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- Summary. In this paper we seek designs and estimators which are optimal
in some sense for multivariate linear regression on cubes an& simplexes
when the true regression function is unknown. More precisely, we assume
the unknown true regression function is the sum of a linear part plus Some
contamination orthogonal to the set of all linear functions in the L2 norm
with respect to Lebesgue measure. The contamination is assumed bounded

in absolute value and it is shown that the usual designs for multivariate
linear regression on cubes and simplexes and the usual least squares

estimators minimize the supremum over all possible contaminations of the

expected mean square error.
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1. Introduction.
Consider the regression design problem given by
y(xi) = f(xi) + e; » 1 =1,2, ..., n

where the {ei} are uncorrelated random variables with mean 0 and variance
2

o . The X; are elements of a compact subset X of a Euclidean space, and
f is a real-valued function on X from a class FO. Fy is typically composed
of linear combinations of specified functions fo, fl, o fk. The regression

problem is concerned with making some inference about the unknﬁwn coefficients
of these specified fj and the associated design problem is fo choose tﬁe

Xs in an optimal manner for this inference. Many papers have been addressed
to this problem. Box and Draper (1959) have discussed some of the dangers
inherent in a strict formulation of FO which ignores the possibility that

the true f may only be approximated by an element of FO’ e.g., in estimgtion
there may result a large bias term. A careful description of some problems -
in this context is given by Kiefer (1973) in the éase where the class of
possible functions f, F, is a finite dimensional space containing FO.
In a related direction Huber (1975) formulated a problem where

X = [-2, +2], Fo = {linear functions on X}, and F = {f(x) = a + bx + g(x);

-

+o + ‘
&ng f' (g(x) - a - Bx)2 dx = flgz(x) dx <c}. €>0is a given constant.
? T2 -2

Notice that if f ¢ F then a + bx is the best linear approximation to f in
the L2 norm wih respect to Lebesgue measure on [-5, +Z]. Huber confines himself
to the use of the standard least squares estimates based on the model FO and

finds the design which minimizes the maximum risk

+3 . R 5
sup E f_ (a + bx - £f(x))° dx.
feF -2



Unfortunately this formulation leads to the restriction that the designs
‘must be absolutely continuous with respect to Lebesgue measure, otherwise
the maximum risk above is infinite. This means no implementable design
can have finite maximum risk.

In a similar spirit is some work by Marcus and Sacks (1976). They take
X = [-1, +1], F, = {linear functions on X}, and F = {f(x) = a + bx + g(x);
lg(x) | < ¢(x)} ¢(x) is a given function on X with ¢(0) = 0. For f ¢ F
the contamination g(x) may be thought of as the remaindef term in a first
order Taylor expansion of f. Marcus and Sacks restrict the estimators of
a and b to be linear but not necessarily the standard least squares estimates
based on the model FO’ and restrict designs to have finite support They
look for estimates and designs to minimize the mean square error

sup E(a - a)° + 62(b - b)2)
feF
where ; and 6 denote the estimates of a and b, and 6 is a specifieé éonstant;

They are able to solve this problem for a number, but not all, choices
of ¢. If ¢(x) > mx then the unique optimal design is on the points
{-1, 0, +1}. If ¢ is convex there is a wide range of cases for which a
design can be found on two points {-z, +2Z} where Z depends on ¢ and 6.

It should be noted that the condition ¢(0) = 0 in fhis formulation
forces the contamination g(x) to be zero at x = 0. This fact gives special
value .to the point O and isthe reason that 0 is in the support of the unique
optimal design in the case ¢(x) > mx.

In this péper some of the élever ideas of Marcus and Sacks and of Hubef
are modified and combined to get results in some multivariate settings.

More specifically we take X to be the k-fold Cartesian product of [-1, +1]
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or to be the k-dimensional simplex. We take FO = {linear functions on X},

F = {f(z),= BO + gfx + g(x); BO € R (0 when X is the simplex), B ¢ Rk,

t
xeX g X>R |g] <c, and inf [ (g0 - by - b 0% dx = [ g2(x) dx,
X X

"where the inf is over all b0 e Rand b ¢ Rk (when X is the simplex, this is

just over all b ¢ Rk)}. Here ¢ > 0 is some constant. Notice for f e F,

BO + §f§ is the best linear approximation to f in the L2 norm with respect
to Lebesgue measure on X. If estimates éO and é_of BO and B are restricted -
to be linear but not necessarily the standard least squargé estimates, and
designs are restricted to have finite support, then the estimates and

design which minimize the mean square error

A k -
sup E((By - 8)° + § o2 (8, - 8,)%)
. i Mi i
feF i=1
1
where B = (Bl, . Bk) and o_f_ei <1 fori-=1,..., k, are the usual

least squares estimates and the usual optimal designs for multivariate
linear regression on the cube or simplex (in the case of the simplex we take
all 6, = 1).

i

2. ‘Results for simplexes.

The following notation will be used in this paper. Lines underneath
variables will denote column vectors and primes on vectors of matrices
will denote transpoées. The size of a given vector or matrix will be made
clear from the context. We shall use the symbol R to denote the real
line and Rk to denote k-dimensional Euclidean space.

Consider the multivariate regression problem

1
Y(x) =8 x +g(5m) e

where m = 1, 2, ..., n (n is fixed), the e are uncorrelated random variables



T
with mean 0 and finite variance 02 >0, 8 = (Bl, cees Bk) € Rk,
o I ) o
K {(xl, eeay xk) € R; izl X; = 1, X5 > 0 for all i} = k - 1 dimensional
1
. simplex, X = (xlm’ cens ka) € Sk’ and for some fixed constant ¢ > 0,

geG={g: Sk + R; lg(z)l <c, fg(§)d5_= fxi g(x) dx = 0 for i =1, ..., k.
Here x = (xl, cea, xk)'}.
In the definition of G dx is Lebesgue measure on Sk and all integrals are
over Sk' In fact all integrals that appear in this section of the paper
will be assumed to be over Sk unless otherwise noted.
The cdnditions fg(z) dx = fxig (x) dx = 0 are equivalent to. requiring

. ‘ .
fg2(§)d5_= infk (g(x) - 9_5)2 dx, which says that the best linear approxi-
beR

mation of g in the L, norm with respect to Lebesgue measure‘dz.on Sk.is the
function 0. This condition insures the uniqueness of the'Bi in our model (2.1).
A discrete porbability measure £ on Sk will be called a p-exact design
for p observations if E(x) = j(x)/p where p > 0 and j(xX) are integers, and
X e Sk' We shall denote by Ep_the class of all such designs.
Wé also define

Dp = {probability measures £ on S¢3 card (supp &) <p} D= U D_.
: p=1

For £ ¢ En’ let the linear estimators of the B; be defined by

(2.2) - B, =YW B () dE (0 ,i=1, ...,k
where the Bi are real valued functions on S, .

k

We shall consider the (expected) mean square error due to the design &

and the estimators Bi namely

(2.3)



This mean square error can be rewritten as the sum of a variance term,

k - A k ~
X E(B. - EB.)Z, and a bias term, z (8. - EB.)2. Using (2.2) we can
i=1 * t i=1 * t

write the variance term as

X - SN2 2 X 2
(2.4) I By -E8)° = (o°/m) ] [ B (® & (n)
i=1 - o=l

and the bias term is determined by the equations
k

8, | x, B, (0 dE (x)
i=1§i#j 2ot @

2.5) . EB. - B.
(2.5) | BJ BJ

+

B; [/ % By (0 de (0 - 1]

+

/ B, (x) g(x) d& ()

for j =1, ..., k.
If the Bi are unbounded in order for the error to be bounded we must
have

(2.6) [ x; B (x) d& (0 = 85 » 12i,jzk

- where Gij is the Kronecker delta. This is equivalent to saying that the

linear estimators are unbiased if g = 0.
: k-
|
Also notice that szgce X = (xl, s xk) € Sk if and only if izl X = 1

and x; >0 for all i, (2.6) implies

k .
(2.7) . B = [ (Ix) B WA ® =1

i=1

. .
os Bk) ,» and define
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(2.8) L(B, &, g) =

1

U @ s e @)
X 2

o[ (] B () d
i=1

Notice that L(B, &, g) is equal to (2.3) with condition (2.6) imposed.
Condition (2.6) and L(B, &, g) are well defined for £ € D and from now on
we shall not restrict ¢ to be an exact design for a particular p, but rather

allow £ to be in D.
Our objective is to find Bi and £ e D satisfying (2.6) which minimize

sup L(B, &, g). To do this we start with some lemmas.
geG :

k
LEMMA 2.1. 1If the Bi and £ satisfy (2.6) and Z Bi is not constant on
_ i=1

% *
supp &, where £ ¢ Dp’ then there exists Bi’ i=1,..., kand & €D

k *2 *
satisfying (2.6), with Z Bi constant on supp £ and inf [L(B, &, g) -
i=1 geG

* *
LB, £, g)] >o0.

