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CHAPTER I

INTRODUCTION

Section 1.1. Stating the Problem

Consider the problem of estimating o = (e],...,ep) under
™

; e.—a.)zg when the observa-

the Toss function Lm(@,g) = § 6. (0;-a,

i=1
tions Xi’ i=1,...,p, are independently from discrete exponential
X
families with density @i(ei)t.(x.)eil.The usual estimator is

it
typically admissible for one dimension (p=1), but is often in-
admissible for higher dimensions (p > 1) and can hence be improved
upon. In this thesis, the probiem of improving upon inadmissible
estimators is reduced to the study of difference inequalities.
Typical difference inequalities are presented and solved. (Special
cases had earlier been solved by M.L. Clevenson and J.V. Zidek
(1975), J.C. Peng (1975), H.W. Hudson (1978), and K.W. Tsui and
S.d. Press (1977)). Also, theorems are obtained which establish
the inadmissibility of certain broad classes of estimators.

In Section 1.2, the notation and definitions -are discussed -

Section 1.3 gives a review of related results obtained by other

statisticians. Section 1.4 summarizes the results in this thesis.



Section 1.2. Definitions and Notation

In this section, we briefly discuss the definitions and nota-
tion that are used throughout this thesis.

Let X1 ...,xp be p independent random variables, and assume
the probability density of Xi with respect to some measure Hj is
fi(xjiei), i=1,...,p, where g = (61""’6p) is some unknown parameter.
We use the notation

X, R9eB p(xife)  i=1,....p (1.2.1)

to indicate this. The measure My is assumed to be Lebesgue_measure
when Xi has an absolutely continuous distribution, and is taken to

be the counting measure on nonnegative integers when Xi has a discrete
distribution. For most of this thesis, it is assumed that the densi-

ties are from the discrete exponential family,

folxglog) = o)t (x)es ', x=0,1,.... (1.2.2)

where 0, > 0, and 6 belongs to some subset 2 of R (the set of real
numbers) i=1,...,p. Note that ei is not the natural parameter of the
exponential family. However, in many situations, 0. is the interest-
ing parameter to estimate.

Some important special cases of the density in (1.2.2) are the
Poisson distribution, the negative binomial distribution and the
Togrithmic distribution. Denote the Poisson distribution with mean
6 by Po(e). Also, let NB(r,8) denote the negative binomial distribu-
tion having the following density

rx-1 X

f(x|e) = (1-8)"6%,  x=0,1,... (1.2.3)
r-1



where 0 < 8 < 1 and r is a known positive integer.

It is desired to estimate 6 = (8 .,8 ) on the basis of

150"

1""’Xp)' The parameter space is clearly @ = Q1x92 ...prc:Rp.

(RP is p-dimensional Euclidean space.) Let a = (a],...,ap) be an

X = (X

available action (i.e. an estimate of ©) and assume that the action
space is¥, and R /5 6. (e is the closure of @.) When action

a 1s taken and ¢ is the true parameter value, it is asssumed that a
lToss L(6,a) is incurred, where L(e,a) is a real valued function defin-

ed on @ x &/ Usually, we assume L(0,a) has the following form

L (g,a) = § e[:i(e].—ai)z, (1.2.4)

where m = (m],.u.,mp) and m1,...,mp are integers. When m, =m,

i=1,...,p, Lm is denoted by Lm;

p
L (6,a) = ) e'?(ei-ai)z. (1.2.5)

A (nonrandomized) estimator &(X) = (s (5),...,6p(§)) is a func-
tion from the sample space to 9/, which estimates © by §(X) when X
is observed. The risk function R(8,8) of an estimator § is defined
to be

i (g 105 )duy (x;)

= E L(g.8(X)),
where, as usual, E6 denotes expectation. The subscript o might be
dropped when thereNis no ambiguity.
An estimator §* is defined to be as good as & if
R(8,6™) < R(6,8) (1.2.6)

for all 6€ ® The estimator §* is said to be better than $ (or



dominates §) if, in addition to (1.2.6),
R(8,8) < R(s,8) (1.2.7)

for some 6€©@. The estimator § is admissible if there exists no
better estimator, and is <nadmissible otherwise.

For any vectors g and h and any real number F, define

g+h={(g+ h],-..,gp + hp), ' (1.2.8)
gh = (gghyseongho), (1.2.9)
and
Fg = (Fg],...,ng). (1.2.10)
Let ?1""’9p denote the unit vectors in RP, i.e.
e, =(0,...,0,1,0,...0), i=1,...,p (1.2.11)

~1

L+ ith component

For any function F(x), denote the ith partial difference of F(x) by

AiF(g), i.e.
biF(x) = F(x) - Flx-e,). (1.2.12)
Also, for any number g, define
g ifg>20
ot = (1.2.13)
0 if g < 0.

Section 1.3. History

In the following, some previous results concerning the problem
of improving upon standard estimators will be discussed. It would be
too difficult to Tist all known results, so we will only mention the

ones that are closely related to the problems considered here.



Subsection 1.3.1. Stein's Result
indep. . . . )
Let Xi —_ N(ei,l), i=1,...,p, 1.e. X1,...,Xp are indepen
dent normal random variables with means 91""’@p and variance 1. 1In
Stein (1955), the problem of estimating o = (6],...,6p) based on

X = (X .,Xp) under the loss function LO(Q,Q) was considered. (Re-

1>
call from (1.2.5) that

Stein proved the surprising result that the usual estimator §0(§) = X
is inadnissible when p > 3. A better estimator §* was found in James

and Stein (1969), which has the form

Since then, a considerable amount of work by a number of authors
(see the references) has gone into finding significant improvements
upon §O(§) = X in more general settings. For the normal distribution,
the results in the most general setting obtained so far can be found
in Berger, et. al. (1976) and Gleser (1979). In their paper, X
is assumed to be a multivariate normal vector with unknown mean 6 and
unknown covariance matrix I. The loss function they considered was

t, where (a—e)t denotes the transpose of (a-6)

and M is a known pxp positive definite matrix. If an estimator W of
$ is available and W has a Wishart distribution with parameter § ,

new estimators were obtained which dominate the usual estimator
0
S

(X) = X for p > 3. Brown (1966) has also shown for a wide class of

Toss functions and densities that the estimator QO(X) = X can be



improved when p > 3, A1l the estimators mentioned above correct the
usual estimator by shrinking toward the origin.

In Stein (1973), an identity (proven by integration by parts)
was developed which has proven to be a powerful tool in the problem
of improving upon the standard estimators. In searching for an esti-

mator, §*(X), better than §0(¥), Stein wrote 6*(X) as §%(X) + of

X)

and used the identity to obtain the representation

R(8.5%) - R(8,6°) = £, [ 6 (201,

where £( ¢(X)) is an expression that does not involve 6. £(2 (X))

involves partial derivatives of Qi(X)’ i=1,...,p. (For the discrete
case, & (¢(X)) will involve partial differences of ®i(x)). The idea
of Stein was then to find ¢(X) so that & (#(X)) < 0. If a solution

exists, then for such ¢(X) and §™(X),

R(8,6%) - R(0,6%)

0.5 8°) = E L8 (6(X))] < 0,
and it follows that §* is better than §0. The original example of

Stein's illustrates this idea.
Example 1.1. Llet X = (X],...,Xp), 6 = (e],...,ep), and

X indep. N(6.,1)s  i=T,....p.

Under the loss function LO, and estimator better than the maximum
Tikelihood estimator §O(§) = X can be obtained by the following pro;
cedures when p > 3.

(i) Write the new estimtor §* as §*(§) = §0(§) + ?(5).

Now,



p
2
- £ meto-e o
p
= 121 {20, (X)(X;~05) + o5(X)}

It follows that

p
R(8,6%) - R(8,6%) = E, ] (20, (X)(X,-8.) - ¢5(X)). (1.3.1)

b 2 8 21 11
(ii) An identity derived by Stein (1973) shows that, if

®1""’®p satisfy some regularity conditions, then

E L(X.-0,)e. ()] = E_[=— 0. (X)]. (1.3.2)

Define
X)}. (1.3.3)
Under the regularity conditions, it follows from (1.3.1), (1.3.2),

and (1.3.3) that

E,L8 (2(X))] = R(8,8%) - R(8,8°)

p
(i11) Letting @i(x) = -(p-2)X;/ ) X?, it is easy to check that
: i=]

@1(5),...,®p(§) satisfy the needed regularity conditions when p > 3.

A straightforward calculation yields

X)) = s [2-2_ o.(x 20y
AS (?(N)) - 1;] BX_I ®i(~) + (p'i ~)]
2
=TLE:gl_.< 0
P2
X
121 !

Therefore §* is better than §°.



Note in the above, that the main problem was reduced to the study
of a differential inequality. The importance of the relation between
such differential inequalities and inadmissibility has also been
emphasized in Brown (1974). See also Stein (1965), Brown (1971 and

1974) and Berger (1976a, 1976b and 1976c).

Subsection 1.3.2. Exponential Families
Stein's phenomenon has also been observed for many other distri-
butions. 1In the following, we will briefly describe some of these
other cases.
(i) The Poisson distribution with the loss function

- -1 2
L_}(@né) - ]E] ei (ei—ai) .

Let X = (X ,X ) and Xs iﬁﬂEB- Po(ei), i=1,...,p.

IERRRELSS
Under the loss function L-l’ Clevenson and Zidek (1975) obtained an

estimator which dominates the usual estimator SO(X) = X, when p > 2.

The new estimator §C has the form
c( X.)
j=1 !
X) = (1 - ———————— )X, (1.3.4)
p-1 + E X
=1

I~

87 (

where c(-) is any nondecreasing function such that 0 < c(-) < 2(p-1).
p
Using the property that, conditioning on ) Xj’ X has a multi-
J=1
nomial distribution, Clevenson and Zidek obtained an expression for

the difference of the risk of §C and that of §O. This expression in-

P
and ) ej and was shown to be negative valued.
j=1

P

volves only ) X
J=1

Thus QC is better than g°.

J



(i1) The Poisson distribution with the loss function
L (6,a) = § (6.-a.)2
o'%-27 = L \&-a; ).
i=1
Peng (1975) considered the same problem as in (i), except under the
different loss function LO‘ Essentially, Peng tackled this problem,

60(5) = X, by Stein's technique.

of improving upon the usual estimator
An identity derived by Stein for the Poisson distribution says that,

for any function g defined on Rp,

where, recalling (1.2.11), e; represents the unit vector pointing
along the ith direction in RP. By writing the competitor to §O(X) as

go(g) + ¢(X) and using the identity (1.3.5), the expression

2

g 2X Ao (X) + o

(X)) (1.3.6)

?’@'
3><

was obtained where E [(ﬂ( (x)] = R(Q,§° + ?) - R(g,éo). Recall from

.(X-e.). Therefore, the prob-

(1.2.12) that Ai®i(§) denotes @1(§) 5 (X-e,

1
(<3

lem is reduced to the search for ®1""’®p for which & (¢(X)) < 0. By
using the interchangeability of the indices, (1.3.6) can be rewritten
in another form which depends on X only through Ni’ the number of
indices j so that Xj=i. After a considerable effort, Peng found a
solution to & (&(X)) < 0 Whén p > 3 with Eeﬁ-(®(x)) < 0 for all o.
Hence, a better estimator was obtained. ~

To deScr}be Peng's estimator, recall that g+ denotes max{g,0}.

Also denote the number of indices i such that Xi > 0 by #(X). Peng's

estimtor, §p, has the form
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(#0) - 2)"h(x;)
§.(X) = X, - , i=l,...,p» (1.3.7)
jre i 5
Fon2o)
=
where h{x.) is defined to be
X,
T
h(xi) = kz] T Xi—1,2,
= 0. otherwise

(ii1) The Poisson distribution with the loss function

L = )

. m=-2,-3,...
m

i D1

em(e -a
1 ity T

;
Tsui and Press (1977) obtained estimators which dominate the usual
estimator §O for p > 2, under the loss function L, m<-2. Essenti-
ally, they followed Stein's technique. As in (i) and (ii), the new
estimators correct §0 by shrinking toward the origin (i.e. each com-
ponent of the correction term ¢(X) is nonpositive).

Hudson (1978) generalized the technique of Stein, and applied it
to improve upon uniform minimum variance unbiased estimators under
the Toss function LO’ when the observations are independently from
the exponential (discrete and continuous) family. Here we will main-
ly discuss the discrete case. Suppose

X.

indep. - i :
Ks - flxilo;) = olog)tlx e, > i=1,...,p.

Denote the uniformly minimum variance unbiased estimator of 0, by
a(X.). (i.e. a(X,) = t(Xi~1)/t(Xi).) Hudson then established an
identity,

01F5(9(N) = EyTa(X;)glt-¢;)1,

which is the generalized form of (1.3.5). By use of this identity,



11

the problem of improving upon the estimator (a(X]),...,a(Xp)) of
(6],...,ep) was reduced to the study of the following difference

inequality:

f [2a(x)a 0, (x) + o5(x)] < 0 (1.3.8)

Following an argument similar to Peng's (1978) for solving (1.3.6),
a function o(x) = (®](x),...,®p(§)) was shown to be a solution to
(1.3.8) under the assumptions that a(-) is an increasing function and
that the dimension p is big enough. Therefore, a better estimator
was found under the given assumptions.

A direct application of Hudson's result to the negative binomial
case (i.e. the observations Xi 12999’ NB(r’ei)i i=1,...ip) gives an

H

1 P
F:Tiyqy...,F:Txng under

estimator & which dominates the usual one (

the Toss function Lo for p > 4. The new estimator, QH, has the form

(componentwise)
+
H Xi (#<X) - 3) h<Xi)
510 = 713 , ’ (1.3.9)
o
j=1
where #(x) denotes the number of indices j for which xJ > 0, and

)
X3 .
h(x;) = Z (r-1+k)/k, if x; > 0, and h(x;) = 0, otherwise.

