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CHAPTER 1
INTRODUCTION

1. Notation

This section contains the notation that will be used and defines
the relevant terms. Let X = (X],...,Xp) represent an observable
vector valued random variable with values x in a sample space .
Assume X has a probability distribution depending on a parameter o
(which may be vector valued) and there exists a density for X with
respect to Lebesgue measure denoted by f(x|e). Assume 6 is unknown
and let © represent the parameter space of all possible values of 6.

We are interested in estimating ¢ using an estimate d and the
loss in estimating 6 by d will be denoted L(e,d). A (nonrandomized)
estimator which is a function of the observation X will be denoted
by 6(X), and the risk of § for a particular value of 8 is defined to
be

R(6,6) = EA[L(0,5(X))]

= [L(8,8(x))dF(x|s).
a

Superscripts in an expectation refer to the random variables over
which the expectation is taken, while subscripts denote parameter
values at which the expectation is taken. F(x[e) is the cumulative

distribution function of X.



-If we have two estimators 6] and 62 that are both functions of X,

then &, is said to be better than ¢, if R(e,61) g_R(e,sz) for all

1 2
6 € @, with strict inequality for some value of 8. An estimator § is
called admissible if there does not exist an estimator better than §;
an estimator ¢ is called inadmissible if there does exist a better
estimator.

A principle. commonly used in choosing an estimator is the
minimax principle. For an estimator §, consider the quantity
sup R(6,8). An estimator 6] is preferred to 62 by the minimax
gf?ncip]e if sup R(e,é]) < sup R(G,az). An estimator which minimizes

CESC) CISC)
sup R(8,6) among all estimators with finite risk (that is, all rules

262uch that R(6,6) < = for all 68) is called a minimax rule.

We will be concerned with prior information about the parameter
0, that is, information available before X is observed. One convenient
way of describing information about 6 is by means of a probability
distribution on ®. We denote the corresponding prior density with
respect to Lebesgue measure (assuming it exists) by =n(e). Given an
estimator 6(X), the Bayes risk of § is defined to be

r(r,8) = E"[R(6,8)] = [R(e,8)dG(s),
, e

where G(8) is the cumulative distribution function of 6. If there
exists an estimator ¢" which minimizes the Bayes risk among all
estimators with finite risk, then &" is called the Bayes estimator or
Bayes rule.

A Bayes estimator can typically be found from the posterior

 distribution of 8 given x. Let h(x,8) denote the joint density of



0 and X and let m(x) denote the marginal or unconditional distribution

of X, namely
= [f(x]6)dG(e
®

We will Tlet w(6|x) denote the conditional density of 6 given x, defined

(for m(x) ¥ 0) by

h(x,6)

ﬂ(elx) = mix

2. Simultaneous estimation

2.1. History

First consider the situation where X = (X1,...,Xp) has the
p-variate normal distribution with mean vector ¢ = (e],...,ep) and
jdentity convariance matrix (i.e. X ~ Np(e,I)), and we wish to estimate
¢ using an estimator § = (6],...,6p). The classical estimator is
GO(X) = X, which is the maximum 1likelihood estimate (MLE) and the
minimum variance unbiased estimate (MVUE). For the loss function

p
L(s,0) = ) (61'81)2’ James and Stein (1961) showed that 60 is

i=1
inadmissible when p > 3. They showed that the estimator

has uniformly (for all o) smaller risk than 60, with the largest
improvement in risk occurring near the origin of the parameter
space. Since the work of James and Stein, there have been many
generalizations of this result. In this“situation, 60 is minimax

under quadratic loss, so finding better estimators than 60 is



equivalent to finding classes of minimax estimators. Large classes
of minimax estimators have been found by Berger (1976), Bock (1975)
and others. One of the more general results is that of Berger,
et. al. (1976) where 60 is shown to be inadmissible when X is multi-
varjate normal with an unknown covariance matrix.

Estimators improving upon the usual estimator (MVUE) have also
been found for a variety of other distributions. Hudson (1978)
considered estimation in the general continuous exponential family
and found estimators that improved on the MVUE for squared error
loss when three or more parameters were estimated. Berger (1978)
developed a general technique for improving on standard estimators in
the continuous exponential family for a variety of loss functions. In
the simultaneous estimation of means from p independent Poisson
distributions, Peng (1975), Zidek and Clevenson (1975) and Tsui
(1978) all found estimators improving upon the MVUE for various
loss functions and large enough p. Thus, for many underlying
distributions of X and appropriate loss functions, the obvious
estimator can be improved upon when several parameters are estimated.

Some general observations can be made about the above improved
estimators. First, many of the estimators are like the James-Stein
estimator §, in that they shrink the MVUE towards a point, and the
improvement in risk of the estimators is most dramatic at that point.
Second, the amount of improvement over the MVUE becomes more
substantial when the number of parameters estimated increases.

Finally, one reason why many of these estimators improve on the MVUE



seems to be that the estimators are taking advantage of some similari-
ties between the parameters estimated. This will be illustrated by

empirical Bayes arguments in the next section.

2.2. Empirical Bayes approach

The general idea of the empirical Bayes approach (introduced by
Robbins (1955)) is to use auxiliary data in constructing Bayes rules.
There are two major applications of this approach. In the first, it
is desired to estimate a single parameter, and data that has been
observed in the past is used to help construct a prior distribution
and obtain a Bayes rule. In the $econd application, inferences are
made concerning p parameters simultaneously, and the current data is
used in constructing the prior and the rule. This latter situation
is referred to as the compound decision problem.

We first briefly review how empirical Bayes methods are
implemented in the compound decision problem. Here X se-esX, are

observed, where X ’Xn are independent with Xi having density

170
f(X1191)= and it is of interest to make inferences about the group

of parameters 91,...,ep. One assumes that e],...,ep come from a
-common unknown prior r(8), and then uses the observations XpseeesXy

to aid in the construction of the prior distribution. One easy

- way to perform this construction is to assume a particular functional
form for «(8), and then use the data in estimating any unknown parame-
ters of the prior. Another method of using the data to obtain an

estimator is to explicitly represent the Bayes rule in terms of the

marginal distribution of X. Then XpseeesXy are used in estimating the



unknown marginal distribution and obtaining a rule (Robbins (1955)).
We will only consider the first method.

As_an example, the estimator proposed by James and Stein will be
derived using the empirical Bayes approach (Efron and Morris (1973)).
Assume X],...,Xp are independent and Xi v N(ei,]). The parameters
e],...,ep are assumed to come from a common N{0,A) prior, where A is
unknown. Under squared error loss, the Bayes rule for ei is

1

6¥(X) = (1 - TR

)Xi'

The observations will be used to estimate A and obtain an empirical
Bayes rule. First, note that marginally, X],...,Xp are independent,

Xi ~ N(0,1+A) and

Xa/ (1) ~ x2(p).

It 1T

i=1

Thus .g X?/(p-Z) can be used as an estimate of 1+A, and after
substzgltion, one obtains the James-Stein rule. It should be noted
that the point 0, towards which the estimator shrinks X, is not
special. If one assumes that the common prior for 6],...,ep is

N(u,A), and also that p is known to the user, then the corresponding

empirical Bayes rule is

§(X) =+ (1 - —P=2 ) (x-).
E (Xi‘U )2

i=1
It is of interest to study the behavior of an estimator when

errors are made in the specification of the prior. Here, for example,



the sensitivity of é to the assumption that N(u,A) is the common
prior is of concern. If the true prior mean of ej, say, is much

larger than u, then Xj would 1ikely be far from u. In this case,

e

the shrinking term (p-2)/ E (Xi"“)z would be small and &(X) X.

Thus 5 tends to ignore th;*;rior information in the presence of an
extreme observation. It will be shown that this behavior is an
indication that S is robust with respect to uncertainty in the prior
specification.

Many of the estimators that improve upon the usual estimator
in simultaneous estimation may be derived by means of empirical
Bayes arguments. These estimators perform much like the optimal
Bayes rules, and they often are quite robust with respect to
misspecification of prior information. The estimators that are

discussed in this paper are closely related to empirical Bayes

estimators.

2.3. Necessity of inputting prior information

We are interested in finding attractive alternatives to the
usual estimator (the MVUE) in simultaneous estimation problems.
The usual estimator is typically minimax, and so we cannot expect
to find an estimator which substantially improves upon it (with
respect to risk) over the entire parameter space. The James-Stein
estimator shows the greatest improvement over the MVUE near the
origin; 11kewisé most alternative estimators show substantial
improvement in only a particular region of the parameter space.
Therefore if a user wants to find an estimator which is better

than the usual one for his problem, he should specify a region in




which he would like the substantial improvement to occur. In other
words, the input of prior information seems necessary in the develop-
ment of good alternative estimators. If the user has virtually no
prior information concerning the parameters to beestimated, then he
may as well use the usual estimator, since any improved estimator

will be unlikely to show much improvement at the true value of the
parameter. In conclusion, to find an attractive alternative estimator
to the MVUE, it seems necessary to be a Bayesian, and most of our

work will be presented from a Bayesian point of view. This rationale
for inputting prior information in improved estimators was discussed in

detail by Berger (1977).

3. Robust Bayes estimation

3.1. Introduction
The subject of robustness of Bayes rules has received only

sporadic attention in the literature. In James Berger's book Statistical

Decision Theory, a section is devoted to this topic and many of the
ideas that we will discuss can be found in that book.

In a Bayes decision problem, there are three main elements, the
prior, w(6), the sample density, f(x|e), and the loss function, L(s,8).
The robustness of a Bayes estimator refers to the sensitivity of the
estimator to the assumptions in the model about which there exists
uncertainty. For example, if the form of the loss function for large
errors is uncértain, then we would like the Bayes estimator to be
insensitive to the selection of L. That is, if a new loss function

is equivalent to the original one except for its specification for



large errors, it would not be desirable for the Bayes estimator to
change significantly.

To completely discuss the robustness of a Bayes estimator, one
should investigate the sensitivity of the estimator to the sample
density, the loss, and the prior distribution. Sensitivity of any
type of estimator (Bayesian or classical) to the density is an
important topic and many authors, including Huber (1§77) have
developed robust classical estimators that are good for estimating
parameters in distributions within a certain class. We will not
discuss this type of robustness here, and refer ﬁhe reader to Huber's
book for a good discussion of the subjeCt. Sensitivity of the
estimator to the loss is important and any estimator should be
evaluated with respect to different losses that seem appropriate
for a particular estimation problem. The performance of our
suggested rules with respect to different losses will be discussed,
but a thorough investigation of this type of robustness will not be
made. Our major concern is how sensitive the Bayes estimator is to
uncertainty in the specification of the prior, and we discuss this

topic in the next section.

3.2. Robustness with respect to the prjor

We would 1ike to investigate the ;énsitivity of the Bayes estima-
tor to the prior distribution. Ideally, the prior distribution that
is used by a statistician is accurately determined from past observa-
tions and subjective knowledge. Unfortunately, this is rarely the

case, and the particular prior distribution used can never be more
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than an approximation to the true prior for the problem. For examp]e,
the statistician may only be able to specify fractiles of the unknown
prior distribution or a region which he thinks contains 90% of the
distribution. In such cases he will be uncertain about the tail or
extreme parts of the prior distribution. We are generally concerned
about the sensitivity of the Bayes estimator to prior specifications
that are uncertain, in this example, knowledge of the tail of the
prior.

It will be shown in particular situations that Bayes estimators,
especially those developed through conjugate priors, can be sensitive
to uncertain parts of the prior specification. We want to develop
Bayesian procedures which can incorporate prior knowledge, but are
safe with respect to errors in the specification of prior knowledge.
For example, if the tail of the prior distribution is uncertain, then
the Bayes estimator should not perform much worse than the MVUE when
errors are made in the specification of the tail of the prior. We

next will discuss ways of measuring the robustness of estimators.

3.2.1. Posterior robustness

One method of analyzing the robustness of a particular Bayes
estimator is to see how the estimator chénges as we change the prior
distribution. For example, it may be known that the prior distribution
has particular fractiles but little eise‘may be known about the
distribution. Then one could consider the class of prior distributions
with that set of fractiles, and see how the Bayes estimator changes

within that class. If the Bayes estimator does not change significantly,
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then the estimator is robust or insensitive to the prior information
that is uncertain. This method of detecting robustness is probably
the most natural from a Bayesian viewpoint, since one is investigating
the posterior distribution and the Bayes decision directly.

Such an investigation of rules with regard to posterior robust-
ness has been made by Edwards, Lindeman and Savage (1963). They
consider the situation in which a random sample Xl""’ﬁn has been
taken from a distribution f(x|e), and the Tikelihood, T f(xile),
considered as a function of 8, is very concentrated or1;;aked about
some value. A typical prior density will Took flat in this region
where the likelihood is most concentrated and, under suitable condi- |

tions, the authors show the posterior density may be approximated

by the likelihood (suitably normalized to be a density for o). In
this situation, the Bayes rule will be a function primarily of the

n observations and will essentially ignore the prior information.
Thus for a wide range of priors, the Bayes decision will be the same,
and this rule is very robust with respect to the prior distribution
chosen. 1In other words, if the prior satisfies some mild conditions,
the data will dominate the prior information when enough observations
are taken. The authors refer to this situation as the principle of
stable estimation and it displays one type of posterior robustness.
Although this situation is of interest, we are primarily interested
in posterior robustness when the data doesnot dominate the prior and
the prior information s significant. Recall that we wish to use
prior information in simultaneously estimating p parameters, and it

is important for the Bayes estimator to use prior information if



12

significant improvement over the MVUE is desired.

3.2.2. Risk robustness

The second method of investigating robustness is to calculate
the risk R(8,8) of the Bayes estimator and observe its behavior over
the parameter space. Since one is ultimately concerned with the
Bayes estimator being a good alternative to the MVUE, the risk of the
Bayes estimator is usually compared with the risk of the MVUE.

bFirst, it is of interest to analyze the risk of the Bayes
estimator when the prior information is correct. For example, if
a single parameter is estimated and a prior mean and prior variance
are inputted, then,if the prior information is correct, the parameter
will 1ie within a few standard deviations of the prior mean. In this
“prior region" of the parameter space the Bayes estimator is expected
to have risk much smaller than the risk of the MVUE. This improvement
in risk of the Bayes estimator over the MVUE would tell us that the
Bayes estimator is making significant use of the given prior information.
The user thus knows that if he specifies the prior mean and variance
correctly, then,in repeated use of this estimator, his errors will be
of a smaller magnitude than when the MVUE is used. Recall
that our rationale for using prior information was to
produce an estimator that improved upon the MVUE in a region of the
parameter space. The inspection of the two risk functions in the |
prior region is the best way of checking this improvement.

Once a Bayes estimatorhas been evaluated in the prior region,

one is interested in the behavior of its risk function outside of the
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prior region. A user may be certain that 90% of the prior distribution
occurs in a particular interval, but be unsure about the remaining 10%.
If the prior has a fat tail, then values of the parameter that are far
away from the prior region are possible. Also mistakes may be made in
specifying fractiles of the prior, and the parameter may 1ie with high
probability outside of the prior region. In either case one is
interested in comparing the risk functions of the Bayes estimator and
the MVUE outside of the region where the Bayes estimator shows |
improvement. If the Bayes estimator exhibits much higher risk than
the MVUE in such a region, then the user must be concerned with the
possibility of parameter values in that region and encountering errors
of a large magnitude. If the risk of the Bayes estimator is
approximately equal to the risk of the MVUE outside of the prior
region, then in effect the estimator is ignoring the wrong prior
information in this "extreme" region. The statistician using a robust
Bayes estimator should feel safe in applying his prior knowledge,

in that drastically wrong prior information will cause him to incur
errors not much larger than the errors in using the MVUE. It will

be shown that conjugate Bayes estimators often are very sensitive to
misspecification of prior information, and this is indicated by a

very large risk (compared to the risk of the MVUE) outside of the
prior region. Finally from a classical point of view, comparing

the risk functions of the Bayes estimator and MVUE over the entire
parameter space allows one to evaluate how good the Bayes estimator

is as an alternative to the MVUE.
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3.2.3. Bayes risk robustness

The Bayes risk is minimized by the Bayes estimator under a
particular model, and it is natural to consider Bayes risk as an
appropriate measure of robustness. One knows that the Bayes risk
of the Bayes estimator will be significantly smaller than the Bayes
risk of the MVUE when the prior information has been specified
correctly. But we are concerned with the sensitivity of the Bayes
“risk of the Bayes estimator to changes in the uncertain portion of
the prior specification. For example, if uncertainty exists in
the tail of the prior, then a robust Bayes estimator would have
significantly smaller Bayes risk than the Bayes risk of the MVUE
for priors which differ from the specified prior only in the tail.
Most conjugate Bayes estimators are again not robust in this
situation. Indeed it is possible for a conjugate Bayes estimator
to have infinite Bayes risk under a true prior when the true
prior differs from the specified prior only in the tail (see
Berger (1979) - Chapter 4).

A cdnvenient way of indicating "Bayes risk robustness" is to
calculate the Bayes risk of the Bayes estimator under deviations
from the specified prior information, and compare this with the
Bayes risk of the MVUE. For "small" deviations from the prior model,
we would hope that the Bayes risk of the Bayes estimator is still
smaller than the Bayes risk of the MVUE. For Targe errors in
prior specification, we hope that the Bayes risks of the two estimators
would be about the same. The robust estimator we find may not be the

"optimal" Bayes estimator under a particular prior, that is the
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estimator may not minimize the Bayes risk among all rules with
finite risk, but the estimator should have small Bayes risk under
all priors wnich model the prior information well.

To perform a fermial analysis of robustness with respect to
Bayes risk, the p-minimax approach has frequently been used. In
this approach, introduced by Robbins (1964), a class r of prior
distributions is specified which contains all the possible priors
for the given problem. For example, the first two moments of the
prior distribution may be known with accuracy €, but Tittle else
may be known concerning the prior. The set of possible priors is

then

P fuagl < € 1= 1,2 where uy = (6700

The r-minimax approach evaluates an estimator by its worst Bayes
risk in the class r, called its r-minimax risk. In a choice
between two estimators, the estimator with the smaller r-minimax
risk is preferred. The r-minimax risk is a reasonable measure of
robustness when a class r is chosen which describes well the priors
which model given prior information.

The major difficulty in using the r-minimax approach is that
optimal rules are difficult to find for "good" classes of prior
distributions. Usually prior information consists of probabilities
attached to certain regions of the parameter space, and the class T
should consist of priors which assign similar probabilities to the
same regions. For example, a set of fractiles may be specified, and r

could consist of all priors which have fractiles close to the given set.



16

These classes are very difficult to work with and there has been

very little work in developing rules optimal with respect to such
classes. There has been work deriving optimal rules when I' consists

of priors which have a set of moments close to a specified set (for

one example, see Jackson, Donovan, Zimmer and Deely (1970)). The
problem with using classes with such moment specifications is that
prior moments are often not known to the user and the classes generally
donot allow enough flexibility in certain parts of the prior informa-
tion such as the tail of the prior. For a discussion ofvcommon types
of prior information, the reader is referred to Chapter 3 of Berger

(1979).

3.3. History
3.3.1. Normal estimation

Previous work in robust Bayes estimation has, for the most part,
dealt with the multivariate normal mean. There has been a concern to
develop a prior that realistically reflects the usual type of prior
information. One prior that is often used is the conjugate normal prior,
and Dawid (1973) and Anscombe (1963) argue that this is not a good
prior for common types of prior information. In barticu]ar, this
prior implies strong knowledge concerning the distance of the unknown
parameter from its mean - it has a sharp tail or a tail which
rapidly decreases as the absolute value of the difference between
the parameter and its mean gets large. In this problem it is
common to have significant information about the central portion of

the prior but weak or vague information about the tail portion. The
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normal prior can model the central portion well, but has tails much
too sharp to reflect vague prior information in the tail.

The unsuitability of the normal prior can be seen by noting
the behavior of the corresponding Bayes estimator when extreme data
is observed. If one has vague prior knowledge in the tail, then
extreme values of X are possible, and the Bayes estimator should be
insensitive to this extreme data. But note that if X ~ N(e,cz) and
the prior for 8 is N(u,fz), then the Bayes estimator under squared

error 1oss is
B 02
§(X) = X - 7 (X-y1).
g +T

Clearly when X is far from the prior mean u, then 68 is far from the
MVUE X, which indicates that GB is not robust with respect to the
prior tail.

Dissatisfaction with the behavior of the normal prior has led
to discussion concerning the types of priors that should be used.
Hi11 (1974) states that, in the situation where weak information
exists about the prior tail, a prior which acts Tike a flat or
uniform prior in the tails is appropriate. When extreme data is
observed, the Bayes estimator will then be approximately the usual
MYUE. For example, a t density has flatter tails than a normal
density, so using a t prior would lead to an estimator which is more
robust with respect to misspecification in the éai]. Many authors
have used t priors in the analysis of normal means, among them
Anscombe (1963), Stein (1962), Hi11 (1969) and Dickey (1974).

Rubin (1977) 1investigates the effect of choosing the wrong prior in
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the normal problem, and finds that priors with "sufficiently flat"
tails lead to Bayes procedures which are robust with respect to the
prior tail. In the next section, we will discuss an explicit robust
Bayes estimator of a multivariate normal mean which was developed

using a flat tailed prior (Berger (1977a)).

3.3.2. A robust Bayes estimator of a multivariate normal mean

We summarize here the robust Bayesian analysis in Berger (1977a)
concerning the estimation of a multivariate normal mean. The estimator
developed in that paper is similar to the robust Bayesian estimators
that will be analyzed in this paper. Let X ~ N(8,z), where & is a
known covariance matrix, and assume it is desired to estimate 6 using
a quadratic loss. Berger developed a generalized Bayes estimator for
this situation which 1ncorporétes prior information in the form of a
mean vector u and é covariance matrix A. The prior that was used has
extremely flat tails, so that the resulting estimator is very robust.

The estimator which Berger found can be written as

2

s () = (1 - B LD 5 en) Ty (x-0),

[ 1 X=ul]

where ||X-‘u||2= (X*u)t(z+A)'](X-u) and r(-) < (p-2) can be expressed
in a closed form. When p, the dimension of the problem, is large and
the prior information is correct, it can be shown that ¢* will perform
like the Bayes estimator using the conjugate norma] prior. But when
the prior information has been misspecified, ¢* is much more robust

than the conjugate Bayes estimator. One indication of this robustness
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is that when one observation Xi deviates greatly from its corresponding

mean u., one can show that r(IIX—uliz)/llx—ullz becomes very small and

[IRE

§*(X) X. Thus bad or extreme observations tend to discredit the
prior information. Berger showed §* to be very robust with respect to
alternative priors when some parts of the prior information are
incorrect. He also gave conditions for §* to have uniformly smaller
risk than the risk of the MVUE 60, so that in many situations,
especially those in which there exists some type of symmetry among
the coordinates e],...,ep, §* is uniformly superior to 60 in terms
of risk.