. * k
Proof. Let d& (x) = a( )

Bz (5))1/2 df (x), where o is the constant making
i=1 :

k
* . * 2 1/2 .
£ a probability measure. Let Bi (x) = Bi(§)/“( Z Bj (x)) fori=1, ..., k

j=1

* ' * * '
and define Bi (x} to be 0 if the denominator is 0. Notice Bi dg = Bi dg
k .2

* ¥ * ’
for all i so that Bi and § satisfy (2.6). Also notice that z Bi x) = lé
i=1 ~

=]

*
is constant on supp & . Since

*2 *
B, (1)) d& (x)
1

[« /w? [ a8

i

Il ~15

[/a) [ de" @1°

"

k
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k

with strict inequality unless z Bi (x) is constant on supp £, the lemma
i=1 o
follows. Q.E.D.
LEMMA 2.2. Suppose 1 < r < s < k where r,s are integers. Let
. |
LI (x) = (xl, cees Xy gs Xgs X vees Xogs Xy X as eees xk)
if r < s-1 and let
. 1
Trs (X7 (Xp oo X g0 X5 500 X0y ey X))

if r = s-1. In other words, L interchanges the r-th and s-th coordinates
of a point in RX, | . ,
Define m__ o g =g om__. Let L= sup L(B, &, g) for specific
TS Ts 2€G —

, .
functions B = (Bl’ cees Bk) and design £ ¢ DP all satisfying (2.6). Then

there exists a design £ € D and functions B,, ..., B, with E:= (Bl, ey

2p 1 k
such that
B, 0 =B,(n_ (x)) ififrandi#és
B, () = B,(n . (® ifis=r
§S (x) = Ts‘r(nrs (x) ifi=s
£ (x) = E'(Trrs (x))

all satisfying (2.6} and

(2.9) ~ sup L(B, E, g) <sup L(B, &, g) =

=L
geG geG
X 2
Proof. By lemma 2.1 if Z Bi is not constant on supp £ we may replace the
' i=l1 '

-and £ by functions B and E € Dp satisfying (2 .6), hav1ng

%2

*

L(B , E » 8) < L(B, E, g) for all g ¢ G, and such that Z B is constant
- k i=1

on supp E . So we shall assume Z Bi is constant on supp £. Then
' ' i=1

I.(_

2 . g 2 % 2
By () d& (0 = [f (] B] )?de @]

1 i=1

Il o~/



Let &=t (x)
B) (x) = B, (m__ (X)) ififrandi#s
By (0 =B (v _ (x)) ifi=r
B. (0 = B_(v__ (x)) ifi =s
Now for each g € G we have L(B, £, g) = L(§?, £°, Mg ° g) and hence
(2.10) - L = sup L(B, &, g)

geG

= sup L(B®, £°, m__ og)

2€G TS

= sup L(B°, £°, g)
geG

since g € G if and only if T o8 € G.
Let ui(§) = Bi(i) E(x), ug (x) = Bg (x) 60(5) fori=1, ..., k. The

o .
u, and u, are defined on

T={xe Sk; X € supp £ or LI (x) € supp &}.

1 o (¢} ot .
Let u = (ul, s uk) > u = (ul, cees uk) . Using (2.8) we get

L(B, &, g) = L° (u, g)
L%, £°, g) = L°w’, g
where
0 X 2 L 1/2.2
v, 2= 1 () e@v; @) +0 (] (L vi @)9H%
i=1 xeT xeT i=1
L° (v, g) is convex in v and clearly sup L° (v, g) is convex in v also.

geG
Furthermore (2.6) remains valid for convex combinations of B satisfying

(2.6).



Let u, = (u; + ug)/2 for i =1, ..., k. Notice
a;(lJ = ﬁi (ﬂrs (x)) ifi #randi#s
w0 =u, (r Q) ifi=r
WX =u (m. () ifi=s

k
We have sup LO(E; g) < L by convexity and (2.10). Define EI}) = a( X ﬁ? (5))1/2
geG i= ’

where o makes £ a probability measure. Let Ei(zj = G&(z)/étz) if EIg) > 0,

and 0 otherwise, for i = 1, ..., k. These are the 10 e Bk and £ stated
in the lemma.
Q.E.D.
LEMMA 2.3. Suppose we are given functions Bl’ ey Bk’ with B = (Bl, cens Bk)"
- and design £ € D all satisfying (1.6). For any g ¢ G there exists g? e G

with Ig* (z)l = ¢ on supp & and such that
*
L(B, &, g ) > L(B, &, g).

Proof. L(B, &, g) is a convex quadratic function of g(x) for fixed x e supp &.
Thus it can be maximized by assigning g(x) its extreme values, namely :_é.
Let g* be a function derived from g by redefining g at eaéh point X in supp é
so as to maximizé L(B, &, g) as a function of g(x) and so that lg*l = Cc on
supp £€. Clearly the values of g* off supp £ can then be chosen so that
gf‘e G. Q.E.D..

Applying lemma 2.2 for all 1 < r < s < k we find that we can restrict

- attention to functions B . Bk and designs £ ¢ D such that

. 1’
(2.11) . £ (x) = ¢ (“rs (x)) forall 1 <r<sc<k
Bi(§) = Bi(jrs (x)) ifi#randi #s
BL(X) = B_(n__ ()

B (x) = B (v (X))
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for purposes of finding functions B o Bk and design £ € D satisfying

1)
(2.6) to minimize sup L(B, &, g).
geG

t
Let M be the set of ordered pairs (B,£) where B = (Bl, cens Bk) s
the Bi are functions on Sk’ € € D, and B and & satisfy (2.6) and (2.11).
Notice the Bi and £ also satisfy (2.7).

From lemma 2.2 it follows that the inf of sup L(EJ-E, g) over all B
geG

and € € D for which (2.6) holds is the same as inf sup L(B, &, g).
\ (B,E)eM geG

Next let G(c) = {g: S, > R; |g(x)| = c}. Since card (supp &) < = for

| fixed £ € D, it follows that for all h e G(c) there is a g € G with g = h

on supp £. Hence by lemma 2.3, given (B,€) € M, we have sup L(B, &, g)

geG
sup - L(B, &, g).
geG(c)
* * * *
We now proceed to find (B, £) & M such that sup LB, &, g)=
geG(c)
. * * .
inf sup L(B, £, g). Notice that for such a (B , £ ) we also have

(B,&)eM geG(c)

*
that gﬁ and £ minimize sup L(B, &, g) overall B and £ € D satisfying (2.6).
geG

For any g ¢ G(c) and (B, £) e M,

k k
LGB, &g = ) (/B0 g dE @)% + o ) | B () dE (»
i=1 i:
K 2
= L U Bl @) 1y e (0 dE (r, ()
i=1

k
o 1 BI(m); (X)) dE (m), (X))
K 2
LU B T, e g dE ()

i=1
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[ 82 de @
1

+p
i

il &~

k
LU Bl Inpy e g@] dE )7

i=1

A

+ ok Bf (x) d& (x)

ke (f 1B, g @)% + ok [ B2 (0 e

This holds for any g e G(c), so

(2.13) inf sup L(B, &, g)
(B,E)eM geG(c)

< ant kU B@] a5 )2+ k0 B2 @ de (]
(B,&)eM

inf , [ke’(f [B,0] a5 @)% + ko [ B2 (0 & ()
(B,8)eM”

inf , [ke?(f B, d& )% + ko [ B2 (0 dE (9]
(B,&)eM ' ,

| A

inf ke’ + ko [ B (0 dg (9]
. (B,&)eM

where M' is the set of all (B,E)eM such that'B1 > 0 on Sk' Notice tﬁat the

last.equality in (2.13) follows from the fact that f 81(5) dg (x) = 1 by (2.7).
Let m21(g) = f xi d¢ (x). Notice that if (B,€) € M then m21(€) > 0.