Subsection 1.3.3. The Gamma Distribution
Berger (1978) obtained solutions to a general differential in-
equality and applied them to the gamma distribution. To demonstrate
the idea, consider the special case that the observations

indep. 2 .
Xi/f)]. Xy i=1,...,p.
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(Xi stands for chi square distribution with n degrees of freedom.)
Berger obtained a better estimator than the standard one,
§O(§) = X/(n+2), under the loss function Lm—Z' (When referring to
this problem, Lm_2 is used instead of Lm‘ The reason for this is to
facilitate the comparison between the results for the gamma distribu-
tion and those for the Poisson distribution that wi]} be developed.)
In search of a better estimator §B, Berger wrote §B as (compo-
nentwise)
;) = 60000+ 6.(x), =1, p.
By use of an identity derived in Hudson (1978), the problem was re-
duced to the search for ¢1""’¢p satisfying a key differential in-
equality which involves partial derivatives of ¢i(5) of different
orders. In general, the differential inequality involves many terms.
However, it was shown that higher order differential terms can usually

be neglected. This led to the consideration of the following inequal-

ity invloving only the first order differential terms and the square

term of di°
g =§{m”i (x) + b.x"62(x)} < 0 (1.3.10)
BT BT A AR ’ h
where b .,bp are positive constants depending on m. Berger obtain-

10
ed solutions to the more general differential inequality,

2
;) e ;%) + wi(x)e5(x)} < 0. (1.3.11)

—~
(324
~
~—
il
HD10
——
<
—~
>
—
JQ;

Berger's solutions to (1.3.11) are described below.

Let

X
_ i 1 . s .
g:(x;) = f V;Tfj'dt (indefinite integral)
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Suppose it is possible to choose nonnegative constants, 81,...,Bp,

d ..d_, and b such that

IEREEEL
wi(g)gf(xi)
E Z <K< w, i=1,...,p. (1.3.12)
b + d.jg.(x.)] J
jop 97
then for p > max 8. and
1<j<p
0<c<(p- max B.)/pK,
1<j<p
9;(x) = E ==, i=l,...p (1.3.13)
b + d.lqg. J
L JIQJ(XJ)I

is a solution to (1.3.11). It follows that a solution to (1.3.10)

is
( cx;m
whenm # 0, p > 2
m[b + E b.x"]
PETRRNIN
o{M (x) = J (1.3.14)
~C@nxi
whenm = 0, p > 3,
b + E bj(@nxj)2
\ j=1

for some small enough constant ¢ > 0. Heuristically, §O is thus dom-

inated by §B defined by

X,
5300 = 1 (1 + 4™ (x)).

This is actually shown to be the case for m=0 and p > 3, and for
m=-T1, 1 and p > 2,

Two surprising phenomena exhibited in the above situation are:
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(i) The correction terms (i.e. ¢§m)(g)xi/(n+2), i=1,...,p) might be
positive or negative depending upon the loss function Lm-Z' For m > 0,
the correction is positive. (§0 is pulled towards (=,...,»)!) For

m < 0, the correction terms are always negative. (§O is pulled

towards the origin.) For m = 0, §O is pulled towards a point.

(ii) The dimension needed for inadmissibility of §O depends on the
loss function. 1In most cases, §O is inadmissible if and only if

p>2.

Brown (1978) also observed Berger's phenomena in the problem of

estimating a normal mean under the loss function

ro.
- 1 2
Lr(g,g) = 121 e (ei"ai) )

It was shown that, under Lr’ §O is inadmissible if and only if p > 2
when r # 0. For r = 0, this reduces to Stein's case, so that §O is
inadmissible if and only if p > 3. (The admissibility of §° for

p = 1 was established in Hodges and Lehmann (1951), and for p 3_2‘in
Stein (1955).) Brown's improved estimators also pull §O towards
(0,...,=) for r > 0 and towards (-e,...,-=) for r < 0. For r = 0, the

better estimator (the James-Stein estimator) pulls §O'towards a point.

Section 1.4. Summary of Results Obtained in this Thesis

So far, all the discrete cases considered here have been con-
cerned with improving upon unhiased estimators. Since many reason-
able estimators are not unbiased, it is also interesting to see if
such estimators can be improved upon. To improve upon such estimators
under the loss function L, (cf. (1.2.4)), we follow the steps of

Stein's technique as described in subsection 1.3.1. Instead of
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reducing the problem to the study of a difference inequality, an
inequality of a more general type is encountered. (cf. (2.1.8) and
(2.1.9)). This is dealt with in Chapter II by writing a competitor,

8%, of 67 as 6%(x) = s%(x) + g(x)e(x), where

9(x) = (qy(x),...,q (x)), ¢(x) = (¢](§),--.,¢p(§)),

P
and gq(x)¢(x) = (q](§)¢](§),...,qp(§)¢p(§)). By choosing a suitable
9(5), the inequality of the more general type is then transformed into

a difference inequality of the following form:

v (08505 (x) + i (065 (003 < 0. (1.4.1)

i 1o

i=1
A similar transformation was developed in Berger (1978) for the con-
tinuous case and the squared error loss. Note that for estimators
that are unbiased it will be seen to be sufficient to choose

q.(g) =1, 1i=1,...,p. For such a situation the new estimator is
then §0 + ¢ which corresponds to the earlier work.

For the special case that Vi(§) depends on x; only, i=1,...,p,
a class of nontrivial solutions to (1.4.1) is found in Chapter II.
This special case occurs, for example, when the ith component of
§O(§) depends solely on Xio 1=T,...,p.

In Chapter III, typical applications of the general theorems
developed in Chapter II are given. For each specific application, a
broad class of estimators are given that dominate the standard esti-
mator. These classes of estimators include those obtained by
Clevenson and Zidek (1975) and Tsui and Press (1977). Alsc, Peng

(1975) obtained an estimator which is similar to one of our estima-

tors. For the negative binomial distribution, the uniformly minimum
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variance unbiased estimator is shown to be dominated by a class of
estimators under the loss function L for p > 3. (Recall that Hudson
found a better estimator under the 1;ss L0 only for p 3_4.)

Chapter IV contains inadmissibility results for some broad
classes of estimators. By choosing appropriate q{x), the theorems
in Chapter II can be applied even to cases in which the ith component
of §O depends on the entire X. In Section 4.1, a theorem is thus
developed which proves the inadmissibility of certain general types
of estimators. Further in Section 4.2, another theorem is establish-
ed, with the aid of q(x) functions, which essentially states that if
an estimator §O can be improved upon by the theorems in Chapter II,
and if the better estimator §* pulls §O towards the origin, then any
other estimator §'(§), which has ith component greater than or equal
to that of §O(x) for sufficiently large x and all i=1,...,p, is in-
admissible. (In this sense, 5% is an "upper bound" for the class of
admissible estimators.) It can be concluded that the estimators
considered in Section 4.1 are upper bounds of the class of admissible
estimators. Some interesting conclusions are that Hudson's estimator

&H (cf. (1.3.9)) and some of the Peng type estimators and Tsui type

estimators are inadmissible. Clevenson's estimator §C (cf. (1.3.4))
is also inadmissible if c(-) < & < p-1, for some constant %, which =
proves a conjecture of Brown(1974) concerning the inadmissibility of
some estimators similar to (1.3.4).

In Chapter V, some miscellaneous problems are considered. Sec-

tion 5.1 exposes the special role played by discreteness in the prob-

lem of improving upon standard estimators. A theorem is given which
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implies essentially that, under the loss function Lm’ m> 0, it is
impossible to improve upon a standard estimator in certain discrete
problems by always expanding it. This explains why‘the first aspect
of Berger's phenomena is not observed in the problem of improving up-
on a standard estimator of Poisson means, while the second aspect of
Berger's phenomena is observed. The problem of improving upon the
standard estimator of Poisson means under the loss function Lm’ m a
positive integer, is also compared to the related gamma estimation
problem. The similarity between the inequalities involved in these
two problems, the theorem described above, and Berger's results
(1978), seem to suggest that the standard estimator is admissible in
this particular case.

In Section 5.2, we consider the question of whether the lack of
a solution (except the zero solution) to the key difference inequal-
ity encountered, for a particular estimator §0 implies that §O is
admissible. An example is given to show that the answer to this
question is negative.

In Section 5.3, an example is considered in which it is desired
to estimate the unknown parameter ¢ = (6],62,63) based on three in-
dependent observations X],X2 and X3, wfth X]~Po(e]), X2~N(62,1), and.
X3/e3~x§. Under the Toss function Lm’ m = (0,0,-1), an estimator
dominating the standard estimator (X;’XZ’XZ/(n+2)) is obtained. The
implications of this example are discussed.

Some useful generalizations are given in Section 5.4.
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CHAPTER II
THE DIFFERENCE INEQUALITY AND SOLUTIONS

In the first section of this chapter, it is shown how the prob-
Tem of improving upon an estimator can be reduced to the study of a
difference inequality. This reduction follows essentially the steps
described in Example 1.1 of Subsection 1.3.71.

In Section 2.2, solutions to a fairlygeneral type of difference
inequality are given. In the remainder of this thesis, unless other-
wise stated, Xs and Xi will denote an integer and an integer valued

random variable, respectively.

Section 2.1. Derivation of the Difference Inequality

Let X be a one dimensional random variable having discrete

density
f(x]8) = o (8)t(x)eX, x=0,1,... . (2.1.1)

For convenience, t(x) is defined to be zero when x < 0. The follow-
ing two lemmas are the keys to obtaining the difference inequality.
For the case m = 1, these lemmas were proven in Hudson (1975) by
using changes of variables. The same method can be used to prove
the lemmas for the case where m is a positive integer. When m is a
negative integer, a special case of the Temmas for which X has

Poisson distribution has been established in Tsui (1977). The proof .
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below follows essentially Hudson's.

Lemma 2.1. Assume that X has density (2.1.1) with t(x) > 0 for

x =0,1,... . For any function g, defined on R, for which
E,(19(X)]) < =,

the following are true:

(1) (Hudson 1975)

£y L09(0] = £5lg(x-1) HH.
(2) £y [6"g(0)] = £, Lo(x-m} =L, (2.1.2)

for any nonnegative integer m.

(3) Equation (2.1.2) is true for negative integer m, if g(x) = 0
whenever x < -m.

Proof. From (2.1.1) and by change of variables, we have

£ L5001 = T "™ 9(0g (a12(k)

g(s—m)t(s—m)qu)es. (2.1.3)

i
~1

S=m

!
O

Ifm > 0, then t(s-m) for s <m. Hence (2.1.3) can be written as

it
o~18
[te]
w
]
=3
g
Camnn
w
3
g

m t{s- S
E,Lo7g(X)] t(s) @ (0)t(s)e
t(X-m)
= Ee[g(X—m) TN 1.
For m < 0, the assumption on g(x) in (3) implies g(s-m) = O when
s < 0. Thus by dropping the trivial terms of the summation in

(2.1.3), it follows that
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m 2 t(s-m)
B Log(X)] S-Z-o g(s-m) EIOR o(6)t(s)e

it

t(X-m)
EgLa(X-m) <755 ]

In Lemma 2.2, recall that gi denotes the ith coordinate vector

Q.E.D.

in RP as in (1.2.11).

Lemma 2.2. Let X = (X1,...,Xp), where X, 12933' fi(xilei) and f; is
given in (1.2.2) with ti(xi> > 0 for X5 = 0,1,..., and 1 = 1,...,p.
Then for any real-valued function g(x), defined on RP, for which

E@([g(x)i) < =, the following equation is true for any nonnegative

integer m: . ti(xi"m) -
Eg[eig(x)] = EQ[Q(X—mgi) "E;(Y;y— 1. (2.1.4)
Furthermore, when m is a negative integer, (2.1.4) is true, if
g(x],...,xi...,xp) = 0 whenever x; < -m.
Proof: By Lemma 2.1 and conditioning on x1,...,xi_],xi+1,...,xp,
(2.1.4) is easily obtained.
Now consider the loss function Lm’ and let §O = (6?,...,63) be
an estimator we hope to improve upon. Write a competitor 6* of §O as
0
§* =8 +9, 0= (®1""’®p)' Suppose that Ee(a?(g))z < « and

. EO[®§(§)] <o for all ¢ and i = 1,...,p, so that R(Q,QO) and R(6,8%)

are both finite, and

R(?a(§*) - R(9=§O) = E[Lm(9:§*(¥)) - Lm(9560(x))]: (2-]-5)

where

poomy 0 2 0 2
= 1oy 050w (0-0,1% - [600)-6,1%
B p m. 0 m, 2
= 1_;1 (20, (55(X)-0,)2,(X) + 0.2l (). (2.1.6)



If @i(x1,...,x. .sX_) = 0 when x. < -, then from Lemma 2.2, we have

i’ p i
m, 0 m 2 _
E@{Zei(cs].({()—ei)éi({() +0505(X)} = Eg[asi(cp].(z())], (2.1.7)
where
- 5.0 ti(xi~m1)
8 (e, (x)) = 285 (x-mse.)e, (x-me.) TE )
' ti(xi—mi—])
- 2@i(§-(mi+1)§i) __—E;T§;7~—
ti(xi—m.)
*os(x-m.e.) E0G) (2.1.8)
Define
p
8 (a(x)) = _21 8. (0. (x)). (2.1.9)
'|=
From (2.1.5), (2.1.6), (2.1.7), (2.1.8) and (2.1.9), we obtain
R(6,5%) - R(e,6%) = E L8 (2(X))]. (2.1.10)
Thus &* is better than §O, if for all x, o(x) is a solution to
£ (e(x)) <0, (2.1.11)

and for some set of x with positive probability for some g, strict
inequality in (2.1.11) actually holds.

It seems difficult to find a solution to (2.1.11). If, however,
we write ¢(x) as q(x)¢(x), where qi(§) > 0 for all x, then with appro-

priate choice of q(x), Si(@i(x)) can be reduced to an expression

which involves only a partial difference term and a square term of
¢1. We thus end up with only a partial difference inequality to deal
with. (This method was first introduced for a special differential
inequality in Berger (1978).) Theorem 2.1 describes explicitly how

this can be done.