Using a normal approximation to the posterior distribution of
0, Berger derives a confidence ellipsoid for ¢ that is centered about
§*. This ellipsoid is an improvement over the classical confidence
ellipsoid both in terms of probability of coverage and size. Finally
the above results are generalized to the case where g = 0220, 0

. 2 .
a known matrix and ¢~ an unknown constant, and a generalized Bayes

estimator similar to &* is found.

3.4. Summary

Generally, a robust Bayes estimator should be able to incorporate
prior information and be safe when the prior information is wrong.
This type of estjmator is most useful when incomplete prior information
is available. It should offer significant improvement over the MVUE
when the prior information is correct, butv]ose very little compared
to the MVUE when the prior information is misspecified. It can be

thought of as a conservative application of the Bayesian method and it
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may not be appropriate to use when very strong prior information does
exist. Finally, a robust Bayes estimator should exhibit a risk R(8,6)
much smaller than that of the MVUE in the "prior region" of the
parameter space and should not have a much larger risk elsewhere.

Such an estimator will be an attractive alternative to the MVUE in

simultaneous estimation.

4. Introduction to the work in this paper

In this paper two estimation problems are considered: the
simultaneous estimation of means from independent Poisson distributions
and the estimation of multinomial proportions. Robust Bayes estimators
and associated confidence regions will be developed for both problems.
In this section, the two problems are defined and the recommended
estimation procedures are summarized.

In Chapter 2, simultaneous estimation of Poisson means is
considered. Assume that X],...,Xp are independent and Xi is distributed
Poisson with mean Ai, i=1T1,...,p. It is desired to estimate

A= (x1,...,xp) using an estimator § = (6],...,6p) and the loss

L](G,A) = E (61-A1)2 will usually be considered. The usual estimator

of A is &0

i=]

(X) = X, which is the MLE and MVUE. The robust Bayes
estimator that is developed incorporates a prior mean My and a prior
variance By for the component Ai’ i=1,...,p. This estimator is

defined componentwise as

1 . j=
5?(X)=pi+(] - —(mﬂﬂn{], b ; 2})(X_i—u_i),
1 Y X,/ (B, +1)%+ E ((X.-u.)/(B.*1))
'=’l J J ’:] ‘J ‘J ‘] .
J J i=1,....p.
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It is shown in Chapter 2 that &* is an attractive alternative to 60
when prior information is available.
Chapter 3 considers confidence regions for the Poisson parameter
x. A classical confidence rectangle for A is defined by
0
(

)1/2

L 2 2 .
Co(x) = {a: \X1+za/2/2—xil §_za/2(Xi+za/2/4 , 1= 1,...,p),

where Z, is the (1-a)100th percentile of the standard normal distribu-
tion. The recommended robust Bayes confidence rectangle, based on &%,

is defined by

C*(X) = {a: |s§<X)+(1-c§(X))<z§/2-1)/3-x1|

2 /2,7 sy 1/2 5
= Za/z(X1+Za/2/4) (]-C](X)) , 1= ],'..’p},
where
I X./(Bs*1)
c*(X) = 1 min(1 j=1 }
i Bi-ﬂ TP . : 2 p ] , .
BT T .+
jz] /(85*1) +jz1((XJ b3/ (8541))

In Chapter 3, C* is shown to be an attractive alternative to CO with
respect to probability of coverage and size.

The multinomial estimation problem is considered in Chapter 4.
1,...,&3) has the multinomial distribution with
parameters N and o = (9],...,ep), that is, X has the density

Assume X = (X

‘ P X.
fixle) = (, V) megl, xg = 0,1,2,... for all 4, § x:=N,
‘l.-- '=
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where 0 <85 < 1 for all i, and E 6 = 1. Assume that N is
i=1

known and it is desired to estimate & using an estimator 6=(6],...,6p).

The loss function that is considered is squared error, that is,

Ly(6,8) =N E )2-
i=1

(51'61
The classical estimator of 8 is GO(X) = X/N, the MLE and the MVUE.
The two robust Bayes estimators that are developed incorporate a
prior mean Y; for the component 655 i=1,...,p, and a parameter K,

which reflects the accuracy of the prior means y],...,yp. The two

estimators are defined componentwise as

) K j=19 -
§%¥(X) = vy, +(1-min{re, E " E(“ | H{o,-vs)s
1- 8.+N 8.-Y.
J'_—_'I J j:] J J
and
~ _ .o K p-1 -
i(X) = y1+(]—m1n{N+K, - })(Gi—Yi),
ALY
j=1 J J J

i=1,...,p, where 51 = Xi/N’ i=1,...,p. The estimators §* and s

are both shown in Chapter 4 to be attractive alternatives to 60.
Chapter 4 additionally considers confidence regions for

the multinomial parameter 6. A classical confidence rectangle for o

is defined by
- . A— ~ _A ]/2 .
X) = {8 |o5-05] <z o801 850N, 5 1k,

~ - N -A ]/2 A —A " A~ _z\
18,70, | <2y jik[ej(] ej)/N] , where ¢, (1-0, ) m;n{ej(l ej)}}.
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Two recommended robust Bayes confidence rectangles, based respectively

on the estimators &* and 5, are defined by

1/2

— [a- /272 .
C*(X) = {o: ISF(X)-GjI i,Zu/z(]-C*( )) [9 (1- j)/N] » Jtk,
60, | < 2, ,,(1-c5(X X)) /2 % [6,(1- J.)/N}”Z, where
ék(l—ék) = m;n{ej( 6.)}},
and
CO0 = tox 18500851 < 2 ,,(1-c00) /P16, (1-6,M1 /%, gk,
~ ~ 1/2 1/2
|8 | <z ,,(1-c(X)) [e (1- 6. )/N] , where
k™ k a/?2 3%k
ék(]_ék) = m1n{eJ( )}},
J
where
1§42
*(X) = min{ K J=1 ) }
T R
1- ) 8%+N 9.-v.
3= J 3=1 J YJ
and
h R K -1
ci(X) = m1n{N+K, E _?(A )2}.
N . 8.y,
[ERSEASIRS

In Chapter 4, C* and C are shown to be attractive alternatives to CO

when prior information is available.
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CHAPTER 2
A" ROBUST BAYES ESTIMATOR OF p POISSON MEANS

1. Introduction

1.1. History

As in the multivariate normal problem, the MVUE 6O(X) = X

has been found inadmissible in the simultaneous estimation of p

and Hudson (1978) considered this problem
2

Poisson means. Peng (1975)
p
under the loss L](é,x) = 1§](ai-xi)
possess uniformly smaller risk than s

and each found estimators which

0 for p > 3. Peng's estimator,

discussed in Section 3.2.2, is defined componentwise as

X.
p (p-Ng-2)y 1
GT(X)=X1_-*___S*———~—.Z J ’ 1=]$ sPs
j=1
where
NO = number of {Xj: Xj = 0},
p i 1,2
S= )y () i)
i=1 j=1
and

(a)+ = max{0,a}.
The estimators of Peng and Hudson shrink X towards the origin
and therefore show most of their improvement over 50 near

the origin. Tsui (1978) extended their results in
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two ways. He found an estimator which uniformly improves upon 60 and
shrinks X towards a positive integer K. This estimator is defined

componentwise as

h = b f {X.: X, =
where Nn numbey of { ; ; n} and

J
bo=1¢ Y Tl if o> Kb
J n=K+2
= 1 if § o= Kt
= 0 if j =K
S if 0<j<Kand K> 0,
o2
u'> 0, S* = .Z bX .
i=1 A

The estimator 6T will be discussed in Section 3.2.2. Tsui also
found a similar estimator which shifts X towards a point determined

by the data and uniformly improves upon 60 for p > 4.

b _
Using the Toss function LZ(S,A) = ) Ai](ai-xi)z, Clevenson
i=1
and Zidek (1975) developed an estimator better than 50 for p > 2.
Their estimator, also discussed in Section 3.2.2, is defined component-

wise as

sE00) = (1 - ___liE:l___)X

5 i i=1,...,p,
) Xj+y+p—1

j=1

where 1 < v < p-1. Clevenson and Zidek showed az to be admissible and
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generalized Bayes and gave it a Bayesian interpretation. Note that
GZ shrinks X towards the origin and the authors recommend their
estimator for use when the loss L2 is appropriate and A],...,Ap are
suspected small. Tsui and Press (1978a)generalized Clevenson and
Zidek's resu]f for the loss _E A;k(di—ki)z and found a large class of
estimators which have unifor%{; smaller risk than 60 for p > 2.

For the most part, the above work assumes that one observation
has been taken from each Poisson population; Tsui and Press consider
the case where n; observations have been taken from the Poisson
population with mean Ai. It will be shown in Section 5.1 that this

situation motivates the consideration of the weighted loss function

E cixgk(di—xj)z. They find better estimators than s° under this Toss.
i=1
We now summarize the Bayesian work that has been done in the

Poisson estimation problem. The conjugate prior density for A],...,Ap

is
‘}\_i/B_i a]-“']

e )\1.

_,“——-—————-—ai IR D
Bi F(ai)

That 1is, A],...,Ap are assumed independent with A having a gamma
distribution with parameters o and B, The Bayes estimator using
this prior and under squared error Toss will be discussed in the
next section. When the parameters oy and B; are unknown and it is
assumed that ay =...= o = a and By =...= B = B, Leonard (1976) and

P p
Tsui and Press (1978b)find Bayes estimators when prior distributions
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are placed on the parameters o« and g. Leonard assumes -&ng to be
uniformly distributed over the real line and Tsui and Press addition-
ally adopt various hypergeometric distributions for «. Bayesian
estimates produced using these two stage priors are appropriate when

Ays...5r_ are close in size and can be thought to come from a common

17" p
prior. In another paper, Leonard (1972) assumes that A],...,Ap are
independent and identically distributed with g&n Ay N(p,cz),

i=1 .,p. He then puts prior distributions on the parameters u

and 02 and proposes estimates based on the posterior distribution of
(znx],...,znxp).
When past data has been observed, a number of empirical Bayes
methods have been proposed for estimating a Poisson mean. If m(x)
denotes the marginal density of X with respect to the prior =, then

one can represent the Bayes estimator of A under squared error 10ss

(x+1)m(x+1)
m{x :

"”’Xn are then used to estimate the

as

The past observations X]
marginal density m(x) and obtain a rule. This approach was

introduced by Robbins (1955). Another empirical Bayes method
uses the gamma (a,8) distribution for A, as above, and in the
expression of the Bayes estimator, estimates the unknown prior

parameters from the past observations. One can write the Bayes

estimator under squared error 1oss as

PX) = w1 - ) (%),



where u = af. One empirical Bayes estimator is found by substituting

method of moments estimators for p and g. These estimates are

~ n -
uo= Z Xi/n = X
i=1
and 0
g = XZ/(S]-X), where s$= ) (Xi—X)Z/n
i=1

1 -
X) =X+ (1 - m————) (X-X).
(s]-X)+1

2
1

approximate the prior = by the past observations and then obtain a

(If s EB(

< X, then 6 °(X) = X.) Other empirical Bayes methods
Bayes rule. The reader is referred to Maritz (1969) for a summary
of these techniques in Poisson estimation.

Hudson (1974) developed an empirical Bayes estimator for the

simultaneous estimation of p means. For the loss L], he considered

rules of the form

61(X) =yt (]-C(X))(Xi-u )s i= ]a--~sps

where u is the common prior mean of A],...,Ap, and developed the

estimator

>
S
{]
o

+
—
el

1

—

H~710 | I ~TO

-t
g
Can
><

i
=
g
-

—

i
)
-

-
e

(Xi-u

i
This rule is expected to do well when A],...,xp are similar in size,

and is similar to the rule that is developed in this paper.
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1.2. MNeed for a robust Bayes estimator

As discussed in the introductory chapter, it is desired to
find an estimator which allows the input of prior information but
is robust or insensitive to parts of the prior knowledge that are
uncertain. Before introducing a particular robust estimator, we now
evaluate the performance of the conjugate Bayes estimator with regard
to robustness criteria.

Let A],...axp have the conjugate prior density with parameters
(“i’gi)’ i =1,...,p. Under the loss L], the Bayes estimator 1is
componentwise

_ (yrey )8,

e
B 1

i=1,...,p.

This estimator is easy to calculate and use and will substantially
improve upon the classical estimator 60 when the prior density
accurately reflects ones prior beliefs concerning A],...,Ap.
As in the normal mean estimation problem, it is common here
to have good knowledge about the central portion of the prior,
but vague information about the tails of the prior. As mentibned
in Chapter 1, a good prior should model our knowledge in the
central regidn but have flat tajls to be robust. The flat tails
of the prior cause the corresponding Bayes estimator to ignore the
prior information when outliers or extreme data are observed which
make the prior implausible.

To see how extreme observations affect 68, note that 6? may be

written as
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where B is the prior mean of Ai. If Xi is an outlier, that is,

B

if X; 1s far from a 8. so that lxi_aisil/(61+]) is large, then s,

does not ignore the prior information. This lack of robustness is
indicated by the fact that 68 can perform substantially worse than
60 in terms of risk. The risk function of SB can be easily
calculated to be

B. As=0.B.
2 2
R((S 9>‘) = E (E .-:.'l) )\.i + 15']( %1+:ll 1) .

i=1 Py

Note that &0 has risk R(SO,A) = E A Observe that the dominant
i=1
term in the risk of 68 is E ((Ai-aisi)/(81+l))2, which increases
i=1
quadratically as a function of Ai’ while R(6O,A) increases linearly

as a function of A Hence outside of a particular "prior region"
of the parameter space about the prior mean, 6B will show substantially

0, and the decrement in risk becomes more severe as

worse risk than &
the distance from the prior mean increases.
. . . . B . ‘ .
Thus, using risk criteria, § s not a robust Bayes estimator.

The estimator 68

will also perform poorly from a Bayes risk stand-
point if the prior density is misspecified in that the "true" prior
has tails much flatter than those of g(A). In this situation, the
Bayes risk of GB will give much greater weight to the risk values
corresponding to parameter values far from the prior mean. Thus

0

it is possible for 68 to have much larger Bayes risk than &~ when

the true prior gives more weight to extreme values of i.
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In conclusion the conjugate Bayes estimator appears to be very
sensitive to uncertainty in the tails of the prior distribution. The
estimator that will be developed in the next section may be thought as
an approximation to a Bayes estimator derived from a flat-tailed prior.
It will be shown to be insensitive to values of the parameter far

from the central region of the prior.

2. Development of the estimator

We would 1ike our estimator to perform well in a particular
prior region specified by the user. To this end, the Bayes estimator
of » is again considered under loss L1, where A],...,Ap are assumed
independent with Ay having the gamma prior distribution. The Bayes

estimator of A may be written as

By) - (Xjte, )84
i Bi+]

t

0t181 + (] - )(X'I—'OL'IB'I)'

Bt

Note that 6? shrinks the observation Xi towards the prior mean
@iBi> and the amount of shrinkage is controlled by the inputted
parameter B An estimator is desired which shrinks towards the
prior mean like 58, but restricts the amount of shrinkage when

the observations appear to be inconsistent with the prior informa-
tion. Also we would Tike to use all p observations X1,...,Xp to
estimate a particular component g since the improved estimators

discussed in Section 1.1 use all of the observations. Therefore,

consider estimators of the form
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61()() ]J.i + (] B-i+])(X1 U.i):v 1 ]:---,P:

where Mo = agby and c¢(X) is a function of X],...,Xp.
To find an appropriate c(X), an argument similar to one in
Hudson (1974) is used. If c(X) is temporarily assumed to be a

constant ¢, the risk of é under loss L] can be evaluated to be

R(8,1) =

i~
—~
—_—
I
O
—
~No
>
-+
O
~No
110
—

Minimizing the above expression with respect to ¢ shows that the

optimal c¢ is

Z A/ (g5+1)

[ ]"

p
z (6% + T (i) (8,41))2

: 'I:

Although c' is a function of the unknown parameters A],...,xp, it
can be estimated using the observations X],...,Xp. In particular,

if A is estimated by its MLE Xi’ we obtain the estimator

Z X. /(B +1)
$ (1 - — =1 ) (Xom1:) s

P X/ (8410% 5 ((Xomi )/ (5 41))2
Ly gt b (g )/

(It should be noted at this point that one can estimate c¢' by many
different functions of X],...,Xp and produce different estimators.
For example, Hudson estimates the numerator and denominator of c¢'

separately using unbiased estimates. This particular estimate of c¢'
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is chosen since it exhibits few singuiarities and leads to an
estimator with many attractive properties.)

Using this method, Hudson derives an estimator similar to &'
with B] =.,.= Bp = 0 and Wy TeelT ”p‘ The estimator that is
discussed here is an extension of Hudson's estimator in that it
permits a different prior mean and variance input for each of the p
Poisson parameters estimated.

Finally, since we would 1ike our estimator to act Tike a
Bayes estimator 1h a particular region of the parameter space, it is
natural to restrict the shrinkage of Xi towards M to the amount that
SB shrinks Xi' §' is then modified to

E X./(8.+1)
. ~ 1 ) j=1 J
§*(X) = u.t+(1 - a7 mindl, })

Although &* has not been developed explicitly as an empirical
Bayes estimator, the above derivation is similar to an empirical
Bayes derivation. In Efron and Morris (1974), some of the parameters
in the prior density are unknown and the observations are used in
estimating them. Here we want to keep known prior parameters in
‘the estimator, and use the observations in two ways. First, when the
prior parameters have been specified correctly, the observations
are used to produce a shrinking constant which will ideally act

like the shrinking constant of a natural Bayes estimator. Second,
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the observations are used to make the estimator robust to errors in
specifying the prior parameters.

The shrinking constant of 6? is

P
jZ]Xj/(Bj+])

2
(K0 ;)/ (8:41))

1-c*(X) = 1 - b

]+] min{1,
% 2
Xj/(sj+1) +

j=1 J

I ~T0

1

To better understand how &* performs like the conjugate Bayes
estimator, consider 1-c?(X) when many Poisson means are estimated.
Note that A has prior mean My and prior variance HiBio and marginally
Xi has mean P and variance u1(81+])- Therefore, for large p, |
]-gf(X) may be approximated (using the law of large numbers) by

1

- g .+]1

d,

where

p > P )
Z u/(8.+1) +.Z uj/(Bj+T)

19 J 3=1

Note that 1/2 < d < 1 and d will be close to one when moderate or
large values of 81""’Bp are chosen. If d is approximately equal

to one, the shrinking constant ]—c?(X) is approximately equal to

1-(81+])-] and &% = 6?. Therefore when the prior information is

specified correctly, moderate values of B]""’Bp are used and p

is large, &* should behave much 1ike the conjugate Bayes estimator

8.
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In the above paragraph, the behavior of the shrinking constant
1—c§(x) is discussed when the prior information is correct. On the
other hand, if the prior informaticon has been misspecified, then at
least one observation Xi will be far from its prior mean My and
jE]((Xj-ujﬂ(ﬁjﬂ))z will be large. In this case, for any i, c?(X)
will be small and 6§(X) = Xi’ so the estimator is in fact ignoring
the wrong prior information.

The above discussion indicates that 6* is a candidate to be a
robust Bayes estimator. If our prior information is correct, 8* is
an approximation to the Bayes estimator 68; otherwise if an observa-
tion casts doubt on the prior information, &* rejects the prior
knowledge and approaches the MVUE. In the following section, the
above statements will be made more precise and it will be argued that

§* is an attractive alternative to 60.

3. Evaluation of the estimator

3.1. Methods of evaluation

The first section of our evaluation, Section 3.2, is concerned
with the performance of &% when correct prior information is used.
This section describes the different ways in which ¢* is an improved
estimator over the usual one 60. In particular, we discuss (i) the
performance in risk of &* in a prior region, (ii) the performance in
Bayes risk of &*, and (ii1) the risk performance of s* when the prior

information has not been chosen symmetrically.
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In Section 3.3, the robustness of &* to misspecified prior
information is investigated. Generally it is shown that &* is a
safe estimator with regard to uncertainty in the prior specification.
We investigate (i) the performance in Bayes risk of &* when wrong
prior information is used, (ii) the risk performance of §* for
extreme values of A],...,Ap, (ii1) the risk performance of &* when
very large prior means are used, and (iv) the risk performance of &*
when p = 1.

In the first chapter, it is stated that one way to analyze
the performance of an estimator with regard to the input of correct
prior information is to look at the risk function in a prior region
of the parameter space. In Section 3.2, the risk functions of &*
and 60 will be compared for moderate values of the parameters A],...,Ap,
and since the risk of ¢* is not attainable in closed form, numerical
studies will be used in our analysis. It is first shown how prior
information is reflected in the location and the size of the improvement
region, that is, the region where &* displays smaller risk than 50. It
is shown that it is advantageous in particular situations to estimate a
Targer number of means simultaneously - the risk improvement of s*
relative to 60 becomes more pronouncéd when more means are estimated.

Next the performance of ¢* will be compared with the performance
of other estimators proposed to estimate p Poisson means simultaneously.
Two of these estimators have the effect of shrinking the observation X

towards zero, so as constructed they are not able to shrink the data

toward nonzero means. We will compare §* with modified versions of
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these estimators that can accept prior means. Next by means of
numerical studies, Bayes risks of &* will be computed, and these
will be compared with the optimal Bayes risks and Bayes risks of 60
when the prior information is correct.

Finally the performance of §* in the prior region is investigated
when asymmetry exists in the prior information. Ideally s§* should show
substantial risk improvement upon 50 regardless of differences in
prior means and variances selected. It is shown that particular
prior components can dominate the others with respect to their
influence on the risk of the estimator, but it will be argued that
in many applications of this estimator, this problem does not occur.

In Section 3.2, &* is shown to use prior information like the
Bayes estimator 68. In Sectijon 3.3, &* is shown to be more robust

8 with respect to wrong prior information. First Bayes risks

than 6§
of &* and 68 are found when the prior information is improperly
specified, and 6* is shown to be robust with respect to Bayes risk.