For if m21(€) = 0 then supp € C {x ¢ Sk; X, = 0} and one would have

[ x; Bj() d& () = 0 contradicting (2.7). Since m,; () > 0 when (B,£) ¢ M

one has

B @ de @) ( &/my @) dE @)
[ B, @ x//, &N e (x)]°

(f x, B, 0 d& ())/my, (&)

= 1/n,, (5)

(2.14) (82 0 d

iv

using the Cauchy-Schartz inequality and (2.6). Notice that there is equality
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(2.16)

12

throughout (2.14) if and only if B (x) = ax; for some a € R on supp &.

In fact for (2.6) to hold, one must have a = 1/m21(E) Thus given & € D,

_f B1 (x) d& (x) is minimized by B (x) = X /m 1(5,)

Next notice that among all £ € D satisfying (2.11) one can show that

* :
mZI(E) is maximized by the design & which puts equal mass 1/k on the k points"
1 *

1
(1, 0, ..., 00, (0, 1,0, ..., 0) , eees (0, v.., 0, 1) on Sk' In this

*
case m21(€ ) = 1/k.

* * 1

L s oees B

* *
By the remarks in the preceeding two paragraphs one can see that (B ,£ )

* * * * +
Define B = (B where Bi (x) = kxi. Notice that (B ,£ ) e M.

minimizes f Bf (x) d&¢ (x) over all (B, &) € M. Thus using (2.13) we have

inf sup  L(B, &, g)
(B,E)eM geG(c)

< inf  sup [kc2 + ko [ Bi (x) d& )x)]
(B,€)eM geG(c)
2 *
ke? + ko [ B, (0 & (0

Now for any (B,&)eM

‘SUP L(E; E: g) _>_L(E, E: C)

geG(c)
k 2 k 2 '
=1 UB@ecd @ +o } [B ®d @
. i=1 i=1

-Zka )d())2+'lffsz X)) dE (n,. (X))
=c izl( ; (0 de (X .p LJB (myy (X)) dg "y &

k k
2l ZIB (0 dE ()
- i=1 i=1

ke? + ke [ Bf (x) dg (x).

_Thus .
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(.17 inf o swp LGB, £, @) > inf (ke + ko [ B2 (0 dE ().
(B,&)eM geG(c) (B,&)eM

By arguing as between equations (2.14) and (2.15) we can show that

* *
(B, £ ) minimizes f Bi (x) d& (x) over M where (Ef, E*) M are as before.

Hence
(2.18) inf - sup LB, £, g) > inf (ke + ko [ B2 (x) dE ()
(B,E)eM geG(c) (B,E)eM :

Kke? + ko [ BIZ (x) de” (x)

I
ot
[¢)
+
o

©

Combining (2.15) and (2.18) we get

(2.19) - inf sup L(B, &, g) = sup L(Ef, 5*, g)
(B,&)eM geG(c) B geG(c)
= kc2 + k2p

. * . *

From all the above arguments it follows that B and £ e D give a
solution to our original minimax problem stated just before lemma 2.1.
Summarizing we have the following theorem.

. * .
THEOREM 2.1. Let & € D be the probability measure putting mass 1/k on
1) ]
each of the k points (1, 0, ..., 0) , (0, 1, 0, ..., 0 , ..., (0, ..., 0, 1)
. * *
in Sk. Suppose B = (B1 ,
‘ . '
Let M be the set of all ordered pairs (B, &) where B = (Bl, cess Bk) ,» the

* *
eey Bk ) where Bi (x) = kxi fori=1, ..., k.

Bi are functions on Sk, € ¢ D, and B and £ satisfy (2.6). Then

* * )
sup LB, £, g) = inf sup L(B, &, g)
geG (B,E)eM geG
* ’ .
Notice that B gives rise to the usual best linear unbiased estimators
B * . * -
with respect to £ for linear regression on Sk' . Also notice & .is an
optimal design for linear regression on Sk with respect to a broad class of

optimality criteria
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3. Results for cubes.

In this section we shall examine a multivariate regression and design
problem, analogous to that discussed in the preceeding section for simplexes,
on the k-dimensional cube centered at the origin with sides of length 2.

We shall again find that the usual designs and best linear unbiased estimators
are optimal. The method used to prove this is similar to that used for simplexes
but is somewhat more complicated due to the fact that the coordinétes can
take on negative values. This shall become clear as we proceed.

Consider the multivariate regression problem

Y(xm) = B, + 8" x, +g(x) +e

where m = 1, 2, ..., n, the e, are uncorrelated random variables with mean
1 .
0 and finite variance‘o2 >0, Bo eR, B = (Bl, cens Bk) € Rk, Ik = k-fold
R
Cartesian product of the closed interval I = [-1, +1], X, = (xlm, cees ka)
k

e I, and for some fixed constant c > 0,

geG={g: 1N le@| <c, [ g dx =

f X; g(x) dx = 0 for i =1, ..., k. Here
1
| X = (xl, v, xk) }. |
In the definition of G dx is Lebesgue measure on Ik and all integrals will
be assumed to be over Ik until otherwise noted.

The conditions f g(x) dx = f X5 g(x) dx = 0 are equivalent to requiring

t
f g2(§) dx = infk f (g(x) - b 5)2 dx which says that the best linear approxima-
' beR™

tion to g in the L2 norm with respect to Lebesgue measure on Ik is the function
0. This condition insures the uniqueness of the Bi in our model (3.1).

Analogoué to what was done in the case of the simplex, we shall denote

. by Ep the class of all exact designs for p observations on Ik. We also define



15

Dp = {probability measures £ on Ik; card (supp & ) < p}

D= U D
p=1
For £ ¢ En, let the linear estimators of the Bi be defined by

P

(3.2) B =YW b, A ®  ,i=0,1,...,k

where the bi are real valued functions on Ik.
We shall consider the (expected) mean square error due to the design &

and the estimators B;, namely

k5, .
(3.3) | z 6; E(8; - B;)

where 60 =1, 0 < ei <1 fori=1, ..., k. The Gi are known constants.
This mean square error can be rewritten as the sum of a variance term, .

k

k - . A
Z 6? E(B. - EB.)2 and a bias term Z e? (B. - EB.)2. We can write
jo0 1 i i 4o 10 d i
the variance term as
| Koo - 2 2, K 5. 3
(3.4) i__z_o 6 E(8, - EB.)" = (o°/n) izo 67 [ v (0 d& (®)

and the bias term is determined by the equations

A k
(3.5) EB; - 85 = i=0§i;éj By [ x; b0 df
+ 8, 1/ x5 by (0 dE () - 1]
+

/ by (0 g(X) dE(X)

S .
for =10, 1, ..., k. We take x, =1and x = (xl, -ees ) in (3.5).

If the Bi are unbounded in order for the error to be bounded we must



(3.6)

(3.7)
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have f X5 bj(Ej dg(x) = 6ij for all 1 <1i, j <k, where Gij is the Kronecker
delta. This is.equivalent to saying the linear estimators are unbiased if

g = 0. If we define Bi(§) = ei bi(5) then this condition becomes

fxiBj(i) dg (g:ej S. . » 0 <i, j<k.

1)
If any ei = 0 then Bi(E) = 0 and we are really estimating fewer parameters

and are in a lower dimensional case.

Let p = oz/n, B = (BO, B

L
1° . Bk) >, and define

LB, €, g) = .E (f B, (0 g0 @)% + o | (_E B2 () dr ().
i=0 i=0
Notice that L(B, &, g) is equal to (3.3) with condition (3.6) imposed.
Condition (3.6) and L(B, &, g) are all well defined fof E e‘D and from now
on we shall not restrict £ to be an exact design for é_particular P Eut rather
allow £ to be in D. i

Our objective is to find the Bi and £ e D satisfying (3.6) which minimize

sup L(B, &, g). We begin with some lemmas similar to those used in the case
geG

of the simplex.