22

Theorem 2.1. Let X be as in Lemma 2.2, and let §O be any estimator

of 0 such that R(Q,QO) < = for all &, under the loss function Lm'

Define, for all X with X5 >0,
Zti(xi—mi"])
£ o () = T k) ik mrTie)agey (xemyey)

ti(xi'mi)

* t.(x.)"'qf(f'm1§1)¢§(§—migi), (2.1.12)

it
where as and ¢, are functions defined on Ip(I is the set of all

integers.) Denote E £§ (¢1(5)) by &' (¢(x)). Under the loss func-
i=1
tion Lm’ the estimator ¢* = §O + g¢ dominates 60, if g and ¢ satisfy

the following four conditions:

(1) Ey(a;(06,(0)% <=, 4 =1,...,p;

(i1) Xy < -m, implies that ¢1(§) =0, i=1,...,p;
(1i4) qi(g) > 0 and

0]
165 (x-mze )t (x -ms)g. (x-m.e.)

-t Ogmme - g (x-(my+1)ey ) o, (x-mpes) < 03

(2.1.13)
(iv) & (p(x)) <0, ' (2.1.14)

for all x, with strict inequality holding on some set of x of positive

probability for some g.

Proof: From (2.1.8), we have
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t x -, )

{2 ————T—~7—-6 (x -m.e. )q 1(§-m1§1?

L,
i

ti(xi_mi—])
- 2 —W— q1()§-(m1+]) )}‘i) ( ~-m. e.‘)

t (x.—m -1)
+ 2 ~—-——T—~7——'q (m;+1)e; )as o, (x-m e;)

+ ag(xemyeg )of (xomyey) =gyt -
1 1

From condition (iii), we have £1 < &} , 1 =1,...,p. It follows

that

Together with conditions (i) and (ii), (2.1.10) and {(2.1.14), this

implies that

=
—
D
O
%
—
1
=
—
D
~—
1

& (9(X))
L (

AN
[l
CD

(X))

-

< 0. (2.1.15)
Also, Eeﬁ' (¢(X)) < 0 for some 6, so that §* is better than §0. Q.E.D.
Note 1.~ Conditions (i) and (ii) are easy to check. To apply the
theorem, we will choose q],...,qp, independent of ¢1,...,¢p, so that
(2.1.13) is satisfied, and then concentrate on finding solutions to .
(2.1.14).
Note 2. For the situations considered by Clevenson and Zidek (1977),
Peng (1975), Tsui and Press (1977) and Hudson (1978), it is suffici-
ent to choese qi(x) =1, 1 =1,...,p. This is due to the fact that
the ith component of the estimator to be improved upon is

53(X) = t;(X;-1)/t5(X;)
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which is the uniformly minimum variance unbiased estimator of ei'
Therefore, the left hand side of (2.1.13) is always zero for
qi(§) = 1, no matter what mi's are.

Note 3. By iteration, i1t is possible to determine a 9(§) so that

equality in (2.1.13) is actually achieved. For the case that 6?(5)

depends on X only, £; will have the following form:

§ () = v (X856 (x-m ). (2.1.16)

£ 09
For such £,;, nontrivial solutions to &' < 0 are given under certain
conditions in Section 2.2,
Note 4. In more general cases, 6? depends on the entire x. The
choice of qi(g) by iteration, as in Note 3, will then give a p
similar to (2.1.16) except that the Vs and wi will now depend on the
entire x. Unfortunately, solutions to &' < 0 for such general @%
are very hard to find. If, however, it is assumed that ¢i(§) < 0,
i=1,...,p, we can choose a simpler g(x), independent of ¢(x),
which satisfies inequality (2.1.13) (but not necessarily equality).
The simple g(x) will give a @; of the form
1

8! (6 x), (2.1.17)

for which nonpositive solutions ¢1(§), i=1,...,p, to &' < 0 can
be found. In Chapter IV, it will be shown in detail how such q(x) °
can be chosen.

Note 5. In either of the situations described in Notes 3 and 4, the
following difference inequality is encountered:

p
DTRG0V, gdagog (o) ws ()45 ()] < 0. (2.1.18)
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If F(x) > 0, dividing both sides of (2.1.18) by F(x), it shows that
(2.1.18) can be reduced to
121 (v, ()05 (x) + s (x)020007 < 0, (2.1.19)
where wi(g) is, of course, different. (When F(x) can equal zero, a
similar reduction can be worked out with a little modification.) The
inequality (2.1.19) is similar to (1.3.11), although the former is a
partial difference inequality while the latter is a partial differen-
tial inequality. Solving (2.1.19) is unfortunately not so easy as
solving (1.3.11). The solutions obtained in the next section, how-
ever, are similar to Berger's solution (1.3.13) to the inequality
(1.3.11).

An easy corollary follows from the proof of Theorem 2.1. This
corollary will be needed in section 4.2.
Corollary 2.1.1. Suppose that all the notation and conditions in
Theorem 2.1 remain the same with the exception that condition (iv) is
now replaced by the following condition (iv)'

(iv)' & (¢(x)) <0 for all X. : (2.1.20)

Then ¢* is as good as 6°.

Section 2.2. Solutions to the Difference Inequality

As pointed out in Section 2.1, the key to the problem of improv-
ing upon inadmissible estimators is to find a solution to £‘(@) < 0,

where

5 D ;95 (x) + w (x)¢ ( )} < 0. (2.2.1)

ze

In this section, it is assumed that for
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i=1,...,p, Vi(xi) > 0, w1(§) > 0,

and that there exist integers a7""’ap such that

violx:) >0 if x, > a, (2.2.2)

it i i
These conditions will be satisifed by problems normally encountered.
(Assuming Vi(xi) to be nonnegative does not lose very much generality,
since the sign of v; can be changed by replacing b5 by -0 in (2.2.1).)

In the following, hi is taken to be

<>§i1
h.{x.) = X, > o,
it K=o Vi(k) i="i
= 0 otherwise, (2.2.3)
and #a(g) is defined as
# (x) = the number of {i: Xs z_ai}, (2.2.4)

(}
where o = (al""’ap)'
We will interpret 0/0 as 0 in the remainder of this paper. The
following theorems provide solutions to (2.2.1) under varying condi-
tions.
Theorem 2.2. Let d](-),...,d (+) be nondecreasing functions, defined

p
on the set of integers, such that for i

H

1,....p, the following con-

ditions are satisfied:

| v

(i) d.(x,) > 0if X5 > oy, and di(xi)

i X 0 for all X553

(i1) there exist positive constants 81,...,Bp, such that

Vi(xi>hi(xi'])Aidi(xi) j_Bidi(x1—1), (2.2.5)

for all X5
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(117) for all x = (x;s...,x ) such that # (x) > max 8, implies
P ¢ 1<3<p |

i=] <K <w (2.2.6)

for some K > 0.

Define D = E dj(xj)’ and assume that c{x) is a function which is
j=1

nondecreasing in each coordinate and which satisfies

0 <cl(x) < (# (x) - max B.)+/K. (2.2.7)
& 1<j<p
If p> max ., the function ¢(x), defined by
1<j<p o
-c(x)hs(x) ,
¢i(5) = 1=1,....p, (2.2.8)

is a solution to (2.2.1). Furthermore,

§'(9) < ~c()(# (x) - max 8. - ke(x))¥/D, (2.2.9)
) T 1w Y )
with strict inequality for those 50 = (x?,...,xg) for which
0 )
hi(xi'])Aidi(xi> >0 (2.2.10)

for at least two i's and c(go) # 0.
Proof. Because of the monotonicity of c(x) with respect to each
coordinate,
-c(x)h,(x )
b5 (x) = o (——F )

1
-h.(x.)
<clx)d (—52) .

Define Di = di(xi—]) + ) dj(x.). Then,
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1t follows that

p v.(x.)h.(x.,-1)a.D
L) < o (A, ) 121 — 1Di —
) Eﬁél_(_# (x) + E Vi(xi)hi(xij])Aidi(xi) .,
T oop ¢ 49 g
(2.2.11)

p .
where D' denotes ) dj(xj—l). In the last transition, the inequality
J=1
is actually strict for those x for which c(g) # 0 and two of the xi's
satisfy hi(xi'1)Aid1(Xi) > 0. It follows from (2.2.11) and (2.2.5)

that

121 v (%0800 () < C[()X)(ﬂ?fp 85 - #,(0)). (2.2.12)

p
By (2.2.5), we have wi(x)¢§(x) i_Kcz(x)/D, which, together with
j=1 N N )

(2.2.12), implies that

51 (g) « SEMkex) + max g - £ (x)).
1<j<p -

Since,by (2.2.7),

c(x)(Ke(x) + max g, - # (x))
1<jsp 3¢

= - c(x)(# (x)- max B.—Kc(x))+,
R LT
(2.2.9) is established. Q.E.D.

Note 1. Theorem 2.2 is true even when p < max g.. However, in
1<j<p

this case, the b in (2.2.8) are always zero, which gives an unin-

teresting solution to (2.2.1). Therefore p>max B. is assumed in

1<J<p
Theorem 2.2.
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Note 2. It is easy to choose the di('), so that they are nondecreas-
ing, nonnegative, and satisfy (2.2.5). Indeed, the following is such

a choice:

*5 B
d.(x.) = n (1 + ! ) X > . 41
it k=a1+1 vilk h, (k-1 -
= ] X. = a
i i
= 0 otherwise (2.2.13)

Unfortunately, this choice is too complicated to be useful. Hence,
in the following corollaries, efforts will be made to obtain simpler
di(') for special cases.

Note 3. From (2.2.5), it is clear that a larger B; allows a Targer
di’ and hence (2.2.6) is easier to satisfy. But then the dimension,
P, required for nontrivial solutions to the inequality (2.2.1), is
higher. Also, a larger di(') gives a Targer upper bound in (2.2.9);
and the corresponding new estimator will have a smaller improvement
in risk. (cf (2.2.9) and (2.1.15)) For these two reasons, we will
choose B; as small as possible.

The following corollaries and examples illustrate the use of
Theorem 2.2 in solving the difference inequalities. 1In each case,
di is given explicitly. The first corollary is applicable when the
vi's are increasing functions. It also tells more about how the
choice of the di can be made.

Corollary 2.2.1 Let &', Vis Wy and o denote as in (2.2.1) and

(2.2.2). Suppose that v .,vp are increasing functions and that

1°°-

Bys...5B, are positive integers. If

p

di(xi) = bihi(xi)hi(xi+1)‘"hi(xi+8i"])+b0’ (2.2.14)
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for i = 1,...,p and some constants bO > 0 and bi > 0, then (2.2.5)
is satisfied. If, in addition, (2.2.6) is satisfied for this choice

of the di’ then ¢],...,¢p, as in (2.2.8), is a solution to the in-
equality (2.2.1), providing p > max B8..

1<j<p
Proof: Clearly di(xi) is increasing and greater than zero for

Xj > oy Therefore, by Theorem 2.2, it is only necessary to show

that (2.2.5) is satisfied. Now (2.2.5) is trivial for x.

< ..
j 2o

1

For x. > a. + 1, By > 2, we have

o
0.
—
>
N
H

bi[hi(xi+51"])"h1(xi"])]hi(xi)""hi(xi+81"2)

b.8.
ivq
5—????;7'hi(xi)"'hi(xi+81—2)'
Consequently, for Bi > 2,

Vi(xi)hi(xi'])Aidi(xi) 5—Bibihi(xi'])hi(xi)"‘hi(xi+si'2)

E-Bidi(xi"])‘ (2.2.15)
For Bi =1, it is clear that

Vi(xi)hi( 1-1)Aidi(xi) = bihi(xi"]) i-di(xi'])' Q.E.D.

Note that the di in (2.2.14) are similar to the functions

By
bohy ' (x;) + by

dj can be chosen to be (or at least to be similar to) a polynomial -

In all the problems discussed in this thesis, the

function of hj so that (2.2.5) is satisfied.

In applying Theorem 2.2, we assume at first that the di have the
form hfi(xi), and choose 8, as small as possible so that (2.2.6) is
satisfied. For such B;» we modify the di(by using the form (2.2.14)

k .
or by adding extra positive terms of the form hi1’ ki < Bi) so that
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(2.2.5) is satisfied. Solutions to (2.2.1) are then given in (2.2.8).
If, no matter how large Bs is, (2.2.6) is never satisfied, by this
theorem, it seems unlikely that solutions to (2.2.1) can be found.
Indeed a1l admissible estimators have a difference inequality for

B .
which (2.2.6) is never satisfied for di(xi) = hi](x.

1) and any B -

For the case 0 < 8.

; < 1, Theorem 2.2 can be reduced to the

following simple corollary.
Corollary 2.2.2 Let &', Vi W and o denote the same as in (2.2.1)
and (2.2.2). For any constants bO’bi’ and Bs such that bO 3»O,bi >0

and 0O i_Bi <1, 1i=1,...,p, the function

8

d.(x.) = b, + bihii(xi) (2.2.16)

Y7 0
satisfies (2.2.5). 1If, in addition, (2.2.6) is satisfied for this
choice of the di’ then ¢, with 9, as in (2.2.8), is a solution to the

inequality (2.2.1), provided p > max 8..
1<j<p
Proof: Again, it is only necessary to show that di satisfies (2.2.5)

for X; > as + 1. Now B < 1, which, together with mean value theorem

impliies

o))

11 1

1}

v O hs (x=1) asds (x4)

RIS R v (x5 )0y (x5 =1) a4 (b

[ A

B5
8DV (xg0hy T (x;-1)Ach ()

B4
Bybahs (x5-1)

| A

Bidi(xi-n. Q.E.D.

Example 2.1. In Chapter III, it will be shown (See (3.1.9), (3.1.10)
and (3.1.11)) that the problem that Clevenson and Zidek (1973) con-

sidered (refer to Section 1.3.2) can be reduced to the study of the
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following inequality:
) ‘
Z {L\ d) X ‘H ¢ } < 0. (2217)
i=1

Using the notation of Theorem 2.2, note that Vi(xi) =1,

wi(g) = T/Z(xi + 1), and a; =0, 1 =1,...,p.

