(1963) and Bickel and Yahav (1967, 1968, 1969a) for sequential Bayes
hypothesis testing and point estimation problems, respectively. Here,
the asymptotic analysis is carried out by letting the cost, c, per
observation tend to 0.

Extending the sequential fixed-width confidence intervals to
higher dimensional parameters requires defining the shape (sphere,
ellipsoid, rectangle, cone, etc.) and size (maximum diameter, volume,
circumference, etc.) of the region to be formed. Chatterjee
(1959) extends Stein's two-stage procedure to the multivariate
normal case. Fully sequential fixed-size ;onfidence regions for
a vector of parameters have been proposed by Sidak (1967) and
Callahan (1969) using rectangles, Gleser (1965, 1966) and Srivastava
(1967) using spheres, and Albert (1966) preferring ellipsoids.

Their asymptotic analysis lets the size of the region tend to
0 while the confidence remains fixed.

Chapter 1 of the present thesis ektends Gleser and Kunte's
(1976) approach to the multiparameter case by developing A.P.O0.
and A.0. sequential Bayes regional estimation procedures for an
r-dimensional vector of parameters in the presence of nuisance
parameters. The "size" of the region is defined to be its volume.

A balance between size, noncoverage probability and cost of sampling
is achieved by taking as the_joss function a linear combination of
the volume, the indicator funétion for noncoverage, and the sample

size.



In Section 1, the fixed-sample Bayes regional estimation problem
is solved. That is, given n observations, gn, representations are
found for the optimal region, C*(Kn), and for the posterior Bayes
risk Yn’ Section 2 Tooks at the sequential case. Since an explicit
form of the Bayes optimal stopping rule appears intractible, a
search for A;P.O. and A.0. stopping rules begins.

Among the set of sufficient conditions given by Gleser and Kunte

(1976) for stopping rules to be A.P.0. and A.0. is that
f(n)Yn -V, a.s.,

where f(n) is a strictly increasing, positive function and V an
-almost surely positive random variable. They then show that the
proper f(n) for their interval estimation problem is (n/]ogn)]/z.
The example of Section 3 finds A.P.0. and A.0. sequential Bayes
regional estimation procedures for estimating the first r components
of the mean vector of a p-variate normal distribution when using the
conjugate prior. This example suggests that the correct f(n)

Y/2 " That this is indeed the

in the multiparameter case is (n/log n)
case is shown in Sections 4 and 5 where A.P.0. and A.O. stopping
rules for the regional estimation problem are developed. Comments are
made in Section 6 toward generalizing these results to the case of
estimating vector-valued functions of the parameters.

The special case of estimating the mean of a univariate

normal distribution, with the unknown variance acting as a nuisance

parameter, is treated in Kunte (1973). Unfortunately, Kunte's
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stopping rule is complicated, and it appears difficult even to finda
recursive formula for utilizing this procedure in practice.

Indeed, in general, to apply the procedures of Chapter 1, the form
of the stopping rule needs to be simplified. This simplication is
the goal of Sections 1 and 2 of Chapter 2 where a theory is
developed qu approximating the stopping rules of Gleser and Kunte
(1976, Theorems 3.1 and 4.1) in such a way that the new approximate
stopping rules retain A.P.0. and A.0. characteristics. Much of the
motivation for this theory came from the A.P.0. proof in Chapter 1
which indicates that asymptotically, as n -~ w, the»posterior Bayes
risk of the Bayes optimal terminal decision rule C*(Xn) is dominated
by the volume, V(C*(xn)) of C*(Zn), in the sense that the volume
V(C*(Xn)) = 0((n/log n)'r/z), while the posterior probability of

-r/2). Returning to the estimation

noncoverage is o((n/log n)
problem, it is shown that the approximate stopping rule which is
based only on the volume, completely ignoring the posterior
probabi]iéy of noncoverage, is A.P.0., as well as being much Tess
complicated. Comments toward a solution of the A.0. character of
this stopping rule are presented.

Finally, in Section 2.3, the results on the approximate stopping
rules are used to show that the stopping rules of Chapter 1 are
robust with respect to the prior distribution, in the sense that

if the prior information is not too badly misspecified, the

stopping rules are still A.P.0. and A.0.



CHAPTER 1

MULTIPARAMETER SEQUENTIAL BAYES REGIONAL.ESTIMATION

For general multivariate probability distributions asymptotically
pointwise optimal (A.P.0.) and asymptotically optimal (A.0.) seduential
Bayes regional estimation procedures are developed for an r-dimensional
vector of parameters in the presence of nuisance parameters. In
Section 1, the fixed-sample Bayes regional eétimation problem is
solved. Section 2 looks at the sequential case and indicates a need
to take an asymptotic approach. The example of Section 3 finds A.P.0.
and A.0. sequential Bayes regional estimation procedures for estimating
the first r components of the mean vector of a p-variate normal
distribution when using the conjugate prior. A.P.0. and A.0. stopping
rules for the general regional estjmation problem are developed in
Sections 4 and 5. Section 6 makes comments toward gehera]izing these
results to the case of estimating an r-dimensional vector-valued

function of p(p > r) parameters.
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1.1. The Fixed-sample Problem

Suppose that we observe independent identically distributed
q-dimensional random vectors X],Xz,... whose common probability
measure Pe belongs to a family {Pe: 6 €@} of measures defined on
a measure space (X,8), indexed by an open subset & of p-dimensional
Euclidean space and dominated by a o-finite measure n. Let
f(x|e) = dPe/du be the density function of P with respect to u
and let y(8) be a prior density (with respect to Lebesgue measure)
on @.

A regional estimator 1§ desired for 0. the r-dihensiona]

(r < p) vector consisting df the first r components of 6. The
terminal action space is taken to be the class C of all Lebesgue
measurable subsets of ®r = {er: '(e;,eﬁ_r)'e @}, the parameter
space of 6 e A regional estimation procedure, C(gn), is a

measurable assignment of regions C € C to samples Xn = (x],xz,...,xn).

The loss function chosen is
(1.1.1) L(er,C(xn)) = aV(C(gn))+b(1-GC(¥n)(er))+cn,

where a, b, c are finite positive constants, V(C(gn)) is the Lebesgue
measure (volume) of C(xn) and GC(Xn)(er) =1 if 0. € C(Kn) and 0
otherwise.

To determine the f%xed-samp]e Bayes procedure, C*(gn);
against the prior y, only procedures with finite Bayes risk need be
considered. [There is at least one procedure with finite Bayes

risk - namely, C(X ) = empty set, all X .] Using the Fubini-Tonelli



theorem, it is straightforward to show that the Bayes risk of a

regional estimatorvc(gn) is given by

n
R(¥,C(X,)) = I[f L(e,..C(X )).n]f(xile)dxn]w(e)de
j=

(1.1.2) f [fL 8,-C(X,))u(e]X )deldG (X )
Z"

i[p(w,C(X ))+en]dG (X ),

where

(:1:8) p(nCly)) = aW(CEID- [ oy (0, [X,)d0,]

_n.

-1 :
b[]+c(£ )(ab -wr(erlgn))der]

-n
is the posterior Bayes risk of C(X ) v, (e |X is the marginal
posterior density of er given Xn’ and Gn(gn) is the marginal

distribution function of Xn' From (1.1.2) and (1.1.3) a fixed-

sample Bayes regional estimation procedure is seen to be:

-1

(1.1.4) C*(xn) = closure (irr@r) of {6, wr(erlgn) > ab '},

since (1.1.4) clearly minimizes (1.1.3) and can be shown to be

a measurable assignment of subsets ofor to samples X



1.2. The Sequential Problem

Now consider the sequential Bayes regional estimation problem
with decisions as pairs (C(xt),t), where t is a stopping rule, and
c(gt) is a terminal decision rule (a subregion of'@r). It follows
from Arrow, Blackwell and Girshick (1949) that the "conditional"
Bayes optimal decision, when t = n, is (C*(xn),n). The "unconditional”
Bayes optimal decision is (C*(gt*),t*) where t* is the stopping rule
which minimizes the Bayes risk

0

Lo {tin}[p(w’c*(xn))+cn]den(5n)

(1.2.1) R(yp,C*(X;)»t)

E(Yt+ct),

where Yn is the posterior Bayes risk of C*(gn) and the expectation
of Yt+ct is takén over the joint distribution of 0. and X],Xz,... .
This minimization problem appears to be intractible in general.
Thus, following Gleser and Kunte (1976), it is assumed that the cost
- ¢ of sampling is very small (c > 0). A search is then made for
asymptotically pointwise optimal (A.P.0.) and asymptotically

optimal (A.0.) stopping rules in the sense defined in Bicke1 and

Yahav (1967, 1968). That is, a class {t(c): ¢ > 0} of stopping

variables is said to be A.P.0. if
£4

o X(t(e),e)
(1.2.2) P{llg infseTX(s’é)

=11 =1,

and A.0. if



| o E(X(E(e).e)) .
(1.2.3) llg {infseTE(X(s,CSTJ =1

where X(n,c) = Y *cn, and T is the class of all permissible stopping
rules.

In order to make our exposition as self-contained as
possible, Gleser and Kunte's (1976) Theorem 3.1 and Theorem 4.1,
along with their sufficient conditions,are restated here. Recall
that in their paper {Yi’ i=1,2,...} is a sequence of observable
random variables which come to us one at a time. We wish to choose
é stopping rule t based on Y1,Y2,... under the loss function Yt+cK(t)
and under assumptions B.0 - B.3' given below.