: : k
LEMMA 3.1. If the Bi and & satisfy (3.6) and Z Bi is not constant on
i=0

* * .
supp &, where £ ¢ D , then there exists Bi’ i=0,1, ..., k, and £ ¢ Dp
k 2 .

*
satisfying (3.6) with f Bi constant on supp % and with
i=0
* *
inf [L(B, &, g) - LB, £, g)] > 0.
geG

Proof. The proof is similar to Lemma 2.1 and is therefore omitted. Q.E.D.



(3.8)

(3.9)

(3.10)

(3.11)
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LEMMA 5.2. Suppose 1 < q < k, q an integer, and let

' [
s X 5, X ey xk) .

Tq()_(_) = (xlﬁ ey Xq_l q q+1) .

‘Define qug =g o Tq' Let L = sup L(B, &, g) for specific functions

geG .
B = (BO, Bl’ o Bk)' énd design £ € Dp ail satisfyiﬁg (3.6). Then there
exists a design T e D) and B = (B, B, ..., Ek)' satisfying (3.6) with the
property
B; (x) = B; (T, ,i#q
Bq(_) = -Bq(Tq(}_))

EXx) = € (Tq(i))
and such that
sup L(B, &, g) < sup L(B, &, g) =L
geG geG
Proof. The proof is similar to Lemma 2.2, with obvious modificatibns, and
is therefore omitted. Q.E.D. |
LEMMA 3.3. Suppose we are given B = (BO, Bl’ cees Bk)' and design £ € D
satisfying (3.6). For any g £ G there exists g* e G with lgf(z)l = c on
supp & and such that L(B, &, g*) > L(B, &, g).
Proof. The proof is similar to Lemma 2.3 and is therefore omitted. Q.E.D.
Applying Lemma 3.2 for q = 1, 2, ..., k we find that we can restrict

attention to functions Bo’ B s Bk and designs £ € D such that

1> e
g(x) = «E(_Tq(i)) q=1, ..., k
Bl(l(_) = Bi(Tq(i)) i # g, i=0, 1, ..., k, q=1,

1
et
-
.
-
=

Bq(z) ‘Bq(Tq(i)) q.-
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for purposes of finding functions Bo’ Bl’ cees Bk and design & ¢ D all

satisfying (3.6) to minimize sup L(B, &, g). 1In fact, if we let M be the
geG

1
set of ordered pairs (B,£) where B = (BO, Bl’ N Bk) , the Bi are functions
on Ik, € € D, and B and £ satisfy (3.6) and (3.11), it follows from Lemma

3.2 that the inf of sup L(B, &, g) over all B and £ € D for which (3.6)
geG :

holds is the same as inf sup L(B, &, g).
(B,E)eM geG

Suppose (B, &) ¢ M. Define Hk to be the k-fold Caitesian product of

the closed interval H = [0,1]. Let n(x) be the number of non-zero coordinates

k

Ofi-':(xl: ey Xk) and let P(}_)={X=(}’1: ) }’k) e I; (lyll’ ceny ,}’kh}

= (lel, cees ]xkl)} for x = (xl, cens xk)' € Ik. Notice card P(x) = 2n(§)

and P(x) is the set of all points tifl’ cens i}k)

Define
(.12 g = I gp/2®
yeP(x) .
g0 = ) sgn(y; ) g(x)/Z“@ s, i=1, ..., k
yeP(x)

where sgn(x) is +1 is x > 0, 0 if x = 0, and -1 if x < d. We can then write

Il b~

_ k |
(3.13) L(B, &, g) = [ B.(x) g; () de (5)]2-+ N ) Bi(_)g) dE(x)
' : i=0 i=0 :

i
where for any £ ¢ D we define £ to be the probability measure on Hk with

E(x) = 2n(5)£(5). The integrals in (3.13) are over Hk.

Let G(c) = {g: Ik > R; lg(zjl = c}. Since card (supp &) < « for fixed
€ € D it follows that for all g e G(c) there is a g € G with g = g on supp &.

Applying Lemma 3.3 we have for (B,Z)eM that sup L(B, &, g) = sup L(B, & g).
_ geG(c) : geG
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Notice that if Bo’ Bl’ ey Bk satisfy (3.11) then

(3.14) Bi(xi, sees Xy g 0, Xi,10 roes xk) =0 , i=1; ..., k.

Let us now examine (3.13) on more detail for the cases k 1 and k = 2,
This will help motivate Lémma 3.4, We assume (B, £) e M.
Suppose k = 1. Let g be in G(¢). Fix x ¢ H. If gx) = g(-x) = ¢

(or -c) then

(3.15) - (i) g,(X) = [g(x) + g(-x)]/2 = ¢ (or -c)

1}
o

g (0 = [B00 - g(-x]/2

If g(x) = -g(-x) = ¢ (or -¢) then

n
(]

(3.15) (i) g, (x)
g,(x) =c  (or -c)
Notice case (ii) can only occur if x # 0.
Equation (3.15) covers all possible values of E; and Ei. We can then

break H up into two disjoint sets., We get the partition {Hl(gj, HZ(E)}

of H where

{x e H; |§gtx)|

H, () © lg Gl = 03

c}

Hy(@) = {x e b5 g ()] =0, |g (0]

Let T'(g) = {g e G(c); {H (2), Hy(e)} = {H,(®), H,(&)}].

If we let {U Vi} be any partition of Hi(éa, i = 1,2, then it is not hard

1

to see that there is g ¢ I'(g) such that g, =conl;, g =-conV,

g =con U2, and gy = -c on V2. In other words, -any possible assignment of
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signs to the g, in H_(g) and H (E} is attainable for some g e TI'(g)."
i 1 2

It is also not difficult to see that given any partition {Hl’ H2} of

H with 0 ¢ H1 and for any partitions {Ui’ Vi} of the Hi there is a g ¢ G(c)

such that Hl(g) = Hl’ Hz(g) = H2, g, = con Ul’ gy =

-Cc on Vl’ g, = con U

and g, = -c on V2. Equation (3.15) can be used to construct this g.

This allows us to tewrite (3.13) as

LB, &, 8) = [ ([ B, g, @)’

where f. is over Hi+1(g)

i+]1

*
we can choose g as in the

and we then get

*
L(B, &, g )

1

i=0 i+l

1 2 _
+o [ (] BI(0)EX
L

1

and the last integral is over H.

= {x e H(g); B,(0) >

A

{x e H (g); B (X)

{x

m

H,(g); By (x)

[t}
™
A

{x H,(g); BICXJ

preceeding paragraphs

i=0 i+l

+

i=0 .

I
(@]

i=0 i+l

+

v

0}
0}
0}

0}

so that

1
IO Bl g0l dEen?
1 2 _
o [ (I BI(x)) dE(x)
! = 2
I O IB,0] dE)

1, _
) B, (x)) d&(x)
i=0

By letting

2’
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- 1
sup LGB, &, 8) = swp cf § ([ [B,(9] dE(x)?
geG(c) {HI’HZ} i=0 i+l

1, _
+o [ (] BI(X) dEX)

1

i=0
where the sup on the right hand side is over all partitions {Hl’ H2} of
H such that 0 € H,. The relationship between £ and £ is as defined below

(3.13). Our goal is to rewrite sup L(B, & g) in a manner similar to
geG(c) '

the above for general k.
To see that this can also be done for k = 2 and to get an idea of how
one proceeds in general, we write out the case k = 2 in detail. Let
t

g € G(c) and let X = (xl, x2) £ H2. for x such that X, # 0 and X, £0

‘'we find
(3-16) - (i) if E(XI-JXZ) = E(Xl, —Xz) == E(—xl’xz) = .g—(_xl, _xz) = c (0r>—c)
then
Eo(xl, x2) = ¢ (or -¢), Ei(xl, xz) =0, Eé(xl’ xz) =0
11 1f _E(xl’ x2) = E(Xl’ —x2) = -g—('xls xz) = E(_xl’ "XZ) = ¢ (or —C)
then
Eg(xl, x2) = c/2 (or -c/2), Ei(xl’ xz) = -c/2 (or ¢/2),
gy(x), x,) = -¢/2 (or c/2).
(iii) If EIXI, xz) =-‘§IX1, -Xz) = EI-XI, X2) = Ef—xl, —x2) = ¢ (or -c)
then '

g,0x, Xp) = ¢/2 (or ~¢/2), By (x» x,) = -c/2 (or ¢/2),

Eé(xl, x,) = ¢/2 (or -c/2).
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(IV) If E(Xls xz) = E(xlj -xz) = _E(_‘xlﬁ xz) = -g—_(—xl’ _xz) = C’ (Or -Cj

then

g, (x5 x,) = ¢/2 (or -¢/2), g, (x5 x,) = ¢/2 (or -c/

g,(x,5 X)) = “¢/2 (ot c/2).