The remainder of our evaluation uses risk as a criterion of
robustness. As mentioned in the first chapter, one way of evaluating
the robustness of a particular estimator is to analyze its risk for
values of the parameter away from the prior region. The first
situation considered is that in which the prior means u],...,pp are
fixed and the parameters A],...,Ap get very Tlarge along a particular
line. A theorem is stated which gives the asymptotic risk improvement
of &* over 60. It has already been noted that in this situation,

where A],...,Ap lie far from the prior region, the risk of dB is much
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greater than the risk of 60. It is shown that, asymptotically, the
risk of &* is no more than two units greater than the risk of 60,

and along particular lines it can be smaller. Thus &* is more robust
than SB in the situations where extreme values of the parameter (in
the sense of being far away from the prior mean) are possible.

The second major result in this section concerns the selection
of large prior means and their effect on the risk behavior of &*.

It is known through the simu]ation work in Section 3.2 that &* performs
well for moderate values of prior means. It is of interest to see how
the risk function of &* compares with that of 60 when very large prior
means are selected. We are primarily interested in how poorly §* can
do relative to 60 outside of the prior region. First the proportional
improvement in risk of &* over 60 is defined, and the situation is
considered in which both (p],...,up) and (X],...,Ap) are getting large
at the same rate. (If they increased at different rates, it would be
the "large A" case covered by the previously mentioned theorem.) It is
shown that in this asymptotic situation, the proportional improvement
of §* is equivalent to the risk improvement of a Stein-type estimator
in the normal mean estimation problem.

The above mentioned result is used in two ways. First, the maximum
proportional decrement in risk of &* compared to 60 is heuristically
found in this asymptotic sitﬁation for all p (number of parameters
estimated) and all selections of prior parameters. Second, the
theorem is used in studying the behavior of &* in estimating one

Poisson mean. To complete the discussion of the one-dimensional



39

estimator, the risk of &* for small values of A is considered, and

the maximum proportional decrement relative to 60 is found.

3.2. Incorporation of prior information
3.2.1. Introduction

Prior beliefs concerning the set {A],...,Ap} may be expressed
through the parameters p = (u],...,up) and g = (B]""’Bp)‘ In
the Bayesian estimation model described earlier, M and “isi are
respectively the mean and variance of the prior distribution of Ay
Thus larger values of B reflect a flatter and less informative prior
distribution. The estimator &* shrinks the observation X towards u,

and the amount of shrinkage along the ith component is restricted to

|Xi—u1[/(81+1), the amount that the Bayes estimator'é? shrinks Xi'

3.2.2. Numerical studies - risk

In the figures that are to be presented, we.show that &* has a
significantly smatler risk than 60 in a region about p and has a
risk not much larger than 60 elsewhere. A1l of the risks of §* are
found numerically using a computer, since the risk of &* generally is
not expressible in a closed form. For the examples that are presented,
at Teast 5000 occurrences of the random variable X are simulated, and
the risks (or average losses) that are found have a standard error of
approximately 5 per cent. On each graph, the risk of 60 (which is

p
) Xi under loss L]) is drawn to facilitate comparisons with 60.
i=1

We first look at the risk function of &6* under squared error

loss (loss L1) in the simplest case, p = 1, when u = 4 (Figure 1).
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This graph shows the effect of increasing g8 from 0 to 2. For each
value of B, the corresponding estimator achieves approximately a 50
per cent improvement in risk over 60 at p = 4 and at its worst, loses
about one unit in risk ouside of the improvement region. The effegt
of increasing B is to widen the region of improvement while slightly
v]owering the amount of improvement close to y = 4. As will be shown
in Section 3.3.2, asymptotically as i approaches infinity, the one
dimensional estimator loses one unit in risk compared to 60.

In dimensions greater than one, it is convenient to consider

the proportional risk of &*, defined by

(s%(X)-1,)°]

I ~10

EL
R(s*,0) _ =1

R(s%,2) E N

Figure 2 presents a graph for p = 2 showing contours of constant
values of proportional risk. Here the prior parameters (u1,B]) =
(“2’62) = (4,0) are used. Keeping in mind that a proportional risk

of less than one signifies improvement of &* over 60, one sees that
the region of improvement is quite large. At this point, two comments
should be made concerning this se]ectibn of prior information. First,
by selecting By = By = 0, the MVUE X is shrunk as far as possible

for our estimators towards the prior mean (4,4). Therefore the
proportional risk value of .38 at the point (4,4) is lower than the
minimum value realized when positive values of B and 32 are used.
Second, from our experience it appears that the region of improvement

is smallest when By = By = 0, so the improvement region should be
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10

Figure 2
p=2. Contours of constant values of proportional risk
of ¢*. Prior information: (”1’61)=(4’0)’ i=1,2.
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satisfactory when positive B] and 32 are used. Through our computer
simulation and knowledge about the asymptotic behavior of &*, it seems
that the proportional risk outside of the outer contour of 1 is
bounded above by 1.1 and for smal](A],AZ)beyond the inside contour of

1, the proportional risk appears to be bounded by

Tim RUE*A) g 97
Aparpr0 AL
'] ]

i~ 00

.i

In Chapter 1, it was noted that the amount of improvement
of many alternative estimators over the MVUE becomes more substantial
when more means are estimated simultaneously. Figures 3, 4 and 5 show
that &* displays the same type of behavior. To understand Figure 3,

consider the average risk, which is defined by

&(M:lE p *X_ 2
: 5 [121(61( )-x;)71
When this average risk is calculated along the diagonal Ay =eeee® Ap= n,

it is a good measure of the risk of 6* in estimating a single coordinate
of ». Figure 3 shows the average risk (plotted against n) along this
diagonal when p = 1,2 and 3 and the prior information is (ui,Bi) =
(4,0) for each coordinate. The average risk of 60, R(ﬁo,x) = N, is'
also plotted, so one can see the region of improvement and the amount

of imnrovement of &*. One sees that the maximum decrement in average

risk of &* compared to 60 for small n decreases as p increases, and

the region of risk improvement increases for larger p. It should be
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noted that the estimator &* is being viewed along the most favorable

line, so the amount of improvement indicated here is not typical for

all lines in the parameter space. Nevertheless Figure 3 illustrates

the advantage of using all of the observations in estimating a single
coordinate of A when A],...,Ap are related.

Figures 4 and 5 show the risk function of §* in the cases p = 3
and p = 6 respectively, where (ui,Bi) = (4,4) for each coordinate.
The risks in each case are plotted along three Tines, L], where
Ay Feel® Ap, and L2 and L3, where there are moderate and severe
differences between the Aj‘s. It is expected that ¢* will perform
well along 1ine L] since the 1line goes through the shrinkage point

(4,...,4), and also &* performs well asymptotically along this line

(see Section 3.3.2). The risks are plotted as functions of E Ai
i=]

SO we can compare §* with 60. By looking at the two figures, we
notice that in each case ¢* performs well compared to 60 along all
three lines and offers some improvement along L3 which is far removed
from the prior mean. To see the effect of increasing p, first note

P P
that the prior variance of ) A is ) HiBys and the corresponding
i=1 i=1

1/2

prior standard deviation, ( ) “161) , can be used to compare graphs
i=1

of different dimensions. In particular, the improvement region of

p

§* can be viewed at fixed prior standard deviations (of ) Ai) away
i=1

from the prior mean. In this example, it is not clear how to compare

the two figures along lines L2 and L3, but a comparison can be made

%

easily along line L]. The prior standard deviation is ( § uiBi)]/z =
i=1

4p]/2 in this case, and measured in these units, &* appears to have a
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larger region of improvement for p = 6 than for p = 3.

Table 1 shows values of the proportional risk of 60

(R(a*,A)/R(SO,A)) in the situation where wi =By = 4 for all i =1,...,p
at the points (2,...,2), (4,...,4), etc. In this example, the prior
standard deviation of § Ai is (.§1ui8i)]/2 = 4p]/2 and the points

i=1 i=

represent fixed amounts of standard deviations from the prior mean.
Although the proportional risk does not appear to decrease much at the
shrinkage point (4,...,4) as p increases from 2 to 6, it does appear
to decrease significantly at other points. This table further
demonstrates how the region of improvement expands as p increases.
It also shows the size of the improvement region measured in terms
of prior standard deviations from y.

Let us compare &* with three suggested estimators of p Poisson
means, those proposed by Zidek and Clevenson (1975), Peng (1975) and
Tsui (1978). These estimators have already been defined in Sectioh

P and 62 and the case p = 3 is

1.1. First &* will be compared with ¢
considered. Since both Peng's and Zidek and Clevenson's estimators
were designed to shrink X towards the orgin, we initially set
(“i’si) = (0,0) for each component in &*.

Figure 6 compares the risk functions of 62 with y = 1,
az with vy = p-1 = 2, 6P and §* along the diagonal line AT A, T g
for the Toss L]. Figure 7 compares the four estimators along the
same line under the 1oss~L2. From the graphs, one sees that both
versions of 62 do slightly better than s* close to the origin.

But 6* has smaller risk than Gz,y = 2 outside of that region, and
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Table 1
Values of proportional risk of &* for different values of p.

Prior information in &*: Wy T Bi = 4 for all 1.

Values of R(6*,A)/R(6O,A)

Point Prior standard p
deviations away
from prior mean

|

2 3 6

(2) 5 .824 .821 .762

(4) 0 .646 .646 .639

(6) .5 676 671 .666

(8) 1 776 .743 724

(10) 1.5 .881 .849 .834
(12) 2.0 .965 .927 892
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in general, Zidek's estimatorsand &* appear to be rough]y equivalent
in terms of risk. One also notes that 6P only improves marginally
on the MVUE - it does not shrink X significantly towards the origin.
Let us next adjust 52 and GP to shrink towards prior means in
natural ways, and then compare these estimators with &§*. Define

componentwise the adjusted estimators

& () = uyt(0 § xR Jgw)s 1<y <l
[X.=u. | +y+p-1
j=1 J " J
and
) (p-Ny-2) ( ;1 : [;1] |
5. (X) = X.- : L 5,
i i S k=1 k k=1 K

where [ui] = greatest integer < ug and

.i

i

1 1
— Z —
K™ Ly k

p
L

i=1 k

i

5! )2,

o~ ><

1

Consider the case p = 3 with prior means My = My = ug = 4. Figures 8

and 9 show the risk functions, under the two losses L] and L2
respectively, of ézl with vy = 1, 62' with vy = 2, 6P| and §*. We have
set By = By, = By = 0 in the rule §*. Also note that,as before, the
risks are plotted along the line A = Ay = g It is seen that all
four estimators shrink towards the prior mean, and the estimators

of Zidek and Clevenson and §* have similar risks in the region of

A A

greatest improvement. But the risks of 6, y= land §°, y= 2 are

much worse than those of 6P and §* when A is close to the origin,.
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especially when viewed under Toss L2. This is due to the fact that

the term in 6Z 5

y+p-1

b

X.=u. [+y+p-1
PRI

does not approach zero as k],...,kp (and therefore X],...,Xp) approach
zero.

Next, 6* is compared with GT, which does allow incorporation of a
prior mean K. In this example, set K =4 and u' = 1 in Tsui's
estimator, and set <“i’Bi) = (4,0) for each component in &*. Figure
10 shows the risks of the two estimators for p = 6 along the 1ine
Ay Ee.ns= xp. As in the case of GP, one notes that ST only offers
marginal risk improvement over 60 near the prior mean and §* has a
substantially smaller risk than GT near u.

In this section it has been shown through numerical work how
¢* makes use of prior information as reflected in the region of
risk improvement in the parameter space. It has been shown how
this region is affected by the choice of the prior parameters u and g
and how the region can expand as one simultaneously estimates more '
means. Comparisons were made of the risk functions of &* and other
proposed minimax estimators. The estimators of Peng and Zidek
and Clevenson have the disadvantage of not being able to accept
arbitrary prior means. Tsui's estimator does shrink toward an
arbitrary prior mean, but it is not able to improve substantially

upon the MVUE in the prior region. The robust Bayes estimator &*
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is able to accept different prior means, and although it is not
minimax, it does improve upon the MVUE significantly in a prior

region.

3.2.3. Numerical studies - Bayes risk

In this section &* is compared with 60 and the Bayes estimator
dB with regards to Bayes risk. 1In Table 2, three cases are considered:
(1) p = 1 with prior information u = § and g = 2.5, (ii) p = 2 with
(uys8y) = (5, 2.5), (uy585) = (8,1), and (ii1) p = 6 with (u;,B,) =
(10,5), i = 1,2,3 and (“i’gi) = (5,1), i = 4,5,6. These examples will
indicate that supplying the correct prior information in the estimator
6* leads to a significant reduction of the Bayes risk as compared to
the Bayes risk of 60. The Bayes risks of &* are found through simula-
tion and the vaiues presented have a standard error of approximately .
5 per cent.

The p = 6 case is typical of the behavior of §* in all three
cases. In this case, the Bayes risk of 50 is .g My = 45 and the
Bayes risk of §* when the correct prior inform;;}on has been used
is 37.4, a substantial improvement. When the prior means
Hyse e olp in §* are increased by factors of two and five, the Bayes
risk increases to 45.5 and 50.5 respectively, showing that one is
penalized significantly when “1"'“’“p are chosen far from their
true values. On the other hand, the selection of 81""’8p does not

appear to play a great role in the estimator 6*. The smallest Bayes

risk occurs when B]""”Bp are chosen correctly, but when they are



Bayes risks of GB

Table 2

and ¢* with properly and improperly

specified prior information.

p=1. Parameters in

prior: p=5, g=2.5.

Parameters in Bayes
estimator risk
u B 68 &%
5 2.5 3.57 4.11
10 2.5 5.60 4,83
20 2.5 22.0 5.93
50 2.5 165 5.33
5 5 3.80 4.18
5 10 4,23 4,38
5 20 4.56 4.61
5 1.25 4.00 4.14
5 0 12.5 4.21

p=2. Parameters in

pr‘]'OY‘: (U-l ,S-‘ )=(5a2-5)9 (U2382)=(8:~])'

Parameters in : Bayes
estimator risk
by By mp By s il
5 2.5 8 1 7.6 9.8
10 2.5 8 1 9.6 10.4
20 2.5 8 1 26 11.6
50 2.5 8 1 170 10.9
5 5 8 ] 7.8 9.8
5 10 8 1 8.2 10.0
5 20 8 1 8.5 10.2
5 1.25 8 1 7.9 9.8
5 0 8 1 16.4 9.9

58



Table 2 (continued)

p=6. Parameters in prior: <“i’si)=(]0’5)’ i=1,2,3,
(U1>81)=(5a1): i=4,5,6.
Parameters in Bayes
estimator risk
68 §*
(y.8;)=(10,5), 1=1.2.3 32.5 37.4
(Ui981)2(591): i=4,5,6
(U-:Bi):(ZOaS): i=1,2,3 69.6 45.5
<Ui981):(1031)3 j=4,5,6
(Uiagi)z(Soas)a 1=]5293 465.7 50.5
(U1361)=(25=]): 1_4a596
(H1961)2(10s10)9 i=1,2,3 34.4 37.8
(“1’81):(5’2)’ i=4,5,6
(U1381)2(10925)a i=1,2,3 38.8 39.8
(U1981)2(595>: 1:495:6
(U1381)=(1032~5)9 1=]9293 35.9 37.6
(Uiasi):(53-5)9 1:49596
(Ui’Bi):(]O’O)’ =1,2,3 165.0 38.7
(u;>85)=(5,0), 1=4,5,6

59
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chosen to be five times their true values, the Bayes risk increases
to 39.8, a slight increase.

On the basis of simulations 1ike those in Table 2, &* appears to
be sensitive to the input of prior information, especially the prior
means, and given correct selection of prior means, offers significant
improvement in Bayes risk over the MVUE 60. Table 2 will also be
used in Section 3.3.1, where the robustness of &* with respect to
incorrect prior information will be discussed.

3.2.4. Further analysis in the case of asymmetric selection of prior
information

In the preceding sections, ¢* has been shown to perform well
when the prior means and variances have been chosen to be the same.

That is, the cases where My = and By =...= Bp have primarily

= b,
been considered. In this section, the nonsymmetric situation is
investigated, in which different prior means or different prior
variances are chosen for the p components. It would be desirable

0

for §* to exhibit a substantial risk improvement over §° in the

prior region for a wide range of selection of parameters “1""’“p

and 8]""’Bp'
In Figure 11, the risks of three versions of s* with different

prior information are plotted in the case p = 2. The risks are

shown along the line AT A, Note that 6*] with prior 1nformatiop

(u],g]) = (pZ,SZ) = (4,4) performs best along this line. This is

expected since the line Ay = AZ passes through the point (4,4), and §

it will be shown later that 6*] performs well asymptotically along |

this line. In fact, in Section 3.3.2, it is shown that 6*] has the
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same asymptotic (as A] = AZ + ») risk as 50 along the line
A/ (B1F1) =,/ (Byt1).

The second estimator 6*2 differs from 6*1 in that the former
shrinks toward ny s 0 and Hy = 8. The line x1 = AZ does not pass
through the region where 6*2 shows the greatest improvement over 60,
but 6*2 still shows some improvement in a large interval. One

1 and 6*2 appear to be equivalent outside of the prior

notes that &*
region. This is expected since By and By have not been changed and
therefore, from the above remark, the asymptotic risk of 6*2 will
be the same as that of 6*].
The estimator 5*3 differs from-d*] in that the estimator uses

By = 0 and By = 8. This causes 6*3 to obtain the same amount of
improvement as 6*] at the point (4,4), but the area of improvement
is decreased significantly, and asymptotically outside of the prior
region, 6*3 appears to have a risk one unit larger than the risk of

60. One explanation for this risk behavior is that the term

2
L1/ ¥

1
() /(a2 Tt Bt

25
X-/(Bi+])2+ )

1 ! i

o~
NE~1P0
—

i
due to the difference between By and Bos and thus 6*3 is approximately
a one dimensional estimator. It will be shown that &* for p = 1

loses asymptotically one unit in risk compared to 60 outside of the

prior region, and 5*3 displays a similar asymptotic behavior for p=2.
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Let us investigate further the influence of prior information
on the behavior of the estimator in the prior region. It was mentioned

earlier that for Tlarge p and correct prior information, the shrinking

constant of aﬁ(x), ]—c?(x), is approximately equal to
p
N =1 J
B.t+1
! E u-/(8-+1)2+ E u./(8.+1)
j=1 3 3=1 J

It can happen that this shrinking constant is dominated by one set

of prior components (pi,Bi) if the corresponding ratio, “1/(31+])’

is very large. For example, if p = 3, (“1’81) = (10,1) and (Ui,ﬁi) =
(4,4) for i = 2,3, then uy/(By*1) = 5, u;/(8,#1) = .8, i = 2,3, and
the first set of prior components would have the greatest influence
on the shrinking constant 1-c*(X). When one set of prior components
dominates the shrinking constant, §* appears to be performing like a
one dimensional estimator in the prior region. In general, therefore,
it appears that one should be concerned about nonsymmetric situations
in which significant differences in the prior parameters exist. In
Section 4, it will be shown that there do exist many nonsymmetric
situations in which “1/(Bi+]) is approximately a constant for ail i,

and the above problem does not occur.

3.3. Robustness study
We now begin our study of &* with respect to robustness. First,
in Section 3.3.1, the Bayes risk of 6* is evaluated when the prior

information has been misspecified. The remaining sections use risk as
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a criterion. We evaluate the robustness of &* by comparing its risk
to the risk of the MVUE for parameter values outside of the prior

region.

3.3.1. Numerical studies - Bayes risk

With respect to Bayes risk, Table 2 shows the robustness of
§* with regard to misspecification of the prior information. In
the p = 6 example, when the prior means are chosen five times their
true values, the Bayes risk of &* is 50.5, compared to the MVUE Bayes
risk which is equal to 45. This is of sharp contrast to the risk of
the Bayes estimator 58, which is 465.7 using the same prior information.
It has already been remarked that &* is not very sensitive to the
proper selection of 81""’8p in the estimator; &* will offer substan-
tial improvement over 50 even if 61""’Bp are chosen far from their

true values. In contrast, the Bayes risk of GB increases rapidly if

ﬁ],...,Bp are chosen much smaller than their true values.

3.3.2. Behavior of the estimator for large A

In the numerical studies of Section 3.2, the MVUE 60 was
compared with 6* in and around the prior region for moderate values
of the parameters A],...,Ap. One situation that has not been

considered is that in which A .,Ap are large and far outside of

170
the prior region. In Theorem 1, we consider the case in which the
prior means “]""’“p are fixed and x],...,xp go to infinity along
the line described by Ay o= ki”’ i=1,...,p, and the asymptotic risk

. 0 . .
improvement of &* over & 1is given.
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Theorem 1

. A+
. jg XJ/(BJ 1)
min{1l, D

Let e#(x) = ugt

1
(1 -
B.+]
1 )2+

I o~

, 2
((Xg=u3)/ (8541))

Let Ai = ki”’ ki >0, 1=1,...,p. Then the asymptotic improvement as

n + < of &§* gver 60 is

Tim [R(s%,0)-R(s%,2)]

n-«

J
1 J“] + 2.

1
7 E (k;/ (5410212

B +1)1% E B +1) E (kj/(ejﬂ))3
)

k /( B +1)

Ll
E

Proof: See Appendix.

Consider the asymptotic improvement of &* over 60 given in
Theorem 1. The risk improvement has been shown to be of the order of
a constant for large A],...,Ap, while the risk of 60 is E]Aj. Thus
this risk improvement is insignificant compared to the r1sk of 50 for
]arge Ays- ..,Ap. Note next that when k1/(8]+1) =...= kp/(8p+]), one
can calculate I = p-2. Thus when many means are estimated simul-
taneously, §* can display smaller risk than 60 far outside of the
prior region along particular lines.

In this asymptotic setting, it is of interest to investigate

0

how poorly ¢* can perform relative to s . Let bi = ki/(81+]) for



i=1,...,p
N HERE
=1
I
P
since ) b2
=1

Now the Tast

value of -2

Therefore &*
compared to
§* will do w
of the param
are close to
estimator.
dimensional
As an e

B .
§, consider

= 2. Figu

situation.

1/2 =

(12) 3.
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and note without loss of generality that one can take

Then the asymptotic improvement in risk equals

implies E b? < 1.

j=1

expression is a quadratic in E bj and achieves a minimum
j=1

p
at ) Thus

bj = 2.
J

1
I>-2.

can not lose any more than two units of risk asymptotically
50. Through computer simulation studies, it appears that
orst asymptotically along Tines very close to the edges

sA

eter space. Along these lines, all but one of k],... o

zero, and §* is performing much like a one dimensional
Other ways will be described later in which the one
case is a worst case for the estimator &*.

xample to illustrate the robustness of &* compared to

the case p = 1 where the prior information is u = 6,

in this
1/2 _

re 12 shows the risk functions of &* and GB
Note that the prior standard deviation is (ug)
One observes that the risk of 58

5. is substantially
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greater than the risk of 60 for A = 18, only a few standard deviations
away from the prior mean, and as x increases the risk performance of
6B becomes worse. The risk of &* can get larger than the risk of 50
outside of the prior region, but the amount of risk decrement appears
to be bounded and approaches one as X gets large. Clearly §* is a

safer estimator to use than 68 in the situation where parameter values

of 18 or greater are likely.