Hence

hi(xi) = X, + 1 X >0

Since, for #a(g) > 1, we have

2
R hi ()7 0400
L2 T2
i=] E hj(XJ)
J=1
(2.2.6) is satisfied with 6. = 1 and K =% . It follows from
Corollary 2.2.2 that if p > 1, then
-c(x)(x+1)
¢1( = i=1,....p,
E x +1)

is a solution to (2.2.17) for any nonnegative number bo and any func-

tion c(g) increasing in each coordinate which satisfies
+
0 < c(x) 5.2(#u(x)—1) .

Note that #a(g) is equal to p if it can be assumed that x.

i > 0,

i=1,...,p.

I't happens quite often especially for the negative binomial
distribution that we encounter a difference inequality of the form
(2.2.1), with 1/vi(xi) 5-Mi for all Xs > a. In such a situation,
and for any integer Bi’ di can be chosen to be a polynomial function
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of hi(xi)’ which has order B and positive coefficients, so that
(2.2.5) is satisfied. However, since the applications in the follow-
ing chapters involve only the case By = 2, the following corollary is
restricted to deal only with this case.

Corollary 2.2.3 Let &', Vi W, and o denote the same as in (2.2.1)

and (2.2.2). If, for some constant Mi > 0,

VTT;“j‘ i_M- for all X; > o, * 1, (2.2.]8)

then

d.(x.) = hf(x.) +boh (X)) + by

satisfies (2.2.5) for any constants, bo,b],...,bp such that bi 3~Mi
and bO > 0. If, in addition, (2.2.6) is satisfied for this choice of
the dj(xi), then ¢1""’¢p’ as in (2.2.8), is a solution to the in-
equality (2.2.1), provided p > 2.

Proof: Again, it is only necessary to prove that (2.2.5) is satisfied
for x. > oa, * 1. Now,

i

-~ b.
1

= 1 + + ——Y‘”)
idi(xi) - V;rg;yh[hi(xi) hi(xi_])] Vi Xi
It follows that

hi( 1_1)V1(X1>Aidi(xi) = [hi(xi'])hi(xi) + h?(xi—l)} + bihi(xj—l)

2 hi(xi_])

1 1
< 2h2(x.=1) + (M. + b.)h.(x.-1)
< 2hi{x; i by)hslx;
5_2di(xi-1). Q.E.D.

Example 2.2 Assume X; LQQEB' NB(r,ei). The uniformly minimum vari-

ance unbiased estimator of ei is then xi/(r—1+xi). It will be shawn
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in the next chapter, that, for improving upon

X. X
{ o B e S
r—1+X] Pt r—1+xp

under the loss function LO’ the key difference inequality to solve is

I i (x) + - 85(x) 0 (2.2.19)
) r-THx; B;0;1%) + 5 ¢ lx)p < UL .2.

=1

—

Here, Vi(xi) = xi/(r—1+x1), w.(x) = R 1 and #@(5) denotes

i
number of 1 such that X; > 1. Also,

X,
i
kK+r-1
ho(x,) = } 1
i k=1 K i
= 0 otherwise .
1 -l e
Since R <, for x; > 2, it is clear that (2.2.18)

is satisfied for M = (r+1)/2. Let

d.(x.) = hf(x.) b h(x:) + by s

where b > M and by z 0 are constants. Clearly,

2
g h-(x.)
LR ) I |
2 - 2
E d; (x;)
i=1
Hence, by corollary 2.2.3, for any function c(x) which is nondecreas-
ing in each coordinate and which satisfies 0 < ¢(x) 5_2(#a(5)—2)+, it

follows that

d),l(i(): p ) s T'=1:-~:P:
jZ]{hj(xj) +b hj(xj) + byl

is a solution to (2.2.19), provided p > 3.
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CHAPTER III

TYPICAL APPLICATIONS

In this chapter, the theorems in Chapter II are used to improve

upon certain standard estimators under losses of the form Lm' To be

more precise, let X be as in Lemma 2.2, and let

0 _ ;.0 0

00 = (6500)se800X),
where 6?(Xi) is the usual unbiased estimator of 0. (i.e.
a?(xi) = ti(xi'1)/ti(xi)’ where recall 0/0 is interpretated as 0.).

Under the loss function Lm’ we will develop classes of vector func-

tions q(x) = (q1(5),-.-,qp(§)) and ¢(x) = (¢1(§),ﬂ--,¢p(X)) which
satisfy the four assumptions in Theorem 2.1. It will follow that

§O + q¢ dominates §O and hence a class of better estimators will have
been found.

Assumption (iii) in Theorem 2.1 indicates that for

xi) =t (xe-1) /7t (x4, (3.1.1)

it is sufficient to choose qi(g) = 1, since, by plugging such 5?(x1)
into (2.7.13), it is clear that the right hand side of (2.1.13) is
always zero if qi(g) = 1, no matter which loss function L, ¥s assumed.

To satisfy assumption (iv) in Theorem 2.1, it is necessary to

find a nontrivial solution ¢1""’¢p to

L' (¢) = ‘E] £%(¢i) < 0, (3.1.2)
z iz
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where, from (2.1.12) and the fact that qi(x) =1, £% now has the form
Zti(xi-mi_])
b1 lo () = — 1y a4 (x-myey)

101

+ “ETT%T7~__¢§(§—mi§1)' (3.1.3)

In the following two sections, solutions to (3.1.2) are obtained
by applying the theorems in Section 2.2. A1l the solutions below will
be bounded, so that assumption (i) in Theorem 2.1 is automatically
satisfied. Furthermore, it can be easily checked that all the
¢T’°'°9¢p below satisfy assumption (ii) in Theorem 2.1. Therefore,
in applying Theorem 2.1, we only describe the difference inequality
and how the solutions are obtained. Also, ih the following we will
Took for solutions to-% @'(¢)_i 0 which is, of course, equivalent to
£ (¢) < 0.

In Section 3.1, it is assumed that the Xi's are from Poisson
families, while in Section 3.2, the Xi's are from negative binomial

families.

Section 3.1 Poisson Distributions

(6.), i=1,...,p,

indep.P
o'’i

In this section, it is assumed that Xi
and hence that ti<xi) = 1/x1! (using the notation of Theorem 2.1).-

Under the loss function Lm’ where m is some negative integer,
§O can also be improved. This will follow from Theorem 3.1, in
which the loss function is assumed to be Lm . In the remainder of

the thesis, let yij denote Kronecker constant, i.e.
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\..=-I i =3
{1J J

0 otherwise. (3.1.4)

Furthermore, for any function c(x), we will use, "c(x) t 0" to denote
that c(x) is not identically zero.

Theorem 3.1 Let m = (m],...,mp), where the m. are nonpositive
integers, and let ns and o denote -m. and (mi + 1)+ respectively.

Assume that p > max (a, + 1). Under the loss function L_, the usual
1<j<p ! ?
stimator ﬁo(x) = x is inadmissible. Indeed a better estimator can

be described as follows: Define

X .
7] 1
- X, >
g 2T k i =
hi(x1> = ifn, =0
0 otherwise, (3.1.5)
and
l'(x. +1)...(x: +ny) X. > 1
n; 1 i i i -
hi(xi) = if n, > 0
0 otherwise,
Also, define, for some constant by > 0,
di(x;) = ho(x;)hy(x, + 1) + by ifn, =0 (3.1.6)
_ 1 .
== hi(xi) + b0 if n, > 0

.i
Let #a(g) denote the number of indices i for which x, > a.. For any
nonnegative number by and any function c(x) which is nondecreasing in
each coordinate and satisfies c(x) 0 and

0 < c(x) < 2(# (x) - max (o, + ]))+, (3.1.7)

S 1<j<p
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§O is dominated by §O(5) + ¢(x), where

Proof: By (3.1.1) and (3.7.2), we have to obtain a solution

¢],...,¢p to the following difference inequality:

Jg £ (p(x)) = 1é)][vi(x.i)AT-l,b]-(gd + wi(xi)wi(g)l < 0, (3.1.9)

where

b () = 05 (xy + ngel), (3.1.10)
and

V1(xi) R

if n; = 0

W (Xi) = 1/2 (3.1.11)

o X.1

To find a solution to (3.1.9), we will use Theorem 2.2 as a guide.
Note that vi(xj) > 0 if X; > ags and it follows from (3.1.5) and

(3.1.11) that

= 0 otherwise,

)

When n, = 0, v.(x;) is increasing. By Corollary 2.2.1, di<xi



satisfies (2.2.5) with B

satisfies (2.2.5) with B
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2. Also by Corollary 2.2.2, di(xi)

1 when n, > 0. Therefore assumption (ii)

of Theorem 2.2 is satisfied with Bi = o, + 1. It is also clear that
W, (x)h2(x,) = h2(x.)/2 < d.(x.)/2  ifn. =0
AN A B i — i i
and
W, (020 ) = he(x.)/2n, < d.(x.)/2 ifn. >0
A I T Y i — "7 i :

Therefore, assumption (§ii)

of Theorem 2.2 is satisfied, and hence a

solution to (3.1.9) is w],...,wp, where
~c(x)h, (x,)
b = o, i=1,p, (3.1.12)
) dj(x.)
j=1

Also, it is clear that

(3.1.13)

E@@"(?) <0

for all 9. Theorem 2.1, thus implies that §0 + ¢ dominates §O. Q.E.D.

Corollary 3.1.1

(Clevenson and Zidek 1975)

Assume that p > 2.

Under the loss function L—l’ §O(X) = % is inadmissible. Indeed for

any constant bO > 0, and any function c(g) which is nondecreasing in

each coordinate and satisfies c(x) # 0 and

0 < c(x) < 2(p-1), (3.1.14)
§ + ¢ dominates §O, where ¢ = (¢T""’¢p) and
"C(X'ei)xi '
6. (X) = . (3.1.15)

i

bg + p-1+ E X

=1
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Proof: Clearly m, = -1, n, =1 and a; =0, i =T,...,p. Hence
#u(g) is the number of indices i for which X; > 0. It is clear that
¢; in (3.1.8) is reduced to the form in (3.1.15) with a diffefent bO’
To complete the proof, it is oniy necessary to show that the condi-
tion (3.1.7) is equivalent to (3.1.14). Now, for each c(x) satisfy-
ing (3.1.74), we will design a version c¢'(x) of c{x) so that (3.1.7)

is satisfied (c'(x) is also nondecreasing in each coordinate and not

)x.» 1 =T1,...,p with prob-

identically zero) and c'(x-e.)x, = c(g—g] ;

i’
ability one. Therefore ¢1""’¢p remain the same with probability
one even if c is replaced by c¢' in (3.1.13). This proves that (3.1.14)
is in fact equivalent to (3.1.7). Indeed let A = {(x],...,xp):xiz_O}
and
c'(x) = c(x)I,(x). (3.1.16)
Since with probability one, X; >0 1i=1,...,p, it is clear that

with probability one,

—e)x. = c'(x-e)x,  §=1,....p.
clx-e;hx; = c'(x-eg)xs p

Now c’(g) is nondecreasing in each coordinate and is not identically
zero. Furthermore c'(§) satisfies (3.1.7) hence we are done. Q.E.D.
The better estimators obtained in Clevenson and Zidek (1975)

correspond to those §O + ¢ with c(x) depending on X only through
p

) X,

i=1

The main idea in the proof in Corollary 3.2.1 will be used in
other occasions. Therefore a more general lemma is established here.
Lemma 3.1. Assume that c(x) is defined on 1P (I is the set of all

integer.) which satisfies the following conditions:
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(1) clx) £ 0;

(i1)  c(x) is nondecreasing in each coordinate;

(iii) 0 < c(x) i_no(p-e), where g and g are some positive constants.
Let hi(xi) be as in (2.2.3) with o = (0,...,0), and let c'(x) denote
c(g)IA(x), where A = {(x],...,xp): X, > 0}. Then, conditions (i)

and (ii) above are satisfied when c(x) is replaced by c'(x). Besides,

the following are true:

(>~<)~B)+ for all x c1P.

(i14)' 0 < c'(x) 5,n0(#

o

(iv) c(g-nej)hj(xj—n) = c (g-ngj)hj(xj-n), J=1,...,p for all

x € A and any integer n.

Proof: It is obvious that c'(x) satisfies conditions (i) and (ii).
If x €A, then c'(x) = c(x) and #a(g) = p, condition (iii)' is thus
equivalent to condition (iii) an& hence is satisfied. If x ¢A, then
c'(x) = 0, and condition (iii) is clearly satisfied. Therefore con-
dition (iii)' is satisfied for all X c1’. To prove condition (iv),
assume that x €A. For any index j, if xj > n, then (f-nej) €A and
condition (iv) is true since c'(g—nej) = c(x-ne.). If X; <M, then

J

hj(xj—n) = 0 and hence condition (iv) is trivially satisfied. There-

fore, condition (iv) holds for all X €A. Q.E.D.
Corollary 3.1.2. (Tsui and Press 1977) Assume that p > 2. Under
the Toss function L,» where m = -n is some negative integer, 60(§)=§.
is inadmissible. Indeed, for any nonnegative number b0 and any func-
tion c(x) which is nondecreasing in each coordinate and satisfies
c(x) £ 0 and

0 < c(x) < 2n(p-1), (3.1.17)

§O is dominated by §o + ¢, where ¢ = (¢1""’¢p) with
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;c(g-ngi)h(xi—n)
b5 (X) = : (3.1.18)

p
by + jZ]h(Xj_nYij)

and
h(x) = (x+1)...{x+n) if x>0

=0 otherwise.

1}
o
—

il
—

Proof: Clearly o -.»p. Again the main step of the
proof is to show that the following assumption about c(x),

0 <clx) <2n(d (x) - 1Y, (3.1.19)
can be replaced by (3.1.17). Howe;er, this is an immediate result of
Lemma 3.1, Q.E.D.

The better estimators obtained in Tsui and Press (1977) corres-

pond to those §° + ¢ with c(X) in (3.1.18) depending on X only through
0 N z .

) X

i=1

For the loss function LO’ the following corollary is a direct
result from Theorem 3.7.
Corollary 3.1.3. Assume p > 3, under the loss function LO’ 60(¥) = §
is inadmissible. Indeed, a better estimator can be described as
follows: Denote the number of indices i for which X; > 1 by #1(5).
Define
i

hix.) =

; X, > 1
k

1
K i

i o~1 0 X

1

it
faw)

otherwise
Let c(§) be any function which is increasing in each coordinate and
satisfies c{x) % 0 and

0 < c(x) < 2(#(x) - 2)F
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Then, for any constant bO’ the new estimator &* with the ith

component,
s5(X) = X, - cn ) (3.1.20)
J100 1 p
bO + jz]h(xj)h(xj+1)

is a better than 60.