(V) ' If _g—(xl) xz) = E(xl, -x2) = g(_xls xz) = —E(—xl, -xz) =C
then
Eg(xl, X,) = ¢/2 (or -¢/2), Ei(xl, X,) = 6/2 (or -c/2

Eé(xl, X,) = ¢/2 (or -c/2).

(Vl) If _g—(xl, XZ) = g(xl, _XZ) = _g(_xlx xz) = _E(_Xli -xz) =
then

8,(Xy> X)) = 0, g(x), X)) = ¢ (or ~¢), g,(x;, X,) =
(vii) If g(xl"xz) = 'g(xl, 'xz) = g('xlx xz) = ‘g('xl, ‘xz) =
then

2),

(or -c) .

)s

¢ f{or - ¢)

¢ (or -c)

gO(xl’ xz) =0, gl(xl, XZ) =0, gz(xl,xz) =c (or —C).

For x = (xl; XZ) such that X, = 0 and X, # 0 only cases (i)

and (vii)

can occur. For x such that X, # 0 and X, = 0 only cases (i) and (vi) can

occur. For'ﬁ_such that X} =X, = 0 only case (i) can occur.

Equation (3.16) (i) - {(vii) covers all possible values of E;(;),

E&(§), and Eé(g) for x ¢ HZ. We can break H2 into four disjoint s

ets, for

fixed g, by varying x e H%. We get the partition {chg), Hz(gj, HS(E),

H4(§)}lof H? where
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H@ = xet’s W] =c [l =0, 5wl =0
Hy (@) = xe 15 (g =0, [[@] =, 5@l =0
Hi(®) = {x e 1% [, = 0, [5;] =0, |5, = o)
H@ = xe b’ [, = /2, 15,01 = e/2, |5, = /23

Notice (0,0) ¢ H, (g), (x;, 0) € H (g) U Hy(@, (0, x,) € H (@) U H, (3).

If we let
re) = {g e G(e); M (g), Hy(g), Hy(e), Hy()} = {1, (@), H,(®), Hy (D), H,(e) })
then an inspection of equation (3.16) (i) - (vii) shows that for any )
assignment of signs to the IE;(E)I for each x in each Hj(gb, i=20,1, 2,
J=1,2, 3, 4, there is a g ¢ I'(g) such that the gi(g) have precisély these
signs. In other words the partition {chgj, ey H4(§)} is determingd only
By IE&(§)| and among all g € G(c) such that 1gi(§)| = |§£(§)| for all
X € Hz, i =0, 1, 2, all possible values for the sign of.léi(z)l are attainable.

1]
The result of all this is that we find for (B, 8) eM

Ml\)

f B.(X) g; (0 dE@ + [ B.(®) g (® dE(x))2

1=0 i+l

L(B, &, g) =

2
+ B, =
o JCL By dEm

where f- is over Hi+1(g) and the last integral is over H2

i+l : :

Since any'possible assignment of signs to the |gi(§)[ are attainable for

* ‘ * * .

some g e I'(g) we can choose g e I'(g) so that sgn gi(zj = sgn Bi(§) and

Ig;(-"-)l = |g; ()| for all x ¢ H? and i = 0, 1, 2. Then
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[ I8, w1

* 2 : —
LB, & g) = ] [(/2) [, [B,@)| dE) + ¢
i=0 ' i+l

2 3
+o [ (] B, (x)) dE(x).
i=0

One also finds that for any partition {Hl, HZ;_HS’ H4} of H2 such that
(xl, O)' E‘Hi U H, and (xz, 0)' € Hl U H3 there exists g ¢ GCC) such that
{Hl(g), cee, H4(g)} = {Hl, ceey H4} and the signs of the gi(z) are as
»desired. To see this notice for any X € H2 we have that x ¢ Hj for some j,
1 < Jj <4. This tells us what lgi(§)| should be for i = 0, 1, 2. We can
‘ éhen assign signs to the lgi(§)| as we desire and use equations (3.13) and
(3.16) to determine g(xl, x2), g(xl, —xz), g(-xl? x2), and g(—xl, exé).
Repeatingvthis for every x e H2 gives us the desired g ¢ G(c)

All this gives us

2 o —
swp LGB, £ g) =swp ] [(e/2) [, B, e [ B, (0] dE(0I
i=0 : i+l

geG(c) i=
2 2 _
+o [ (I B{(x) T
i=0

where the sup on the right hand side of this last equation is over all
partitidns {Hl, H,, HS, H4} of H® into four disjoint sets such that
(x, 0 e UH, and (0, x,)" ¢ H, UH,.
Our goal is to establish a result analogous to this last equation for
general k. The next.two lemmas are used to accomplish this.
VLEMMA 3.4. For each k-there exists an integer n(k) and numbers aijk with

0 < aijk <c,i=0,1, ..., k, j=1, 2, ..., nk) satisfying the following -

relations.
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(1) 391k = C» 2y = Ay = vee T 4Gk = 0 and given any g e G(c) and

X € Hk the only possible values for gi(i) are'ipi. =1, ..., n(k).

ke
(ii) Given g ¢ G(c), if we define
Ho(g) = {x e HY; g (0] = a i=0,1 k}
] - RS e ijk’ kA

for j =1, 2, ..., n(k) then {Hl(g), cens Hn(k)(g)} is a partition of Hk

into n(k) disjoint sets,

k 2 P
(iii) .z aijk < c¢” for all j,
i=0
(iv) Let J(i, k) = {j; 1 <j <m and %ijk T 0}.

Then every point X € Hk whose i-th coordinate X; is 0, 1i=1, ..., k,

. satisfies x ¢ U H.(g). Notice 1eJ@E, k) for all i.
j J(i,k)
(v) For each g ¢ G(c¢), if we let

I'(g,k) = {h ¢ G(c);'{Hl(h), cees Hn(k)(h)} = {H (), .., Hn(k)(g)}}

then for any assignment of plus or minus signs, depending on i and X, to

* ' *
the values Igi(E)I, there is a g € I'(g, k) such that gi(zj has these signs

*
and [g; (0] = |g; (0].
(vi) Suppose {Hl, . Hn(k)} is a partition of Hk into n(k) disjoint
sets such that if x e Hk has its i-th coordinate 0 then X € U H_,

jed(i,k) ?
The?e exists g € G(c) such that Hj(g) = Hj for all j. |
Proof. To prove this rather complicated lemma we use.an induction argument.
The cases k = 1 and k = 2 have been examined in detail above and one can

verify that the lemma is true in those cases.
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Assume that Lemma 3.4 has been proved for all k up tot > 2. We show

that it holds for k = t + 1. For purposes of this proof we use the notation

G(c, k) = {g: Ik + R; Igl

cl

instead of our usual G(c) so as to keep track of the dimensionality involved.

Suppose g € G(c, t+1). For any z ¢ I if we define gz(xl, ey xt)-=
g(xl, cees X z), then for fixed z € I g, € G(c, t). From the definition
of g in (3.12) we see that for any y € H

gi(xl,’..., X y) = [gyi(xl, cees xt) + g—yi(xl’ ooy xt]/Z
Bea1(Xps +ovs X5 ¥) = lg,o(xps -vs x) - B_yo(Xys +ovs X172

fori=0,1, ..., t.

Applying the induction assumption one has the numbers a, . and n(t).

jt
Notice by (3.17) that each g. can only take on the values (aijt i-ailt)/z

i
— : < = - 2’
or ( aijt + ailt)/z for i =0, 1, ..., t and 1 <Js, % <n(t). Also, 841

can only take on the values (aojt i-aolt)/z or (—aojt i_aogt)/z for
1 <3, % <n(t).