3.3.3. Behavior of the estimator for large prior means

In the previous section, the situation was considered where the
parameters A],...,Ap were far outside of the prior region, and the4
corresponding risk improvement of §* over 60 was found. Here the
situation of using large prior means is considered. We are primarily
interested in evaluating how poorly &* can perform (in terms of risk)
relative to 60 outside of the improvement region.

From observing the risk curves of 8* and 60 (for example, see
Figure 1), one notes that compared to the risk of 60, the risk of &*
appears to be worst just outside of the improvement region. As A
moves further away from the improvement region, the risk of &*
appears to approach the risk of 60. In other words, the worst
situation appears to occur a few prior sfandard deviations from the .
prior mean. Also note from Figure 1 that increasing the prior value
of B seems to have the effect of flattening the risk function of &*
towards the risk function of 50. Therefore for a given set of
prior means (p],...,up), it appears likely that the maximum decrement |
in risk of &* relative to 60 is achieved when By =-..% B, = 0. In

p
this case



/0

In this situation, when 8] =...= 8. =0, it is nov1onger meaningful

to talk about prior standard deviations, since the prior standard
deviation of Ai is piBi = 0, But from our experience with risk curves
of 6* for p =1, g = 0, and different values of u, it appears that

fhe worst situation for &* occurs at approximately a distance of

3A1/2

from the prior mean. That is, if the proportional improvement

in risk of &* over 60 is defined by

= Re%2) - R(s%,0)
R(@O,x)

then in this situation (p = 1), p* achieves approximately a minimum

value at the points u + SA]/Z 3A]/2.

and u -
Let us consider this worst situation for &* when large prior
means “]""’“p are selected. This is one situation which has not
been considered in the simulation work of Section 3.2. In the case
where the prior means are going to infinity, let A],...,Ap also go to
infinity, since we are interested in the performance of 6* about the

prior region. In particular since the risks of 50 and 8* will be

compared within standard deviations of the prior mean, let the ui'S
1/2)

and Ai's go to infinity such that Hi=Ay T O(Ai This asymptotic
setup will allow us to compare the risks of the two estimators in the

region where 8* is expected to do worst compared to 60. Theorem 2
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gives the asymptotic value of p* in this limiting situation, when

A

],...,Ap increase to infinity along a line from the origin.

Theorem 2 b
(X.l"U.i) Z]XJ
Let ¢%(X) = X, - y . 0= 1,...,p.
i i p p ’
7 Xt ) (Xemus)
3=1 J i=1 J J
Let x, = k.,n, 1 =1,...,p where E k; =1
i i i2p
°5
= - 3 UL, * =
Let 0, Asugs and assume 1im /7 6%, 1 1, ,p. Then
n>e n
asymptotically, as n = «,
0 . \_praex p W, W,
(2.1) Tim RETMREEEA) _pr § (o0 -0%) —— - (— )2)1,
s R(80,0) j= ] P 2 2
n ’ T+ ) WS T+ Y WS
j:] J j:} J

where Ni " N(e?,ki), i=1,...,p, and w],...,wp are independent.
Proof: See Appendix.

In applying this theorem, it is useful to consider the normal
estimation problem where w1,...,wp are independent with wi " N(ef,ki),
i=1,...,p, and the vector (eﬁ,...,e;) is to be estimated. Consider

the Stein-type estimator

S(W) = (1 - ——u,
P 2
T+ 5 WS
=1
where W = (w],...,wp), and assume 3 is to be compared with the MVUE
p
&O(W) = W using the loss ) (si—eﬁ)z. The right hand side of (2.1),

i=1
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is the risk improvement of § upon 60. Thus in the asymptotic

situation of Theorem 2,>the proportional improvement of the Poisson
estimator &* is equivalent to the improvement of the normal estimator
§. It is of interest to find the maximum proportional risk decrement
of &*, or equivalently, the maximumrisk decrement of 5.

To heuristically find the maximum risk decrement'of 3, a
lemma due to Stein will first be stated. This lemma allows us to
obtain an unbiased estimator of the improvement in risk of an

estimator of the form W + f(W) over W in the normal situation.

?),.i = 1,...,p.

Lemma: Let w],...,wp be independent with W, ~ N(ei,o]

Then for functions f],...,fp: RP 5 IR satisfying

afi
E{|5W; (WY <=, i=1,...,p,

it follows that

2 °f;
EC(W;-0,)F, (W)} = E{o} ‘a“w‘i“} s 1= T1,..p.
(The proof of this lemma in the case 0% =...= cg can be found in Hudson’

(1974).) Using this lemma, the improvement of the estimator W+f(W) over W

is
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o g (W.-6.)%7 - E[ E W+ ()-8.)7]

i=1 i=1

p ‘ p 2
1:

1 121 1

2 Df

2
oz | of gt L,

1]

assuming the conditions of the lemma are satisfied. For the

estimator &,

. B ) i 2 _ .
61(W) = W1 2, O_i k_lg 1 1, 5P
1§ u
=1
so that
2
-(1+ E WS)+2u
Bfi(W) _ 3=1 J
ol
(v § )7
=17

b o 2Weo’ bW
I=€E[2( )1 - 1) - 2 5 ]
(LI TN E S L L PO T
= e i1
p
o — (2-4 T oW + E W)
P22 =1 T
(1+ ¥ W)
=1

We would 1ike to minimize I with respect to the parameters

07,...,9; and o%,...,oé (to find the "worst case"). This seems

extremely difficult analytically, but we can argue heuristically as
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follows. If = K, then the expression inside the expectation

j=1
is minimized when W= = K, where ci = max o?. Since we have the

3
= E k. =1, it seems plausible that the expression

restriction, i
1

1 i
is minimized when oi =1 and 0? =0, i ¥ m. In this case, I is the
improvement of the one dimensional estimator

= )
W) = (1 - W
S0 = (1 - —3)

O(W) = W in the situation where W ~ N(6*,1).

over the estimator 8§
Figure 13 shows the risk of §(W) plotted as a function of o*;

equivalently it shows the asymptotic proportional risk of s§*,

R(s*,e*)/R(GO,e*), when p = 1 and g = 0. The constant Tine

. represents the risk of the estimator GO(W) = W in the normal

problem. Note that

max R(s,6%) = 1.27,
e*

and min R(5,6%) = .48.
e*

Relating this to the Poisson estimation problem, this indicates that
asymptotically under the conditions of Theorem 2, the decrement in risk
of &* can be no larger than 27% of the risk of the MVUE for all
values of p.

Note also from Figure 13 that 8* is much more robust than 58 to
misspecified prior information in the situation where large prior
means are used. This figure shows the asymptotic proportional risk

of GB plotted as a function of e* for p = 1. We have set g = 1 in
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p=1. Proportional risks of (1) 58 and (2) ¢* in limiting
situation of Theorem 2.
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the Bayes estimator GB so that &* and 68 will perform similarly in

the prior region. For large A,

o* = (A-u)x']/z,

so 6* represents the number of sample standard deviations that A
differs from the prior mean. Although both &* and 68 display risk
improvement over 60 near the prior mean (6* = 0), outside of the
improvement region the proportional risk of 68 rapidly increases,
while 6* has a proportional risk bounded above by 1.27. This graph
further demonstrates that &* is more robust than 68 with respect to
parameter values that occur outside of the prior region.

In summary, the situation of using large prior means has been
considered. Our main concern was to find the situation involving
large prior means in which §* performed the worst compared to 60.
The proportional risk improvement of &* relative to 60 was defined,
and this was heuristically shown to be minimized when only one
parameter is estimated (p = 1), and the parameter g is set equal to
zero. In this case, &* can possess a risk 27% Targer than the
risk of 60 outside of the prior region. It was shown that this
“worst case" is much better than what can happen when 68, the
conjugate Bayes estimator, is used with a very large prior mean.
Finally the results in this section will be used to analyze

thoroughly the risk of s* for p = 1.
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3.3.4. Further analysis in the one dimensional case
In this section, the risk of &* is further discussed when p=1,
that is, when one Poisson mean is estimated. This case is of interest

for two reasons. First we want to evaluate §* with respect to

robustness to wrong prior information, and p = 1] appears to

correspond to a worst case for the estimator. Second, it is reasonable
to use &* in problems of estimating just one Poisson mean, and a
complete investigation of this most common situation is desirable.
Applications of Theorem 2 to the one dimensional estimator will be
discussed, and the risk of &* for small values of A will be evaluated.

Figure 13 shows the asymptotic proportional risk of &* when
g = 0 and the prior mean u and A go to infinity at the rate described
in Theorem 2. We are now interested in how large u must be for the
asymptotic risk behavior to be approximately valid. Figure 14 shows
the proportional risk (calculated numerically), as a function of
(A—u)k—]/z for prior mean values of 10, 30 and 50 and 8 = 0. One
notes that when y = 50, the plot of the proportional risk is very
similar to Figure 13. Thus for prior mean values of 50 or greater,
the proportional improvement given in Theorem 2 seems to be a good
approximation to the true proportional improvement.

What happens to the risk of &* when smaller means than 50 are
chosen? Two comments can be made from observing Figure 14. First,
the maximum proportional decrement in risk in the region where
(x-u)x_]/z > 0 increases as u increases from 10 to 50. This suggests
that the maximum proportional decrement in this region is bounded by

the asymptotic amount, .27. In the region where (x—u)x']/z < 0, the
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proportional decrement appears to decrease as p increases. In fa;t,
the maximum proportional decrement when u = 10 is .4. This suggests
that the worst case for the estimator §* in terms of maximum
proportional decrement occurs as A approaches zero.

For the one-dimensional estimator, we find the set of prior
parameters (u,8) which give the maximum proportional decrement in

risk of &* as A approaches zero. The proportional decrement in risk is

R(a*,x)—R(aO,x) - R{s%,0)
R(@O,A) A
_E(*(X)-0°
X

Consider

Tim Eﬁinél:&lEa

A0

which is also the Timiting risk as A approaches zero of §* under Toss

L2. When p =1,
] X
*X:Jl— ’ X— .
§*(X) = u+( mm{BH X+(X—u)2})( )
Now
E(s*(X)-1)% = (6%(0)-2)%  +(s%(1)-2)%re Mo (1)
= xze'k+(a*(1)-x)zxe'k+o(x).
Hence
. 2
1im Ei§—1§l:ll~ = Timfe ™ (ers* (1)2-206% (1)422) T+o (1)
A0 A0
= a*(l)z.
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Now
#*(1)% = Deminizly, ——}(1-0)1°
T+(1-u)
- 01 - 322 i (-n? <
[1- —9% ir (-2 > 6.

T+(1-1)

To find the worst possible behavior of §* as ) approaches
zero, we maximize [6*(1)]2 over all p and g. Note:

(i) If (]—u)2 > B, then through routine calculus,

)2 [-l ]'-Ll 2

5% (1 -
( 1+(1-u)2]

is maximized at pu = 2, and

__l:Z__EJZ = 2.95.

1+(1-2)

[1 -
(1) If (1-u)? < g and y < 1, then
s*(1)% = [1 - 12492 < g,

gtl

(i11) If (1-0)% < g and u > 1, or equivalently 1 < u < 1+5/2,

then for any 8,

max 6*(1)2 = max[1 - liﬂ]z
u B+l
- Btuq2
max[8+]]
g+l ’
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and

1/2
max[ﬁﬂiﬁ————-]2 = 2.25.
8 B+1

Therefore, max[s*(T)]Z
UaB

2.25,

and the maximum Timiting proportional decrement in risk is 1.25.
This means it is possible for §* to have risk that is 125% larger
than the risk of O near A = 0. Although the risk of &* can be much
larger than the risk of 60 for small A, the actual size of the risk
decrement is small. In fact, it has already been shown numerically
that the worst absolute risk decrement of s&* is .27 x. If the loss
function Lz(d,x) = (6-1)/r is used instead of the squared error loss
L] then one would be more concerned with errors made in estimating
small A. Under this loss, §* can perform poorly compared to 60 for
given selection of u and B.

It should be noted that for general p, one can find the Timiting
proportional risk decrement of &* as one approaches the origin on a
particular line. As in the above work, it would be of interest to
find the maximum proportional risk decrement over all selections of

prior parameters Hyseoeo and 51""’Bp . Unfortunately, it

p
appears to be very cumbersome to perform the maximization for p

larger than one.
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4. Using the estimator

4.1. Choosing u and B

It has been argued that &* is an attractive alternative estimator
to 60 when certain vague prior information is available. In particular,
for each Poisson mean estimated, one inputs two prior parameters M
and By In this section, we discuss the type of prfor information
that is commonly known, and the ways of obtaining P and B from this
prior information.

The simplest way of obtaining u and g is to guess at a mean and
variance for each coordinate of A. Since the prior mean and variance
if Ay oare g and 1By respectively, these guesses can be used to
obtain W and By Unfortunately, although it may be easy to guess
at a prior mean, a prior variance is harder to determine. Subtle
characteristics of the prior distribution may greatly influence the
variance, and as mentioned in Chapter 1, it is uncommon to have prior
information concerning the tail.

As mentioned in Chapter 1, people can on the other hand specify
fractiles of the prior distribution of Ai or assign probabilities to
particular areas of the parameter space. These assigned probabilities
can lead to values of M and Bi' For example, if the prior distribu-
tion of A; can be thought to be approximately normal in the central
region, then My and B; can be calculated from the endpoints of an
interval which is thought to contain a specific proportion of the

prior distribution. If (a,b) is thought to be the interval which
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contains the middle 50% of the distribution of Ai, then by solving

the equations

1/2
]J'i - -675(1-1181)

s3]
I

o
i

+.675(u.8;) /2,

H i

;
we can obtain the prior mean and standard deviation, My and <“18i)]/2’
and therefore By In a similar fashion, values of M and Bi may be
obtained by fitting the central region of a gamma distribution to
certain fractiles of the prior that are known. Although M and M8
correspond to a prior mean and variance of Ao it is worth emphasizing
that the prior information that is used is probabilities assigned to
intervals of the parameter space. Prior knowledge of a specific form

of the prior density or knowledge of the tails of the distribution are

not necessary in order to use §*.

4.2. When to use 8* in simultaneous estimation

It has been shown that &* possesses smaller risk than 60 in a
prior region, and &* appears to perform best in this region when the
quantities U]/(B]+])""’Up/(6p+]) are similar in size. Also asymp-
totically outside of the prior region, 6* has been shown to perform
well (in terms of risk) compared to 60 along the Tine A]/(B]+1) =...;
Ap/(ﬂp+]). When By =...= Bp’ it appears that it is most appropriate
to use &* in estimating means of a similar size. In this case, s*

will be a superior estimator to the MVUE 60, which estimates the p

means separately.
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Let us consider a general setting of estimating p Poisson
means where the use of the estimator 50 will be seen to be appropriate.
Often, a Poisson mean is an approximation to the expected number of
successes of a binomial random variable where N, the sample size, is
large and 6, the probability of success is small. Thus p independent
Poisson means frequently represent the expected number of successes for
p independent binomial experiments. Let (Ni’ei) be the sample size and
probability of success for the ith binomial experiment. The expected
number of successes (N]ST"“’Npep) will be estimated based on the
obseryed number of successes in the corresponding samples (X],...,Xp).

An example of this situation was described by Zidek and
Clevenson (1975). They discuss the problem of estimating mean numbers
of 0i1 well discoveries for different months simultaneously. Here
the search for oil at a particular location can be considered a
Bernoulli trial and searches at different locations may be assumed
independent. Thus the mean numbers of discoveries are really the
expected numbers of successes for different binomial experiments.

It has been stated that s* will perform best (in terms of
risk) in the prior region when the prior parameters are such that
u]/(8]+1),...,up/(8p+1) are approximately equal. It will bg shown
that this is indeed frequently the case in the above situation, so
that ¢* is frequently appropriate.

Often, the parameters e],...,ep can be thought to come from a

common prior distribution n(s). Let ¢ and 02 denote the prior mean

and variance respectively of this prior. Note that
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2
1 U . . 2
i i ___[prior variance]

B+ u181+u1 prior variance + prior mean’

and in this binomial estimation problem, the prior mean and variance

of Ni@i are Nig and N?o2 respectively. Thus

2 2
UT' ) N1F’
Byl N§02+Ni€

Now typically B is chosen larger than one for all i, and in this

situation,

Therefore, among the quantities p1/(e]+1),...,up/(6p+1), it would be
unlikely that one component would be much Targer than the others. If
indeed the 81|S are chosen large, then the above quantities would be
approximately equal. In other words, when each prior variance HiBy
significantly exceeds the corresponding prior mean p, then “i/(81+])
is approximately a constant for the above situation.

In the 0il well example described above, it would be reasonable
to have a common prior for the probabilities of finding wells during
different months. From the above discussion, &* should thus perforn

well for many selections of the common prior.

5. Other topics

5.1. More than one observation taken from each population
In the above discussion, only one observation Xi was assumed taken

from each Poisson distribution. Let us generalize to the case where
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more than one observation is taken from each population. Suppose
(Xi1""’xin ) are observed from the ith Poisson distribution,

i
i=1,...,p, and consider the sufficient statistics

=
e

which are independently Poisson with means n]A],...,npxp respectively.
To estimate the vector A* = (n]x],...,npxp), first note that

the prior mean and prior variance of nPAk are

ELmdd = mns
4 -
Var[nkxk] - nk”kBk - (nkuk)(nkﬁk),

and ¢* in this situation is defined componentwise by

_ 1
6.f'((Y) = N.ys + (‘l - n181+'| d(Y))(Y"n1U1):

L

where d(Y) = min{1, 1.
2 2
E n B +1) JE]((ijjuj)/(njsjﬂ))

The performance of &* has been discussed under the loss L], which here
p

is ) (61~n1xj)2. Usually however one is interested in estimating not
i=1 p

ks but the As themselves under the loss ) (51-Ai)2. A possible

i=1
estimator of (A],...,Ap) is
s¥ §*
ik = (- P
e )
1 p
Note that
_ -1 2+ -2/ % 2
R(s**,0) = E[ J (n7'6%(¥)=2,)°] = €L ) ni"(s¥(Y)-n2 ;)71
jop 1 i ST
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Hence if n, =...= n_ = n, then
1 p
=2
R(6**,4) = n “R(s*,nr),

and the performance of &¢** (relative to the MVUE) under the loss

(Si—ki)z will be equivalent to the performance of &* under the loss

i=1

D~ i T

2
If the nj's are not all equal, then R(8**,1) becomes a weighted
sum of the losses (6$(Y)—nixi)2, i=1,...,p. This motivates the

consideration of the general Toss function

2
whén A= (A],...,Ap) is to be estimated. We, therefore, briefly
discuss the performance of &* with respect to a weighted Toss.
First consider the extreme case where 4 = 1 and q; = g for

i ¥ 1. Then

2 _ 2
151‘11(51”1) = (81-2)"

Recall that the shrinking constant of GT is

X./(8:+1)
1 jg] J J

]—CT(X) =1 - min{1, }.

i 10

K/ (B2 T (0w )/ (1))

J=1 j=1
If the parameters A],...,Ap are not close in size, it is possible

for 1—cT(X) to be dominated by the observations XZ""’Xp' That is,
the coordinates of 2 that are not important in the loss may exert an

undersirable influence on the risk of §*.
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Generally, 6* does not appear to be appropriate in the case
of weighted Toss. Recall that in the derivation of &*, a symmetric
Toss gave rise to the shrinking constant 1-c*(X), and a weighted loss

would imply a shrinking constant of a different form. That is, if the

derivation of Section 2.2 is applied to the loss E qi(di—kj)z, then
i=1

the resulting estimator is defined componentwise by

D .+
§: (0= +(1 -~ mi j§1qJXJ/(BJ !
8. (X)=p+(1 - Bi+] min{1,

})

/(8013 T q (0K )/ (8 41))
R R IS R

51 =

Note that in the extreme case where 9 = 1 and q; = 0 for i F Kk,
Sk is equivalent to the one dimensional form of s*. Thus it appears
that & would not exhibit the same prdb]em as &* in this situation,
and this example suggests that 5 may be a good alternative to 60
under weighted lToss. However, a true Bayes estimator (from this
Toss) would not depend on the weights q],...,qp. Therefore, from a
Bayesian standpoint, § is not desirable in that it does depend on the
particular weights used.

Berger (1977b)suggested another method of dealing with

nonsymmetric loss functions. The general idea is to divide the

original problem into a number of subproblems. Let

be a convex loss for the problem, where all q; > 0. Also, if z is a

vector, let



The subproblems that are considered are those in estimating the
A, Define the loss function for the jth subproblem of estimating
A by

(3) (e 3y - ¥ i
L7 (6,07) = Z] 03505 (855240

aej

where 0 < ai <1, ag =0 for j < 1, and Z g =1 for all i.

)

Comde

For each subproblem, find an estimator d(

smaller risk than the usual estimator 5J.

which has uniformly

Then the estimator

defined componentwise as

agng)(x), i=1,....ps

will have uniformly smaller risk than 5P for the Toss L in the
original problem (for a proof of this statement, see Berger).
As one application of this method, Berger assumes without

loss of generality that 97 2 9, 3,..3_qp, and he defines

(95-a5,.9)/095. 3 2 1

where g is defined to be zero. Then

pt]

(3. 3y - ]
LYW/ (s,0") = ( a; q3+1 Z s,x
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2 (J)

(3)

, and although &* does not

0(J)

In our case,-Li(éi,Aj) = (Gi-xi)

under Toss L , it has been

have uniformly smaller risk than §
* {4 .
shown that § (3) is an attractive alternative to 60(3). So the

suggested estimator of A under loss L is

Ead*(‘] i=1,...,p>

where a% is defined above.

As an example, take p = 3. The suggested estimator of i

under loss L(8,1) = Z q; 6 Al 2 is componentwise

9:-9 9,-9 a3

iy = 12 (1) 2 13 ( ) sx(3)

§4(X) = ——= &% + X) + ==

100 = =g ept o+ o (1) + g oy >0
9,-9

Cix) = 22 13 ok (2) 3 .« (3)

sp0) = <= a3 )+ ghe5 ()

Consider again the extreme case when qy = 1 and q; = 0 for i > 1.