The improved estimator obtained in Peng (1975) (refer to (1.3.7))
is very similar to &* with c(g) = (#](5)—2)+ and bO = 0.

As another interesting application of Theorem 3.1, consider the
situation p = 3 and m = (0,-1,-2). By Theorem 3.2, §°(X) = X is in-
admissible and is dominated by §O + ? with ¢; as in (3.1.8). The
functions h

h2,h3 and d, ,d d3, which determine the form of the

1 1°%2°
correction terms 9;, are given in (3.15) and (3.1.6). It is clear
that h] and d] are similar to h(xi) and hz(xi) in Peng's estimator
(cf. (1.3.7)). Also, h2 and d2 have the same form as in Clevenson's
estimator (cf. (3.1.15)), and h3 and d3 are as in Tsui's estimator
(cf. (3.1.18)). Note that the choice of hi and di depends only upon
m, (and not mj, j#1). A similar property is also observed in the
negative binomial case (Section 3.1), as well as in the more general
case in which the densities of the Xi are not of the same form (Sec-
tion 5.3). 1In this general situation, the choice of hi and di depends
on m, and the density of Xi(i.e. ti(xi))’ and not on the other
coordinates.

In the earlier work for the Poisson case, the proofs that the
estimators presented (for example in Peng (1975), Clevenson and Zidek
(1973) and Hudson (1978)) are better than GO(X) = X are heavily

based on the symmetry of the problems. (i.e. the m; are all equal,
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and the Xi’s have the same type of distribution.) Theorem 3.2 shows,
however, that Stein's effect seems to be a property more basic than

symmetry. For the continuous case, this was also observed in Berger

(1978).

Section 3.2. Negative Binomial Distribution

In this section, assume that Xi 1HEEB‘NB(r1,ei), where rs is

some positive integer, i = 1,...,p, and hence that

One of the classical estimators of 6 = (61,...,6 ) is

X

) e e ]
p p

~ r]—1+X1

where Xi/(ri-]+xi) is the uniformly minimum variance unbiased estima-
tor of 61. For p = 1, §0 is admissible under the square error loss.
(See Blackwell and Girshick (1954) p. 307) and is hence admissible
under any loss function of the form L(6,a) = v(e)(a-e)2 with v(e) > 0
for all 9.

Our goal here is to improve upon §O under the Toss function Lm.

Therefore, a solution to &' (¢) < 0 (defined in (3.1.2)and (3.1.3)).

{/ri+X1~]
Since ti(xi) = \ ri"] >

» the difference inequality %—ﬁ'(¢) <0

has the following form:

8 (g) =
- 1

ro| —

][Vi(xi)Ai¢i(§—mi§i) + Wi(xi)¢§(§—mi?i)],i-o’ (3~2-])

IR ek w]
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where
r.+x, -1
i ﬁ i
g | . +
vi(x.) | ; , if X 3_(mi+1)
r1~]
» otherwise, (3.2.2)
and
+
2 if Xy > m,
= 0 otherwise. (3.2.3)

When m. =0 and re=r.i= 1,000, Vi(xi) = xi/(xi+ri-1) and

W1<Xi) = 1/2. The corresponding difference inequality (3.2.1) was
solved in Example 2.2 by applying Corollary 2.2.3. The same corollary
is also applicable to the general case as seen in the following

theorem.

In the theorem below, define for i = 1,...5p,

ag = (m + 1), (3.2.4)
Xi ri+k—1 ri+k—m.-2
hi0g) = ro-1 ro-1 Xy 2y
=0 1
;
=0 otherwise, (3.2.5)
ri+a1
M, "]F < (3.2.6)
i r.-1
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o= 1 if m. >0
(3.2.7)
r.-m.~1
i
ri~1 otherwise,
and
K = max {Ni} . (3.2.8)
1<j<p

Theorem 3.2. Assume that p > 3. Let m = {m .,mp), with mi being

120
any integer. Under the loss function Lm’ the estimator

o XT X
S0 = T s T
1T PP

is inadmissible. Indeed, a better estimator can be described as

follows: Let # (x) denote the number of indices i for which X > 0.

o
Furthermore, Tet b, > 0, bj > Mj’ J=T1,...,p, and c(x) be any func-

0
tion that is nondecreasing in each coordinate and satisfies c(x) 0

and
0 < c(x) < 2(# (5)—2) /K. (3.2.9)

- e o

Then, 5% is dominated by 59 + ¢, where ¢ = (¢],...,¢p) and
-c(X+m,e, )h.(X,+m,)
9. (X) = A Bk R R (3.2.10)

2

-l
=
D
4
it ~10

Proof: In applying Theorem 2.1, it remains only to show that ¢ is a
solution to (3.2.1). Corollary 2.2.3 is applicable, since it is

clear that, for m. > 0,
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. (y1.+x.~m1.—1)"'(y1.+x1--1)
max Gy T max (x.om.) X
Xiz-u'iﬂ iV Xs>a.+] i i i
v, .+
1 i
= F. N
i ri—]

and for m, < 0 and Xi 2 o

for X; 2 ag + 1, and so (2.2.18) 1is satisfied. SimiTar]y, an upper

bound on wj(xi) in (3.2.3) is

p
1/2 if m; >0
Wi(xi) §_€
r=m, =1
r.;1 2 otherwise,
& 1
or eqguivalently,
wolxg) < No/2 . (3.2.12)
Let
_C(Z‘()hi(xi)
(%) = ——, (3.2.13)
_ 2 .
where D = b, + % {h5(x.)+b.h.(x.)}. It is clear that
0 421 NN
2
_E W, (x: )03 (%) _E h2(x,)
1=l 5 < - max {N,} 1=] 5
1<j<p
< gk
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so that (2.2.6) is satisfied. Hence, by Corollary 2.2.3,

¢i(§“mi?i) = wi(g) satisfies (3.2.1), with strict inequality on a set

of x of positive probability. Q.E.D.
The corollaries below follow immediately from Theorem 3.2.

Corollary 3.2.1 Assume that p > 3. Under the loss function LO,§O is

inadmissible. Indeed, let #1(5) denote the number of indices i for

which X5 > 1, and define

;1 r.-T+k
h(x,) = x, > 1
i KT k i
= 0 otherwise.

T+r,
Furthermore, let bO > 0, b. > 23 and c(x) be any function nonde-
creasing in each coor d1nate, which satisfies c{x) ¥ 0 and
0 < c(x) 5_2(#1(x)—2) Then, ¢° is dominated by §° + ¢, wheré
¢ = (¢],,..,¢p) and

~c()h(X;)
0. (X) = . (3.2.14)

j
E {h (X + bjh(Xj)}

Note that Hudson (1978) proved that §O is inadmissible under the
loss funciton LO when p > 4. His improved esimator was given in
(1.3.9).

Corollary 3.2.2 Assume that p > 3. Under the Toss function L 458
is inadmissible, Indeed, let by > 0, bj >1, 3= 1,...,p, and c(x)
be any function nondecreasing in each coordinate, which satisfies

b 0 and

2(p-2)
0 < c(x) i~max{r],...,rp} . (3.2.15)

Then, §% is dominated by &° + b, where ¢ = (¢1""’¢p) and
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X) = 11 : (3.2.16)

+ bj(xj+]-yij)}

Proof: By Theorem 3.2, s + ¢ dominates §% if c(x) satisfies

0 i_C(f) 5‘2(#9(5)—2)+/max{r1,...,rp}.

where o = (0,...,0). Lemma 3.1 then implies that this condition is
equivalent to (3.2.15). N.E.D.
Corollary 3.2.3 Assume p > 3. Under the loss function Lm’

m=-2,-3,..., §° is inadmissible. Indeed, define

n = -m
K max ri+ni—1
1<i<p ri']

Xi <k+])...(k+n_]) .
k=0 (k+ri).,.(k+n+r1_2) 5 2

I

=

—
>

N
i

= 0 otherwise.
Let bO > 0, bj >1, 3 =1,...,p, and c(x) be any function nondecreas-

ing in each coordinate such that c(g) £ 0 and

0 < c(x) < 2(p-2)/K. (3.2.17)
Then §° is dominated by ° + b, where ¢ = (¢1""’¢p) and
-(cX-ne. )h.(X.-ne.) :
9;(X) = - 1L 1 (3.2.18)
o ol ) + b.h.(X )}
+ AX.-ny..) + b.h.(X.-ny..
0 121{ 3T NERRANIRER

Proof: An argument similar to the proof of Corollary 3.2.2 shows

that (3.2.9) is equivalent to (3.2.17). Q.E.D.
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Corollary 3.2.4 Assume p > 3. Under the loss function Lm ,

m=1,2,..., ¢° is inadmissible. Indeed, let #a(g), g=(m+1,...,m+1),

denote the number of indices i such that X > m+l, and define

5 (ra-T+k-m) e -« (r.-T4k)
ho(x.) = ) ! =) k1 X; > m+l
T kem e !
= 0 otherwise.

(ry#1) - (miry +1)
Furthermore, let bO > 0, bj > AL » J=T1,...,p, and

c(x) be any function, nondecreasing in each coordinate such that

c(x) ¢ 0 and

. "

0 < c(x) 542(#@(5)-2

Then §° is dominated by ¢° + ¢, where ¢ = (¢1""’¢p) and
-c(X+me, )hy (X, +m)
X) = » : (3.2.19)

, _
(h3 0ty 5) + b (X oy 1))

o
+
I BT

j=1
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CHAPTER 1V

GENERAL INADMISSIBILITY RESULTS

In the last Chapter, it was shown that by choosing qi(x) =-1
(i.e. write the new estimator &* as §O + ?),the problems of improv-
ing upon the uniformly minimum variance unbiased estimators can be
reduced to the study of a difference inequality of the form (2.2.1).
However, since many reasonable estimators are not unbiased, a more
sophisticated choice of the qi's is needed when one tries to improve
upon such general estimators. In this chapter, it will be shown how
the theorems in Chapter II can be applied to improve upon other esti-
mators by choosing appropriate q;'s.

As pointed out at the end of Section 2.1, it is not difficult
to choose qi’s so that assumption (iii1) of Theorem 2.1 is satisfied.
For instance, assume that Xi iﬂgSB'NB(1,ei), i=1,...,p. The uni-

formly minimum variance unbiased estimator of 05 is

i}
—
>

A\
—d

a(xi)

(refer to Section 3.2.) which is not an interesting estimator to im-

prove upon. A more appealing estimator is GG(X)=(6$(X1),...,GS(X ))s
X. A
. G 3 i - G
with §1(X1) = —)ZTI—E__: 0 < E_i < 1. For p = .I, §

generalized Bayes estimator, under LO. However, for higher dimension,

(x) is an admissible

5% can be improved upon by applying Theorem 2.1. To choose qi's S0
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that the inequality (2.1.13) is satisfied, it is sufficient to set

ik o+ €
{ (X) = 1 X, = 1)2:
LR k=1 k i
= ] X, =0
i
= 0 X. < 0
i

It is easy to check that the equality in (2.1.13) holds for such
a choice of qi's. The problem is then reduced to the study of the
difference in equality (2.1.14). Since op depends on X only, the
difference inequality (2.1.14) is of the form (2.2.1), solutions of

which are given by a generalization of Corollary 2.2.1. Better esti-

mators are then obtained for p > max -
l<i<p 7%
LO, ¢ is inadmissible for such p. The detailed calculation will be

This proves that under

reported elsewhere.

A1l the estimators so far considered have had 6?(%) depending on
X only through X.. If, however, 6?(%) depends on the whole K,.it is
also interesting to see if improvements can be obtained. Of course,
we can choose the qi's so that equality (rather than inequality) in
(2.1.13) is satisfied, as was done in the previous example. But then,
the qi's depend on the whole x, and the difference inequality that
must be solved has the form of (1.4.1) with Vs depending on the whole
x. To solve such a difference inequality seems to be very hard. '
Therefore, in Section 4.7, the qj's will be chosen so that not only
is the inequality (2.1.13) satisfied, but also the qi's lead to a
difference inequality .E]Q% < 0 of the type (2.1.18), to which the
theorems in Section 2.;—can be applied. We thus establish a theorem
which indicates the inadmissibility of many estimators obtained in

Chapter III or by other statisticians.
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In Section 4.2, another theorem is developed using the q; func-
tions, which establishes "upper bounds" on the class of admissible

estimators in certain sense.

Section 4.1. Applications to the General Estimators

In this section, we will try to improve upon estimators of a
general form. Before doing so, a theorem will be developed which
gives solutions to the difference inequality £' (¢) < 0, defined in
(2.2.1), under much weaker assumptions. Although the solution
¢1"°"¢p takes zero value when the xi's are small, the theorem is
a useful tool in proving inadmissibility.

The following Temma will be used in establishing the theorem.

Lemma 4.1 Consider the general difference inequality

=)

=~
<
—_

x
—
N

it
1 1

vi(f)Ajcbi(f) + wi(>~<)¢>§(X) <0, (4.1.1)

where vi(x) and wi(x) are nonnegative for all x. Suppose that

*(x) = (63(x)sh0X(x))

*
ol pl
is a solution to (4.1.1) and ¢$(§) < 0 for all x and a1l i, 1 < i < p.
For any function F({), 0 i_F(g) < 1, which is nondecreasing in each
¢*(x) is also a solution to (4.1.1). (Recall from
(1.2.10), that F(f)?*(§> = (F(§)¢T(§),...,F(x)¢*(x)).) Furthermore,

coordinate, F(x)

SF(x)e*(x)) < F(x)8 (9*(x)). (4.1.2)

Proof: It is sufficient to show that (4.1.2) is satisfied.

Now
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3 0085 (FOORE0) + wy () (FLe3(00))

It 1T

8 (F(x)o*(x)) =

.i

(v OF() 03 (%) + FOw, (x) (63(x))?)