Upon taking absolute values these numbers give rise to a new set of
numbers n(t+1) and a.

with 0 < a_ . <c¢c, fori=0,1, ..., t+1 and

ijt+1 1jt+l
i=1,2, ..., n(t+1), such that the following properties hold:
(a) For any j such that 1 < j < n(t+l) there exists % and m with
1 <%, m < n(t) satisfying either aijt+1 = lailt + aimtl/z for i =0, 1, .y
M agen T g~ agnel/Z 0T agse = ey v ey J/2 for im0, 1, L,
OT &trljts1 = X 2 ome [/2-
(b) The a, may be constructed so that when j = 1 the appropriate &

ijt+l

and m guaranteed in (a) are £ =m = 1 (this can be done because every £ and m
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yield an 3; 5441 25 described above) and R lailt + ailtl/z = lailtl
fori=0,1, ..., t. Also at+1,1,t+1 = ,aoit - a01t|/2 = 0. Notice that
since a1t = ¢ and a1t = - =B, T 0, this y1e1ds‘a01t+1 = ¢ and
1t+1 T ot Bga1,1,041 T O
(c) The only possible values for gi(z), i=20,1, ..., t+1, X € Ht+l,
are i?ijt+l for j =1, ..., n(t+1).
‘ ‘ , . t+1, _ .
(d) If we define Hj(g) ={xeH 7; Igi(zjl = aijt+1’ i=0,1, ..., t+1}

for j =1, ..., n(t+l) it is not hard to see that {Hl(g), e Hn(t+1)(g)}

is a partition of Ht+1 into n(t+1) disjoint sets.

t
(e) Suppose x = (xl, sees X y) € Ht+1.

Let {Hl(g), cees Hn(t+1)(g)}

be the partition of Ht+1 defined in (d}. Then X € Hj(g) if and only if

thefe éxist £, mwith 1 < %, m < n(t) such that ¢ and m are associated with
]

j as in (a).and such that (xl, cees xt) € Hz(gy) n Hm(g_y). Here

{Hl(gy), S Hn(t)(gy)} and {Hl(g_y), cees Hn(t)(—y)} are the partitions of

Ht associated with gy'and g_y respectively, as guaranteed by the induction

assumption.

That properties (i) - (vi) of the lemma hold for the aijt+1 follows

from the fact that they hold for the a.

ijt’ from equation (3.17), and from

(a) - (e) above.
To See, for example, that (iii) holds, suppose 1 f;j < n(t+l). Let g, m

be»éssociated with j as in (a). Assume a. [/2 for

1jt+l lagge + 3imt

/2.

i=0,1, ..., t and at+1,j,t+1 = Iaolt - aomt[
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that if X € Hk has its i-th coordinate equal to 0 then x ¢ U ..

jed(i,k)
We then find that
(3.19) sup L(B, &, g) = sup A (B, &, T)
ggG(c) eP
where
k n§k)

. — — 2

(3.20) AB, T, M) = ) fa;.0 [ 1B, (] dE)]
. i=0  j=1 I

ko, _
+o [ I Bl dE.
i=0

In (3.20) f is over Hj’ the last integral is over Hk, (B, £)e M, and 3
j .

is related to £ as defined below (3.13).

Proof. By (3.13) we have

K k |
LB, & 8 = ) I B g E®I =0 ] B d®
i:o i=0
k ngk) _ 9 k 2 _
=1 [ [ B0 g0 dE@I" + 0 [ ] Bl dEX
i=0 j=1 j i=0

where f is over Hj, the j-th set in the partition II of Hk.

]
N .
By Lemma 3.4 (v) we can find g € T'(g,k) such that i =0, 1, ..., k,
*
gi(z) is > 0 (respectively < 0) if Bi(i) is > 0 (respectively < 0). Simply
assign a plus sign to [gi(§)| if and only if Bi(5) is > 0 and then choose

‘g* é I'(g,k) as in (v) of Lemma 3.4. Then
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(3.22)
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*
L(B, &, g)

k n§k) . .,
LL) [IB@] lg;0l Tl
0 j=1 j

i=

+

k 2 _
o[ 1 Bi® dE®
i=0

lf [nfk) [ ] | €12
a, ., B, (x)] dg(x)]
im0 jm1 Mk A o

ko, B
+0o [ ¥ By (x) dE(x)
1=0

| v

L(B, &, g).

‘Here f is over Hj(g). Now use (vi) of Lemma 3.4 to get (3.19). Q.E.D.

J
Notice that if (B, €) e M and € is related to € as defined below (3.13)

then (3.6) is equivalent to

[ B dE®

1}
et

f B, (x) dE(x) = 0, i

1, ..., k

where the ei are as in (3.3) and the integrals are over Hk.
“Let ﬁ'be the set of all probability measures on Hk having finite support.

, B

Let N be the set of all pairs (§3E} where € ¢ D, B = (BO

]
10t Bk)
is a k+1 fold column vector of real valued functions on Hk and‘g-and the

. * .
Bi satisfy (3.21). We seek (B, £ )e N such that

* % —
sup A(B , £, M) = inf sup A(B, £, T).
NeP (B,E)eN IleP

* —k * —k
Suppose that (B, £€) e N satisfy (3.22). Let £ e D be related to &

* * .
as below (3.13) and let £ satisfy (3.11). Extend B to all of Ik SO that
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* *
(3.11) is satisfied. It is easily verified that (B, &) eM Furthermore,

*

* .
it follows from Lemma 3.5 and the remarks following Lemma 3.3 that B, & minimize

sup L(B, £, g) over all B and £ e D satisfying (3.6). We therefore now seek
geG ‘

* —% .
(B, £€) e N satisfying (3.22). The following two lemmas will be used in
 the solution of this problem.
LEMMA 3.6. Suppose 1 < i < k and suppose 6, > 0 is fixed. For & e D define

k

Fi(B) = {f: H »R; £(0 >0 and [ x, £(x) dE(x) = 6,)

1 —
Here x = (xl, ceey xk) and the integrals are over Hk. Notice that if &

is such that fxi dgtﬁ) = 0 then Fi(Ej is empty unless ei = 0. Define
0, 0 =0, x/[ x} @ if [x dE@ >0,
otherwise takel¢(E} x) = 0. Notice that o(g, ) € Fi(E) if Fi(Es islnon-empty.
For any o, B8 >0, f e Fi(Ej define Li(f, £) = a(f £(x) dEIEJ)Z +.
B f f2(§) dglgj. Let Ni be the set of ordered pairs (f,£) such that € e D,
F (¢) is non-empty, and f e Fi(E). Then

_— —x -k
inf L. (f, ) = Li(¢(£ s *)s &)

% . : ' ' '
where £ puts all its mass on the point (1, 1, ..., 1) and the inf is over

Call (f, ©) e Ni.
Proof. For any £ € D such that Fi(Ej is non-empty let f e Fi(gj. Also let

mZi(Ej = fxi dg(x). 1If m21(53 > 0 then

[ 20 &

[f £ E@] [f&i/m, @) Ew]

[J £ (x /¥, (B) ) dE ()17

fv

2 —
ei/mZi(E)
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where the inequality in the second line comes from the Cauchy—Schwartz
incquality and the last line follows from the fact that f ¢ Fi(E). The
inequality above will be equality if and only if f(x) = ax; on supp £ for
some a € R. In fact we must have a = ei/mZi(E) if there is to be equality
above. Thus when mzi(gj >0 ff2(§) d—tz) is minimized over
Fi(®) by o(E, ) = 0, x,/n). (D). |

If mZi(Eb = 0 (and so it must be the case that 6, = 0) it is clear that
$(£, x) = 0 minimizes ff2(5) dE(x) over Fi(E]. |

Notice for (f, €) ¢ N, that

Jf@ EwI° < [P Ew.

We have when mZiCEj > 0 that

L (£, D = olf £00 W1 + 8 | 09 dEw)

|V

of[ x, £(x) E@1* + 8 [ 0 dE(x)

+8 [ fz(i) de(x)

o 0

+ 8 [ $2(E, x) dE()

|v

a 6

= qa 6

HoN N R o

2 —
+ 8 Bi/mZi(E)
> ef [a + B]

for all f ¢ Fi(Ej. Notice that the right hand lower bound is also valid

when mZi(Ej = 0 since this can only happen if ei = 0. Clearly this lower
— _ — —%

bound is attained for Li(f, €) when £ = ¢(&, *) and € = € . Q.E.D.