Assumptions (Gleser and Kunte (1976)):

B.0. P{Y >0} =1, alln, and P{lim Y, =0}=1.

e
B.1. There exists a strictly increasing, positive function f(x)
defined on [0,~) and an almost surely positive random-variab]e v
such that
Plim F(n)Y =V} = 1.
N>
B.2. For each x > 0 and ¢ > 0, there exists an integer N(x,c)

which minimizes the function
“hix,c,n) = (F(n)"'x + ck(n).
Further, N(x,c) may be taken as the first integer n such that

Ah(x,c,n) = h(x,c,n+1)-h(x,c,n) > 0.
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B{3. The function

K(x+1) (f(x+1)-f(x))
f(x) (K{x+1)-K(x))

G(x) =
is bounded, and
1im G(x) = M, 0 <M<,
X0
B.4. Either f(x)/f(x+1) » 1.or
K(x+1)/K(x) 1 as x » .
B.3'. When K(x) = x, the function G(x) is bounded and
Tim G(x) = M, 0 <M< w,

X300

Theorem 1.2.1. (Gleser and Kunte (1976) Theorem 3.1): Under

assumptions B.0 - B.4, for each ¢ > 0, let
(1.2.4) t(c) = first n > 1 such that

- Hoy < akn),

where AK(n) = K(n+1) - K(n). Then the class of stopping rules
{t(c): ¢ > 0} is A.P.O.

Theorem 1.2.2. (Gleser and Kunte (1976) Theorem 4.1): When

K(x) = x and assumptions B.0 - B.2 and B.3' hold, the class

{t(c): ¢ > 0} of stopping rules defined by

: C finc f(n)
(1.2.5) t(c) = first n > 1 such that (1 - ?qﬁiTden <cC

is A.P.0. Further, if
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(1.2.6) sup E(F(n)Y ) < =,
n

this class of stopping rules is A.O.

The example of the next section servesAto_i]]ustrate and motivate
a general theory of A.P.0. and A.0. stopping rules for our regional
estimation problem. This general theory is then developed in

vSections 4 and 5.
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1.3. Example
| If X]’XZ""’xn are i.i.d. Np(e,z), Z is assumed known
and positive definite, and 6 has a multivariate normal prior
Np(u,A), then the posterior density ¢(e|§n)"[cf. DeGroot, p. 175]
is Np(e(gn), W.)s where
L

LX),

A _ _'l -
o(X,) =W (a u+z L

and

W, = (A-] + n):'])-].

A regional estimator for er-w111 be obtained. The corresponding
point estimator is ér(xn), where ér(gn) is the vector consisting of
the first r coordinates of 6(§n). The covariance matrices and
their inverses are assumed to be partitioned such that the leading
principal submatrix is rxr. Subscripts are used on the covariance
submatrices, and superscripts on submatrices of the corresponding
inverées. Thus, for example,
| 1 12_
[z]] 212] ,;1 [z z ]
L= and I = .
21 22
Lo Iop b pX
Integrating out the nuisance parameter vector o from

v p-r
w(e|§n) yields the marginal posterior density wr(erlgn):

M 2expi- o, -6 (%))W ]

\ _ -r/f -
.(1.3.1) vpelX) =(2n) 7 W g | r Ot 8nl ) Woy

(8,8, (X, )1

It is thus clear that
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(1.3.2) max v (6 1% ) = (2n) 2712,

O

nHl

From the definition of wn and results about patterned matrices

[cf. Rao, Problems 2.7 and 2.9, p. 33], it can be shown that

|Wn11|

(1.3.3) = n"[(n 1o gy o (0712121 12) (n712224522) 0 (n71,204520) |

nr|211_212(222)—1221l(]+0(]))

> o as n > o,

From (1.1.4), the fixed-sample Bayes proceduré is

CH(X) = 1o, (0,-8,(X )W (0,-8,(X)) < K,

where

(1.3.4) & r/2

-2 ]og(ab—]( ]/2

lwnlll
Note from (1.3.2) and (1.3.3) that C*(X ), an ellipsoid, is nonempty

for 1arge enough n. The volume of C*(X ) is

N V2t ).

(1.3.5)  V(C*(x)) = Woqq ]

Using (1.3.3) - (1.3.5), it can be shown that

(rﬂ)r/2L211_212(222)—1221|-1/2

. n r/2 * =
(1.3.6) :112 (Togm) ~ V(C*(X)) o5 +1)

N
1/2

(rm)72 4 | L), aus.
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The probability of noncoverage is now investigated by considering

ihe transformation

(1.3.7)  t=n"%0 -6 ().

This transforms the ellipsoid C*(gn) into the ellipsoid
= [+. 40 -1
T(X,) = {t: t'(nW 49)7 't < Kkl

The posterior density of t, w;(t[gn), is multivariate normal with
mean 0 and covariance matrix nwn]]. Applying the inequality in

Appendix 1 bounds the probability of noncoverage as follows:

(1.3.8) Sy te 1x e

%(t]X )dt
oy, ) o wE(]x )dt

T°(x,)

22-r/2kr/2-]e—k/2
r
I'(i)

7/

where A° represents the complement of A. From (1.3.3), (1.3.4)
and (1.3.8), it follows that

r/2 =
(1.3.9) f w 6. 1X )de =0, a.s.

(%)

Tim (+——
. log n

Finally, from (1.3.6) and (1.3.9) the posterior Bayes risk, Yn’ of

the Bayes region C*(xn) satisfies
AN

r/2

. n_\r/2, _ 1/2
(1.3.10) lim (Togm) Y = af 12471

=+ 1), a.s.
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«

It should be noted that f(x) = (x/log x)r/2 is well-defined
for x > 1, positive and strictly increasing for x > e and (f(x))']
is convex for log x > (r+2)_](r+1+/@1§?). Thus, it is clearly
possible to define at least one function f*(x) which equals f(x)
for log x >(r+2)'](r+1+-/§;§F) and which is positive, strictly
increasing and is such that (f*(x))'] is convex on [0,»). It is
easily seen that f*(x) and ¥15Ys... satisfy assumptions B.0 - B.2
and B.3' with M = r/2. For asymptotic purposes, the beginning
few values of f*(x) are unimportant. Now, since wn does not depend

on Xn, Yn is not a random variable. Thus (1.3.10) implies that

sup,, E(f(n)Yn) = supnf(n)Yn < o,

Theorem 1.2.2 now applies to show that the c]ass'{t(c): c > 0} of

stopping rules defined by

_ ea n log(n+l).r/2 /
(1.3.11) t(c) = first n > 2 such that [1-( 7T Tog n) ]Yn <cC

Id

is A.P.0. and A.O.
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.

1.4. A.P.0. Sequential Bayes Multiparameter Regional Estimation

The example of Section 3 suggests that establishing sufficient
conditions for the hosterior density wr(erlgn) to have approximately
the form of a multivariate normal density for large n should
produce |
(1.4.1) 1im (n/log n)r/zYn = a(rn)r/ler(eO)I]/z/r(%3+1), a.s. (P6 )

N>e 0
where Kr(eo) is a certain matrix function of the parameter 6, and
a.s. (Pe) refers to the conditional distribution of X],Xz,...,
given 6. It then will follow from Theorem 1.2.1 that the class of
stopping rules defined by (1.3.11) is A.P.0. [To verify assumption
B.1 it is necessary to show almost sure convergence with respect to
the joint probability distribution of X]’XZ""’ and 8g - However,
since probabilities are bounded, use of (1.4.1) for all 89 € @ and
the dominated convergence theorem will establish the desired results.]

| One set of sufficient conditiqns to make w(elgn) asymptotically
of multivariate normal form is Bickel énd Yahav's (1969b) assumptions

A2.2, A2.6 - A2.9 which are restated here.

A.1. The prior density y(e) is continuous, positive and bounded on

e.

A.2. Llet ¢(8,X) = Tog f(x|e). The partial derivatives

(1) - 39(8,X) .
?; (6,X) = T s 1 =T1,2,...5ps

2
(2) L (9.9 B
@3 (85X) = R sk = 1,2,...,p,

k
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exist and are continuous in 6, a.s. (Pe ), for all 60 € ®.
0

A.3. For each 6 € @, there exist €(6) > 0 such that

Ee(s“p{“ﬁ(?)(e’x)l: ||s-6]| <€(8), s € &) < =

for all i,j, where the expectation Ee’ is taken over X with respect

to the density f(x]e).

A.4. A(e)

<Aij(e)> is negative definite for all & € ©, where

Ai500) = (0,0 = £, 64 (0,006 (e.1)).

A.5. For all 6 € @ and all € > 0,

Eg(sup{lo(s,X) - ¢ (0,X)]: ||s-6|] >€, s€ @}) < 0.

Note that since y(8) is a density, and-from assumptions A.1

and A.2, it follows that for all e, € @,

0

).

, n
0 < fy(e) 1 f(xi[e)de < @, a.S. (Pe
® i 0

i=1 '
This result corresponds to assumption A2.5 of Bickel and Yahav
(1969b).

Theorem 1.4.1. Under assumptions A.1 - A.5, the class

{t(c): é > 0} of stopping rules defined by (1.3.11) is A.P.O.

%

Proof. The theorem will follow from Theorem 1.2.1 if (1.4.1) can
be established. Fix arbitrafy ) € ® and note that a strongly
consistent estimator én = 5n(§n,eo) of eO is constructed in Bickel

and Yahav (1969b, Lemma 2.1).