= i i
'l ~ ~ ~ ~

i

= FO) £ (6*(x)) Q.E.D.

It t~1T

A direct application of Lemma 4.1 gives Lemma 4.2 which
illustrates a key idea that is used in proving Theorem 4.1. In the
remainder of this thesis, let IA(x) denote the indicator function,

i.e. I(x) =1 if xeA

=0 if  x¢A.

Lemma 4.2 Consider two difference inequalities

£ (s) = E v, (a6, (x) + wi(x)¢§(x)} < 0, (4.1.3)
~ ,]'="l ~ ~ ~ ~
and
X 2
8 (9) = ) vi(x) a9 (x) + wi(x)es (x)} < 0. (4.1.4)
SRR = B ~ -
Let A = {(x], ,xp) X > a}l, where o is some number. Suppose that
vi(g) = v;(x) and wi(g) = w%(§) for x€A and i = 1,...,p. If

p* = (¢T,.,.,¢;), with ¢?(x) <0, 1i=171,...,p,

is a solution to (4.1:3) then ¢*IA is also a solution to (4.1.4).

Proof: For x €A, it is clear that £ (¢*(x)) = 0. For x¢A, it

follows from Lemma 4.1 that ©£(¢*(x)) < 0. But since

O (p*(x)) = £ (¢*(x)) for x €A, it can be concluded that
L' (¢g*(x)) < 0. Q.E.D.
The implications of Lemma 4.2 are interesting. In solving the

difference inequality (4.1.3) using negative ¢1's, Lemma 4.2 states
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that the functional forms of vy and Ww. oare unimportant for all small
Xy - To be more precise,we will say that a statement is true for suffi-
ciently large X when there exists an M such that the statement is

true for all x = (x °"’Xp) with X, >M, i =1,...,p. Therefore, if

10
v, and W equal v% and w% respectively for sufficiently large X, then
the class of solutions to ® (¢) and &' (¢) are the same for suffi-
ciently large x. In proving inadmissibility, we therefore need be
concerned only with x which are sufficiently large. The next theorem
makes use of this idea to obtain solutions to £ (g) < 0 under weak
assumptions.

Theorem 4.1 Let &' (¢) be as in (2.2.1). Also let the assumptions
about Vi<xi)’ Wi(§) and o be the same. Define hi as in (2.2.3).

Suppose, for i = 1,...,p, exists nonnegative constants bO and X and

positive constants B;-U;5K, and u%,a% > a; + 1, such that

(1) h(xi)/h(x1~]) < Us for Xg > a% , (4.1.5)
D) wi(g)hf(xj)

(i1) Ll : <K ofor xp>ar, 1= 1,...,p, (4.1.6)

b, + D ,

0

%
where D = E h. (x.)
i=1 11

Let g' denote

+
(B'l—]) B'()\'1)
A{ max g iUi } { max Ui 1
- l<isp 1<i<p

and define

Then for p > g8', ¢ = (¢]"“’¢p) with
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_Chi(xi) : ,
i (%) = ———5 T, (x), (4.1.7)

bO + D

is a solution to &'(¢) < 0, providing ¢ is any constant satisfying

0 <c< (p-g")/K. Furthermore

w(¢)5_11£:§¥£511A(xL (4.1.8)

~ A
bo + D

Proof. Note that p-g'-cK > 0. Therefore it is sufficient to prove

that (4.1.8) holds. Let y = (w],...,wp), where

-ch. (x.)

_ il 4.1.9
wi(x) = —Ta;i;jj— . (4.1.9)

Clearly 4; = ¥;I,. For x ¢A, (4.1.8) is trivial. If x€A, we will

show that

£(x) < =clp=pl=ck) (4.1.10)
bO + D

Together with Lemma 4.1, this will show that (4.1.8) holds. For

x €A, let
1) T on ()
D. = h X.~1) + h. (x
b gt
I<i<p
and

Now it is clear that
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vilx)agp,(x) = ) vi(x)a,l LI ]

1t D~

i

It
1
(@}
O~
<
)
—
p2s

I
(9]
1
1
=
+
——d
it 1T
-
et

It foliows that

A
) p v.(x.)h.(x.-1)a.D ,
_E Vib%>Aiw1(X)f-C[ px P A.Z LI B T 17, for X €A
i=1 bO+D bO+D i=1 b0+(D)

(4.1.11)

If it can be proven that for all x €A,

Vi(xi)hi(xi'1)AiDA
X < 8. (4.1.12)
i=1 b0+(D')

then, together with (4.1.11) and (4.1.6), (4.1.10) follows.

Now, for » > 1, applying mean value theorem, we have

8.
A A-1 i
Vi(xi)hi(xi_])AiD < AD Vi(xi)hi(xi'])Aihi (Xi)' (4.1.13)
Ifg. >1,
' 8. 8.1
1 i
v1(x1)h1(x --"I)A_ih1 (XT.) < B'lh'i (x.)h (Xi-])
B B.
i-1,71

where the last inequality follows from assumption (i). Similarly

for 51 <1,
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B. g

v (s G- agh () < gehy (0 -1). (4.1.15)

Therefore (4.1.74) and (4.1.15) imply that

+
B. (Bi—1) B

i
Vi(xi)hi<xi—])Aihi (xi) 5-8iUi hi (x1—1). (4.1.16)

Thus, by (4.1.13) and (4.1.16), it is clear that for A > 1,

+
(B:-1)" 8,
A i i A-1
Vi(xi)hi(xi~])AiD < 85U, hi (xi—l)D . (4.1.17)

A-1

For x < 1, (4.1.13) again holds if D is replaced by (D')A_].

Together with (4.1.16), this implies that

+
(6,-1)" 8, =1

AL 1 1 _ .
v.(x.)h (x1.-1)A}.D < )\Bin h1. (x1. 1)(D")

5 (%500, (4.1.18)

Hence, (4.1.17) and (4.1.18) give

(6.-1)" 8,

+
v (b (x.-1)a,0" < B h11(xi—])(D')A_](D/D‘)(A'1)

Summing over all 1, we get

p | (8,-1)7

+

L v (xdng g-10a0" < amax vy T () Moo (1) (a1 9

i21 1<i<p
By assumption (i),

B
b/D' < max U,', (4.1.20)
1<i<p

which, together with (4.1.19), implies (4.1.12). Q.E.D.

The above theorem appears complicated at first glance, especi-
ally because of g'. 1In most situations, however, the 1imit of
hi(xi+1)/h1(x1) is one as X e, Then 8' can be chosen as close to

Amax 6. as one wishes. Solutions to &' (¢) < 0 can hence be found
T<j<p
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if p > xmax B, and (4.1.6) is satisfied for some nonnegative con-
T<j<p
stant bO and some positive constants K, 81 and A. This is stated in

the following corollary.

Corollary 4.1.1. Let &', Vi’wi’ui’hi and D be as in Theorem 4.1.
Assume that hi(xi)/hi(xi_]) approaches 1 as X5, and that (4.1.6) is
satisfied for some nonnegative constant b0 and some positive con-

stants K,B., and x. Suppose p > A max B., then there is a solution
i O
T<j<p
to 8' (¢(x)) < 0 with strict inequality for sufficiently large x.

Indeed, Tet U > 1 be any number such that

(B.i'-l)+ i
p > Af max B.U } { max U }o. (4.1.21)

1<isp ! T<i<p
Denote the expression on the right hand side of the inequality by g'.
Furthermore let u% = oy ¥ 1 be such that hi(xi)/hi(xi']) < U for all
X5 > a%. For any constant ¢, 0 < ¢ < (p-g')/K and
A = {(x1,,..,xp): X; > agk, ¢T""’¢p given in (4.1.7) is a solution
to &' (¢(x)) < 0 with strict inequality holding for sufficiently
large x.

Proof. There certainly exists U > 1, such that (4.71.21) is satisfied,

since B' approaches A max 8, as U~1, and p > A max B,. Theorem 4.1,
1<i<p T<iz<p
then completes the proof. Q.E.D.

An application of Corollary 4.1.1 will be seen in the next theorem.
Now assume that X, fi(xilei) and t, are as in Lemma 2.2. For

any function g(x) defined on R, Tet ag(x) denote g(x)-g(x-1). Under

the Toss function Lm’ the following theorem describes how Corollary

4.1.1 and Theorem 2.1 can be applied to improve upon a complicated
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estimator s°(X) of the form (componentwise)

B._1
t.(X.-1) RaBLH T O Hm ) ALK, (X, ) AT
$300) = = s (K )| - 0] 1p e (4.1.22)
- i UK ;
Sty Tm )

where QO’Bi are some constants and S and Hi are some functions de-
fined on the set of all integers.

One of the major problems encountered in the proof of Theorem
4.2, is that of choosing the q; functions so that(2.1.13)1s satisfied
and the difference inequality £' (¢(x)) < 0 (see (2.1.14)) will be of
form (2.1.18). Here we will describe a heuristic argument which
guides us to such a choice. The qi‘s which satisfy

a; (x-mi1)ey) = al(x)a(x),

will be considered, since these qi's will lead us to the difference
inequality of the form (2.1.18). Assuming that ¢1(§) < 0, i=1,...,p,

it can be seen that (2.1.13) will be satisfied for such as if

q; (x;+1) .
CHET N F) (4.1.23)
and
Qlxte,) . N
Q(x) - B.-1 (4.1.24)

It is relatively easy to construct q; of the desired form which

satisfy (4.1.23). To choose Q, let

B,
_ i
Dy = jg]Hj (Xj) . | (4.1.25)
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Under the conditions in Theorem 4.2, (4.1.24) is approximately equiva-

lent to
AiQQ(( ; ek z QOSiDO (4.1.26)
Qlx 0

which suggests seeking a solution to the differential equation

dq _ zodDO

Q Dy

%o

The suggested choice of Q is thus DO . In Theorem 4.2, Q is chosen

9
to be DO]’ where 2y > %ps and it is shown that (4.1.24) is satisfied

for sufficiently Targe x. Modifying Q so that it takes zero value
when the X; are small, Q is thus shown to satisfy (4.1.24).
In the following, define, for any function g,
X

m g(u)
w=0

I
[{a]
—

[aw]
—
[{e]
—

>
~—

>

=0,1,.

= ] x = -=-1,-2,...

Theorem 4.2 Let X, fi(xilei) and ts be as in Lemma 2.2. . Consider

the loss function Lm’ m = (m1,...,mp), and §° defined in (4.1.22)

with Bi > 0 for all i. Assume that for i = 1,...,p,

£ (6500)% < =,

(i) Hi(x.)ewnas X5 >, Hi(xi) > 0 for all Xs and

( Hi(xi+])
iii) +1 as x, »w,
Hi(xii i
(iv) for X; > 0 Hi(xi) is strictly increasing and
AHi(x1+1)
-+ 1 as x, +o,
AHini) i
and
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(v) Si(xi) > 0 for all x, and Si(xi) > 0 for x; > 0.

Define
X,
i t. (k) k-1
ho(x;) = J ! n s.(u) if  x, 3_(m.+1)+
it™ k:(mi+7) ti(k—m1-1§ =0 i i i
= 0 otherwise (4.1.27)

8.
Let Do(x) be as in (4.1.25) and D](x) denote E hiT(xi), for some
i - i=1
positive numbers B]""’Bp' If without ambiguity, DO(§) and D](g)

will be denoted DO and D Furthermore define, for some constant

1

2, > 2
1 0 X.+m
(x) = 0, (xt(n. 1 )er) 1 1
g.(x) = m
it 0 ~ =0 siiui
and
0, _ Nilxymy)
Dy(x#msey)
Assume that the following conditions hold:
. 0 .
(Vi) E@0e{)F e 4= 1,0
(vii) hi(xi)/hi(xi—1) +1 as Xg> o s (4.1.28)

(viii) For some constants A > 0 and K > 0,
o

(xs —m.) i
192 A
5 h i [ n - 17D, /D7 < K<w.  (4.1.29)
t i ) =0 s, (u) 0"

then if p > X max Bi’ 59 is inadmissible. Indeed better estimators
l<icp = 7

can be described as following: Let Au={(x],...,xp):xi

for some number a. For some constants o > 1, a* > 1 and ¢ > 0,

> a,i=1,...,p}

define

)IA O(5+(mi+])§i) (4.1.30)

B34
—
—
>
~——
i
i
O
=
—
>
Nt
L}
]
—
5
D

e.). (4.1.31)
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Then for some positive constants c, small enough, and aO and a*,

(x),i=1,...,p.

big enough, §° is dominated by &* with 6? = 6?+q].(>~<)¢1 X

Proof: We will verify the conditions of Theorem 2.1. To verify con-
dition (ii) of Theorem 2.1, assume for a moment that ¢i(g) < 0,
i=T1,...,p. (This will be seen to be true later). We first show
that there exists ao > 1 such that qs in (4.1.30) satisfies (2.1.13).

Note that , xi‘]
1 1
q.(x-(m,+1)e.,) =D il I, (x). (4.1.32)
(ARSI 0 =0 siiu) AL0'*

It is sufficient to show that

0
6.(x-m1§1)t1(xi~m.)qi(§—m

. e
T~ 1 ~

; .)—ti(xi—mi—1)qi(f—(mi+])§i) >0 (4.1.33)

1

plugging 6% and q, into (4.1.33), it is clear that (4.1.33) will
i i

follow from the inequality

B.-1

2. BLH. U (x.)aH, (x.) \T » x3-1
1. 01 ; i Do](X+ei) i §”%E7'IA (§+§1)
0 T = i o0
SR
> D i I, (x). (4.1.34)
0 =0 sifu5 AuO
Since

I (x+es) > I, (x),
Auo <1 Aao ~

it is sufficient to choose uO such that

81—1 +
2 2.B.H. (x:)AH.(x,) 4
1 0711 i1 1
Do (’f““?i)(] - B, In (%) 20" Ty ((x)
o (03
(4.1.35)
Note that, for sufficiently large X,
Bi-1
1 - zOBiHi (Xi)AiHi(xi)/DO > 0. (4.1.36)



64

This follows from the observations that

B.-1
i
.. H, (Xi)AHi(Xi) . AHi(Xi) . Hi(xi'])
- p B, — Hi(xi) ' Hifxii
Y oHI(x,) L
i=1 9
and (by condition (iii))
Tim [1 Eif%ijgl_] 0
x.lﬁlO ) Hi xi ) '
i

Now Tet a] > 1 be the number such that x €A T implies that
v o

B. B.-1

1 1
Hitg) = agBiHy ™ (xg ) () > 0.