LEMMA 3.7. Let N’ be the set of all (B, ) € N such that B, > 0 for all i
!

where B= (B, Bl’ RPN Bk) Let 7 be any partition of Hk into n(k)

o

disjoint sets. Then

inf _A(B, €, m) = inf A(B, E, m)
(B,Z)eN (B,E)eN |
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Proof. Suppose (B, £) ¢ N and B = (B, B

t
B o 1° o Bk) . Let-
Ui ={x e Hk; Bi(z) <0} fori=o0, 1, s k. Define

B,(x) =B (x)/(1 - [fj By(2) dE(2)) if x £ U_
o
B (x) =0 if xeU
B; (0 =B, 0/ - [ 2, B,(2) dE(®) if x £ U,

U.
i

Bi(zj =0 if x ¢ Ui

for i =1, ..., k. We have that

lﬁi(z)] = §;(§) f.lBi(E)l for all x e H¥.

— — —_ _— ' —_ = —_
Clearly if B = (Bo, Bl’ s Bk) then A(B, £, ) < A(B, &, m) for any partition

T of Hk into n(k) disjoint sets. It is easy to verify that if E_and'E
satisfy (3.21) then so do E:and €. Hence (E; £) € NT if (B, £) € N. The
lemma follows. Q.E.D. -

*
Now let P be the set of all partitions m = {Hl, cees Hﬁ(k)} of Hk

into n(k) disjoint sets. Also let 7. = {H.,., ..., H_ .. ..} be that element of
: : j ij n(k)j
* .
P having Hjj = Hk and all other Hij empty, where 1 < j < n(k).
Before solving the problem posed at equation (3.22) we first solve
. * —k
a different problem. We seek (B, &)e¢ N* which satisfies
' * . f—
(3.23) . sup AB , &, m,) = inf N sup A(B, &, m.)
| - 1<j<n, (B,E)eN” 1<j<n(k) )
To do this notice that for any (B, £) € N" we have

(3.24) B, E, 7))

2

k

+

k 2 _
o [ I BI(®) dE(X)
i=0 _

K 2 — . k 2 —
= 1 aj B;(X) dE(®) * o [ } By (x) dE(x).
i=0 i=0
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Using the Cauchy-Schwartz inequality we can write

AB, E, ) = aﬁjk o [ B2 ()
* '21 33 ik (J B, dE@) + 0 [ '21 B, () dE(x)
= 1=

2
ojk

2

za ijk

X = 0n2
+p o+ .Zl a;s (J B () dE()
1=

k 2 _
+o [ ] Bl X
i=1
where we have used the fact that‘f Bo(z) dgtzj = 1 by (3.21). Notice thét

we have equality in this last equation if and only if BO(EJ = 1 on supp E.

This observation and Lemma (3.6) give us that A(B, €, nj) is minimized over

'+ * * * * ot -k
N byB =(B_ ,B,, ..., B ) and £ where
- o 1 k
. = '
(3.25) £ (1,..., 1) =1
*
B (x) =1
B, 8 [ <2 aE ' i k
1 () = 3 %5/ X5 5(5)—6i X, , 1=1, ..., k

This holds for each j and hence is the solution to (3.23). Furthermore if

* % ) ’
we evaluate A(B , £ , wj) using (3.24) for j =1, ..., n(k) we get

* =k

o k k
(3.26) A(B,g,nj)=Ze.a..+pZe

Recall that 90 =1, 0<6., <1 fori=1, ..., k. By Lemma 3.4 we

i
K 2 '
‘have that iEO aijk :_c for all j and in addition that aOlk = c, allk = ..., =
_ k k '
a = 0. Thus we see that Z e? a?. < 02 for all j and ) e? a? = c2.
k1k jo0 1 ijk = jo0 1 ilk

Hence
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) * . * —% 2 k 2
(3.27) , sup AB, &, m.)=AB, E, m)=c +po ) 6]
1<j<n (k) ) i=o *

Next notice that by Lemma 3.4 (iv) and the definition of P (see Lemma

3.5) ™ E P. We therefore have

(3.28) MELE, 1) = swp A, T, omy)
1<j<n (k) J

= inf _ sup A(B, €, 7.)
(B,E)eN"  1<j<n(k) J

< inf _ sup, A(B, &, m)
(B,E)eN " meP

* -k
< sup, AB, &, m
meP

= sup A(E*, —E_*, T.)
1<j<n (k) J

* %
= AB, T, )

—k :
where the next to last equality comes from the fact that £ puts all its
. .
mass on (1, ..., 1) and only one of the Hj in any partition w = {Hl, ""'Hn(k)}
*

in P can contain this point. Therefore all the inequalities in (3.28) are

equalities and we get

. * % —
AB', T, m) = inf_ A(B, E, )
= ' 3,0t 1

< inf 4 Sup A(B, z, m)
(B,&)eN mweP

< inf + Sup, A(B, £,
(B,&)eN meP

* —*
= A(E s &, '"1)

SO
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* % . —
AB , &, M) = inf = sup A(B, &, m)
(B,&)eN meP

Utilizing (3.29), Lemma 3.5, Lemma 3.7, and the discussion-around

* *
(3.13) we see that B and the probability measure £ on Ik which puts equal

n
1
"

mass 1/2k on all 2k points x = (xl, cees xk)' with lx1|
solves the original minimax problem stated before Lemma 3.1.

Summarizing we have the following theorem.
THEOREM 3.1. Let B)(x) = 1, B,(x) = 6, x,, for i = 1, ..., k, and let ¢"

be the probability measure on Ik putting mass 1/2k on each of the 2k points

]
X = (xl, s xk) such that Ix

N
. .
of all ordered pairs (B, €) where B = (BO, Bl’ cens Bk) and the Bi are real

valued functions on Ik, £ e D is a probability measure on Ik, and the Bi

el = kal = 1. Suppose M is the set

and & satisfy (3.6). Then

* % . 2 k 2
sup L(B , £, g) = inf sup L(B, &, g) =c” + p Z 61
geG (B,&)eM geG i=0
Q.E.D.

Recalling the discussion around equations (3.2) through (3.6) wé see

that when 60 =1 and 0 < ei <1 fori=1, ..., k the estimators

A

By = [ Y Bl 4, i=0,1, ...,k

* *
where bi = Bi/ei’ minimize

k 5 A
sup ) 6, E(B; - 8;)
geG i=0

2

. ' e
subject to (3.6). Notice these Bi are just the usual best linear unbiased

* * :
estimates with respect to & and £ is an optimal design, under a broad class

. . : . . k
of criteria, for k-variate linear regression on I .
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Now we restrict to the case 60 =1 2_61 = ... = ek =06 > 0. The
* *
minimax mean square error sup L(B , & , g) can be written as
geG
x ok * 2 2 X * 2
sup L(B', &, g = sup [(J g dE )7+ 0" ] (J x; g d& )]
geG geG(c) i=1
k
2 2 *
+ p f (1 +696 Z xi) dg (x)
i=1
1]
Let zi = (xij’ ooy xkj) € Ik for j =1, ..., m be any set of m distinct

points in Ik. Let Eo be the probability measure putting mass 1/m on each

of these m points. Define

1 1
X(e,) =
LR
g(6) = (2(x)s +n.s g(x)) -

Notice X(EO) is a (k+1) X m matrix and g(Eo) is am x 1 column vector. If

we use Jm to denote the m X m matrix all of whose entries are 1, we get

k

sup LB, €, @) = sup [(f g dg )%+ 0% ) (f x g0 dE ()7
geG geG(c) i=1
2 K 2
vo [ (+e” ] x) dE ()

i=1

= swp [ - 6% (f g dg ()7 + 67 (S gl dE ()7
: k 2 2
+ 07 ] (f x; 8() dE ()] + p(1 - 87

5 k
+ 07 p f (1 + z

2
x;) dg_(x)
i=1 .