Here Si(x) =6 (])(X), the one dimensional form of &*, and &' behaves

*

1
1ike the rule & in this situation. However, unlike a true Bayes
estimator, &' will depend on the weights of the loss function.

In summary, in this section we have considered the problem of
taking more than one observation from each population. If the
numbers of observations from each population are equal, then an
estimator was proposed which will improve upon the MVUE just as &*

improves upon the MVUE in the one observation case. However if

unequal numbers of observations are taken, &* will not always
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perform well under loss L]. A general asymmetric loss was
considered, and two estimators were proposed which should display

better risk behavior than s*.

5.2. Unknown prior means

In our discussion, it was assumed that prior parameters
{(“1’81)’ i=1,...,p} are known to the user. Let us now consider
the situation where A],...,Ap are known to come from a common prior,

but no information exists about that prior. First, if Apoeeesh

p
come from a common prior, then By Te..S My = y*, and By T-..= Bp = g*,
and ¢* becomes
P
e
* = | Kt ; ] J=1 J * = .
6.‘(X) - H (]“m1n{8*+]: p E 2}>(X.I—U )a 1= ]s TesP.
Z X.+ (X.—p*)
J':] J J:] J

Now u* and g* are unknown, but they can be estimated from the °

observations. First, marginally E(Xi) = u* for all i, so a

natural estimator of p* is

R P
)

Xi/p.
5219

1

Second, 1in Section 2.3.1, it has been stated that

P p ‘
RSVA E X, + ) (X.—u*)z) is approximately equal to 1/(g*+1) when
F1 =y =Y

p* is known and p is large. Similarly it can be shown that for

large p
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Thus when p* and g* are unknown, the following estimator is

suggested:

Note that & corresponds to the usual empirical Bayes estimator as
discussed in Chapter 1.

Let us briefly evaluate § in the case p = 2. Figure 15 shows
contours of constant values of proportional risk (R(S,A)/R(GO,A))
over the plane of A and Ao values. This graph can be compared to
Figure 2, where the data is shrunk towards a predetermined point
rather than a point that is determined from the data. In Figure 15,
the proportional risk has approximately a value of .65 on the Ao
line and appears to have a maximum value of 1.15 near the boundaries
of the parameter space. In this example, § appears to be an attractive
alternative to 50 when A and AZ are thought to come from a common

unknown prior.
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Figure 15

p=2. Contours of constant values of proportional
risk of §.
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CHAPTER 3
A ROBUST BAYES CONFIDENCE REGION FOR p POISSON MEANS

1. Introduction

1.1. Improved confidence regions

To motivate the consideration of improved simultaneous
confidence regions for p Poisson means, the work that has been
done in the normal mean estimation problem will first be discussed.
Again assume X ~ Np(e,z), where © is known. Assume it is desired
to find a (1-y)100% confidence region for 6. The usual confidence

ellipsoid is

t.-1 2

O0x) = to: (x-0)%7 (X-8) < y

(v)1,

where Xz(y) is the 100(1-y) percentile of the chi squared distribution
with p degrees of freedom.

One reasonable method of evaluating the goodness of a particular
confidence region is to formally define a loss in using the confidence
region. Let L(C(X),s) denote the loss in using C(X) to estimate .

Also define the corresponding risk
R(C,0) = EgL(C(X),0).

One risk that has been considered is of the form
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R(C,8) = ¢ Eh(C(X)) + ¢, (1-P (8 € C(X))),

where h(C(X)) is some measure of the size of the region C(X),

PO(S € C(X)) is the probability of coverage of C, and Cy» C, are
appropriate constants. With regard to this particular risk, Brown
(1966) and Joshi (1967) both showed the region CO is inadmissible
for p > 3. The regions that were shown to have uniformly smaller
risk than C0 differ from C0 only in the centering term. In fact,

one of the better regions may be expressed as

where §(X) has a similar form to an estimator that has uniformly
smaller risk than 50(X) = X (under quadratic loss) in point estimation
of a normal mean.

Other authors have suggested different alternative confidence
regions to ¢V in this normal probiem. When y = I, Stein (1962)

suggested the confidence ellipsoid
2
J
This region was developed assuming p is large and differs from CO
in both the centering and width terms. The centering term
P
(1-p/ ) X?)X is almost identical to the James-Stein estimator
3=1
p
discussed in Chapter 1, and the factor (1-p/ X?) in the width
j=1

J:’.
term is just the shrinking constant of the centering term. This

extra factor in the width term is appealing from a Bayesian standpoint,
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since if one believes that 6 is in a particular region, the
Bayesian interval using this prior information is shorter than the
corresponding classical interval. A more sophisticated form of CS
was later developed by Stein (1974), and differs from CS in the
expression of the width term. Berger (1977a)developed a confidence
ellipsoid centered at his robust Bayes estimator (see Chapter 1), and
argued that it is an improved region (over CO) in terms of both size
and probability of coverage. Thus analogous to point estimation, the
classical normal mean confidence region CO has been improved upon
when p > 3. The improved regions are based on estimators that are

related to the improved estimators in point estimation of a normal

mean.

1.2. Confidence regions for p Poisson means

Methods of constructing confidence rectangles for the Poisson
parameter A = (A],...,Ap) will be discussed in this section.
Rectangles are considered instead of ellipsoids, because there
exist classical techniques for constructing a confidence interval
- for a component of A, and simultaneous confidence intervals for
A],...,Ap are equivalent to a confidence rectangle for A.

The usual classical procedure for constructing a confidence
interval for a component of A, say Ajs is based on the fact that
as ; approaches infinity, A;]/Z(Xi-xi) is asymptotically normally

distributed with mean zero and variance one. By solving the equations

-1/2,y _ -
A (Xi Ai) =120
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where 212 is the 100(1-y/2) percentile of the standard normal

distribution, one obtains the confidence interval

2

kit 20

. 2 172
/2 £z 2(X1.+zy/2/4) .

v/

This interval clearly has asymptotic probability of coverage of
-y as Ay approaches infinity. The confidence rectangle formed

by p of the above intervals is defined by

2

O/yy o 1. i 2, ,\1/2
C(X) = {x: |X1+zy/2/2 Ail 5_zy/2(Xi+zY/2/4) R

i=1,...,p}.

Asymptotically, c0 has probability (1-v)P of covering x. ¢V is the

0

usual confidence region based on the MVUE 6, and our suggested

robust Bayes region will be compared with CO.

Since prior information will be used in our confidence region
for A, a "standard" Bayes confidence region, or credible region, will
now be considered. This will be the (approximate) credible rectangle
for ) based on the conjugate prior. This credible region will be
used as the starting point for the devé]opment of our robust Bayes
region.

Let us first derive an approximate credible interval for the
component Ai' As before, Xi given Ki is distributed Poisson (Ai), Ai
is distributed gamma (“1’81)’ and the posterior distribution of A '
given X, is gamma (X1+“i’51/(81+]))' A (1-y)100% credible interval
will contain (1-y)100% of the posterior distribution of A Usually

it is desirable to find the smallest interval containing (1-y)100%

of the posterior probability. This interval is ca]]ed_the
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(1-vy)100% HPD (highest posterior density) credible interval.

Since the posterior distribution is gamma in this case, we first
find an approximation for an arbitrary percentile of the gamma
distribution. Using the Wilson-Hilferty approximation, the 100¢
percentile of the chi squared distribution with v degrees of freedom

can be approximated by

vz, 2792+ 1-2/(90) 7,

where z is the 100€ percentile of the standard normal distribution

1-€
(Johnson and Kotz (1970)). If X is chi squared with v degrees of
freedom, it is well known that Y = gX/2 has a gamma distribution with
parameters v/2 and g. Hence the 100€ percentile of the gamma

distribution with parameters o and B is approximately

1/2

wB(zy_¢/(3a'/%) + 1-17(90))°.

It follows that an approximation to the 100€ percentile of the posterior
distribution of A is
(Xi*a )8 1

(z

1 3
Al o} — 1 - e

It would be desirable fo use the above approximate 100€
percentile in finding the HPD credible interval. Unfortunately,
it is difficult in general to specify the HPD credible interval in
terms of the percentiles of the distribution. We will instead use
these approximate percentiles to find the interval which approximately

contains the middle (1-vy)100% of the posterior distribution, and then
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argue that the length of this interval is close to the length of

the HPD credible interval. In the above percentile formula, set

€ = v/2 and 62 = 1-y/2, and expand the resulting expressions, using
z]“Y/2 = "ZY/Z' After some algebra, one finds that the interval
which approximately contains the middie (1-y)100% posterior

area of Ai is

(X]-Hl.I)B.l . B'l [22 (_]_ ) ) )
Bt Bt “7v/2°3 7 27(X o,

1, 1 L I B
3 27(Xi+ai) 729 <Xi+a1)2

1/2
(Xj+as) %8, o 1 2 1 2 __1

+ z + - = ]
vie Byt 2rkiras) /2 gy(x ) 9 (KTeq)

+ Z

Denote by CB the confidence rectangle for A formed by p of the above
intervals.

The above interval will generally be longer than the optimal HPD
credible interval for Ai. The HPD credible interval will be signifi-
cantly shorter when the gamma posterior distribution is skewed towards
the left, that is, when the quantity X1+a1 is small. When (Xj+u1) > 2,
and the posterior distribution is more symmetric, the two intervals
are similar in length. From numerical studies, it appears that the .
above interval is less than 12% longer than the HPD credible interval
when Xi+ai = 2, and as X1+ai increases, the length of the above
interval approaches the length of the HPD credible interval. Since
the prior parameter o is frequently chosen to be greater than zero,

Xi+“i is often larger than two. Therefore, in many applications, the
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credible interval derived above will have length approximately equal
to the length of the HPD credible interval. Modifications to the
intervals in CB will now be made to derive a robust Bayes confidence

region.

2. Development of a robust Bayes confidence region

As in the point estimation problem, one would Tike a confidence
region to perform like a natural Bayesian confidence region in an area
of the parameter space. Let us consider the approximate credible interval
for A derived in the last section. Note that when Xitas > 1, certain
terms in this interval may be ignored, since they contribute Tittle
to the 1ocafion and width of the interval. If these terms are removed,

then the approximate credible region is

2
(Xj+ay )8y . 22, , [(X1+“1)Bi 172, B 172
B1+] BT+-‘ 3 _— Y/Z B-]+‘I B1+]

This interval will be approximately equivalent to the original
interval in most applications if Xi+ui is not small. Note that this
interval contains two important expressions, (Xi+ai)81/(81+1)’ the
Bayes estimator of Ai under squared error loss  and Bi/(81+])'

To construct a robust Bayes interval, two substitutions are
made. We substitute our recommended estimator 5? for the Bayes

estimator (Xi+a1)81/(81+1), and substitute
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L5/ teg)

min{T1, }

} X708 105 T () (5,1))2
=] j=1

]
1 B L+

J

for 1—1/(31+1) = 51/(51+1), as was done in the derivation of &*.

With these two substitutions, the interval becomes
1/2 1/2
00+ (=502 ,-1)/3 ¢ 2 p(et(0) /201-c5(x)) /2.

The confidence rectangle based on these p intervals will be denoted

by CR. As will be shown later, it is necessary to make one further
adjustment to the intervals in CR so that the resulting confidence
region has a probability of coverage close to the nominal level. That
adjustment is to replace dﬁ(X) in the width term of the ith interval
by X1+z$/2/4. The width term of the resulting interval will then only
differ from the width term of the classical interval by a factor of
(1—c?(X))]/2. This change has the effect of generally increasing

the length of the ith interval and therefore the volume of the
confidence rectangle. With this final adjustment, the recommended
robust Bayes rectangle, denoted C*, is formed from the intervals

sEX) + (1-c3(0) (25
Y

2 1/2 * 1/2
/2—1)/3 £ ZY/Z(X1+ZY/Z/4) (1- -c3 (X))
Before the confidence region C* is formally evaluated, one
can see from its form that it seems to behave 1ike a robust Bayes

region. In Chapter 2, it was argued that when the prior information

is correctly specified, p is large, and B]""’Bp are chosen to be




102

U and a§(x) = a?(x). In this

of moderate size, then c?(X) = <Bi+])_
situation, C* will not be an approximation to CB, because of the
above adjustment. But the centering terms of the intervals in C*
will be approximately equal to the centering terms of the intervals in
CB. Also in this case, the widths of the intervals in C* will be
significantly smaller than the corresponding interval widths in CO.
If, on the other hand, the prior information has been misspecified,
then at least one observation is far from its corresponding prior
mean, c*(X) = 0, and 8%(X) = X;- In this case, C* will resemble
the classical region CO based on the MVUE.

From inspection, we expect C* to improve upon CO in a prior
region, but not perform much worse than CO outside of the prior
region. In the next section, the criteria for evaluating a

confidence region will be defined, and comparisons will be made

between C* and CD with respect to this criteria.
3. Evaluation

3.1. Methods of evaluation

The two main criteria that will be used to evaluate the
goodness of a particular confidence interval are probability
of coverage and size. In Chapter 2, 8* was shown to be an
attractive alternative to 60 when vague prior information is
available. Here it is shown that C*, the confidence region based
on §*, is an attractive alternative to CO. Also C* 1is shown to be

more robust to uncertainty in the prior specification than the

approximate conjugate Bayes confidence region CB.
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In Section 3.2, probability of coverage is considered. To
evaluate a pérticu]ar confidence region, usually probabilities of
coverage of a region are compared against some nominal level. To
obtain this nominal level, a confidence of (1-y)100% will be assigned
to the ith interval covering Ais i =1,...,p. Using independence, this
will imply a confidence of (1-y)p100% assigned to the rectangle
-covering x. From a classical viewpoint, it is desirable for a
confidence rectangle to possess a probability of coverage of at
least the nominal Tevel ({1-y)P) over the entire parameter space.

In two examples, probabilities of coverage are found through
simulation for the regions discussed above. It is seen that C* has

0 in a region about the prior

higher probabilities of coverage than C
mean. Outside of the prior region, C* has probabilities of coverage
close to the nominal level, and asymptotically, as x approaches
infinity, C* is shown to have exactly the nominal level probability
of coverage. Comparisons are also made between the regions C* and

CR with respect to probabilities of coverage, and it is seen why
adjustments were made to CR in arriving at C*. Finally, CB is shown
to be more sensitive than C* to misspecification of the prior
information.

In Section 3.3, it is shown that C* is generally an improvement
upon CO with fespect to size. The measure of size that is used is the
volume of the rectangle. The volume of C* is significantly smaller
than the volume of CO in a region about the prior mean and can not

be larger elsewhere. In one of the examples above, the expected

size of C* is compared with the expected size of CO in a large region

about the prior mean.
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3.2. Probability of coverage

In this section, comparisons are made between the classical
region CO, the Bayes region CB, and the robust Bayes regions CR and
C* with respect to probabilities of coverage. First consider the
case p = 2. By means of computer simulation, probabilities of
coverage are found for the four confidence regions over the plane
of Ay and Ao values (Figures 16, 17 and 18). In these simulations,
at least 10,000 random variables X were generated, and the probabilities
of coverage found have a standard error of approximately .003. In this
example, the prior information (ui,Bi) = (4,2), 1 =1,2 ig used for the
Bayes procedures. Thus the prior standard deviation of .Z A is
(p]e]+p262)]/2 = 4, and this value can be used in specif;;lg distances
from the prior mean. In this example, y = .05, so'zy/2 = 1.96 is
used in the intervals, and the nominal level probability of coverage
is (.95)% = .9025.

From looking at Figure 16, one notes that the probabilities of
coverage of the classical region CO are a little small for small
values of A, but otherwise are uniformly close to .9. This behavior
is expected, since the intervals in CO were derived assuming that
A],...,Ap are large (see Section 1.2). Figure 18 shows the
probabilities of coverage of the robust Bayes region CR and the
recommended region C*. Both regions obtain high probabilities
of coverage near the prior mean (4,4) and they appear to approach

the nominal Tevel for values far from the prior mean. The problem

in achieving a uniform probability of coverage of .9025 occurs in
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Figure 16
p=2. Probabilities of coverage of CO.
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p=2. Prior information: (“1’61)=(4’2)’ j=1,2. Probabilities of

coverage of CB.
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Figure 18

p=2. Prior information: (“i’Bi)=(4’2)’ i=1,2. Probabilities

of coverage of C* (and CR).
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the region a few prior standard deviations from (4,4). In this
region, CR has fairly low probabilities of coverage, as low as

.79 at the point (10,10) and .80 at the point (1,1). Note that C*,
which was developed by adjusting the intervals in CR, appears to
have significantly higher probabilities of coverage than CR,
especially near the origin and in the region one to two standard
deviations away from the prior mean. Thus C* appears to never have

a probability of coverage much worse than .9, while having larger
probabilities of coverage than CO in a region about the prior mean.
From a classical viewpoint, C* appears to be close to a legitimate

90% confidence rectangle. From a Bayesian viewpoint, C* appears to

be extremely robust to errors made in the prior specification.

Figure 17 shows the probabilities of coverage of the Bayes
confidence region CB in the same situation. Although the probabilities
of coverage are high close to the prior mean, the probabilities
rapidly decrease as one moves away from u. This confidence region
thus appears to be appropriate only when the unknown parameters
A] and AZ are very strongly believed to be close to the prior mean. The
robust region C* seems to be more appropriate than CB when values of 2
~at least two standard deviations from the prior mean are possible.

Let us consider a second example where there is asymmetry
in the prior information used. Consider the case p = 3, where the
prior information is (u],B]) = (2,1), (pz,sz) = (4,3), and (u3,s3) =
(6,1). Again set y = .05, so the nominal level probability of
)3

coverage is (.95)” = .857. In Figures 19, 20 and 21, probabilities of
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coverage of C* are plotted along three lines. Line L] goes through
the prior mean (2,4,6), while lines L2 and L3 do not. (In this
example, the Ca]cu]ated probabilities of coverage have a standard
error of less than .004.) Looking along line L], one sees that C*
has higher than nominal level probability of coverage near u, and for
large A, the probability of coverage appears to approach the nominal
level. Along line L3, which is far from the prior mean, C* appears
to have approximately the nominal level probability of coverage.
Thus, as in the previous example, C* appears to use prior information
and be robust with respect to errors in the specification of the
prior information.

In the above examples, the probability of coverage of C*
appears to approach the nominal level for values of Ai,...,kp that
are large and outside of the prior region. A theorem will now be
given which states that C* has an asymptotic probability of coverage

»A_go to infinity along a line.

of (1-y)P as Aysees b

Theorem 3

Let

C*(X) = {a: [6’1?(X)+(1-c’1?(x))(z$/2-1)13—11.! <
zY/Zm-c;s(X))1/2(xi+z$/2/4)”2 vid.
Let Ai = ki”’ i=1,...,p. Then

A€ C* (X)) —= (1-y)P.

PA( e
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Proof: See Appendix.

If the prior information has been incorrectly specified and
the values of A],...,Ap are very large, then by Theorem 3 , the
confidence rectangle C* will be approximately equivalent to the

classical rectangle CO with respect to probability of coverage.

3.3. Size

In this section the classical region CO and the robust Bayes
region C* will be compared with respect to the volume of the
confidence rectangle. First, consider the confidence interval for
a component of &, say Ay The widths of the intervals for CO and

C* are respectively

2 1/2
2 ZY/Z(X1+ZY/2/4)

and
1/2

/8 (1-cx (X))

2
(X1+ZY/

2 Zy/2

The ratio of the width of the robust Bayes interval to the width of
the classical interval is (l-c’{(x))]/2 and the ratio of the volume

of C* to the volume of CO is

(1-cx(x)) /2,

=0

i=1

Recall that c#(X) = ]/(Bi+]) when p is large, moderate values of

3],...,gp are chosen, and the prior information is correct. On the

other hand, for values of X far from the prior mean, cx(X) = 0. Thus

:
C* will have a substantially smaller volume than CO for values of
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X],...,Xp near the prior mean and have a volume approaching the
volume of the classical rectangle for observations away from the
prior mean.

In the first example given earlier, p = 2, and By = By = 2.

Thus for correct prior information, the volume ratio is

2
m(1-ck (X))
=1 1

V2 2 /3.

;
One would expect the volume ratio to be approximately 2/3 for
values of (Xl’XZ) near the prior mean (4,4). For values of
<X1’X2) away from (4,4), one would expect the volume ratio to
approach one. In this example, the expected sizes of the two
regions have been found through simulation, and Figure 22 gives

values of

Expected size of C*
Expected size of CO

This figure shows that, on the average, the volumes of C* are
significantly smaller than the volumes of CO in the region within

" several standard deviations of the prior mean.



115

.91 .90 .92
204 ; : :
Ao
184
- .87 .87 .91
.88
14
.87 .92
.80 .80
124 : ;
.82 ,
: .80 .8
]O: N '7
. 71 .90
.74 .71 .80
6.
2| 78 .68 .71 80 .87 .97
2
.86 74 .74 .82 .88
1] [ T T ] (3 T T
7 4 g8 10 12 14 16 18 20
A
1
Figure 22

p=2. Prior information: (“1’Bi):(4’2)’ i=1,2. Values

of (expected size of C*)/{expected size of CO).
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CHAPTER 4
ROBUST BAYES ESTIMATION OF MULTINOMIAL PROPORTIONS

1. Introduction

1.1. History

The usual estimator of the multinomial parameter 6 is GO(X) =

X/N, which is the MLE and the MVUE. Johnson (1971) has shown 50 to

§ (61—61)2, so unlike the
i=1

Poisson problem, estimators can not be found which improve uniformly

be admissible under loss L](d,é) =N

in risk over 60. Note that R(Go,e) = ]-'E 6?, and the reason why
60 is admissible appears to be its sma111:}sk at the extreme points
of the parameter space, say when 8y = 1 and ej =0 for j $ k.
Nevertheless we can hope to improve upon 60 in a robust Bayesian
sense in the interior of the parameter space.

Since we will want to input prior information ihto an estimator,
some Bayesian procedures for estimating 6 will now be discussed.
The conjugate prior for 6 is the Dirichlet distribution, and this
prior and the corresponding Bayes estimator (under loss L]) will be
discussed in the next section. Other Bayesian procedures have been
proposed which are based on transforming the parameter 6 and placing

a normal prior on the transformed parameter. For example, Leonard

(1972) performs the transformation
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;= 40 B,-an (]—61), i=T1,...,p.