Clearly, (4.1.36) holds for x €A 1 To choose ao so that (4.1.34) is
~ [0

satisfied, it is only necessary to choose ao Z;u] so that, for xcA 0
a

and 1 = 1,...,p,

2
Dplxres) 1
Dy = B
1 - ZOBiHi (Xi)AHi(x')/DO
Bi—]
2 B.H. (x:)BH. (x)
=1 4 011 — , (4.1.37)
i A
Do#0BiMy (xj)aH; (x;)
or equivalently
AiDO (x+e.) QOBiHi (Xi)AiHi(xi) .
Q,—l >__ B~"] - ( . .38)
i
Dy DO—ROBiHi (Xi)AiHi(xi)

By mean value theorem, there exists a D?, DO < D? < Do(x+e1), so that

= *
AiDi (x+mi) QT(Di) AHi (x1+1). (4.1.39)
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Hence (4.1.38) is equivalent to

B, -1

1
-1 B, g PR e 0)
By (x+1)/Dg0 > .1 (4.1.40)
Dy=2qB:H; (Xi)AiHi(xi)'

Now we must separately consider three cases (a) L 2 0 >

_ QO’

(b) 2, > 2, > 0 and {(c) 0 > By > % Case (a) is trivial, since by

1 0 0-
choosing o0 equal to a], the left hand side of (4.1.38) is nonnega-

tive and the right hand side is nonpositive.
For case (b), (4.1.40) 1is equivalent to

Ri > 1,

where
11-1 Bi 81”1
Q-!(D"T’;‘) AH; (x1.+1) Da=2nB:H, (x.)aH.(x.)

R, = ! 0 011 1T (4.1.41)

B.-1 B,
% 2 "'1 - 1 1
2 Di>1 Do=2oBsHy (%) aH, (x,) A (x;+1)

o)
i

i L0 DO
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>

1
20 \ By x5 #) :

+ B, B.-1
El. H‘(Xi) >(1-2]) H_W(Xi)_QOBiHi1 (xi)AHi(xi)

B
Hi (Xi)

+
) < Hi(x5) \(1-85) BH. (x,+1)
1y 0g#) EACe)
2
By conditions (iii) and (iv), the last expression approaches El-> 1
0

as Xy oo Therefore there exists ao > a], such that Ri > 1,
1:]“.qp1f§eﬁﬂ,

For case (c), (4.1.40) is equivalent to

R. < 1.
'] JE—
Now from (4.1.41),
B.-1 N
. El, DO"ROBiHi (Xi>AHi(Xi) Hi(xi+]) (81—1) AiHi(xi+])
i =1 DO Hi(xi) AiHi(X1$

Again by conditions (iii) and (iv), the last expression approaches
;§-< T as Xy T Therefore there exist uO > a] such that X eAao(g)
implies that Ri < 1 for all 1. In conclusion (4.1.37), and hence
(4.1.33) are satisfied if q; s defined as in (4.1.30). For conveni-
ence in the following, it is also assumed that o0 > (mi+1)+,
T=1,...,p.

To satisfy conditon (iv) of Theorem 2.1, it is necessary to

solve the inequality

where
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o i
’ET—_——{;—(X—,]T—— q_i( (m+1 A](i) xme)

Clearly,
I, &" (4.1.43)

where

221 X
, b1l (e gg) lgony) T 2o )
I GOGT By T
0
(4.1.44)
0f course, a solution to IA 0 £" <0 is also a solution to #' < O.
o
Note that B
Do(x+es) Hi1(xi+])
Te D, (x) = B. i
0~ H 1(X )
i

for all x such that Hi(xi) # 0. By condition (iii), there exists K]

so that
B;
H. (x.+1)
L N < K

i
H_i (Xi)
for all T 0.
Thus there exists K2 so that if X5 > 0, i =1,...,p, then
0

4 -l
(§+ei)/D < K,D

o < KD, (4.1.45)

D
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Therefore, by (4.1.44) and (4.1.45),

I, & <1, g

A0” = A0
where

ts (x -m.~1) X;-1

£ Z L TEGTT T STEy At temyey)

X.
%4 tj(x - ) 1

X 1T 2
+ ) = D o, (x-m,e.).
i1 2 0 t.( 5 u—O sz(u) 1'% Ti<q

A solution to & < 0 is certainly a solution to ®' < 0. Let hi be

as in (4.1.27). By Corollary 4.1.1, (4.1.28) and (4.1.29), there

exists a solution to ©” < 0 ; namely ¢1""’¢p’ where

'Chi(xi)

for some constants ¢ > 0 and o* > ao. Furthermore, for such ¢i‘s
87 o(x-me;) < 0
for sufficiently large X. By Theorem 2.1, the proof is now complete.
Q.E.D.

1nden‘Po(ei),i =1,...,p. Under the loss

Corollary 4.2.1. Assume Xi
function L_], the estimator 6C of Clevenson's type given component-
wise by

X, (4.1.46)

is inadmissible if Ly < p-1.
Proof: To apply Theorem 4.2, Tet 6? be as in (4.1.22) with me = -1,

Si<xi) =1, B. =1 and Hi(xj) =1 + x; if X; > 0 and Hi<xi) =0 if

X; < 1. Clearly 50 = oC and conditons (i) through (v) of Theorem 4.2
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;
1 = Xi+1’ as in (4.1.27). Obviously

P ~1 X

are satisfied. Let h.(x.) =
iV k=0

condition (vii) of Theorem 4.2 is satisifed. Let 2 be any number

such that if fit Lo < 2 < p-1. Futhermore let

-

p
J Hj(xj) = Z h.(x.) = Dy .

1 J

To check condition (viii), note that

booo o H0G) ey By
MO ey B /0t L) Po /0
24+
P L
=0, /D)

for some constant K if » = (21+1)+ Hence condition (viii) is satis-

fied with A = (2]+1)+ Since 2 < p-1, (JL]H)+ < p and consequently,

p > A Finally, by (4.1.30) and (4.1.31), q:0; is bounded. Hence

E q§(§)¢?(§) < w and condition (vi) is satisfied. By Theorem 4.2,

i
§C is thus inadmissible.
indep. .
Corollary 4.2.2. Assume Xi — Po(ei), i=1,...,p. Under the
loss function LO’ the estimator & of Peng's type similar to (1.3.7)

given componentwise by

p zh(Xi) +
61(5) = Xi“ "5——5———— R (4.1.47)
PRHEN

1
K i
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Proof: To apply Theorem 4.2, here let 6? be as in 4.1.22 with m, = 0,

. . . o _ P _
Si(xi) =1, Bi = 2 and Hi(xi) = h(xi). Clearly § =8 if g = &/2.

It is straightforward to show that condition (i) through (v) of Theo-
rem 4.2 are satisfied. Let hi(xi) be defined as in (4.1.27), then

h.(x.,) = h(xi). Again condition (vii) is satisifed. Furthermore let

By = 2 and

be any number so that %.<2.< E%E .

To check condition (viii), let 2 0<%

Now

for some constant K if ) = (2]+T)+

and (4.1.31), qi(x)¢i(x) is bounded, hence Eq§(§)¢§(§) < » and condi-

Note p > 2x. Finally by (4.1.30)

tion (vi) is satisfied. By Theorem 4.2, the proof is complete. Q.E.D.
The proofs of the following two corollaries are similar to those

of the previous corollaries, and so are omitted.

Corollary 4.2.3. Assune X, n9ep- Po(6.) 1 = 1,...,p. Under the

loss function Lm’ m = -n and n being a positive integer, the estima-

tor GT of Tsui's type given componentwise by

zh(Xi—n)
= [ X. - R (4.1.48)

h(Xj-nYij)

—
I o~T1O

J=1

1s inadmissible if 2 <n(p-1). Recall that h(-) was defined as

g
—
x
—
i

(x1+1)...(xi+n) if x, >0

= ( otherwise
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Corollary 4.2.4. Assume that Xi XQQEB'NB(ri,ai), i=1,...,p. Let
6N

B be the estimator of 6 given (componentwise) by

X. 2h(X.;) +

NB N i 1

5. (X) = T > (4.1.49)
P r20x)
=

where
%3 r-Tk
hix.) = Z x. > 1
=0 otherwise.

Under the loss function LO’ 6NB is inadmissible if 2 < p-2.

Note that all the inadmissible estimators stated in the above
corollaries are dominated by a corresponding &* given in Theorem 4.2.

The correction terms qi(§)¢ (x) (See (4.1.30), (4.1.31)) are nonposi-

;
tive and are obtained by applying Theorem 2.1. These facts will be

used in the next section.

Section 4.2. "Upper Bounds" on the Class of Admissible Estimators

As seen in the Tast section, to improve upon an estimator of a
general form, quite complicated calculations are generally involved.
In this section, a theorem is developed by which a broad class of
estimators can be shown to be inadmissible. This theorem also shows.
what is meant by an "upper bound" on the class of admissible estima-
tors. Again, we will use IA(g) to denote the indicator function, i.e.

IA(g) =1 if x€A

otherwise.

Theorem 4.3 Let X be as in Lemma 2.2. Consider two estimators §o

and 51 of 0, both of which have nonnegative components. Assume
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E[&}(g)]z <w for i =1,...,p. Let A = {(x],...,xp): X; > o,

i=1,...,p} for some number a. Under the loss function Lm’ suppose
the following two conditions hold: ~

(1) 6}(§) 3»5?(5) for all x €A and i = 1,...,p;

(i1) §O(§) can be improved by the procedure of Theorem 2.1 with the

correction terms q1(§)¢1(§) being nonpositive.

Then, the estimator 8* with ith component

SH(K) = 6500 + Tg(amie)a; (0o (1),

is as good as §], where S = {x: x, 3_a+m:, i=1,...,p}

S
Proof: We will use Corollary 2.1.1. Thus, assuming conditions (i),
(i1) and (ii1) of Theorem 2.1 and condition (iv)' of Corollary 2.1.1,

we need to show that these four conditions are also satisifed with

6? and ¥ being replaced by 6}(5) and ¢1(5)IS(5+m1§1)’ respectively.
(qi remains unchanged).

Clearly, conditions (i) and (ii) of Theorem 2.1 are satisfied.
Note that condition (iii) in this situation has the form

{Sl(f—m.e.)t.(x.—m.)q.(é—m.g

i i i i i i ')"ti(xi"mi"] )q]()f'(m.l'*'])?])}

1

-¢i(§~mi§1)ls(x) <0 (4.2.1)

To verify (4.2.1), observe that
XES o (g-migi) €A.

Consequently, condition (i) of this theorem implies that

1 0 .
6;(x-m.e.) > éi(i"mni)’ i=T1,...,p. (4.2.2)
,

By (2.1.13), (4.2.2), and condition (i) of this theorem, (4.2.1) is
established. Furthermore, from condition (iv)' of Corollary 2.1.1,

we have
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2t (x 5= -1)
o' (¢) = Z {——-—————z——j-q (x=(m;+1)e.)a o (x-m.e.)

ti(xi_mi)

¥ t.(x.7_'q?<§'m1§i)¢§(§"mi§1)} <0 (4.2.3)

it
Lemma 4.1 implies that ¢1(§)IS(5+mi§1), i=1,...,p, also satisfies
(4.2.3). Therefore, condition (iv) of Corollary 2.1.1 is satisified.
Q.E.D.

Corollary 4.3.1 Let the notation and assumptions be as in Theorem

4.3. If Ic(xm.e.)q;(x)e,

1(5) is not identically zero, then 6] is

inadmissible.

Proof: Clearly 6* is as good as 6], and &* % s'. Because L is a

strictly convex loss,

1

R(e,]? (6%+8 ")) < > R(e,8%) + ;— R(e,dl) < R(G,S]). Q.E.D.

If the correction term as {x )¢i(x) is nonzero for all sufficient
1y large x, Corollary 4.3.1 implies that any estimator §], with
o

6!(%) > 65

; > x) for sufficiently large X, is inadmissible. In this

sense, §O is an upper bound on the class of admissible estimators.
The following corollaries follow immediately from Theorem 4.2 and
Corollary 4.3.1.

Corollary 4.3.2. Suppose that the assumptions in Theorem 4.2 hold.
Under the loss function Lm’ §O is an upper bound on the class of ad-

missible estimators, if p > A max B..
1<j<p

Corollary 4.3.3. Assume XiiﬂggB'Po(ei), i=1,...,p. Under the loss

function L_,, 5C (given in (4.1.46)), with g < p-1 1is an upper bound

on the class of admissible estimators.
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Corollary 4.3.4. Assume XilngEB'Po(ei), i=1,...,p. Under the loss

function L, §P(given in (4.1.47)), with 2 < p-2, is an upper bound

on the class of admissible estimators.

Corollary 4.3.5. Assume X.159§B°Po(e.), i=1,...,p. Under the loss
i j

function L-n’ n=1,2,..., §T (given in (4.1.48)), with 2 < n(p-1),

is an upper bound on the class of admissible estimators.