It follows from Theorem 2.2 of Bickel and Yahav (1969b)]

that the transformation

- 1 1 v 172 ~
W= (wr,wp_r) =n (e-en)

has a posterior density

(1.4.2) sl ) = 0P 081X )
- n'=n

which satisfies

(1.4.3)  vim [ [p*(w[X ) - N(w;O,K(eo)ldw = 0, a.s.'(Pe )»
N30 =0 0
where K(60)=(-A(60))_] and N(w;u,z) is the density function of the
Np(u,z) distribution. _
Lemma 1.4.1. The posterior density of Ws

(1.4.4) vw, (X)) L"’*(Wl)—(n)dwp-r

X ),

/ o= n-rlzwr(n-]/zwr+érn|_n

satisfies

Tim [ [w:(wr|§n)—N(wr;0,Kr(eo)]dwr =0, a.s. (Pe )

nso - 0

where érn is the rx1 vector of the first r components of o and

LY

Kr(eo) js the leading rxr submatrix of K(eo).

A

]The "p/2" in the exponent of (1.4.2) is mistakenly a "1/2" in

equation (2.21) of Bickel and Yahav (1969b).

18



Proof. Equation (1.4.4) follows from (1.4.2). Now, from

(1.4.3) and Tonelli's theorem

vim [ Jyx(w |X ) - N(w.30,K.(65)) [dw
N -

vim [ |f v*(w|X ) - N(w;O,K(eo))dwp_rldw

Now = =wx

©

lim / lw*(wlxn) - N(w;O,K(eO))|dw =0, a.s. (Peo).

N->co -0

1A

While this lemma is not needed for the proof of Theorem 1.4.1,

it does provide motivation for the proof by showing in what sense

19

w;(wr|§n) approaches N(wr;O’Kr(eo))‘ Thus: for sufficiently large n,

we expect a neglible difference between the region C*(gn) and the
region formed from the appropriate normal posterior dehsity.
However, the case where the posterior density is normal has been
handled in the example of Section 3. To make this argument
rigorous we establish bounds on w:(w) Which are then used to trap

(n/1og n)"/?

Yn between two quantities, both of which can be
made arbitrarily close to the right-hand side of (1.4.1). To

this end, let

| i A A
(1:4.5) (0 = et (oln Busa 1) - 6600,0))
1."'_
and
_ AN
(1.4.6) =] v (W) (n™V Zued)dw.

It is easily verified that



1/2

(1.4.7)  w*(wlX ) = c7lu(n" Gwre )v ().

From equation (2.29) of Bickel and Yahav (1969b), assumption A.1,
the strong consistency of 6n’ and the dominated convergence theorem,
it can be shown that
(1.4.8)  1imc, = v(og) (2P 2[kis )2, a.s. (P ).
N 0
Bickel and Yahav (1969b, equation (2.34)) give the following

bound on vn(w): For every § > 0,

(1.4.9)  supto (w): [[w]| > 6n'/%) ~ expt-n ().

Their equation (2.40)2 gives an upper bound on vn(w) for all w
inside a sphere; however, their proof can be straightforwardly
extended (see Appendix 2) to provide the following upper and lower
bOUnds on vn(w): For every € > 0, there exists &(€) >70 and

Ny = N(X{sXsen5 85 §(€)) such that for every n > N, and all w

in the sphere

1/2

Moo= W (s(e)) = we [Jw]| < n/%s(e)d,

we have

(1.4.10) vn(w) < exp{- %-W'K-](GO,+€)W}, a.s. (Peo),

and

2

AN

The right-hand side of equation (2.40) of Bickel and Yahav (1969b)

should be divided by 2 and the "-" should be a "+".
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(1.4.1) vn(w) > exp{- %—w'K-](eO,-E)w}, a.s. (Peo),

where K_](eo,+€) = K'](eo)—e I and

K'](eo,-e) = K'](eo) + €I. For ¢ sufficiently small, K(eo,+e) is
positive definite.
Note, from assumption A.1 and the strong consistency of én’ that

there exist two sequences, L1.n L (Xl’XZ’ .o eo), i=1,2, such that,

-1/2 .
L]n-i vin W en) = Lo
(1.4.12) Tim Lin = 1im Lo, = w(eo).
N> N

"A Tower bound on w;(wlxn) will now be obtained.
Lemma 1.4.2. For n > Ny,

vrlu %) > g7 ()

where
(1.4.13)  g(w) = L]n(Zn)p/z[lK(eg,-e)I]/ZN(wr; 0k (0g,-€)) -
' 5 2e)
and K (80,-€) is the leading rxr submatrix of K (8,,-€).
Proof. Letting
AN
- 1/2
Wy oop = Wy oo (8(EDa Ll = o s [lw ] < on 2w |13,

and applying (1.4.7), (1.4.11) and (1.4.12), we have



(1.4.14)  y*(w |X )

[H
—
*
L)
=
><

lv
——

<
*
——

=
>

]L exp{- w'K® (eo, e)w}dw

v
—

-r
n,p-r

® -1 1 .,
{wcn Ly €xp{- > w'K (GO’fE)W}dwp-r

- c;']]L]n exp{- lziw'K'](eo,_-e)w}dwp_r

n,p-r

Ty Ik (8gs-€) 1/ 2(2n)P 2Ny s 0k (05- )

- ] c']L exp{- %W'K—](B Jwlexp{- %—w'w}dw
W
n,p—Y‘

To find an upper bound for this last integral, we bound the integrand
. . €

by noting that wp-r € w n,p-r if and only if w ¢ wn and thus

exp{- %-w'w} < exp{- ﬂ%—62(6)}. Hence, it follows that

"] ] | l ] '] i < 1
- cj €, Lyp expi- 7 w'K (eo)w}exp{—~§-w wldw
wn,p—l"

p-r

A2
<c ]L1 exp{- < 62(6)}[K(eo)|]/2(2n)p/2N(Wr;0,K-r(eo))

AS

-Y‘
<y, expt- 5 6P (€)1 (o) |V P (2m) 2

-1/2
r(eo)l :

n “In 0 p-r’



Putting this 1ast.inequa1ity into (1.4.13) completes the proof of

the lemma. O

From (1.1.4) and (1.4.4), it is apparent that the region

- . -1 -r/2 -1/2 .2
(1.4.15) B*(Xn) = {wr. w:(wrlxn) >ab 'n , N Wte, €@}

-is the image of C*(xn) under the transformation from 6 to w.
From (1.4.15) and the discussion in Section 1.1, the region
B*(gn) can be seen to be the fixed-sample Bayes procedure against

the prior y*(w) and loss function
_ r/2
L(WY"B()-(H)) - aV(B()_(n))+bn (]-(SBQ_(n)(wY‘))-F cn,

where B(gn) is a Lebesgue measurable subset of the parameter space

of W . Thus, the posterior Bayes risk of B*(xn) is

(1.4.16) o(y*,B*(X,)) = av(B*(xn))+bnr/zB*g( VeOn X

X )

=N

It follows from (1.1.4), (1.4.4), (1.4.15) and (1.4.16) that

(1.4.17)  Tim(n/log n)"/%o(y,c*(x,)) = Tim (Tog n)™™/Zo(y%,B¥(x. ).
N> NH<o

We now attempt to establish upper and Tower bounds on p(y*,
'B*(gn)) such that they force (1.4.17) to the limit in (1.4.1).

Consider the ellipsoids

~

= c oyt k) 2
(1.4.18)  Q(*€) = {w.: wiK (eg,+€)w < q5 1,

and
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| - . ] '] - 2.'
(1.4.19)  Q (-€) = tw.: wiK "(6,-€)w_ < qf 1,

where

(1.4.20) qgn r log n —.1og[ab-1L§:‘cn(2n)'(p'r)/zlK(60,+€)I-]/2

[Ke(ogoe) | /222,

and

| 2 e LG
(1.4.21) Qqp = 7 log n -log{[ab L]ncn(Zw) PleinT/eq

(ZW)-r/ZIK(eo)l]/ler(eo)l-]/z}z
* Tog|K(ey,-€)].

Now, from (1.4.13), (1.4.19) and (1.4.21), W, € Qn(—e) if and only

-ln-r/2.

if g;(wr) > ab Thus, for n > Ny, Lemma 1.4.2 implies that

Q,(-€) = B*(X,) and hence

(1.4.22)  aV(Q (-€)) < o(¥*,B*(X ).