He then assumes g],...,gp are independent and identically distributed
with £, v N(p,oz), and then puts priors on the parameters u and 62.
Using this two stage prior, he proposes estimators which are approxi-
mately modes of the posterior distribution. Novick, Lewis and Jackson
(1973) perform a similar analysis by first using an arc sin transforma-
tion on 9.

Fienberg and Holland (1973) develop estimators using prior
information which are similar to estimators discussed in this
chapter. As will be shown later, they first consider the conjugate
Bayes estimator, and from this they derive estimators with shrinking
constants that are functions of the observations X],...,Xp. These
estimators are viewed as a Bayesian technique of smoothing contingency
tables, that is, eliminating zeros from the table. They discuss
estimators which shrink toward a priori selected means or means that
are determined from the data. To evaluate different estimators,
they mainly consider the asymptotic situation where N and & simul-
taneously approach infinity such that N/6 is a constant. In this
situation, called the asymptotics of sparce multinomials, risk functions

of estimators within a certain class are compared.

1.2. Need for a robust Bayes estimator

In this section the conjugate Bayes estimator of the multinomial
parameter 6 will be evaluated with respect to prior robustness. If
X v multinomial (N,6), then the conjugate prior for 6 is the Dirichlet

distribution, whose density is
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0 <o, <1 foralli, E 6. = 1,
i=1 i i=1 !

with parameters K and vy = (y],...,yp). The posterior distribution

for 6 is Dirichlet with parameters K+N and (X+Ky)/(N+K) =

component of 6, say 6:» under loss L] is

+Kyp)/(N+K)), and the Bayes estimator of a

-k
i N+K

It is of interest to observe how robust the Dirichlet prior
is with respect to uncertain prior information concerning 6. As in
the Poisson estimation problem, robustness of a Bayes estimator with
respect to the prior tail is desired, and one way to evaluate this
robustness is to inspect the estimator's risk function away from the
prior region. The risk function of GB can be evaluated; it is

R(6%,0) = (020 - | 6?) + (k2

2
N+K 4% (65-v;)"-

-
H~>1T
—t

(For comparison purposes note that the risk function of 60 is
P
R(&O,e) =1-) e?.)
i=1
o P
away from the prior mean, N(K/(N+K))“ } (ei-yi)2 is the dominant
i=]

Here y 1is the prior mean of o, and as 6 moves

term in the risk of GB. At an extreme point of the parameter

space, where 6 = 1 and 65 = 0 for j % 1,
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B K 2. 2 2
R(s7,0) = NG) "L ). vy + (O=vy)71,
ifi
while R(&O,e) = 0. Thus GB can have significantly larger risk

than 60 away from the prior mean and will perform the worst in risk
compared to 60 at an extreme point.

How poorly SB performs in risk away from the prior mean
depends to a good extent on the prior parameters K and y and the number

of trials N. Note that

K (2 2 P 2

I o~10

and the right term is approximately achieved when K is chosen
a priori much larger than N. Large values of K correspond to strong
prior information about 6 (we will show this later), and in this
case dB will be most sensitive (in terms of risk) to parameter
values away from the prior region.

Finally, it should be noted the size of the risk decrement
of SB compared to 60 away from the prior mean is bounded, since the
parameter space is bounded. Therefore in some cases, dB will not
have large risk for parameter values that are important to the user.
For example, consider the case p = 2, where the prior mean Y is

equal to .1. Here the risk of GB can be expressed as

N 2

R(6°,0) = ()%, (1-87) + 2(K)2(6,-.1)%,

Note that 68 will only have a much larger risk than 60 for values of
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8, much Targer than .1, and the Bayes estimator is somewhat robust
against the error of specifying the prior mean of 64 larger than its
true value.
We have assumed in the above that the absolute risk R(§,8) is
important. If instead one is concerned with the risk of 68
relative to the risk of 60, then the proportional risk, R(dB,e)/R(ao,o),
may be of interest. In the above example, 58 has large values of
proportional risk for small 815 and therefore is not robust using
this criteria. In addition, L] has been assumed to be the appropriate
loss for this problem. If errors in estimating small parameter values
are most important, then a loss function such as Nigle;](di-ej)z
may be appropriate. Again, in the above example, 68 will no longer
be robust under this loss to values of 0 much smaller than .1.
Generally the Bayes estimator from the Dirichlet prior
appears sensitive to prior uncertainty in the tail. Estimators will be
developed which incorporate prior information, but are insensitive

to extreme parameter values far from the prior mean.

2. Development of two robust Bayes estimators

Two estimators will now be developed which accept a certain type
of prior information and are robust when the prior information is
wrong. The derivation of the first estimator uses techniques similar
to those used in Chapter 2. The second estimator is of a similar
form to the first, but appears to perform better than the first when

the prior information is not chosen symmetrically.
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conjugate Bayes estimator GB. We would 1ike a robust Bayes estimator

to perform like 6B in a prior region of the parameter space. The

conjugate Bayes estimator of 0;5 6?, may be expressed by

;
; - w g o)

where Y5 is the prior mean of 0 One would 1ike the robust Bayes
estimator to shrink towards Y; like 6?, but somehow control the
amount of shrinkage when the observations contradict the prior

information. The estimator

is thus considered.
As in the Poisson derivation of §*, assume ¢ is a constant and

minimize the risk of & over all values of c. The risk of § is
R(Se)=(1—CK21-Ze + N(ER)? § ),
i N+K 27 N 51

and minimizing R(8,8) with respect to ¢ gives the optimal ¢ value

to be

Finally c¢' is estimated by its MLE and the resulting expression is
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substituted into é. The estimator that is obtained is defined

componentwise by

where 61 = Xi/N, i=1,...,p. Fienberg and Holland (1973) used this
derivation to find &'.

A robust Bayes estimator should accept some type of prior
information and show improvement in risk over the MVUE 60 in a
region of the parameter space. In the Poisson case &* accepts two
types of prior information, prior means or guesses of the parameters
A],...,xp, and prior parameters B],...,Bp, which reflect the accuracy
of the guesses. One would 1like to input a similar type of prior
information into the robust Bayes multinomial estimator. First note
that the prior mean and variance of ei, from the Dirichlet prior,
are E(ej) = v;» and Var(ei) = yi(]-yi)/(K+]). Thus vy = (y],...,yp) is
the prior guess at & and larger values of K reflect more precise
information about y. (How to choose y and K will be djscussed in
Section 5). The estimator 85 shrinks éi towards y;, but K does not
appear in the estimator. One can put K into the estimator by

insuring that 6% shrinks towards Y5 ho more than the shrinkage amount

of s?. Then 6! is modified to
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1- ¥ 65

\ . K J

* = -

61(X) yi+(1 m1n{N+K, 5
- @j+N_

j=1 J

lI.M‘O

2
1 J

A })<61"Y1)-

2
](ej Yj)

It ~10

Note that a similar truncation of the shrinkage constant was made in the
derivation of the Poisson estimator §*. Note also that the estimator
proposed by Fienberg and Holland, &', is equivalent to &* with K |

set equal to infinity (corresponding to precise prior

information.

To gain some insight into the performance of &* in the prior
region, assume p is large and that we can approximate the shrinking
constant of &* in terms of the prior parameters. Assuming the
Dirichlet prior model, the mean and varijance of éi = Xi/N under the

marginal distribution of X1 can be found to be

and

-y rilerg) N

var(eg) = — @

Now consider the shrinking constant of &*,

1-c*(X) = T-min(gir, 1= }.

When p is large,
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j=1 = j=1
(4.1) 5 s
- £ % ] (6% ED- § a2BED § (6 .v)7)
=1 Y =1 j=1 j=1
and one can show that
~2o K(N#T P 2
(4.2) Em-jg]eJJ e 0- 149)
and
- 5 29 2 KN, B2
49 e @ g - F

Thus for large p and correct prior information, the shrinking
constant of &*, 1-c*(X), is approximately a function of 1- § y?.
j=1

This suggests that the.risk of &* relative to the risk of 60 in the

prior region depends on the selection of y],...,yp. If one of the

Yi's is chosen near one, then 1- E y? is very small; if y1,...,yp are

i=1

chosen symmetrically, that is, if Yy STy T P

], then

1- E y§ = 1—p']. Therefore the prior mean y may determine not only
j=1

0
)

the location of the improvement region (over &) but the amount of

improvement in risk realized near the prior mean. This problem will
be illustrated in Section 3. Therefore we now consider an estimator
of a similar form to &* that appears to possess a shrinking constant
independent of Yyse-eoYy

p
Let usiagain consider estimators of the form
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5100 = vy + (1-c00)(05-v,)s § = 1,....p,

but consider a different choice for the shrinking constant.
Leonard (1977) and Good (1965) both considered shrinking constants
that are functions of

jE]YT](éj“Yj)Z-
When p is Targe and the prior information is correct, one can show

as in (4.1), (4.2), and (4.3), that

B -1 2= 1 Nk P
jZ]Yj (ej"Yj) = Egj‘*ﬂ*‘jzl(]—Yj)
1N+
T (1),

Thus for large p, this expression is approximately a constant, not
depending on y. An estimator having a shrinking constant that is a
function of this expression should (intuitively) perform equally well
(in terms of risk) in the prior region for all selections of Y],...,yp.

To construct an alternative estimator, recall that it is
desirable for an estimator to approximate some natural Bayes estimator
when the prior information is correct. The second estimator
considered is

]
...'l"
SURERL L

BICREAN

i=1,...,p. Note that for Targe p, under the Dirichlet prior,
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Thus for large p, § is similar to 68, the conjugate Bayes estimator,
when the prior information is correct. The shrinking constant is
truncated to the conjugate Bayes shrinking constant for two reasons.
First, as mentioned in the derivation of ¢*, it allows us to input

P4
the prior parameter K. Second, the term (p-1)/[N ) yj](ej—yj)zj
j=1

is unstable for values of é],...,ep near their respective prior
means y],...,yp, and the truncation removes that instability.
We have now developed two possible robust Bayes estimators of 6,

s* and 5. The shrinking constants of the two estimators are

respectively
1 E 5
- )6
1-c*(X) = T-min{ K j=1 }
N+K? : E 2 \ E (A )2
- 6 6.y
j=1 J 3=1 J J
and
_ N & p-1
T-c¢(X) = 1 m1n{N+K, E P 2}.
N Yj (ej"YJ)

When the prior information has been specified correctly, both shrinking
constants are estimates of K/(N+K), and both estimators hopefully will
be similar to the Bayes estimator GB. When the true value of 6. 1s

inconsistent with the prior information, most likely one observation
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~

Oi will be far from its prior mean Yy and both of the shrinking
constants will be close to one. In this situation, both &* and 5
will approximately be equal to SO(X), the MVUE. In the next section
we will evaluate how well the robust estimators emulate 68 in the
prior region and how the robust estimators compare with 60 outside

of the prior region.
3. Evaluation

3.1. Introduction

In this section the robust Bayes estimators &* and 5 are first
shown to have smaller risk than 60 in a region of the parameter
space and not much Targer risk elsewhere. Through computer
simulation, risks are found in the case p = 2 (binomial) for several
different sets of prior means. It is shown how the prior information
v and K is reflected in the risks of s* and § in a prior region. The
risk of 6* is compared with the risk of Fienberg and Holland's
estimator &', which does not allow for a prior variance input.
Finally the robust Bayes estimators are shown to be more robust
(with regard to risk) than GB with respect to parameter values
outside the prior region.

Next, the performance of &* and § s analyzed with respect to
the choice of the prior mean y. It was shown in the previous
section that the shrinking constant of &*, as p - =, is a function

P
of 1- }
i1

In this situation it is possible for one component's prior mean to

y? when the prior information has been selected correctly.
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have.the greatest influence on the behavior of §*. It is shown
in an example how the selection of the prior mean affects the
proportional improvement in risk of &* over 60 at y. The estimator
&* appears to perform best in the prior region when y],...,yp are
chosen similar in size. In contrast, the alternative robust Bayes
estimator § appears to have a proportional improvement in risk
(over 60) in the prior region that is generally insensitive to
the choice of y. It will be indicated through examples that 5 is
a preferable estimator to &* when p > 2 and the prior means y],...,yp
are dissimilar.

Finally a correspondence is made between the multinomial
estimator &* and the Poisson estimator &* discussed in Chapter 2.
We consider the Timiting situation where the multinomial distribution
approaches the distribution of independent Poisson random variables.
Under a particular loss, it is shown that the risk of the multinomial
§* approaches the risk of an estimator similar to the Poisson &*.
The correspondence between the two estimators will be used in
constructing a robust Bayesian confidence region for the multinomial

parameter 6 and understanding the role of the prior parameter K in

the robust Bayes multinomial estimators.

3.2. Risk
In this section, comparisons are made between the risk functions

of the robust Bayes estimators &* and 5, Fienberg and Holland's

estimator &', the conjugate Bayes estimator GB, and the MVUE 50. It

B

has already been noted that the risk functions of s  and 60 are

respectively
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p
R(do,e) =1-7 ef.
i=1

The risk functions of &*, & and &' are cumbersome to calculate
directly, so they are calculated through computer simulation. In
each example that is presented, at least 5000 occurrences of X are
simulated, and the risks found have a standard error of less than 5
per cent. In this section, we consider the case N = 15, p = 2.

Note that the loss L, can be written as

1

‘ L](a,e) [5]-9112 + [(1—6])-(1—6])]2

1

2
2(6]—6]) .

(For all of the estimators considered, E éj = 1.) Therefore, all
j=1
of the risks in this case are plotted as functions of 8-

Figures 23 and 24 show the risks of &%, &', GB and 60

for

different sets of prior means. The parameter E the prior mean

of 015 is .5 for Figure 23 and .1 1in Figure 24. Additionally,

the prior parameter K = 5 is inputted into the estimators 68 and §*. .
Let us first compare the risk of the robust Bayes estimator

§* with the risk of MVUE 60. 1In both figures, 6* has a significantly

“smaller risk than 60 in an interval about the prior mean. Outside

of this improvemeht region, &* can have a larger risk than 60, but

the risk decrement is bounded and as 0, approaches 0 and 1, the two

risk functions become identical.
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The conjugate Bayes estimator 68, using the same prior ‘
information as é6*, also shows risk improvement over 60 about the
prior mean, and the amount of improvement appears to be more
significant than the amount of improvement of &*. But the risk
of 58 increases quadratically away from uE showing that GB is
very sensitive to parameter values far from the prior mean. Thus
§* appears to be more robust than 68 with respect to uncertainty
in the extreme portions of the parameter space.

Recall that &' (the estimator proposed by Fienberg and
Holland) is identical to &* except that the shrinking constant
of &' is not truncated. Figures 23 and 24 show the effect of
truncating the shrinking constant, i.e. inputting a prior value
of K into the estimator é*. In Section 5, we will describe ways
of obtaining prior values of K, but smaller values of K correspond
to less precise prior information about 6. The estimator &', in
effect, chooses a prior value of K = =, and the result of choosing
the smaller va]ue of K =5 1in &* is to flatten the risk of s’
towards the risk of 60. If strong prior information exists about
8, then large values of K will be used in §*, and the risk functions
of §' and 6% will be almost identical. But if less precise prior
information exists, one may desire to use a smaller value of K in
§* and obtain a ré]atiQé1y flat risk function.

Figure 25 compares the risk functions of the two robust

Bayes estimators &* and &, and 60. The setting is the same as

in Figures 23 and 24, except that the prior mean T is equal to .3.
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It appears that § has a slightly larger region of improvement than
8§*, but § has larger risk than &* for small values of 0y In fact,
it can be shown in this-example that

Tim R(s,8) = .065,

e.l—>0 .

while

1im R(s*,8) = 0.

e]+0

If the proportional risk, R(&,e)/R(aO,e), is used as a criterion, then
the estimator &* will perform much better than 5 for small values

of 61 (In general §* will perform better than § with respect to
proportional risk at an extreme point of the parameter space.)
However, in this example and other examples that we have studied, both
robust estimators appear to be reasonable alternatives to 60 (under

loss L]) when prior information is available.

3.3. Performance in the case of asymmetric prior information
In Section 3.2, it has been indicated that the robust Bayes
estimators ¢* and § have smaller risk than 60 in a prior region of the
parameter space. Here the risks of &¢* and § in the prior region are
analyzed further; we are especially interested in the risk improvement
of &% and & when there exist differences in the prior means ISEREEER S
In Section 2, it was shown that, for large p and correct prior

information, the shrinking constant of &* is approximate]y a function

Sntrast, the shrinking constant of & was shown to be
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approximately a constant (not dependent on y) in the same large p
situation. Intuitively, the amount of risk improvement of 5 near the
prior mean should be less sensitive than 6*};@ the choice of y.

Let us illustrate the difference betweéﬁ\the two estimators in
an example. In Table 3, values of the proportional risk,
R(é,e)/R(so,e), have been calculated when 8 = y for different
selections of the prior mean y and different dimensions p. We
have set N = 15, and set K = 10 in the two estimators. Looking at
the p = 4 case, one sees that the proportional risk of &*, and
therefore the proportional improvement of &*, depends to some
extent on the selection of the prior mean. For example, if
y = (.25, .25, .25, .25), the value of the proportional risk is .44,
while if v = (.49, .49, .01, .01), the proportional risk has
increased to .56. One notes that if y = (p—],...,p_]), then values
of the proportional risk at vy decrease as p increases. Thus as
more ej's are estimated simultaneously, &* appears to show more
proportional risk improvement over 60 about this prior mean. But
for general vy, it appears that the true dimensionality of the
improvement of &* near the prior mean is just the number of
components of v significantly larger than zero. For example, the
proportional risk of &* at the point (.49, .49, .01, .01) (p = 4) is‘
approximately the same as the proportional risk at the point (.5,.5)
(p = 2). oy

Table 3 also shows values of the proportional risk for the

estimator & at the same points with the same prior information. The
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Table 3
Values of proportional risk at the prior mean for the -

estimators &* and &. N=15, K=10.

R(d,x)/R(dO,k) at v

p Y §* )
(.5,.5) .56 .46

.49,.49,.02) .55 .41
.33,.33,.34) .46 .39

.32,.32,.32,.04) .48 .39

(
(
4 -~ (.25,.25,.25,.25) .44 .38
| (
(.49,.49,.01,.01) .56 .40
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proportional risk values for 5 appear to be more robust or
insensitive to the choice of prior mean than &*. Generally it
appears that for p = 4, 5 will show approximately a 60-62% improvement

0 at the prior mean, regardiess of the

in risk over the risk of §
value of .

As another example of this asymmetry problem consider the
situation where p = 3, N = 15 and the prior information is K = 10,
(Y],yz,y3) = (.49, .49, .02). Figure 26 shows contours of constant
values of proportional risk over the simplex of parameter values
for the estimators ¢* and s. In this example, 8y and 8, have a
prior standard deviation of .15, and 6, has a prior standard
deviation of .04. Therefore the chosen values of y and K imply
that one has much stronger prior information about 64 than about

6, and 6,. Intuitively the region of substantial risk improvement

1 2

of a Bayesian estimator over 60 should be more concentrated in the
dimension of the coordinate with the smaller prior variance. The
region of significant improvement should correspond to the region
where the user thinks the unknown parameter lies, and the size of
this latter region in different dimensions corresponds to prior
standard deviations. Thus in this example, the region of risk
improvement should be smallest in the dimension of 63. Now compare,'
for example, the contour of proportional risk equal to .6 for the

two estimators. Looked at from the prior mean, the size of the

improvement region for § is smailest in the 04 dimension (towards

the point (0,0,1)). In contrast, the corresponding improvement
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region for &* actually is smallest in the o4 and 0, dimensions
(towards the points (0,1,0) and (1,0,0)). The estimator ¢ appears
to perform much better than §* when 83 is close to its prior mean
Yy = .02 and 8, and 6, are a moderate distance from their prior
means. Thus the prior information that is inputted appears to be
best reflected in the improvement region of 5.

In summary, both robust Bayes estimators §* and 5 show
substantial risk improvement over 60 in a region of the parameter
space. When the prior means Y],...,yp are chosen to be about the
same size, then both estimators appear to be equally attractive
alternatives to 60. It appears, however, that 5 is better than
6* when there exists considerable asymmetry among y],...,yp. Unlike
6*, the proportional improvement in risk of 5 in the prior region

appears to be approximately the same for symmetric and nonsymmetric

selections of prior means.

3.4. Equivalence of two estimators

It is well known that if N approaches infinity and 9],...,ep_]
all approach zero at a particular rate, the distribution of a
multinomial random variable approaches the distribution of p-1
independent Poisson random variables. Thus there is a close
connection between the Poisson estimation problem described in
Chapter 2 and the multinomial estimation problem described here.
Also note that the derivation of §* in the multinomial problem is

similar to the derivation of §* in the Poisson problem. In both

problems, an estimator which shrinks the MVUE towards the prior
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mean (like the conjugate Bayes estimator) is considered, and a
shrinking constant that is a function of X is found by taking the
MLE of an "optimal" shrinking constant that is a function of the
unknown parameters.

In order to establish a correspondence between the multinomial
estimator &* and the Poisson estimator, define the new multinomial
loss

LZ(

§,6) = N° ?E] (6i’ei)2'

i=1
In the 1imiting situation to be described, the multinomial Toss
L2 will be equivalent to the loss L] in estimating p-1 Poisson
parameters (see Chapter 2). Theorem 4 shows that in this Timiting
situation, the risk (under loss L2) of the multinomial estimator &*
is equivalent to the risk of a Poisson estimator of a form similar
to the robust Poisson estimator §*. Note that in the statement of
the theorem, we let K approach infinity such that N/K -~ D, where D
is a constant. It will be explained in Section 5 that the quantity
N/K is an indication of the strength of the prior information, so

it is natural to keep this quantity a constant in this asymptotic

situation.

Theorem 4: Let X be multinomial with parameters N, y],...,yp and

consider the estimator
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. K
* = -
61(X) Y.i+(1 m1n{N+K’
where 51 = Xi/N, i=1,...,p. Consider the situation where
(4.4) 6],...,6p_] - 0, y],...,yp_] >0, N»o, K+ =,

such that Nei > Ai, Nyi > Mis 0 < Ays My < s i=1,...,p~1, and

N/K -~ D. Then

2 P 2 P:l 2
N® ) E(6%(X)-8.)" » E(8%*%(X)-1.)",
i=1 ! ! i=1 ! !
where
p-1
2 ] X,
) . =1
8¥*(X) = ust(1-min{gp, pi] pi]( ¥ pi]( ))2})(Xi_“i)’
25 Xt ¥ (Komn )%+ (T (Xu-n.
=19 5= =1 9

and the latter expectation is taken over the distribution of p-1

independent Poisson random variables with means A],...,Ap_].