If k+1-is such that a (k+1) x (k+1) Hadamard matrix X exists (in standard ﬂ
form so that the first row and

on k+1 points whose support is

satisfies

*
sup L(B , ¢, g)

geG

+

2 ]
sup [(2 -067) g (E) J_ g(&)
geG(c) o’ “m o

o° ¢ (5,) X (£)) X(E) g(€)1/n’

(1 - 0%p + (6% tr X(5)) X (£)))/m

* » *
sup L(B, £, g)
geG(c)

* *
sup L(B , &, g)
geG

c2 +p + kezp.

geG(c)

+

+

sup  [(c - 6%) g ) I, £()
o2 g ) X () X(W) g1/ (k+1)?

- 690 + (6% tr X(W) X 1))/ (k+1).
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column are all +1) then any exact design ¢

such. that X(¥) = X, where X(¢) is as in (3.30),

Recalling that since X(¢¥) is a Hadamard matrix X(y) X'(w) = X'(w) X)) =

(k+1) diag (1, ...

» 1} = the diagonal matrix all of whose diagonal. entries

are k+1, we have that

*
sup L(B , ¥, g)
geG

+

1l

+

sup [ - 0% g () T, g0 + 0°Ck + 1) g (¥) g1/ (ke1)

geG(c)

(a - ez)p_+ Gzp(k + 1)2/(k + 1)
[(1 - 69)c? &+1)? + 62(k+1)2c?]/ (k+1)

(1 - 8%)p + 820 (k+1)

c2 + p + k92p

2

i

!

i
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where we have used the fact that if g ¢ G(c) then lg(g)l = ¢ for all

Xel

* *
We see that ¢y gives the same minimax value as € . Since B and y

satisfy (3.6) we have:

THEOREM 3.2. Suppose 90 =1 3_61 = .,. = ek = 0 > 0. Suppose k+1 is such
. * %* * t
that a (k+1) x (k+1) Hadamard matrix exists. Let B = (BO, Bl’ - B;)
* *
where BO(§) =1, Bi(EJ = exi fori=1, ..., k. Let ¢y be an exact design

supported on k+1 points in Ik such that X(¥), as defined in (3.30), is a
Hadamard matrix in standard form. Then we have
’ *
sup L(B , ¥, g) = inf sup L(B, &, g)
geG (B,E)eM geG -
where M is as in Thedrem 3.1,

Q.E.D.

Theorem 3.2 allows one to reduce the support of a minimax design in
special cases.

REMARK. Suppose A is a Lebesgue measurable set in Ik, A is invariant
under coordinate reflections, and (1, ..., 1)' e A. Then the above arguments
work when we restrict 5;8 A and Theorems 3.1 and 3.2 again hold.

4. Discussion

In Theorems 2;1, 3.1 and 3.2 we have restricted ourselves to considering
only designs & which have finite support. Certainly such a restriction is
necessary if we want our results to be of any practical value. From a
theoretical standpoint, though, one might wish to know whether Theorems 2.1,
3.1 and 3.2 hold if we remove the restriction that ¢ have finite support.

The answer in general to this is no, at least for the minimax problem we

have posed.
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To see this consider the model of section 3 for the k-dimensional
cube. Using the same notation as in section 3, let XA denote the probability

measure on Ik that is 1/2k times the value of Lebesgue measure on I .

—_ T 1 —
Let B = ( 0’ Bl’ .oy Bk) where the Bi are the best linear unbiased
estimators with respect to A, i.e., EQCEJ =1, §%(§) = 3xi for i =1, ..., k.

Notice that E and A satisfy (3.6) but A £ D.

Now for any g ¢ G we have that
f g(x) dx = f X; g(x) dx = 0 i= I, ..., k.

Here all integrals are over Ik. Since dA(x) = d§/2k, we have for any g € G

(4.1} L(B, %, g) =

I
Il b~ R
[«

L} k —
B e 49?2 + o ] B dx/2t
i=0

k
e a0%2% + T of x, g0 a2
i=1

+

' k
o [ d§/2k +p ) 9x§ dE/Zk
i=1

=0+p +p 3

Il o~/

i=1

o (3k + 1).

Hence  sup L(E; A, g) =p(3k + 1)
geG

* * ! '
Now the best discrete design & and estimators B "yield, by Theorem 3.1,

* * —
sup L(B , £, g) = c2 + p(k + 1). We thus see that whether sup L(B, A, g)
geG geG

* *
is larger or smaller than sup 1(B , £ , g) depends on the relative sizes of
, ' geG

. - ) * * ' —
¢ and p. Only when c2 < 2kp is sup L(B , £ , g) smaller than sup L(B, A, g).
‘ geG . geG :
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Hence the results of Theorems 3.1 and 3.2 are not in general valid if we do
not restrict attention to designs having finite support.

The point in the development of section 3 where the finiteness of the
~support of the designs is crucially used is when Lemma 3.3 is applied above
equafion (3.14) to pass from considering the sup over G to considering the
sup over G(c). If from the beginning we allow the contaminations g in our
model (3.1) to be in G(c) rather than G the development of section 3 appears
to go fhrough with all but minor changes and Theorems 3.1 and 3.2 would hold
for any design whether of finite support or not. The reason for restricting
the contaminations g to be in G rather than G(c) is so that the parameters
being estimated, the Bi’ are uniquely determined. When the contamination

g is allowed to be in G(c), it is not clear what is being estimated in
(3.1) since the Bi are no longer unique. For example let g1(5) = c,

gch) = -c. Both g; and g, are in G(c) and
. ] ]
(4.2) | By * B X+ g (x) = (B, +2c) + B8 x+ g, (x)

for all x € Ik and BO is not uniquely determined in the model.

Some restrictions must therefore be placed on the allowable contaminations.
G has been-chosen as the set of éllowable contaminations since it seems
consistent witﬁ the idea of least squares and because it allows one to prove
a rather general result. Other sets of allowable contaminations are possible.
For example, see Marcus and Sacks (1976). However, once some restriction is
madé so as to insure the uniqueness of the Bi in (3.1) one rums into fhe
proBlem of possibly finding.designs which are absolutely continuous with
respect to Lebesgue measure and which are better than the best discrete

designs. To see why this is so notice that the '"worst" contamination (the
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onc which maximizes the inf of L(B, &, g)) is that g which equals‘c (or -¢)
cverywhere on the support of the design £. If £ has finite support then such
a g can be found in G. If & is absolutely continuous with respect to
Lebesgue measure on Ik then such a g would have to be identically equal to
cv(or -c) on Ik. Any set of contaminations containing this g as well as the
contamination g = 0 would give rise to the sort of problem indicated in
(4.2). Since it is desirable that the set of allowable contaminations
contain g = 0 it must exclude g = ¢ (or g = -c) if uniqueness of the Bi

is to be insured. Then the minimax problem for absolutely continuous designs
becomes different than for discrete designs since the worst contamination
for the absolutely continuous case, namely g = ¢, is not allowable.

Two further questions worth discussing are whethef the techniques used
here are applicable to regions invariant under groups other fhan the group
of coordinate reflections or the group of coordinate permutations, or whetﬁér

the techniQue.can be applied to regions other than cubes or simplexes
which are invariant under coordinate reflections and permutations.

The answer to the first questions seems to be no. This is due to the
structure of our squared error (3.7). This error functionftransforms
nicely under coordinate reflections, as in sectioﬁ 3, and coordinate permuta-
tions, as in section 2. It does not appear to behave so nicely under other
- typical group actions such as rotations. Perhaps the use of a differeﬂt
error function would allow the techniques used here to be extenaed;

The answer to the second question is not clear. For the k-dimensional
cube‘we were able, by invariance, to reduce to a problem where the best
design had oniy one point in its support, namely the point (1, ..., 1)', and.

the best estimators were easy to find. This was the case because the problem
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was reduced to considering the region Hk and the point (1, ..., 1)' has
all its coordinates simultaneously as large as possible. Hence the design
putting all its mass on (1, ..., 1)' has all its second moments as large as
possible. Again, for the simplex it was easy to see that the design putting
all its mass on the k+1 corners of the simplex had all its second moments
simultaneously as large as possible for any design invariant under coordinate
permutations. Also_the best estimators were easy to determine on the support
of such a design. In both the cases for the cube and the simplex an obvious
solution presented itself after applying invariance under the group operations.
Unfortunately, things don't seem to proceed so smoothly for other regions such as

the k-dimensional ball. Solutions may exist for other regions but they

appear difficult to obtain.
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