The property of B*(xn) being Bayes yields the inequality
(1.4.23)  p(y*,B¥(X)) < o(y,Q (+€)),

and hence

(1.4.24) aV(Q,(-€)) < o(v%,B%(X,)) < aV(Q (+€))+bn"™/2 [ y(w |X ) .
O (+€)

From (1.4.8), (1.4.12), (1.4.18) - (1.4.21), the volumes

V(Q,(-€)) = (@52 [k (og,-€) |/ 2n (L 1),

and



(0, (+€)) = (G2 (o.4€) | V2rr (5 1),

satisfy

(1.4.25) 1im (log n)""/2u(q (-€)) = (rm)"/2|K (o0,-€) |V 2/0(F +1),
Moo

and

(1.4.26) 1im (Tog n)-r/ZV(Qn(+e)) = r/le (eo,+e)|]/2/r(£-+1)_

N>

To handle the probability of noncoverage part of the risk in

(1.4.24), define the cylinder set
Hn(e) = {w:w € Qn(+€)}

and observe that

(1.4.27) f q,:(wrp_(n)dwr = j ¢*(w|X )dw
Q- (+€) Hr (€)
T v dw s [ (X )dw
(o C C
HO (€)M, HE (€)M

For n > Ny it follows from (1.4.7), (1.4.10), (1.4.12) and the

inequality in Appendix 1 that

/ vJ*(WIZ(n)dMC;]LG feXp{-le( S+E )W }dw

Hﬁ(e)nwn v HE - (€)

=c, L2n| K(eo,+e)|”2(2 )P/2 f N(w 30,K . (64,+€))dw
Q (+€)

2 '
< cn 2an 0,+E)]]/2 )p/2 2- r/2(q2n)r/2-1e-1/2q2n/r(E

25

+1).
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From (1.4.8), (1.4.12), (1.4.20) and this last inequality, it can

be seen that

(1.4.28) 1im (n/log n)"‘/2 f *(w |X )dw_ =0, a.s. (P, ).
oo c r el Zp /My %
Hn(E)nwn

For n large enough, (1.4.2), (1.4.7) and (1.4.9) yield

A

/ w*(WIEn)dWiMﬁ;]e'"e(a)f w(n’”2w+en)dw

C C C
Hn(e)nwn Wy

_<_M'| c;]e-NE(G)np/z {mw(e)de
jM]c;]e'ne(d)np/z,
where M] > 0 is a finite constant. Hence, from (1.4.8) it follows that

).

(1.4.29) Tim (n/log n)™/2 [ yx(uX )dw = 0, a.s. (P
0

0
N> C C
Hn(e)nwn

id

Combining (1.4.27), (1.4.28) and (1.4.29) gives

(1.4.30) 71im (n/l0g n)r/2 f w:(wrlgn)dwr = 0, a.s. (Pe ).

e Qy (+€) 0
Now, since lim|K (6.,-€)| = Tim|K (e,,+€)| = |K _(6,)], and since
‘ o ' 0* = &0 T 0 r' 0

€ can be chosen arbitrarily small, it follows from (1.4.17),

(1.4.24) - (1.4.26) and (1.4.30) that

tim (n/log m)"/%(4,cx(x,)) = a(rm)™/?[k (00)1/2/r(5 +1), a.s.

" * )
P .
%
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Thus we have established (1.4.1) and hence completed the proof of

Theorem 1.4.1. O

Corollary 1.4.1. Under assumptions A.1 - A.5, the Bayes

optimal terminal decision rule C*(gn) satisfies

(1.4.31) V(C*(X)) = 0((n/log n)""/2)

and

(1.4.32) [ e lX )ds = o((n/log n)"/?).
: C*C(Zn) .

Proof. Since Qn(-e) c:B*(gn), we have from (1.4.24) and
(1.4.16) that

2
bn"/ X )2 (G (-€)) < o (ur,Br(X,)).
Bt -
Dividing both sides of this inequality by (log n)r‘/2 and taking
the limitias n - «, we observe from (1.4.1), (1.4.17) and (1.4.25)

that

(1.4.33) Tim b(Tﬂ———)"/2 [ wx(w X )dw j_a(rﬂ) [IK (eO)I]/Z-
N>w | B*C(X. ) F(é- +1

[NOWSILGE

Now, since ]1m|K -€)| = |K.(6 )], and since € can be chosen

&g T0
arbitrarily small, it fqllows that the left-hand side of (1.4.33) is 0.
Here, (1.4.32) follows from (1.4.17). Now, we can see that (1.4.31)

follows from (1.4.1) and (1.4.32). QO
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1.5. A.0. Sequential Bayes MU]tigarameter Regional Estimation.

As in Gleser and Kunte (1976), to showthat the class {t(c): c > 0}
of stopping rules defined by (1.3.11) is A.0., bit is sufficient
to exhibit a sequence {Cn(gn)} of regional estimation procedures

satisfying
n_\r/2
(0-5.1) supyClagg) ™" J 000 ()6, (KD < .
x .
The following assumptions generalize assumptions C.1 - C.3 of

Gleser and Kunte (1976):

F.1. There exists an r-dimensional vector-valued function
g(6) on @, a positive integer k, and an r-dimensional vector-valued

function v(X],Xz,...,Xk) from‘xk to the range g{®) of g(-) such that

(1.5.2) Ee[v(X],Xz,...,Xk)] =g(s), all e @,
and

(1.5.3) Eel|v(x],x2,...,xk)-g(e)||°‘ <=, alloce,

where o = max(r+2+s,2r) and s > 0.

F.2. let
r S.
ES(e) = -E]Eel\){(x]aXZ’---st)"gi(e)I s
i=
o(6) = tr Eg(Lv(Xpe 5K )-9(0)I0s (k- X )0 (6)])

tr z(6),



-, r 2a
Yo (6) = (0(6)) r Z]E6|V1(X],--:Xk)'g1(0)| Y‘.
r 1=

Then |
(1.5.4) f gr+2+6(e)¢(e)de < w
and )
(1.5.5) [ v, (8)p(e)do < =,

® r

where a, =r for r > 2, ay = 3/2 and Vi(X]’XZ”"’Xk) and gi(e)_ére

the iEn-components of v(X],Xz,...,Xk) and g(e), respectively.

F.3. The function g(6) has an inverse function h: g(®) -~ ®
which satisfies a uniform, Lipschitz condition. That is, assume two

positive numbers € > 0 and M > 0 exist such that for every a and b

in gle),

Hasbl| < €= [In(a)-h(6)]] < H]Ja-b]].

For clarity, some inequalities have been included in Appendix
3. An extension of Inequality A.3.2 to the case where g > 2

is given in the next lemma.

Lemma 1.5.1. Let U]’UZ""’Un be i.i.d. with mean u, variance
02, and 7 = E]U]-ulzs, B > 2. Then there exists constants Ly and L,,
0 < L], L2 < o, such that |

E]s2-o?1® < n 4L sn 2, attn,

-1 )2

nHe-13

where sﬁ =n (Ui'U is the sample variance.

i=1



Proof. Without loss of generality we can assume that u = 0.

Let Yi = U? - 02, and note that by Inequality A.3.1,

£ 1% < 257 N(E|U, |28 + oPF) < 2P,
while
2_2 N [ B 12
Elsc-o|® < 287M(E|n ’1;1Y1|B+ E|0]F).

By Inequality A.3.3,

n
Eln 1 Z Y-iIB <n B/zM(B)ElY]lss
i=]
and
EIU[28 j_n_BM(ZB)r.

228—1

Putting all these inequalities together (with Ly = M(8) and

L, = 28-]M(28)), yields the desired result. O

A consequence of assumption F.2 is given below.

Lemma 1.5.2. Equation (1.5.4) implies that

(1.5.6) [ "2(0)p(e)de < =.
@
Proof. First note that (1.5.4) implies that
%
(1.5.7) é gr+](e)¢(e)de < ®

and

(1.5.8) / g (6)y(e)de < =.
@ .

30
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For r > 2, applying Jensen's inequality and Inequality A.3:]
or/z(e) yields

o"2(e) = (Ee_z]|\)1.J(x],...,xk)-gi(e)lz)‘”/2
1=

' r
f,Ee(iZ]]vi(X],...,Xk)_gi(e)|2)r/2
< r/2-1 "% ]
zr ,Z]Eel\)i(xls--.,xk)-gi(e)] .

]:

This result together with (1.5.8) proves (1.5.6) for the case when
r> 2. Now, when r = 1, note that o(8) = £,(6) and thus (1.5.7) implies
(1.5.6). This completes the proof of Lemma 1.5.2. [

Theorem 1.5.1. Under assumptions A.1 - A.5, F.1 - F.3, the
class of stopping rules {t(c): ¢ > 0} defined by (1.3.11) is A.0:

Proof. Define m(n) = [nk-]] = greatest integer 5_nk—] and Tet

m(n)

(m(n))”"! DARTCIR PRI N

(1.5.9)  v(x,)

(1.5.10)  s(X ) = (m(n))" 1 é PRI ..,xik)-s(gn)]
s [V(X(-i_'l)k_i_]a---’X.ik)‘ \.)()_(n)]'-.

Let N

(1.5.11) d(x,) = MAGON V2 (106) 1 2 (tr 5(x 1)1 /2 (rs) /2

where € > 0 and M > 0 are defined by assumption F.3 and § > 0 is

defined by assumption F.1. Finally, let



(1.5.12) u(X,) = h(v(X))>

and
(1.5.13) ¢ (X ) = to . [Ju.(X)-6 || < d(X,)}

where ur(xn) consists of the first r components of u(gn). By

the Fubini-Tonelli theorem

n -n

(1.5.14) ipp(w,cn(gn))dGn(xn)
f{a“r/2 E (d” X_))+bP_(E_)}v(e)d
- D —— + e’
@I,(_g_ +]) 3] (—n 5] n 4 6
where -
E = {X: ||ur(§n)—er|| > d(X )}

provided either side of (1.5.14) is finite. To show that the right-

hand side is finite, note that Pe(En) < 1 and that

32

(1.5.15) Ey(d"(x)) = WAL 200e) 2 (er 5(x, )"/ P(re0)"2

To bound this expression we first consider the case when r > 2. By

Inequality A.3.1 we have

r r
J A2 B T |sE

(1.5.16) E,(tr s(zn))”/é = E_( S < L Fel®

)

A

where s? = S§(¥n) is the izb-diagonal element of S(xn). Letting



- - _]m(n)
wij Yy (X(J k+1° "’Xjk)'gi(e)’ and W, = (m(n)) jZ] W50

it follows from Inequality A.3.1 that

2:r/2
Eelsjl /

b o 2r2
E |(m(n)) Jé] (Wij-wi) Ir

(n)
) 3 ol -1, 1"
j=1

|A

iA

_y mn) -
(m(n))™" A 2" (e by 517, T4 1)

| A

Zr']{Eelw I” + (m(n)) “r+l Elwl]lr}.