Proof: See Appendix.

Let us analyze the Poisson estimator §** further by considering

the term



142

p-1
2% X,
(4.5) min{ 1 j=17 }
) D+1° p-1 p-1 2 p-1 2 ’
2 ) X.+ X.-u.) 4+ X.-u.
jZ] ; .Z]( 57H5) (jzl( 57H5))

. . . . 2 .
Assume that A has prior mean M and prior variance T{s SO marginally
. 2 . . .
Xi has mean M and variance M + Ty Consider the situation where

p approaches infinity. By the Taw of large numbers,

p-1 p-1 )
I X /(p-1) > Vim J u./(p-1) = & a.s.,
j=1 9 proo j=1 9
and
p:l p-1
'Z](Xj—uj)z/(p-]) -+ 1im _Z](“j+r§)/(p-]) = U+T2 a.S.,
J= pre J=

assuming the above Timits exist. Now one can write

- op-1 2 p-1 2 p-1
EJZ](Xj-uj)] i jz](uj+rj) [jz](xj'pj)
p-1 B p-1 p-1 2.,1/2
(jg](Uj+Tj))

If the assumptions in Liapunov's Theorem are satisfied (see Rao

(1973), p. 127), then

" o)

X.-pi.

[jzl i 2%,
p= 2.11/2 ’
jz](“J+TJ))

where U is distributed chi squared with one degree of freedom. Using

this result, the expression (4.5) converges in distribution as p
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approaches infinity to

2y

. 1
m1n{D+], 1.

2u + u+12 (1+U)
Since E(U) = 1, this term is very similar to

min{Dl], B 1,

pot outt

and this Tatter quantity is the asymptotic shrinking term of the

robust Bayes estimator

p-1
X.
£(Y) = o] j=1
S (X) - U+(l_m1n{D+"5 p_'l p_'] 2})(X—U)-
y X, Z (X:=us)
j=1 J i=1 J J

Thus an equivalence has been shown between the multinomial estimator
¢* and an estimator similar to the Poisson estimator §*.

This equivalence will be used in two ways. In Section 4, the
problem of constructing a confidence region for 68 will he discussed
and the work that has been done in constructing regions for Poisson
means (Chapter 2) will be used in developing robust Bayesian regions for
the multinomial parameter. Second, in the discussion of using the
robust estimator (Section 6), the correspondence with the Poisson
estimator will help in understanding the relationship of the prior

parameter K with the sample size N.
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4. Robust Bayes confidence regions

4.1. Introduction

As in the Poisson estimation problem, it is desired to develop
a confidence region for 6 which will allow the input of prior
information and, in some sense, improve upon the classical confidence
region. In this section, some methods of constructing confidence
regions for 6 will be discussed, and in Section 4.2, two robust
Bayes confidence regions will be developed.

We will consider simultaneous confidence intervals for
e],...,ep, or equivalently a confidence rectangle for 6. For a given
j, a method will be described to calculate a confidence interval
(wg,ng) for 6., j = 1,...,p. Then one confidence rectangle for ©

J
is defined by

1 L
C ={6: n:
{ ﬂJ

Note that C1 ignores the restriction 'E e% = 1. To calculate an

alternative confidence rectangle for ;—lsing this restriction,

simultaneous confidence interva1s needgon]y be found for p-1

components of 8, say {estij +fk}:llTheniﬁhe corresponding

ponfidenée‘rectangle is defined Sy;  |

- ’ci = {o: ﬁg <6, < n\l]JJ ik, 1 %kﬂg <8, < 1-3;1(795}.
2

J 3

The confidence rectangle Ck will in génera] depend on the
value of k, or equivalently the set of p-1 éomponents of & for which

simultaneous confidence intervals are first ‘found. To decide on a
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value of k, we will always choose the value of k that corresponds
to the confidence rectangle CE with the maximum volume. This

confidence rectangle is defined by

(4.6) C3 = {0: WL < 0. i_ﬂp, J¥k, 1- Wq 5‘ek < 1I- nk,
J J J ij ij
where wi—ﬂt = min{ng—wg}}.

J
To find C3, simultaneous confidence intervals are first calculated
for the p-1 components of 6 which correspond to the maximum widths.

Since the width of the remaining confidence interval is

U L
J;k(ﬂj ﬂj)a

this procedure will maximize the width of all p intervals, and
therefore maximize the volume of the confidence rectangle for 6.
Note that k in C3 is defined to be the index of the interval with
the minimum width. If k is not unique, it can be chosen to be any
one of the indices of the intervals with the minimum width. A11 of
the confidence rectangles discussed in this section will be of the
form of 63.

We now discuss one classical method of constructing a confidence
interval for a component of 6, say 0, It is well known that the '

statistic.
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as N approaches infinity, has an asymptotic standard normal

distribution. By solving the equations

N]/Z(é.—e.)

for 8.5 where 2,12 is the 100(1-0/2) percentile of the standard
normal distribution, the following large sample confidence interval

is obtained for 61:

~

0, = za/z[ei(1-ei)/N]

1/2.

This interval has asymptotically a probability of 1-ao of covering 0,

The corresponding confidence rectangle for 6 as defined by (4.6) is

1/2

Oy = ra. 16 - .
(X) = {8: lej ejl 5_za/2[ej(1 ej)/N] ,  JFk,

172 -

lék-ekl < 2,70 j%k[éj(l—éj)/N] , where ék(l—ek) =

m}n{ej(]—ej)}}.

As with the Poisson situation, we begin the development of a
robust Bayes confidence region by finding an approximate credible
region using the conjugate prior. Thus assume 6 ~ Dirichlet

(K,y],...,y ), so that the posterior distribution of e is Dirichlet

P
(N+K, (Ky]+X])/(N+K),...,(Kyp+Xp)/(N+K)). For a given n, a region
which bounds approximately (1-n)100% of the posterior distribution

will now be found.
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First, if K is large, then the Dirichlet (K,y],...,yp)

distribution may be approximated by a multivariate normal distribution
with mean vector vy = (y],...,yp) and covariance matrix (K+1)_1(DY—y'y),
where DY is a diagonal matrix with diagonal elements Y],...,yp. This
approximation is motivated first by the fact that the distribution of

Y] = X]/(KH),...,Yp = Xp/(K+7),

where X = (X],...,Xp) is multinomial (K+],y],...,yp), has the same
moments up to second order as the Dirichlet distribution. Then a
multivariate normal distribution is commonly used to approximate the

distribution of Y ,Yp, when K is large.

100
Using this normal approximation, an ellipsoid can be found which

covers (1-n)100% of the posterior distribution. Instead, we will find
a rectangle, since the classical region CO is a rectangle. If

W ,wp ~ Dirichlet (K,y1,...,yp), then by using this approximation,

100
the interval

v ® 2,500 (o) (k1)1

will cover approximately the middle (1-«)100% of the distribution of

Nj, i=1,...,p. If we temporarily assume that w],...,wp are

independent, then the rectangle formed by p-1 of these intervals
will cover approximately (T—u)p"]100% of the joint distribution of

W .,wp, (Note that W ,...,Np are approximately independent when

12 1
p is large and the parameters Y],...,yp are nearly equal.) Therefore,

by choosing « such that (1—u)p—] = 1-n, the rectangle that covers
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approximately (1-n)100% of the posterior distribution of 6 will have

intervals

Kty

X. +KY X.+Ky.
i i ]/2
WK 202 v 0 -

(Neke1) /2] R

i=1,...,p-1.

(Since the multivariate normal distribution is symmetric about the
mean, this rectangle is an approximate HPD region for 6.) This
approximate credible region will be used in the next section in

developing the robust Bayes confidence regions.

4.2. Development of robust Bayes confidence regions
Consider again the approximate crediblie region for ei given

in the last section. It may be expressed as

X, +Ky X.+Ky

[ (1= S hmti2,

bt TR <5 BN Voot
WK * Zo/2\] - ke

There are two major terms in this interval, (X1+Kyi)/(N+K), the
conjugate Bayes estimator of 855 and 1-(K+1)/(N+K+1), approximately
the shrinking constant of this Bayes estimator. To develop a robust
Bayes confidence interval, it is natural to substitute one of our
recommended robust Bayes estimators (6? or 51) for (X1+Kyi)/(N+K),
and substitute the corresponding shrinking constant from the robust
Bayes estimator (1-c*(X) or 1-c(X)) for 1-(K+1)/(N+K+1). The two

resulting confidence intervals are
1/2 1/2
s5(X) £ 2o (1-c* (X)) La% (X) (1-s3 () )/N]

and
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5500 = 7, (1-c00) VL8, (0 (1-8, )M /2.

One final adjustment will be made to the above intervals to
obtain the robust Bayes confidence intervals for 0 that will be
recommended. That adjustment is to replace the terms
(5300 (1-65(0)) /W12 and [5,(x)(1-3, (x))/n1"/2

of the above intervals by [51(1—51)/N]1/2.

in the width terms
Recall that the classical

confidence interval for ei was defined by

- T 1/2
0, za/z[ei(l—ej)/N] )

This adjustment ensures that the robust Bayes interval will only
shrink the width of the classical interval by a factor of (1—c(X))]/2,
where 1-c(X) 1is the shrinking constant of the robust Bayes estimator.
Without this adjustment, it is possible for the above two intervals

to shrink the classical interval width an amount larger than
(1—c(X))]/2. From our experience with robust Bayes intervals for
Poisson means (see Chapter 3), it appears that a robust Bayes interval
cannot shrink the width of the classical interval by a larger factor

than (1-c(X)) /2

and still retain a good uniform probability of
coverage. Therefore, the recommended robust Bayes confidence

intervals for Gi are

/22 N 1/2

6T(X> x Za/z(]'C*(X)) [9](]'61)/1\1]

and

5,00 = z_ 2(1—E(X))]/2[§1(1—51)/N]1/2.

/
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Let C* and 6 denote the corresponding confidence rectangles for ¢,

defined by
Cr(X) = Lor [s5(K)-0,] < 2, p(1-cx(0)) /28, (1-6 )M /2 51k,
|6%(X) =6, | 5_za/z(]-c*(x))1/2j§k[éj(1—5j)/N]]/2, where
6, (1-8,) = m}n{é.<1-éj)}},
and
~ T ~ 1/2.~ ~ 172 .
C(X) = {6: IGJ(X)-GJl = Za/z(]_c (X)) [63(]—6\])/N] aJ%ka

15, (K-8, | < 2, ,(1-c(x))!/?

;k[éj(l-éj)/wjl/z, where
J

" The robust Bayes regions C* and c wiT] only differ significantly
from the classical region C0 in an area about the prior mean y. In
this prior region, it will be indicated that C* and C both obtain
- higher probabilities of coverage than CO, and have rectangles of a
smaller size than CO. Outside of this prior region, both robust
Bayes regions appear to possess probabilities of coverage and size

approaching that of CO.

4.3. Evaluation
In this section we briefly evaluate the goodness of C* and C

as alternative confidence regions to c?. As in the evaluation of the
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Poisson confidence regions in Chapterlz, our criteria for evaluation

are probability of coverage and volume of the confidence rectangle.
To evaluate the probabilities of coverage of the regions

C*, C and CO, we needbto compare them against some nominal Tevel.

Typically a confidence level of 1-a is assigned to each interval

covering a component of ¢. Then by using a Bonferroni 1nequa11ty,

the probability that the confidence rectangle

2 L
C, = {e: Ty L8y <my ,J+k - .
k NI j%k %k
. L U
covers 8 is at least 1-(p-1)a. (Note that F g_ej Ty J¥k

implies 1- nq <8, <1- WF.) We are interested in obtaining
j k J k j k J .

a nominal level probability of coverage for a region of the form

(4.6). MNote that for any k,

1/2

0 _ - " N .
Ck - [@j-ejl 5-Za/2[6j(1'ej)/N] > J%ka
. - : 1/2
10170, <2, j%k[ej(hej)/N] } < cf
G = to: [s3(x)-05] < 2, (1-c* (X)) /216, (1-6,0 /112, 34k,
ol . ) 1/2 ¢ 2 1.2 1/2
63008, | <z, ,,(1-c*(X)) J;k[ej(l 85)/N] %) e C*,
and :
- N 1/2¢2 - 172
Ck = {6 I(SJ(X)—QJI < ZOL/Z(] C( )) [9 (]_GJ)/N] > J+ka
) 1/2 172, _ =
6 (K-8, | < 2 ,(1-c(X)) J% [6,(1-6, )14} = C.
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k
coverage of at least 1-(p-1)a. Therefore, the regions CO, c*

The regions Cg, C¥ and 6k’ from above, have a probability of

and C will also have a probability of coverage of at least 1-(p-1)a,
and this value will be used as the nominal level.

Let us now compare the probabilities of coverage of C*, 6
and CO in the case where p = 3 and N = 30. In this ekamp]e,
a = .05, and therefore the nominal level probabi]ity of coverage
is 1-2(.05) = .90, Figures 27, 28 and 29 show probabilities of
coverage of the above regions plotted over the space of e]. and
6, values. The prior information used in the robust Bayes regions
is K = 15, Y] T Yy < .33, and because of the symﬁetry of this
example, probabilities of coverage are given only for 61 > 6,-
These probabilities of coverage are found through simulation, and
the standard error of the values presented is approximately .006.
Figure 27 shows that with only a few exceptions, the probabilities
of coverage of CO are uniformly .90 or greater. The lowest
probabilities of coverage of CO appear to occur in the extremities
of the parameter space where one of the ei's is close to one. From
Tooking at Figures 28 and 29, both robust Bayes regions appear to
show higher probabilities of coverage than CO in a region about the
prior mean (.33, .33). Note that C* and C can display smaller
probabilities of coverage than CO outside of the prior region, but
the probabilities of coverage appear to approach the nominal level

as one moves farther away from the prior mean. In this example, C*

and C appear to improve upon the classical region CO in much the
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same way as the robust Bayes region improves upon the classical
region in the Poisson estimation problem.

Recall that, in Section 3, the robust Bayes estimator & appears
to perform better than §* in the prior region when there exist
significant differences in the prior means YpaeeeaYp It is
reasonable to expect a similar type of behavior for the corresponding
confidence regions C and C*. More examples need to be considered
where there exist differences between the prior means chosen.

The robust Bayes confidence regions C* and 6 will also have a
smaller size than the classical region CO in the prior region. The
volumes of the regions CO, C*, and 6 are respectively

P one.(1-0.) /]2
AT D

" . 1/2
%k[ej(]-ej)/N] ),

(NP2 1 e (10 12,5 18 (1-8 1/2
(1-c*(x))™" 1 [o(1-0)/NI""( %ktej<1 8, )/NT5),

itk N
and
(1-c(x))P2 1 [éj<1-éj>/NJ‘/2(_; [6,(1-6,)/M1'/%).
Jtk itk
The ratio of the volume of a robust Bayesian region to the volume
of CO is

(1-c(x))P/2,

where 1-c(X) is the shrinking constant of the corresponding robust
Bayes estimator. Now O < c(X) < K/(N+K), and when X is observed
close to the prior mean, c(X) will be significantly larger than

zero. In this case both robust Bayes regions C* and E will have a
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significantly smaller volume than CO.

5. Using the estimator

In the robust Bayes estimators &* and 5, two prior parameters,
v and K, are inputted. In this section, we discuss how to choose
values for these parameters and then make some general comments
concerning the use of the estimators.

It has already been mentioned that vy is the prior mean of 6,
and K reflects the preciseness of the prior knowledge about 6.

Specifically, under the Dirichlet prior,

Var(ei) = Y1(1-Y1)/(K+1), i=T1,....Ps

and

COV(6159j> = "Yin/(K+])’ i * J.

Note that when p is moderately large and (A REERER are nearly equal,
then the covariance terms are small relative to the variance terms.
In this situation, the Dirichlet prior implies weak association
between the unknown parameters. Thus one way to obtain values of

v and K is to assume e],...,ep are not strongly related and make

guesses at the prior mean and variance of each 0 Specifically, if

2
[']3...

through the relations

P

one can obtain the values K],...,K . If these values are not

,Tg are the guesses for the prior variances of 81500905 then'
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too disparate, then K can be chosen to be some central value among

K ,Kp . If great differences do exist among K],...,Kp, then

120
a centfa] value K may not be appropriate to use. For example, let

p = 4, and say K] = 5, K2 =7, K3 = 20, and K4 = 22. A single value
of K would not reflect the prior variances well. One way to use
more than one value of K in the estimator is to first separate

{K],KZ,K3,K } into the similar groups {K1’K2} and {K3,K4}. Then the

4
parameters ei = (6],62) and eé = (63,84) could be estimated separately
(by robust Bayes estimators) using the respective prior information
Ki = 6, and K2 = 21. A disadvantage of the above method is that the

resulting estimator would not necessarily satisfy the condition that

i=1
In the above discussion, we assumed that prior variances are

known to the user. Unfortunately prior information usually consists
of probabilities assigned to regions of the parameter space. Such
prior information can also be used to find y and K however. For -
example, assume p = 2 (one independent parameter) and that 6, is
known to lie between 3, and a, with probability .8. The middle
section of the prior density of 6, may be well approximated by a
beta density, and by using tables of beta fractiles, values of Y
and K can be obtained. If p > 3, then the above method can be

used by first pretending e],...,ep are independent, and then working
with each 6 separately to find values of Y; and Ki' Then, as above,
K is chosen to be some central value among Kl""’Kp , or the

coordinates are grouped in some fashion.
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It appears to be hard in general to specify values of the
parameter K. One good way to understand the role of K in the
estimators &* and & is by means of an "equivalent sample size"
argument, introduced by I. J. Good. To illustrate this argument,
consider the conjugate Bayes estimator 68, which is defined
componentwise as

Ki+Ky;

B .
(X): N+K  ? 'lz-l,...,p.

;
Here Xi is the count in cell i and N is the total count in the sample.
If KY? and K represent the count in cell i and toté] count in a
preliminary sample (before the data is taken), then 6? combines the
information from the two samples to estimate 0. Thus a value of K
reflects the amount of information that is knowna priori about 6 as
measured in observations taken in a preliminary sample. The relative
sizes of K and N will indicate how much the prior information will
influence the posterior distribution and the Bayes estimator. For
example, if N = 20, then K = 5 would mean that the prior information
represents only five observations or about 1/4 of the information in

the sample. If prior information can be expressed in terms of prior
observations and related to the sample size N, then a value of K is
easy to obtain.

in the estimators §* and 5, the shrinking terms are truncated
at K/(N+K) = (]+N/K)_]. Thus the prior parameter K enters into the
estimators only through the ratio N/K. If K is much larger than N,

then the prior information is very strong, and the robust Bayes
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estimators will shrink towards y virtually as far as possible. On
the other hand, if N/K is large, weak prior information has been
inputted and the robust Bayes estimators will not shrink the MVUE 6
significantly.

In the Poisson robust Bayes estimator &* discussed in Chapter 2,
prior parameteré B]""’Bp are chosen which refiect the certainty of
the prior information concerning A1,...,Ap. If By .= B = g*,

P
then 6? may be expressed as

: )05 5T
X.+ E](X.—p.)

Consider now the limiting situation where the multinomial distribution
approaches the distribution of independent Poisson random variables.
As in Theorem 4, let N and K simultaneously go to infinity such that
N/K + D, where D is a constant. By letting N/K - D, one is inputting
the same amount of prior information relative to N as N » . In
this limiting situation, we saw in Theorem 4 that the truncation
term of the multinomial estimator, (1+N/K)_1, approaches (1+D)—],
the truncation term of a Poisson estimator similar to §*. Thus the
role of the quantity N/K in the mu]tindmia] estimator is similar to
the role of g* above in the Poisson estimator &*.

In general, robust Bayes estimators such as &* and 5 are good

alternatives to the MVUE when vague prior information is available.

Both estimators will accept information concerning the central part
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of the prior and they are robust with respect to uncertainty in the
tail of the prior. It has already been noted that 60 has small risk
at the extreme points of the parameter space. Thus, the robust
Bayes estimators will show the greatest improvement upon 60 when vy
has been chosen away from these extreme points. Finally, the
proportion of‘risk improvement of é near the prior mean appears to
increase as p increases, and generally it appears that, as in the
Poisson case, the robust Bayes estimators perform better in risk

relative to the MVUE for larger values of p.
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Proof of Theorem 1

It will become clear from the proof that, without loss of

generality, we can set py =S My = 0. Also it will be clear from

the proof that we can ignore the truncation in the shrinking constant

of §*. Then &* is defined by
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where IV is the sum over the region
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i

and I c is the sum over Vc. Note that
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where K is some constant. Hence

Ia
=<
—d
~1
t~1
=
-
1
~
>
=
><}J -
+
=
~S
1
=

9/16

for constants K] and K2' Now say [xm—kmn[ > n Then for large

enough chosen integer g,
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~K.n X,
b -92/16 P e I (k.n) I
I, < K z Z[X.-k.nHX -k nlgn in
V=TT g T i=1 X!
(A.1) ‘kjn( )Xj
_ p e k.n
t K Z!>(m~kr11n!£n e I X!
v j=1 J
= 0(1)

(since EiXm—kmn]C = O(nc/z) for nonnegative integer c).