Corollary 4.3.6. Assume XilESEB'NB(ri,ei), i=1,...,p. Under the

0> °

loss function L B(given in (4.1.49)), with & < p-2, is an upper

bound on the class of admissible estimators.
There are many possible applications of these corollaries. Only
two examples will be given here.
indep. A
Example 4.1. Assume Xi,mm.a Po(6.), i = 1,...,p. Under the loss

;
function L_], the estimator &*, with

5
): ____l._]_.__ X_,

P
B+p-1+ } Xj

oy *
I e~

[

Jj=1
was conjectured to be inadmissible for g < 0 in Brown (1974). To
prove this, let L4 be any number such that g+p-1 < 20 < p-1. For
such Ly» compare 6?(%)(given in (4.1.46)) to 6?(5). Clearly, for

sufficiently large X

s¥(x) > 6%(x) (4.2.4)
L
of1 o —B¥=l N\ (R X
p T P 1
BHp-T+ ) x. p-1+ ) x,
=17 =17
B+p-1 . *o
p —_
g+p-1+ ) X p-1+ E X;
j=1 j=1
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Since the last inequality holds for sufficiently large x, Corollary
4.3.3 and (4.2.4) imply that §* is inadmissible. This proves Brown's
conjecture.

indep. . .
Example 4.2. Assume Xs NB(r,ei), i=1,...,p. Recall from

(1.3.9) that Hudson's estimator §H is

is the number of indices j for which x, > 1, and

where #( ;

X)

X

h(xi) = ) (r=T+k)/k if x> 0, while h(xi) = 0 otherwise. We claim
k=1

that for p > 3, §H is inadmissible. To see this, let §NB be as 1in

Corollary 4.3.6 with ¢ = p-2.5. For sufficiently large X
H

{2 (x) < s(x) (4.2.5)
X, 2h(x,) N (p-3)h(x;)
o jglhz(XJ) < T jg1h2(XJ)
} ¢h(x,) X (p-3)h(x;)
jglhz(xj) j§1h2(xj)

Clearly the last inequality holds. Hence by (4.2.5) and Corollary

4.3.6, ¢" is inadmissible if p > 3.
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CHAPTER V
OTHER RELATED PROBLEMS

In this chapter, some miscellaneous problems which relate to
improving upon estimators will be considered. In Section 5.1, the
problems of improving upon standard estimators for the parameters
of Poisson and Chi-square distributions are compared. The compar-
ison reveals the role played by discreteness.

In Section 5.2, an admissibility problem is discussed. An ex-
ample is given in Section 5.3, which deals with the simultaneous
estimation problem based on three observations having distributions
of completely different forms. In Section 5.4, three generaliza-

tions are discussed.

Section 5.1 Comparison of the Poisson Case and the Chi-square Case.

Assume that XiiEQEB'PO(ei), i=1,...,p. Estimators better than
§O(§)=¥ under the loss function, Lm s My < 0, i=1,...,p, were pre-
sented in Section 3.1. But no resJTts have been given for the Toss
function, Lm’ with positive mi's.

To diséuss this problem in detail, Tet us consider the loss
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function Lm’ where m is an integer. Again, in tryingAto improve upon

§O, write a competitor as &* = §O + ¢ with ¢ = (¢T""’¢p)' From
Theorem 2.7 and (3.1.2), we have R(?’é*)‘R(§s§o) - Ee‘ﬁé( )
where N
( " 2 .
1.Z]{Z(xi—m)...xi Aqbg ()+(xg=-m+1) . oxgui (X)) 1m0 (5.1.1)
: /5 2 . i
B (8] =4 L 12x50505 (x4 (x) i m=0 (5.1.2)
2
E Asvs (%) 03 (x) .
1_:]{2 (x.+7) ... (x.-m-1) + (x1+])-"(x1'm)}]f m<0  (5.1.3)

and wi(§) = ¢i(5"m?1)' For the case m > 0, the theorems in Section
2.2 do not yield any nontrivial solutions to S&](?) < 0.

The problems of the existence of a nontrivial solution to (5.1.1)
and of the admissibility of §O are not yet answered. To gain some
insight, however, we compare the difference inequality

g%(?) <0 (5.1.4)

(Sr; was given in (5.1.1) through (5.1.3)) to the differential in-

equality (1.3.10). For convenience, (1.3.10) is restated here:

_ m+l 3 m,2
SE(?) = 121 Xs 5;;~¢i(§)+bixi¢i(§) < 0. (1.3.10)

The differential inequality was encountered in trying to improve upon
the estimator x/n+2 under the loss function Lm-Z’ where

Xi/ei iﬂﬂEB'X g, i=1T1,...,p. (cf. Section 1.3.3). Inspecting 8
and £%, we see that, the difference inequality (5.1.4) for the
Poisson case is analogous to the differential inequality (1.3.10) for
the chi-square case. (The constants b1,...,bp are not significant in

determining the form of a solution to (1.3.10).) For m < 0, as seen
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in (3.1.15), (3.1.18), (3.1.20) and (1.3.14), the solutions to 5%45 0
and ﬁm < 0 are very similar. The improved estimators given by
these solutions all correct the standard estimator by shrinking to-
ward a point. For m > 0, the solutions to @Hl < 0 are all nonnega-
tive and therefore indicate that the new estimator corrects the
standard one by pulling away from (0,...,0). Due to the similarity
between ﬁm and £$ , the solution to Srn < 0 seems to suggest that
the solutions to Qé,.i 0 (if any) are also nonnegative, and hence
that better estimators pull s° away from (0,...,0). However, a
theorem can be established in discrete cases which asserts that if

9 ¢ is as good as 505 and ¢ = (¢],...,¢p) is such that ¢1(§) >0

~ ~

all x, then all the ¢1's must be zero. In other words, §0 can not be
improved by pulling away from the origin. Therefore, these facts
seem to suggest the admissibility of §° under the loss function

Lm’ m> 0.

Note that this also explains why the first aspect of Berger's
phenomena (i.e. the correction terms changes sign according to the
loss function) does not occur in the discrete case. But, clearly,
the second aspect is certainly observed (i.e. the dimension needed
for inadmissibility of 5° depends on the loss function as shown in
Peng (1975), Clevenson and Zidek (1975) and Tsui and Press (1977).).
In fact a general theorem asserts that any estimator of 6 can not be

improved by positive correction terms if x is distributed as in Lemma

2.2. This will be reported elsewhere.
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Section 5.2. An Admissibility Problem

The main idea used in Chapters II, III, IV to prove inadmissi-
bility has been solving an appropriate difference inequality.

Once a nontrivial solution, which satisfies the regularity con-
ditions, is obtained, the estimator is known to be inadmissible.

It is therefore natural to ask whether the Tack of a solution
(except the zero solution) to the difference inequality corresponding
to a particular 50, implies that §° is admissible. The following ex-
ample indicates ghat the conjecture is false for p = 1.

Example 5.1. Let X be a one-dimensional random variable having log-
arithmic distribution, i.e.
P(X=x) = _T—_%*—_Y Qf-, X =1,2,...,
-log(1-9 X
for some unknown parameter 6, 0 < 6 < 1. It is clear that the un-

biased estimator s°(X),

><

°(X) = ¥ if x> 2
= 0 if x=1,
is inadmissible, since it estimates 6 by some number greater than 1.
Thus 6°(X) can certainly be improved if X/X-1 is replaced by 1 when
X > 2. However we will consider the problem of improving upon s°

by using Theorem 2.7. Under square error loss, the difference in-

equality (See (2.1.12) and (2.1.14) with q; = 1) has the form

5 (8) = 2v(x)a0(x)+4°(x) < 0 (5.2.1)
where
vi(x) = ;%T- X > 2
= 0 x = 1.
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The following Temma will show that the only solution to (5.2.1) is
¢(x) = 0. Therefore the lack of a nontrivial solution to the differ-
ence inequality does not necessarily imply admissibility.
Lemma 5.T. If ¢(x) satisfies (5.2.1), then ¢(x) = 0, x = 1,2,..
Proof: First, we will show that ¢(-) is bounded. Clearly o¢(-) is
nonincreasing function, since a¢(x) must be nonpositive. Also for
x =1, (5.2.1) becomes 6°(1) < 0, implying ¢(1) = 0. Thus o(x) <o,
for x = 1,2,... . Since v(x) < 2 for all nonnegative integer x, it
follows that

0> &' (9)
4a9(x) + 87(x) (5.2.2)

Iv

> 4o(x) + 92 (x)
which, since ¢(x) < 0, implies that

-4 < ¢(x) < 0.
Next, let o be the 1imit of ¢(x) as x -« . (This limit exists, since
¢ 1s bounded and nonincreasing.) We then complete the proof by show—‘
ing that ¢ = 0. Now clearly

-4 < g < 0.

Suppose that 2 < 0, then there exists some N > 0 such that o(x) <0

for all x > N. By (5.2.2),

46 (x)-(x=1)) \
6 X¢(§)X + o(x) >0 (5.2.3)

Letting x go to infinity, (5.2.3) implies that 2 > 0, which is a con-

tradiction. Q.E.D.
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Section 5.3. An Example of an Improved Simultaneous Estimator
Based on Discrete and Continuous Observations

The theorems in Chapter II were designed for the case when the
observations X1,...,Xp are independently from discrete exponential
families. Of course, the most common situations occur when the dis-

tributions of X ..,Xp have the same form, as considered in Chatper

12"

III. However, it is also interesting to observe the following ex-
ample which deals with an estimation problem based on three indepen-

dent random variables, X], X, and X, having distributions of complete-

2
1y different forms.

Example 5.7. Assume that X;, X, and X3 are independent random vari-

1* 72
2 : . .
ables; X]~Po(e]), X2~N(62,1) and X3/e3 Xp It is desired to estimate

(6],62,63) under the loss function L_, m = (0,0,-1). i.e.

Lm(

— 2 _ 2
where L](e],a]) = (91-a]) s Lz(ez,az) = (ez—az) and

ten]

:g) = L](e" aa]) + Lz(ezsaz) + L3(939a3)

-1 2 . .
L3(63,a3) = 8, (63-a3) . A standard estimator is

where
0 _ _
61(X1) = X1, i=1,2,
and
§2(X,) = X./n+2
373 3 :

It is known (see Hodges and Lehmann (1951)) that for each coordinate

treated separately, Sg(xi) is an admissible estimator for 0. under

the Toss function Li‘ However, 60 is inadmissible under Lm and can

be improved by an argument similar to Stein's technique. (Stein

(1973).)
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Write a competitor as 6¢* = (6?,6*,6 *) with

2°°3
s%(x) = x;tos(x) 1 =1,2, (5.3.1)
and
. *3
§3(x) = == (T+o5(x)). (5.3.2)

Under certain regularity conditions on 935 the identity

X
g -1 N 3 2
ax; 305(X) Xy 200 ax’ ( )a¢3(X) ( )
= E { ~— 4 oo (X) + ¢o(X)—"—1 (5.3.3
6 (n+2)2 aX3 n+2 *3 (n+2)? 3~ 3X3
8¢3(X)
is derived in Berger (1978). 1If ¢3(§) > 0 and ™ — < 0, the ex-

3
pression on the right hand side of (5.3.3) is bounded above by

IO 5003 (5.3.4)
+ é .3.

E

Then together with (1.3.2) and (1.3.5), this implies

39 5 (X)

2. 2 2
R@ﬁﬁ -R@,ybi E@ﬁx1ﬁ¢ﬁ§)4'%(@+25"5 +¢2(p
2
X 3_(X) X
3 3L 3.2
' 4(n+2)2 EPN oz 050X

under certain regularity conditions on ¢i' Let

: ) - 26, (x) 2x§ 39,(x)
806 (x)) =707, (x)+ — -
: 177171 % X, (n+2)2 3x3

2 2 X
P 00+ aplx) + 3, 62(x)

A solution to ' (¢ ) < 0 can be found by an argument similar to

those used in Chapter II. Indeed it can be described as following:
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Let
h (%)= — ifx =1, 2,..
= 0 if X1 <0
hZ(XZ) = XZ x2 €R
and
hy = '(“'2*2)2 x;] Xy ER

and, for some b > 0, define
2
D=b + h](x])h](x]+1) + hz(xz) + h3(x3)

Furthermore, et

c(k) =0 k =0
= 2/n+2 k=1, 2,...
Then
5c(x1)h1(xi)
¢i(x) = , 1 =1,2,3, (5.3.6)
D

is a solution to W(¢(x)) <0 with Egs%f?(x)) <0, for alle This
solution also satisfies the required ;éguTarity conditions, and hence
under the loss function L. > §0 is dominated by §* defined (compo“
nentwise) as in (5.3.2) whereﬁu¢], ¢ and 95 are given in (5.3.6).

The implications of the above example are intersting . First,
although the distributions of X], X2 and X3 are very different and
each §; is an admissible estimator of g5 based on Xj, g9 is

inadmissible under Lm. Therefore Stein's phenomena seems to be

A
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very general. Second, the improved estimator corrects §O very dif-
ferently in each coordinate. For i = 1,2,8% corrects §° by shrinking
toward zero while, for i = 3, by pulling away from zero. Finally,
in the correction terms, given by (5.3.6), hT’ h2, and h3

(so are d],dz, and d3) are determined independently of each other.
(i.e. hi depends only on the distribution of Xi and Li') Howevek,

the @1‘5 are obtained by combining these hi's and di's in a definite

way.

Section 5.4. Other Generalizations

There are many other possible generalizations of the results of
this research. Only three of them are discussed here.

(a) A1l the results can be easily extended to the loss func-

p m.
tions of the form L(e,a)= ) 2.0, (o, - a.)2, where z.,...,Z_ are some
SRR i i i 1 p

i
positive constants. There are two ways to deal with such a loss
function.,

(i) Include these constants ZT""’Zp in the difference inequality
and solve it. Clearly, the difference inequality can be solved by
using theorems in Section 2.2, if and only if the difference inequal-

ity corresponding to the loss function Lm(i.e. z. =1, 1=1,...,p)

can be solved.
(ii) Apply the results in Berger (1977a), in which the problem is

decomposed into p subproblems under the loss function
J
) o.](o. - a.)z, J=1,...,p. Improved estimators can be found for

the original problems, once improved estimators are found under at

least one of the subproblems.
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(b) The idea of an "upper bound" on the admissible class (cf.
Section 4.2) has certainly an analog in the continuous case. How-
ever, the concept is more complicated than in the discrete case,
since the correction terms, frequently encountered, are not necess-
arily of the same sign.

{(c) A11 the distributions of X],...,Xp considered in this

work were assumed to be as in (1.2.2) with ti(xi) > 0 if and only if

Xi = 0,1,... . For the case ti(xi) > 0 if and only if
Xj = ags ag * 1,..., for some integer a;, @ simple transformation
i = -
X1 Xi a;

will make our results app11cab1ebto the estimation problem based

on XT""’Xp
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