This, together with (1.5.16), yields

(1.5.17)  E (tr s(x N"/? < r/z_]Zr_](]+(m(n))-1)£r(e).

For the case when r = 1, Jensen's inequality gives

1/2

(1.5.18)  Ey(tr S(x, )72 < (E,tr s(x )2 = 6'/%(e).

Since Pe(En) < 1 and y(e) is a probébility density, we have from
(1.5.6), (1.5.8), (1.5.15), (1.5.17) and(1.5.18) that the right-hand
side of (1.5.14) is finite.
We now'attempt to bound pe(En)' Let
\
(1.5.19) s (o) = (2L MNNI/Z (s 5)1/2,1/2 ()

and Tet
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-n
]

Xp: [u (X )-0 || > Ms (8)1,

n “n
6, = (X2 [1v(X,)-g(e) || > s (03,
Hn - {)-(n: d(l(n) <M ‘Sn(e)},

and -
D, = {6: §,(6) >€1.

Note that

(1.5.20) é P (E,Ju(0)ds = [(PE AH } + P IE AHCY)y(6)ds

0

f_é(Pe{Hn} + Py {F })u(e)de

< [Pyt Yu(e)de+] y(o)do+ [ P, {F }y(e)ds.
%) D

e\D

n n
By Markov's inequality, for all e, n,
Po(H 3 = P ([tr S(X )12 < (14¢)7V/ % /% (o)
(1.5.21) < P {[tr S(X )-0(6)| > (35c)o(e)}

[0
) Egltr S(X )-o(e)] "
- c (0] o
(32) " o (o)

Now, by Inequality A.3.1
N
.- o

o 1r
r r 2 2 r
(1.5.22) . Eeltr‘ S()_(n)-c(e)] <r 1Z1E9'si—o"(e)!

34
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where 0?(6) is the izh-diagonal element of o(6). Using Lemma 1.5.1
‘and Inequality A.3.2 we see that the right-hand side of (1.5.22)

is bounded above, for r > 2, by

(1:5.23) ™1 m(n) 2L () A v (o)

and, for r = 1, by

(1.5.24) ()" 2[8+k(m(n)) T Try 5 (0).

By Markov's inequality,

/2 .
(1.5.25) [ y(o)do 5_‘r+5): (‘°g(ﬁ§”))”/z s 2(6)y(0)ds.

n € 8
On the other hand, when 6 € @\Dn, so that 6n(e) <€, the contrapositive
of assumption F.3 can be applied to show that
L c
Fo= (F,n6) Uu(F n G)

I'd

< G, U{X: MI[S(X )-g(e)]]

IA

[u (% )-6,.1])

< 6, U X M[S(X )-g(0)]]

| A

[Hutx)-s| |3
< 6 U X, ||5(§n)-g(e)||_3 €}

c (Gn U Gn) =G

n.

Hence,
N

(1.5.26) [ Po{F Ju(e)de < / P, (G Ju(e)do.
: ; e\D

@\Dn n
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Letting

W, i
= c—.-%g)- and Z'I =
i
we obtain
Po{6,} = Pyim(n) Z o5 (0)Z% > Tog(m(n))(r+s) z]o (6)}
'|_

I A

Pom(n)o5(6)Z5 > Tog(m(n)) (r+s)o%(e), some 1)

|A

Z]P{m(n)z > (log m(n))(r+s)} o
"—.

' 3/2
o P 22 dolgl) o g Lo o

]/\

r+2+§

(10 (m( )3/2E IZI 10 (m(n 2 n(n)E, |Z|

r+2+§
m(n :

The last inequality follows from the following lemma, which may be of
independent interest,and was inspired from the moderate deviation

results of Rubin and Sethuraman (1965).

Lemma 1.5.3. Let Z],Zz,... be i.i.d. with mean 0, variance 1
and E|Z|S < » for some s > 3. Then if F(Z) is the common c.d.f. of

- the Zi's, and ¢ > 0,

B

n 2 2
P{|n_] ) Zil > C 219%—2} 5_2n-C {1+ 9?-19%—9-+
i=1

3
(ct 37 € )(—3—)3/2EIZI —9—)5/2 Elz]®.

Proof. See Appendix 4. O



We now present another lemma which,together with assumption

F.2, implies

)r/2

n
(1.5.27) suPn(TEEf7T {SPG{Gn}w(e)de < .

Lemma 1.5.4." Suppose that ¢, Z], ZZ"" are defined on a
common probability space'in such a way that given 6, the variables
r+2|e)

< oo,

Zyslys... are i.i.d. with mean 0, variance 1 and E(|Z]

a.s.(g) for 1 <r 5_c2. Suppose also that for some § > 0

r+2+§ r+2+6|e] <

E[2|™2 < g Le(]2

Then
N L _
sup nr/zP{ln'] 2 Zs] > cV/lQ%—ﬂJ < o,
i=1
Proof. See Appendix 4. [

It now follows from (1.5.15), (1.5.17), (1.5.18), (1.5.20),
(1.5.23) - (1.5.27), assumption F.2 and the fact that

)(]Ogm"(]r(lg)) < 2k,

n
(109 n

that (1.5.1) holds. This completes the proof of Theorem 1.5.1. O
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1.6. Discussion.

In this section we comment on twb special cases of the theory
developed in Chapter 1 and then discuss some possible future work
in this area. This future work includes extending the results to
include vector-valued functions of the parameter vector.

We note that the proofs in Sections 4 and 5 apply to the case
where r = p and thus the full p-dimensional estimation problem is
included in our general theory. Also, the special case where r = p = 1
agrees with the Gleser and Kunte (1976) results except we have
eliminated their unnecessary assumption A.0., which restricted
the Bayes region to be an interval. This restriction was Justified
on "grounds of convenience." Presumably, a connected interval is
more appealing than a union of disjoint intervals. A similar
Justification would restrict our r-dimensional Bayes regions
to be convex so that the standard projection method would yield
interval estimators for linear combinations of the parameters.
However, this restriction is not needed in the proofs and we find
the Bayes property a stronger justification than "grounds of
convenience."

We now consider the problem of finding A.P.0. and A.Q.
procedures for estimating a vector-valued function, w(8), of e.

Let t(6) be a p-dimensional, one-to-one and onto function satisfying

the assumption: N

A.6. Let the row vectors in the pxp matrix
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exist, be continuous and bounded in the sense fhat

{ E E laTi(e)! }
supt. 19 €0 <
i=1 j=1 °%;

where Ti(e) and ej are the ith and jth components of t(6) and o,
respectively. Moreover, suppose |T(e)| # O.
Analogous to Section 1, the fixed-sample Bayes procedure, C:(gn),

against the prior density, ¢, of t(e) is

1

Cx(X,) = closure (in t(e)) of {t(6): &(x|X ) >ab '},

where g(rlgn) is the posterior density of t(e).

Conditions A.1-A.5 were sufficient both to make w(e]gn) of
ésymptotic multivariate normal form and to prove that the stopping
rule, t(c), defined by (1.3.11) is A.P.0. It is straightforward to
show that ;onditions A.1 - A.6 imply that conditions analogous to
A.1 - A.5 hold for the reparametrization t(@). Thus, E(Tlxn) is
of asymptotic multivariate normal form and, by Theorem 1.4.1, the

stopping rule

< C

n lo (n+1 )r/z]Yl
n

t'(c) = first n > 2 such that [1-( ntl)log n

%
is A.P.0., where Ya is the posterior Bayes risk of C:(gn). -Conditions
A.1 - A.6 and F.1 - F.3 are also sufficient for t'(c) to be A.O.

These same results should hold for more general (o) since

after a large number of observations have been taken, much of the



posterior probability of ¢ will be concentrated in a small‘sphere.
'Under assumption A.6,t(6) can be approximated over this sphere by a
one-to-one, onto function and hopefully we can show that this
approximation is adequate and that the contribution to the Bayes
region outside this sphere is negligible.

Now suppose we are interésted in estimating an r-dimensional
vector-valued function, rr(e), of 6. Following Bickel and Yahav
(1969b), we can usually embed this problem in a p-dimensional |
space by reparametrizing the parameter space ® to make Tr(e) the
first r components of our vector parameter. When this reparametrization
is not possible we could generalize to the case where 1(6) admits a
Taylor expansion to p terms around 6 = 0 with the remainder term
uniformly of order ||6]|P. Then the problems connected with
integrating out the nuisance parameters should be similar to those
in Chapter 1.

/



CHAPTER 2

A.P.0. AND A.0. APPROXIMATE STOPPING RULES

When applying the results of Chapter 1 to the special case
of estimating the mean of a univariate normal distribution with
unknown variance (see Kunte (1973)), the computations involving
the probability of noncoverage part of the posterior Bayes risk
are sufficiently complicated as to render the procedure impractical.
In the hope of simplifying calculations, this chapter is concerned
with general theoretical methods that permit approximation of
»A.P.O. and A.0. stopping rules in such a manner as to maintain
their asymptotic optimality.