Next consider I c» and note that VC = {x: !xi“ki”l < n9/16 for all
v =
1}. MWe first obtain a Taylor's expansion for ¢j(x) in V¢, Note

that
- 1
R o112 B RNY:
j;] x5/ (85+1) +jZ](xj/(sj ))
i} 1
p 2 ’
p MR
L O/ () + - -]
i
pACERD
and that
p
,Z]xj/(6j+1)2 ,E]<kjn+n9/16)/<sj+1>2
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P (kotn 7/16y/(p,41)2
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j=1 J J
= 0(n ])
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1 2 -1
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In terms of the vy Ve = qv: Vs __n9/16 for all i}, and in this
region,
1
P
) ((V-+kjn) (8:+1))
IE
- ']
2 P 2, b 2
Y (k /(s +1)) %42y Z kjvi/(8s+1)7+ | (vi/(8,+1))
\E =1 =1
2 P 2
2 Y k.v./(g.+1) L (vs/(85+1))
: 1 I I R L) 7]
2 P 2 P 2 P 2
Z](k /(s +1)) n Z (ky/( B +1))% Z k /( B;+1))
i= 3=1 j=1
g kjvs/ (85 +1)°
= y - 1 [1 - J—; + 0(n~14/16);
) (k; /(B +1))% Nl (k; /(s +1))
3= =1
and
] ) 1 []+O(n-7/16)]
R T RS I G N ORTPRRI:
j:] j jn Bj n j:] Bj

Therefore in the region VC,

p
(2Vi(V1+k1n) /(B;+1)( nJZ]k i/ (85%1) J§1VJ/(BJ+]>)

' 2
pRCATRIONH

)

i b~10

i=1
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2 2
- [n .5 k_/(3_+])'E k.v./(B.+1)
2 E <kj/(6j+]))2 j=1 9 TyEp 33

g k. /(8 +1) g s +1) E kyvs / B +1) E vj/(ej+1)]

J 1 j=1 j=1 3=1
' p
- 4 .Z kj/(gj+] Z k vy /(8 Z k V. / B +1)2 o(1),
oY (ki/(e,+1)202 0] 5= | 5"]
jep 90
and
b (V +k. n) (6 +1) (n Z k./( B 1)+ Z V. /(B +1))
PR j= j=1 )2
= | rgrrgnrtagen)?
| PO MU
p p
(1 k/ (o107 T (ky/ (8541007
. _J=1 =1 + o(1)
(5 k/te,010)8)2
=1
P 2
(7 kj/(e +1))
G IS
= + 0o(1)
Pk /(1))
j=1
Thus
*kjn( )Xj
P p e k.
L= T T 20 kondes ()-(e, ()% 1 —— 00—
v VC i=1 v ! J=1 3
(A.4)
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p
e +1) Z X; -k n) /(Bj+1)

E]kj<xj-kjn>/<ej+1)j§]<xj-kjn>/(sj+1)]

)2

i : ] o |
2 J_E]kj/mjﬂ)J_E]kj(xj kjn)/(8j+])jglkj(xj )/ (g4

p -k.n X.
(I k/an% e 3 (k) )
= DI A
] k(g2 371
J:
Write IVc = 11-12, where
-k.n X,
N j
p e (ksn)
=] { } 1 =
Z j=1 i’
-k.n X
: o, I (ksn)
= H .
2 5 j=1 xj!

and { } denotes the expression in brackets in (A.4). Using

Chebychev arguments as in (A.1), it can be shown that
(A.5) I, = o(1),
Next; using the independence of X],...,Xp and the facts

E(Xj-kjn) =0,

2 .
E(X.-k. = K.n, = 1,...4Ds
( j Jn) P p



it is easy

(A.6) 1

1

Combining (A.

174

to see that

/(5.2 4 b (k./(5.41))3
1 J J ) j=1 J j ], J J ‘o

Ho~~1T | I DTT

I~

(ky/(541)° [ ] (ky/ (851707

j=1 j=1

1), (A.5) and (A.6) gives the desired result.

Proof of Theorem 2

Let
p
(X-I“U.I)J:-Z]XJ
X = ‘i = 'I’ LD,
e Fox §xm) i
. _—
j=1 9 j= J
Note that
' p
R(s0) = Zkian‘H:n
i=1 i=1
Thus
O *
(A.7) [ = R(87,2)-R(8%,2)
R(ao,x)
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E EL2(X,-k;n)é (X)=(o. (X))?]

-k.n X.
p _ p e J (k)
P 120cn ™ 2ekn B0, 00V 2o (o, 60n 722 il

1

|
J-=-] Xj.

First, since we have assumed that

1im _T_? = 0(1) for all i,
N n

there exist constants K] and N > 1 such that

|6,
]/2‘< K for all i when n > N.

Define the constant K by K = 3K] and write

+ 1
v

L= IV c’?

where Iv is the sum over the region

9/16

V= {x: lxi—kinl > Kn for at least one i}

and I is the sum over VC.
e
v
Consider the case where x € V. Note that

(h.8) o an V2 = =
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Now for constants KZ’ K3, K4, and K5, the following facts hold.

p
(g I Ogmug) | plxgu)?r2r | (xgmu )72
j=1 I j=1
(A.9) 5 <
25 () 12§ ()
§~K2.
If x € V and |Xi-kinl > kn?/18, then
08 (ko) 1/2
(A.10) _[XT[ |
TG B
< 8142 /2
= k(021651723
1 3 _
s e —— <o = Ky
K(n /]6_]/3) K 3
If x € V and [Xi"ki”} §‘Kn9/]6, then there exists m € {1,2,...,p} such
that ]xm—kmnl > kn2/1® and
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1/2
n (Xi'“i) ) Kn17/]6

(A.17)
)2

(x =

10
e
>
'|
h s
;/

N

{

Kn17/16
(a9 16011232

I A

1
-2/3+n

1/16 -1/16
n

Y /4)

. 1
< < K,.
“ k(1 /16p3) — 4
(xgu5) |
oA
(A.12) J

120 2
) J_§]<xj »

0.
N (xs-us)
< K3 1

<
jg](xj—uj)

Therefore, using (A.8)-(A.12), for some constant K6 and x €V,

-1/2

65 (x)n | <k, forall i.

This implies that

(A.13) k.n

- X.
j j

i ) pe (k:n)
1<l 'E][Z(Xin-]/z—kin]/2)¢1(X)n V2 (4 (x)n ]/2)2]j§]-—-;3Ti~———

= Z E'I [2'% |x1n']/2_k1n]/2[+(K6)2] Ixm_kmnill(—ln—g/]fiﬁ,
x =

-k.n X.
e 9 (k.n)?d
:
1 XJ..

I b~

J



for large enough chosen ¢(since E[IXi—kinlz] = O(n_g/z)).

Next consider the sum I e and note that V¢ = {x: lxi
v

for all i}. Expanding cp].(x)n']/2 in a Taylor's series for x € ve gives

—

b3

(x

o
i
=
-
(=

ft ~10 | 8 BTT

¢1(X)n_]/2 =

j=1

<x1.-k].n+e1.>n"”2j_§_]£(xj-k3n)n"/

2
+K.
N
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_kjnl.f Kng/]6 .

1/2]

[(Xj_

it ~T1O

- P
kjn)n 1/2+kjn]/2]+n1/2

2 L0xy

j=1

j=1

E [(Xj’kjﬂ+@j)ﬂ

-1/242
—K.nt6 .
kyn 6J)n ]

—]/2]2 A
171

“1/2p , 321
(1 >

14" V2§
=1

(Xi'ki”+ei)“
(x.-k.,
J 3

Next

) 1/242
[(Xj kjn+9j)n ]

#t ~10

j=1

TV E (x.-
=1

J

I o~1T

(A.14)

K. 1/2 1

Jn)n

Then using (A.14),

-1/2
12 (xj-kyn*o)n

(A.15) 4, (x)n

1 g [(x;-kinte,)n /2380140(n™7/10)]
j=1 J J

nn /2

[(xs-kgnvo )n” /2001000077 10)1].
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-1/2
(x.-k.n*6.)n
1+ E [(x.-k.n*e.) ']/2]2
51 i gmegn
-1/2
(x;-kinte.)n _
: % o 17242 * o™,
1+ ~k.nt8.)n
j=][(XJ kJn GJ)n ]
Let
(Xj-k1n+61)n-]/2 .
#3(x) = —5 » =1,
1+ 7 [(x-konte. )n /272
P J J J

j=1

Combining (A.7), (A.13), and (A.15), we have

= - .
(A.16) 1T ) [20xn" 2ekn Dt (x)- (63 (x) 2] e +o(1).
e i=1 _
Now we apply the well known fact (see Makabe and Morimura (1955))
that if X ~ Poisson (1) with density pX(A), y = A_]/Z(x-x), and f(y)

is the density of a standard normal random variable, then when X > 1,

(A7) py(0) = £ 2 (y/2-y3/6) 14,

3/2 A_3/2)

where |R| = LA~ + of and L is a constant. Using this in

(A.16) gives

P -
1020607 2okn 21300+ 0360) ]
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-3/2

- (=kgm) (kym)™%76) + R+ (1),

—3/2)

where ]le = 0(n »J = 1,...,p. It is easy to see that I

can be written as I = I1+12 + 0(1), where

p
=7 73 [2(x;n” /2ek,n/2)0% (x)
1 c i=l ! !
'
i 2, P -1/2 -1/2,,
(07T 1 Gegn) ™ 2L y) ™ kgD
and
p 2, 172 23071 P
L =1 2 L20gn o=k %o (x)-(eX(x))"T ) 1ty
g€ =1 ! ! 221 §=179
p
and in each product jg]tjz, tj21s either
o “1/2.¢ -1/2,, ,
-1/2

T‘]zf[(kjn)—]/z(x\]"k‘]n)](kJn>_][(XJ_kJn)(kJn) /2'(XJ_kJn)B(kJn)_3/2/6]3

or Rj, with at least one of the last two types of terms occurring in

each product.

- First we show that [I,| = o(1). Note that for x ¢ Ve,

882 00-(03(0)?T] < k' /1S,

p
|V [2(x.n™ %k
i=1 1 1

for some constant K7. Thus

3P p
1/16
1,0 < kn /P17 7wt

|
= ‘: JQI
VI 1 j=1
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3P-1 p
<k T el
2=1 Ve j=1 J
Now D
Jlnt, ] =) jps.,n T.n R,
21 J% J J J
e J 1 v© C] C2 C3

where either 02 or C3 # ¢, and {C],CZ,C3} is a partition of
{1,2,...,p}. Then

p .
Ylmt. | <] mos.m [T T |R,].
: J VC C Nj CZ J C J .

e 9/16
Let Aj {xj. ]xj kjnl_i Kn”""71,

1 3

j=1,...,p. Note that

(A.18) g IR, < k21807372 4 (17327

- k15716 4 o(,-15/16y

and
) ]Sj[ 5_(k-n)_]/2 ) f[(k-n)_]/z(x--k-n)],
A J 5, 3T
= . = = _]/2 -
where Bj {xJ. X; 0, #1, +2,...}. Let Y; (kj”) (Xj kj”)
and Cj = {yj: Y = 0, i(kjn)-]/z,...}, so that

< -1/2
gjlsjl __(kjn) gjf(yj)'

Now let n - ., Since f(yj) is a bounded continuous function of yj,

: -1/2 o _
llz (kjn) g.f<yj) {“ f(Yj)de 1.
J

Therefore
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(A.19) I Is;l = 001)
A, Y
J
Next
£ 1! 5‘g,f[(kin)_]/z(xj'kj”)3(kj“)_][lxj“kj”l(kjn)‘l/z/z :
J J i
]xj—kjn[3(kjn) 3/2/6]

f_n“]k-1/2 T -1/2

; Y5 )k [\y |/2 + Iy | 3761

J
Note that f(y Yk —]/2[1y |/2 + ly | /6] is a bounded continuous
function of yj. Therefore

Tin (kn) ™2 ] f(y)) ]/Z[Iy 172 + |y;1°/6]
pre 9 C,

” -1/2, 3
[w f(yj)kj L]yj[/z + ]yjl /6]dyj
(A.20)
0(1).

n

Hence using (A.20),

(A.21) ) |Tj| - 0(n” /%),

A.
J
p
From (A.18), (A.19), (A.21), and the fact that for each g, H th
=]
contains at least one of Tj or Rj’
p -
)| t [ = 0(n ]/2), L= 1,...,3P-1,
v© =1

and

(A.23) |1,] = o(1).

It remains only to analyze I].
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Xi=ksn + ei)’ i=1,...,p, and let

)2

P
'.H

(2nk. )"V 2exp([ (w.-5 . k2 /212213,
j J J J

J

where

= (w: - W2 /2,0 =172 - 1/16
VE = W ows kin 704, —kon T 15, L and [wi 6.1 < Kn }.

Write I] = I3—I4, where
L= P2r 0y,
A
,=a P27 o,
v A=y

{ } is the quantity in brackets in (A.23), and

p =
[}

{w: Wy = 0, tn']/z, iZn—]/z,...}

A~ V* = {w: W, = 0, in-]/z, izn_1/2,~--}

0w w, = _ki”-]/2+éi"" for all i, and le—éj[>Kn]/]6 for at least
one jl.
Now

1/16

A~ VxcV' = {u: wa'éi' > Kn for at least one i}.

1/16

For w € V', say [w -8 | > Kn Then
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-% -4
[zK Qn /16

172 ¢ P - N
Il < / g’ iZ][Ziwi—ei[+1]lwm—em
(A.24)

1/2]2

I =o

-1/2 -
(Zﬂkj) exp{[(wj ej)kj /2}

j=1

-3 - 5/2 o P . ;
K Q,n 2//16(7] p/ g igl[szi‘e.ilﬂ]lwm-em[l

P
- I

(2rk. )"V 2expt[(w.-6. )k V232 23) .
; i %375

1 J

Let n + » and note that

~ ~ 18 -1/2 ~ -1/242
'31[2[W1-61[+1][wm-6m . (Zwkj) exp{[(wj—ej)kj 17723

'I:

=30
—_—

is a continuous bounded function of w],...,wp. Therefore the

right factor in (A.24) converges to

p
-9% _ox|% -1/2 ey-1/292
Dfp 1§][zlwi 61|+]]|Wm em] jE](Zﬂkj) exp{[(wj ej)kj ] /2}dwj

= 0(1),

since all absolute central moments of wj, i=1,...,p, are finite.

Therefore
(A.25) Iy = o(1).
Finally,
) p . W W
(A.26)  1im I, = Tim n e 2 [2(w.-e.) ; - ; )]
we S ome AR TR
=17 =17
p _ . _ .
- I (2nk.) ]/Zexp{[(w.~e.)k-]/2]2/2}
=1 NI AN
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Wy 2. P -1/2 -1/2-2
)71 T (anj) exp{[(wj~63.‘)kj ] /Z}dwj.

Combining (A.22), (A.25) and (A.26) gives the desired result.

Proof of Theorem 3

Let

9/16

Ve = {x: [x;-kin| < n for all i}.
Using arguments as in the proofs of Theorems 1 and 2, it can be

shown that for x € VC,

x:/(8.+1)
1 321 g

min{1,
((x4-u3)/(85+1))°

30 = B+

| D10

x./(8.+1)%+
F T

I ~710
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: Z]k-/(ej+1) \2
:B.+] l; 2+O(n )
Ty (ki/(8s*1))
=1 -
- o(n™ )
Thus
(%1, ) E X5/ (B5*1)
s%(X) = x, - 10 peng, —J=1 }
T AT P /(642§ ((xom )/ (8,41))2
x./(B.+1)+ X.-u.)/(B.
FENS IR S IS L
p
k./(8,+1) ) k./(g.+1)
1 1 il J J
Sahin T o
2
(k:/(B.*1))
&
Let
p
/(841 Ko/ (8541)
M, = J=1
1
2
351(ki/(si+]))
Then for x € VC,
(.27) (63000 + (=c5(x0)(2,,-1)/3-2)?

'_ 2 _-172
= (xi-M1+(ZY/2-?)/3~kin+t]) , where t, = 0(n” ")

= (xymkyn) 420k Lz o= 1)/3-M,t ]

2 2
F [(22,m1)/3- M3, ]

2
(Xi—kin) +2(X1.-k_in)t2+t3,

where t2 = 0(1), ty = 0(1). Also



(A.28).

where t4

(A.28),

onve

I

1]

3

o (85 (1-c5 (X)) (22 5= 1) /3,

187

2 12(1-cE () (xy-22 /8) = 22 ks n+22/2(xi-kin)+t4,

0(1). Let @ = {x: x € C*(x)}. Then from (A.27) and

)2

9/16

< 23/2(1-c§(x))(xi-z$/z/4) and |x;-k:n|<n”/1® for all 1)

. 2
{x: (Xi-kin) +2(x1.~k1.n)t2+t3

2

9/16 .
/2 Xi_k1”)+t4 and |X1'kjﬂ}.§ n / for all 1}

2
< Zy/2k1n+2

2
(x: (Xi-kin) + 9 (X1°k1n) t2 N t3
kyn (kin) /2 (kn) /2

2
2 ken) oz, 4 9/16 .
z_,, t : + and |x,-k.n|<n for all i}
v/2 1/2 1/2  k.n it
(kiﬂ) (kin)
(x3-ksm) 9/16 N
{x: [(-——)~[/— + t5] <z J2ttg and |x;-kin|<n for all i},
_ -1/2 _ -1
where for x € o n VC, tg = 0(n '/°) and te = 0(n "). Now
-k.n X
pe ' (kn)'
AEC*(X)) =) @ i
Q i=] i’
~-k.n X, ~k.n X
p e ' (kn)' poe ' (k)
2 .H X1 * z .H X, !
Qv i=1 i anc i=1 it



188

Using a Chebychev argument as in Theorem 2, line (A.13),

kin X
p e (k;n)
Z I N = O(]).
Qv i=1 i’

From Theorem 2, line (A.17),

—kin( )X]
p e k.n p . X.-ksn
) S R R B
e i=1 i e i=1 ; )
3(X1—k n Xi_kin )3
1/2 1/2
[(k )_]/2 N (k1n> (kiﬂ) ]+R )
i 6k1n i
b 172 1 %7k o
=) (Zﬁkjn) exp{- §'(“‘—~*T7§? }+oo(1).
VC i=] (kin)
Therefore
—kin(k )XT
p e . p - 1 %57k
Do s D k)T et g (i),
oy 1T ! onve 7 (kyn)
Let
X.-k.n
i i
it )1/2+t5’

and A = {y: Y? <2 il (Recall that for y € A, te = O(n_])-)
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(2ﬂkin)~]/2exp{- %—(yi—t5)2}+o(1)

i

=0T

(2nkin)']/2exp{— %-yﬁ} + o(1),

=

.

i=1]

Where B = {y: y? < 23/2}. Note that the summation in (A.29) is over

values {O,(kin)_]/z, Z(ki”)-]/z""} such that y? < 2372 for each i.

-~ L2 2 .
Let Bi = {yi. ¥y < zY/Z}, i 1s...5p. Then

Tim (kin)~]/2 ) (Zﬂ)_]/2 exp{- %~y?}

nore Bi !

[ (2r) Y Pexpt- % yErdy,
B

i

P(|Y] <z where Y ~ N(0,1)

Y/Z)’

Therefore,

“kin %y
p e (kin) p
lim § @ v (1-y)",
e anc i=1 i

and this proves the desired result.
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Proof of Theorem 4

Let g(x) denote the multinomial density with parameters N

and 6. Clearly

p-1
Ne D E(e%(X)-8. )8
i=1
R - §a?
= EpZ NZ[ +(1-min{ 3=1 1) (6.-v. )-6 ]2
i:] Y-I N+K, p A2 p ~ 2 -i Y-i 1
1- ) 65N} (8.-v.)
j=1 J 3=1 J J
- § 42
Ps] K j=1 9 2
=) ) [Ny +(T-min{y, 1) (x; =Ny, )-Ne.1%g(x)
x 'i::] A2 ~ 2 1 1 1
1- E 6 :+N E (6:=v.)
5219
= I, +1 _,
v e

where IV is the summation over the region

Vo= {x: [xil > N8 for at Teast one i}
. . c 1/8
and I .~ is the summation over V. For x €V, say lxm[ >N 7. Then
v
Po1 2 2
IV 5_% 121[(X1'N91) +2|X1'NYj[lxi'Nejl+(X1'NY1) Jg(x)

18, P2
(A.30) < N ]/8% 121[(X1-N61)2+2[xi—NYilIxi-Nei|+(X1'NY§)][Xmig(x)
= o(1),

since in the limiting situation (4.4), all moments of the multinomial

are 0(1).
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Now consider the summation I c For x € VC, the following facts

v
hold:
p‘“Z % "9
1- Vo N(T1- ¥ 6%)
' _ i’
P.o P . 2 Py oP 2’
T- ) o5+N ¥ (0.-v.) N(T- J 85)+N" ) (8.-v.)
j=1 J JZ] J J JZ] J 3=1 J J
p ~2 p-1
N(1- ) 65) = N[1- § (X /N) -(1- Z (x /N)) ]
=1 J j=1 j=1
p-1 p-1 p-1 o
=2 Z X3 Z X; 2/N-( Z Xj) /N
p-1 -
=27 x, + 0Ny,
=
2P - 2 Pl 2. 2 Pl p:1 2
N® ) (B.-y.)" =N (X, /N=y )"+NT[(1- § x./N)-(1- 7} Y;
i=1 J '] jz] J J j=1 J J_]
= T (NPT xge T )
j=1 3—1 j=1
Hence
p-1 -
. 2 ] xs+0(n4)
- J=1
v 2 z X + z X NY ) (‘X (xj_NYj)) O(N )
' 3=1 9 = =1
“(%;-Ny;)-Ne. 1g(x).
Let
p-1 p-1 p-1 2
C,=2Y) x,,C, = (x;=Ny )™+ () (x.-Ny.))
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(A.31) We claim: there exists N], K] > 0 such that if N > N],

then C, + C, > K To prove this claim, note that

1 2 1°
_ p-1 p-1
if jg]xj > 0, then C.+C, 3_2j§1xj > 2, and
Pl Pol 2
if jzlxj = 0, then C,+C, 3_j§](Nyj) .

Now Nyj > Hye 0 < My o< J=T1,...,p-1. Therefore there exist €

and N2 such that for N » N2, Nyj > “1'6 > 0, and hence C] + C2 > 0.

The claim is thus established. It can be concluded that for x € VC,

cro(n%)
Ny +(1 - Ny,
KL roqr 374
1742
-3/4
c oy - (C]+O(N ))(X."’NY.I)

i -3/4
C]+C2+O(N )

-3/4
(C]+O(N ))(Xi_NYi) (s O(N-3/4))

= X‘ -
i C]+C2 C]+C2
Cylxs=Nrs)  (x-Ny, )o(n™3/%)
= X, - +
1 C]+C2 C]+C2
(c7+0*)) (N Jo(n3/%)
+
2
(Cq¥C,)
C (X.-Ny.)
1Y% 1
= x, - + 0(1),
i C]+C2




1

since from (A.31), (C]+C2)"] < K; . Thus

p-1 k9 2
) [xi—m1n{ﬁ;g,‘5—;5~}(x1-Nyi)-Nei+0(1)] g(x)

I =)
c L
Vc i=1 172

v
e S 2
Z][x.i"m]n{N_l_Ks C +C2}(x1'NY-‘)'Ne1] g(X)’*'O(-I)

c i 1

=)
oy

p-1 kG 2
i; i;][xi-an{N;Ks ET;@;}(xi-Nyi)-Nei] g(x)
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The last equality uses arguments as in (A.30). Finally let

e],...,ep_] > 0, YpoeeeoYp1 0, N> e, K+, such that No, - x,,

NYi > Uy 0 < Ajs My <o i=1,...,p-1, and N/K > D. Then
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where p(x) is the density of p-1 independent Poisson random
variables with means A],...,Ap_]. Combining (A.30) and (A.32)

gives the desired result.