Sect{on 1 generalizes Theorem 1.2.1 by giving sufficient
conditions on the random variable ?n’ used to approximate Yn in
the stopping rule defined by (1.2.4), such that the resulting
approximated stopping rule, t(c), is A.P.0. Similarly, Section 2
generalizes Theorem 1.2.2 by showing that its approximated stopping
rule is A.0. Both sections rely heavily on the theory developed
in Chapters 3 and 4 of Gleser and Kunte (1976).

Section 3 uses these apﬁ}oximation results to prove that the
stopping rules in Chapter 1 are robust with respect to the prior.
That is, as long as the prior information is not too badly

misspecified, the stopping rules will be A.P.0. and A.O.

4]
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2.1. A.P.0. Approximate Stoppinngu1es

Let {Yn} be a sequenée of random variables defined-on a probability
space (Q,3,P), where Yn is En—measurab1e and 3 < 32 C...C & is an
increasing sequence of sub o-fields and let K(x) be a strictly increasing
positive function of x > 0 satisfying lim K(x) = =.

To approximate the class of stopp?;;'rules {t(c): ¢ > 0} in
(1.2.4) replace Yn with ?n where ?n satisfies the following assumptions:

N-><e

B.0. P{?n >0} =1, all n, and P{lim V= 0} = 1.

B.1. P(lim f(n)[Y -Y | = 0} = 1.
. i mad )

Note that Assumptions B.1 and B.1 imply that

(2.1.1) P{lim f(n) Yn =Vy=1.
oo

"Theorem 2.1.1. Under assumptions B.0 - B.4, é.o and é.], for

each ¢ > 0, let

f(n

(2.1.2) t(c) = first n > 1 such that (1 - Tt

)?n < ¢ AK(n).

Then the class of approximate stopping rules {E(c): c > 0} is A.P.O.

That 1is,

- ek (t(c))

. t(c) o1 -
S

Proof. Under assumptions B.0 - B.4 Gleser and Kunte's (1976)
Lemma 3.1 states, for each ¢ > 0, that t(c) is a proper stopping rule

and



(2.1.4) P{1im t(c) = «} = 1,
c->0

(2.1.5) P{lig f(t(c))Yt(c) =V} =1,

and

(2.].6) P{1ig cK(t(c))f(t(c)) = Mv} = 1.
[

Replacing B.0, B.1, t(c) and Yn with E.O, (2.1.1), %(c) and ?n in
the proof of their lemma shows, for each ¢ > 0, that’i(c) is a proper
stopping rule and

(2.1.7)  P{lim t{c) = =} = 1,
c>0

(2.1.8) P{llg f(t(c))YE(c) =V} =1
and

(2.1.9) P{lig cK(t(c))F(t(c)) = MV} = 1.
c>

Assumptions B.C - B.4, é.O, B.1 and Theorem 1.2.1 thus yield
YE(C)+CK(t(C))

(2.1.10) P{lim - -
c-+0 1nfs€T(Ys+cK(s))

=1} = 1.

Now, Tetting t = t(c) and t = E(c), it follows from (2.1.4),

(2.1.7) and assumption B.1 that
%

~

(2.1.711) P{lim £(t)[Y,-Y,[= 0} = P{lim £(t)|¥;-V;| = 0} = 1.
c->0 - c-0

AN

Before completing the proof of Theorem 2.1.1, a lemma is
presented which indicates that asymptotically E(c) doesn't differ

from t(c) by too much.
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Lemma 2.1.1. -
. f(t) -
(2.1.12) P{]1m'—(ff = 1,

c-»0

Proof. First it is shown that

(2.1.13)  1m f%I%- 1.

This follows from (2.1.5), (2.1.6), (2.1.8) - (2.1.11) since

?s+cK(s)
1 = 1im {inf

-}
c-»0 set Yi+ek(t)

Y ok(t)

< lim {= =}
0 Yi+cK(t)

1in (D) f(t)(?t-vt)+f(t)(Yt+cK(t))]}
0 )T p(h) (Ypeek(t))

Vim £(£) 1 0+ (14M)V
< (05 FE

In a similar manner it is shown that

f(t)

(2.1.14) Tim (1

< 1.
c->0 ’
Using (2.1.5), (2.1.6), (2.1.8), (2.1.9), (2.1.11) and (1.2. 2) yields

Y +cK(t)
1 = 1im {
c>0 sET(Y +CK(S)
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__ YreK(t)
> lim {————}
c-0 Yt+cK(t)

£(3) - TRV reK()

- T ¢ SRS A
20 T R (V) + (0 (Yrek(E))

- (ZEE. g% él?T+M ]

— f(t
= Tim
e Tt
Thus, (2.1.13) together with (2.1.14) completes the proof of
Lemma 2.1.1. QO

We now return to the proof of Theorem 2.1.1 and note from (1.2.2)

and (2.1.3) that it is sufficient to show

Yt+cK(t)
(2.1.15) © P{lim ————— =1} = 1.
c>0 Y3 +CK(t)

But this result follows by applying (2.1.5), (2.1.6), (2.1.8),
(2.1.9), (2.1.11) and Lemma 2.1.1 to '

Y +cK(t) £
Tim ————————-‘ 11m{f(
c->0 Yt+cK(t) c-0

et

) FR(prek(e)
)R (Y (B) (Tprek ()

t
=].S]7.+Nl\Lr=]
0+(1+M)V '

Hence (2.1.15) holds and the proof of Theorem 2.1.1 is complete. [

1.
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2.2. A.0. Approximate Stopping Rules.’

In this section sufficient conditions are found for the class
{t(c): ¢ > 0} of approximate sfopping rules defined in (2.1.2) to
be asymptotically optimal for the special case where K(x) = x. Use
is made of the results in Section 4 of Gleser and Kunte (1976)
which concern replacing the random quantity f(t(c)) by the non-

random quantity f(y(c)) in the expectation operations, where

Ty

y(c) = first n > 1 such that nf(n) > ¢~
with M defined in assumption B.3'.

Theorem 2.2.1. When K(x) = x and assumptions B.0 - B.2,

B.3', é.O and é.] hold, then the class {E(c): ¢ > 0} of approximate

stopping rules defined by

f(n >
f(n+] )Yn < ¢

(2.2.1)  t(c) = first n > 1 such that (1 -

is A.P.0. Further, if (1.2.6) and

(2.2.2) sup,, E(f(n)Yn) < w
hold and if there exists a finite constant L such that

(2.2.3) Y <LY

then this class of approximafe stopping rules is A.0. That is,

_ E(Y%+c£)
(2.2.4) llg {inf

—1 = 1.
SeTE(Ys+cs)
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Proof. The class {E(c): c > 0} defined by (2.2.1) is just the
class of rules defined in Theorem 2.1.1. specialized to the case
K(x) = x. Since K(x) = x and assumptions B.0-B.2, B.3' imply
assumptions B.0 - B.4, the A.P.0. character of the stopping rules
(2.2.1) follows from Theorem 2.1.1.

Proof. From (1.2.3) and (2.2.4) it is sufficient to show that

__ E(Yyect)

(2.2.5) im } <
50 EZYt+ct$

1
c
The nonrandomness of f(y) allows an upper bound for the left-hand

side of (2.2.5) to be expressed as

Tiw ELF(y) ;7)1 + T ELF(1) (Vi)
c-»>0 ¢->0

T ELF(y) (Y *ct)]

(2.2.6)

Gleser and Kunte (1976) prove that

P{lim :(t VAL DI
c->0
and

(2.2.7)  Tim EL(F(x) (Y ct)] = (el (M
c>0 ,

Replacing t, Y , (2.1 5), (2.1.6) and (1.2.6) with t, Y , (2.1.8),
(2.1.9) and (2.2.2) in their proof, it can be shown that
. :
pim Tk o W ORT) g
c~»0 f(t)
and
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(2.2:9) Tim ELF(y) (Tyret)] = (rane(u!/ (1)),
C> :

From (2.2.6), (2.2.7) and (2.2.9) we see that (2.2.5) will hold if

it can be shown that

(2.2.10) Tin E[f(y)(YE-?E)] = 0.

0

From (2.2.8) and assumption é.], it follows that

(2.2.11) Tlim f(Y)(YE-?E) = 1im 1) f(E)(YE-?E) = 0, a.s.
c+0 c0 f(t)

Using (2.2.3) we have the bound

(2.2.12) f(y)(YE-?E) < F(OHL)Y;.

Thus application of a well-known generalization of the dominated
convergence theorem [see, Royden (1968, page 89)], along with
(2.2.12), (2.2.9) and (2.2.11), proves (2.2.10). This completes

the proof of Theorem 2.2.1. O
Remark 1. A condition equivalent to (2.2.2) is
~ +
sup, ELf(n)(Y -Y )] < =,
as can be seen from condition (1.2.6) and the following inequality:
= " +
fF(n)Y < F(n)(Y =Y )" + F(n)Y_

< f(n)Yn + 2f(n)Yn.
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Remark 2. In the absence of any well-developed second-order

properties, it would seem preferable to choose, when possible,

~

Yn-i Yn’ since both E(c) and t(c) are A.P.0. and A.0. but E(c) < t(c).
In this case, condition (2.2.2) follows from (1.2.6), although (1.2.6)
is not always easy to verify. Gleser and Kunte (1976) give an

example which demonstrates that some condition 1ike (1.2.6) seems to

be needed.

Remark 3. If we can find an easily computable terminal decision

rule E(gn) which has Bayes risk of the same order asymptotically as the

Bayes rule C*(Xn), then if sup, E(f(n)Yn) < =, we also have that

sup, E(f(n)?n) < =, where ?n is the posterior risk of E(gn). By the
Bayes property of Yn it follows that Yn 5-?n' (Hence, in (2.2.3),
L =1.) Theorem 2.2.1 then implies that the stopping rule

f(n

t(c) = first n > 2 such that (1- it )Yn

< C

e

is A.P.0. and A.Q.

Example. Consider the estimation problem of Chapter 1 and let
§n = aV(C*(xn)). It is clear that B.0 is satisfied. To verify B.1

note that

f(n)]Yn-?nI = (n/log n)r/2 a | v,.(6

C*C(X,)

rlxn)der

tends to O a.s. (Pe ) by the remark at the end of Section 1.4.
0 .
Thus, by Theorem 2.1.1, the class {t(c): ¢ > 0} of approximate

stopping rules defined by



%(c) = first n > 2 such that [1-(nnl? ]og+l )r/zj‘?n <cC

is A.P.0.

Now, from ?n_f Yn and (1.2.6) it follows that (2.2.2) is
satisfied. By the remark at the end of Section 1.4 we see that
(2.2.3) is satisfied almost surely for large enough n depending
on the sample point. Unfortunately, our proof of Theorem 2.2.1

requires (2.2.3) to hold uniformly in n over all sample points.

50
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2.3. Robustness.

Consider the estimation prob]ém of Chapter 1 where the procedure
[C*(t(c)), t(c)] was shown to be asymptotically optimal against the
prior y. In this section it is shown that if y is not the true prior,
and if the true prior is, say Yoo then the procedure [C*(t(c)),t(c)]
remains asymptotically optimal provided that the following condition

holds:

D.1. There exist constants k, K, 0 < k < K < », such that

(2.3.1) k j_ii%lT.S K for all 6 € @.
Yol

We adopt the notation E_(.) for the expectation over the joint

probability distribution of X]’XZ""’ and © when 8 has prior

0

N .
density =. Let Cx = Cx(X ) and C_

= CO(Xn) be the Bayes optimal

terminal decision rules against the priors ¢ and wo, respectively,

0

and let Yn and Yn

be their corresponding posterior risks.

Theorem 2.3.1. If assumptions A.2 - A.5 hold and both Yo and y
satisfy assumption A.1, then the class {t(c): ¢ > 0} of stopping
rules, assuming that y is the prior, is A.P.0. even when wo'is the

true prior. If, in addition, assumption D.1 and either

0
(2.3.2a) sup_ Ewogf(n)Yn] < o,
or
AY
(2.3.20) sup E [f(n)Y ] <=

hold, then t(c) is A.O.
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.

Proof. Since the limiting results of Section 1.4 are independent
of the prior, it is easily seen that assumptions é.O and é.] of
Chapter 2 are satiﬁfied and hence, by Theorem 2.1.1, t(c) is A.P.0.

To prove t(c) is A.0., by Theorem 2.2.1, we need only show that

0
(2.3.3) Yp < LY
and
(2.3.4) sup, Ewo[f(n)Yn] < w,

Note that from (2.3.1),
_ n
f I f(xi[e)wo(e)de
0, p i=1
wOr(erlxn) B

n

é.iglf(xile)wo(e)de

p-r

K| =

-r

E]f(xile)w(e)dep
(2.3.5) < BT

Since Cg is Bayes against Vos applying (2.3.5) yields

0 _ 0 :
Yn = aV(Cn) +b é wOr(e

f_aV(C;) +b f ) wbr(erlgn)der
(cx)
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bK
aV(Cﬁ) R f'c lpr(erl)-(n)der
(c*)

IA

K
< (E)Yn'

Hence, we can let L = K/k in (2.3.3).

Now, a similar argument using (2.3.1) yields

n
Ewo[f(n)Yn] = é f(n)Yn é 1E]f(xile)w0(e)dedxn.

=

1
:Fiﬂm%éi&ﬂﬁwmwmm&

Thus, (2.3.4) follows from (2.3.2b). However, use of (2.3.1) and
(2.3.5) allows us to show that (2.3.2a) and (2.3.2b) are equivalent

conditions. This completes the proof of Theorem 2.3.1. O

4



[1]
[2]
[3]

[4]

[5]

L6l
[7]
[8]

[9]

[10]

[11]

BIBLIOGRAPHY

Albert, A. (1966). Fixed size confidence ellipsoids for linear
regression parameters. Ann. Math. Statist. %Z, 1602-1630.

Anscombe, F. J. (1952). Large-sample theory of sequential
estimations. Proc. Camb. Phil. Soc. 48, 600-607.

Anscombe, F. J. (1953). Sequential estimation. J. Roy. Statist.
Soc. Ser. B. lé, 1-21.

Arrow, K., Blackwell, D. and Girshick, M. (1949). Bayes and
minimax solution of sequential decision problems.
Econometrica lZ’ 213-244,

Bickel, P. J. and Yahav, J. A. (1965). Asymptotically
pointwise optimal procedures in sequential analysis.
Proc. Fifth Berkeley Symp. Prob. Statist. l, Univ. of
California Press.

Bickel, P. J. and Yahav, J. A. (1968). Asymptotically
optimal Bayes and minimax procedures in sequential
‘estimation. Ann. Math. Statist. %2, 442-456.

Bickel, P. J. and Yahav, J. A. (1969a). On an A.P.0. rule
in sequential estimation with quadratic loss. Ann. Math.
Statist. ﬁg, 417-426.

Bickel, P. J. and Yahav, J. A. (1969b). Some contributions to
the asymptotic theory of Bayes solutions. Z. Wahrschein-
lichkeitstheorie und Verw. Gebjete. ll, 257-276.

Callahan, J. (1969). On some topics in sequential multiparameter
estimation. Ph.D. dissertation, The John Hopkins Univ.

Chatterjee, S. K. (1959). On an extension of Stein's two-sample
procedure to the multinomial problem. Calcutta Statist.
Assn. Bull. %, 121-148.

Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of
fixed width sequent1a] confidence intervals for the mean.
Ann. Math. Statist. 36 457-462.




[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

55

.

Chung, K. L. (1951). The strong law of large numbers. Proc.
Second Berk. Symp. Prob. Statist. Univ. California Press.

Dantzig, G. B. (1940). On the non-existence of tests of
"student's" hypothesis having power functions independent
of o. Ann. Math. Statist. ll, 186-192.

DeGroot, M. H. (1970). Optimal Statistical Decisions.
McGraw-Hill, New York.

Gleser, L. J. (1965). On the asymptotic theory of fixed-size
sequential confidence bounds for linear regression parameters.
Ann. Math. Statist. 40, 935-941.

Gleser, L. J. (1966). Correction to 'On the asymptotic theory
of fixed-size sequential confidence bounds for linear
regression parameters'. Ann. Math. Statist. gz, 1053-1055.

Gleser, L. J. and Kunte, S. (1976). On asymptotically optimal
sequential Bayes. interval estimation procedures. Ann.
Statist. 4, 685-711.

Kiefer, J. and Sacks, J. (1963). Asymptotically optimal
sequential inference and design. Ann. Math. Statist.
%ﬁ, 705-750.

Kunte, S. (1973). Asymptotically pointwise optimal and asymp-
totically optimal stopping rules for sequential Bayes
confidence interval estimation. Mimeograph Series No. 328,
Department of Statistics, Purdue Univ.

Loeve, M. (1955). Probability Theory. D. Van Nostrand
Company, Inc., New York.

‘Rao, C. R. (1973). Linear Statistical Inference and Its

Applications. Second Edition. Wiley, New York.

Royden, H. L. (1968). Real Analysis. Second Edition.
The MacMillan Company, Collier-MacMillan Limited.
- London.

Rubin, H. and Sethuraman, J. (1965). Probabilities of
Moderate Deviations, Sankhya Ser. A. %Z, 325-346.

Serfling, R. and Wackerly, D. (1976). Asymptotic theory of
sequential fixed-width confidence interval procedures.
J. Amer. Statist. Assoc. Zl, 949-955.

Sidak, Z. (1967). Rectangular confidence regions for
the means of multivariate normal distributions. J. Amer.
Statist. Assoc. Q%, 626-633.




[26]

[27]

[28]

[29]

[30]

Srivastava, M. S. (1967). On fixed-width confidence bounds
for regression parameters and mean vectors. J. Roy Statist.
Soc. Ser. B. %g, 132-140.

Stein, C. (1945). A two-sample test for a linear hypothesis
whose power is independent of the variance. Ann. Math.
Statist. 16, 243-258.

Stein, C. and Wald, A. (1947). Sequential confidence intervals
for the mean of a normal distribution with known variance.
Ann. Math. Statist. lg, 427-433.

Stein, C. (1949). Some problems in sequential estimation.
Econometrica lZ’ 77-78.

von Bahr, B. and Esseen, C. G. (1965). Inequalities for the

rth absolute moment of a sum of random variables, 1 < r < 2,

Ann. Math. Statist. 36, 299-303.




APPENDICES



APPENDIX 1

A Tail Inequality for Multivariate Normal Distributions:

Let X be an r-dimensional, (r > 1), random vector having the
density, N(x;0,2), of a multivariate normal distribution with mean
0 and positive definite covariance matrix =. For k > 2r-4 the

1

ellipsoid E = {x: x'z” 'x < k} satisfies the inequality

2-r/2
J N(x30,z)dx 5_2L~————

. kr/2-1e-k/2.
EC T (ﬁ)

Proof. Note that Y = X'z”!

X is a chi-square random variable
with r degrees of freedom. Thus, the probability of being outside

E can be written as

(A.1.1) [ N(x;0,5)dx = [ g(y)e™¥/ 4y,
£C k
2-r/2yr/2-1e—y/4

r(z)
%

where g(y) =

Elementary calculus shows that for y > 2r-4, g(y) is a decreasing
function of y. Hence, for k > 2r-4, equation (A.1.1) is bounded

above by

57



g(k)of; ey =2~

2-r/?

| r(z)

kr/2—]e-k/2.

58
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APPENDIX 2

Theorem. Under assumptions A.1 - A.5, for every € > 0, there

exists 6(€) > 0 and N; = N(X;,X,,...;3 eo,a(e)) such that for every

'I ]’_2"
n z_N], and all w in the sphere

W (s(€)) = {w: |]w]| < nl/zé(e)},
the following bound holds:
w'A(eO)w
(A.2.1) | Tog vn(w) -——| < eww.

Proof. For every § > 0, the strong consistency of én implies
that there exists ny = N(X],Xz,...; eo,d), such that Ien—eol < ¢§ for
all n > nyq. Bickel and Yahav (1969b, Lemma 2.1) show that there

exists n, = N(X],Xz,...; eo) such that for n > n,,

n R
izlgrad @(en,Xi) =0

where
- %
_ 99(8,X) aep(0,X) v
grad ¢(6,X) = ( 26, seees aep ).

X

By Taylor's formula, for n z_max(n],nz)
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] ~ -]/2
[ w'A(s_+awn Xidwdh - w'A(e)w|
0 n i

) S -1/2
|f w'[A(en+an ’Xi) - A(eo)]wdxl
0

(A.2.2)

1
-—
=

where the matrix A is given by,

Ao,x) = 2oe(e.X)

aej. aej

The last inequality follows since {s: |s-§n] < 8} < (st [s-84] < 28}

Now,

(R.2.3) sup{|w'[A(s,X)-A(0)Tu]: [s-0,] < 261 < [w'[A(8y>X)-A(8y)Iu]

+ |l | Psupt |w' [A(s,X)-A(o o X)w = [[s-80[| < 28, [[w]| = 13

But, the continuity of the elements of A(s,X) assumed in assumption

A.2, plus the compactness of the set {(s,w): ||s-6,|| < 26, ||w|| = 1},
implies that h
(A.2.4) sup{lw'[A(s,X)-A(eO,X)]wl: [1s-6gl1 < 26, [|w]] =1} > 0

as § »> 0.
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On the other hand, the left-hand side of (A.2.4) is bounded
in absolute value by
2
2 ) sup{lgglé%illlz ||s—60|| < 26},
1<j.k<p Jj ok
which by assumption A.3 has a finite expectation for § small enough.
Hence, by the dominated convergence theorem, the expected value of
the left-hand side of (A.2.4) tends to 0 as & » O.

Thus, for every € > 0, there exists 6(€) > 0 such that
(A.2.5) E{sup{lw'[A(s,X)-A(eO,X)]w[: |[s-6g!| < 28(€), | |w]]=1} < €/3.

By the S.L.L.N., (A.2.5) and assumption A.4, there exists ng =

N(X],Xz,...; 60) such that for n > Nas

n .
(A.2.6) n"iz] WA g%, )-A(eg)Tn] < § W'

and

I

n
(A.2.7) n7! iZ]I]w||2 sup(w' [A(s,X;)-A6,X;) Iz | [s-0,]| < 28(€),

(]

W] = 13 < S5 ww.

Thus, from (A.2.2), (A.2.3), (A.2.6) and (A.2.7) it follows that for
every € > 0, there exists a §(€) > 0 and N] =vmax{n],n2,n3} such that
(A.2.1) holds. O E



APPENDIX 3

Inequalities

Inequality A.3.1. Let X]’XZ""’Xn be a sequence of random
n
variables and put S = ] X, then it is well-known that
i=1 ’

8 _ g1 0 B
Els,|® <n”" T OEIXIR, B2,
i=1
n
B
EISn|BiiZ] E|X; [, g8 < 1.

The first inequality is an application of Jensen's inequality on
convex functions while the second follows directly from another
. n
Jensen inequality, which states that for g8 > 0, ( Z X?)]/8 is a
i=1

decreasing function of Bg.

~Inequality A.3.2. {(Gleser and Kunte (1976), Lemma 6.3). Let

UpsUps...,U be i.i.d. with mean u, variance o2, and T = EIU]-uIZB,

1 <8 5_2. Then there exists a constant K, 0 < K < =, such that

Elsﬁ-ozlB 5_n]'6r[228+K n']], all n,

A

-1
i

)2

Ho~133

2 _
where s_ =n

N (Ui-U is the sample variance.

1

Inequality A.3.3. (Chung (1951) p. 348). Let U]’UZ""’Un

n
be i.i.d. with mean 0. Then, if S = } U., 8>1,
=]

1



Els, |28 < nm(e)E|Y, 128,

where M(g) is a constant depending only on B8.
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APPENDIX 4

PROOF OF LEMMA 1.5.3.

Let

{ Z. if |Zi| <a = (n/log n)]/2

0 | otherwise.

Then, using Markov's inequality

N R n
(A.4.1) P{|n iZ]ZiI > ca } < P{|n 1§]Y"il > ca }+ 1.Z]P{]Zil >a}

n
< P{In']_EIYm-I > ca } + n(128NyS /2|73
'l=

Note that the Y ;'s are i.i.d. with

4

lul = [EY 1 = | [ zF(dz)|=]- [ zF(dz)|
' z|<a, z|>an
(A.4.2) < [ lz|F(dz)
|z|>a,
f_a;?IIZIBF(dZ) = (lgﬁ—ﬂ)Elzl3
and
.
(h.4.3) il =eY2 = [ ZPF(d2)
~'n' " n " 7%
< E(z%) = 1.
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" Let

a -1
n ia .
- n - ni
(Pn.i(}\) = Ia e Fni(d‘yni)

where Fni(y) is the c.d.f. of Yni' Since Yni is bounded, mni(x)
exists for all A. Let,

-1
Aa_y .
= i
€ Fni(dyni)

@ni ()

Gm'(dym'.’x) N

and

n
G, (dy;n) = 1.:‘]Gm-(dym-;x)

be the convolution of the Gnils' Then for any 2 > 0,

-1

P T Y >y s To () ] 7% (ayn)
n ] >ca = I (A e VAN
i=1 M =1 ™M /i Tog n n
< n -c/n Tog n [Ala;1y
+ i£]¢ni(-l)_£ : e dG, (dy;-2)
® -c/n Tog n
=xc log n n n ¢
<e [T, (1) [ G(dy;a)+ 1o - (-2) f G (dys-2)]
1=1¢"1 cvn Tog n j=1 0 - n
(A.4.4) n n
j_e-lc log n[E ¢n1(%)+-¥ cpn_i(->\)]
i=] =]
acp | n
=n [1E]Wni(k)+1£]¢ni(tx)]'

Using the inequa]ities
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we have

2 a

2+02)+fn R(by _:)F .(dy .)
nntly Yni’ ni ¥ni

-1 b .2
CPm'(b) <1+ ban1%]+-§—a n(“

where

ae if by >0

R(by) =
0 if by < 0.

Hence, using (A.4.2) and (A.4.3),

2 4 .3 Aa-]y :
-1 A\C -2, 2, 2 A -3 3 n’ni
(Pn'i(l) < '|+)\an I“nl + 2—a n(pn+0n)+{) ?a nym-e Fm-(dym-)
2 3 4
-3 3, A" -2, A\ -3, .3
(A.4.5)  <ima jElZ] +»?—an.+ sra. e é YpidF 5 (dy 5)
2 _2 3 3

-3 3,2
< E|Z]° + 5a .

and qhi(-k) is similarly bounded by the same quantity. From (A.4.1),
(A.4.4), (A.4.5) and the definition of 2 the result of the lemma

follows by taking A = ¢c.» g

PROOF OF LEMMA 1.5.4.

Let v(o) be the c.d.f. of o,

n
ap(e) = PeInT! T 7.] > o/ 10N |y
i=1
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ug(6) = E(JZ[%]6), 1 <5 < re2,
»and
D = {e{ u3(e) g_n]/zfe, € = §/2(r+s8)1}.
Then
r/ZP{I -1 X ;] > o/ 109 n } q(8)¥(de)
(A.4.6) = n'/2 jA (6)¥(do)+n"/2 f a,(6)¥(do)
D
< 0% [ (6)¥(de)m™?[ w(de).
D p¢
Now,

r/2
n"/? [ y(de) < —T——-f u(6)¥(de)

c 5 €
D n2 D¢
) r/2
R [ w5 (e)v(de)
5 € c
(nZ )r+5 D
f *8(6)¥(de).
n"'% pe

Applying Liapounov's inequality (cf. Loeve (1955), p. 172) and noting

that pz(e) = 1, we obtain

(A8.7) "8 [u(de) < [ u,p,s(0)¥(de),

p® D¢

which is finite by our given assumption.

Also, by Lemma 1.5.4,



2 2
(A.4.8) n'/? fo,(e)¥(de) 5_2n'”/2n'C [1+ g_.lQ%_D.+
D"

1
3 5 -€n
(e §r VAR EE T Je(ao)s

r+2+s§
r/2 2
n‘“(log n)
n 2

and since the right-hand side of this inequality converges to 0
as n » », the supremum of this quantity is finite. From (A.4.6) -

(A.4.8), the result follows. 0

68



