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ABSTRACT. This paper deals with the problem of finding nearly
D-optimal designs for multivariate quadratic regression on a cube
which take as few observations as possible and still allow estimation
of all parameters. It is shown that among the class of all such

. designs taking as many observations as possible on the corners of

the cube there is one which is asymptotically efficient as the dimen-
sion of the cube increases. Methods for constructing designs in

this class, using balanced arrays, are given. It is shown that the
designs so constructed for dimensions < 6 compare well with exist-
ing computer generated designs, and in dimensions 5 and 6 are better

than those in the literature prior to 1978.
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1. INTRODUCTION. Let I = [-1,+1] and let Ik be the k-fold Cartesian
product of the closed interval I. Suppose on the basis of n obervations
x(m) = (x1(m),x2(m),...,xk(m))'EI k (primes on vectors and matrices
denote transposes), where m = 1,2,...,n , we wish to fit by least

squares a second order model

k

(1.1)  y(x(m) = b, + 1zlbixi(m) + 1<i§j;kbijx1(m)xj(m)

m o M= 1,....n

k 2
+ 121biixi(m) + e
Here the b's are unknown real-valued parameters that we wish to estimate
and the {em} are uncorrelated random variables with mean 0 and finite
variance o2.

= (k+1)(k+2)

Let q /2 . For x € Ik define

= 2 2\
(1.2) f(x) = (1’X1""’Xk’X1X2’x1X3""’xk—lxk’xl""’xk)
and let b be the corresponding gx1 column vector so that

(1.3) y(x(m)) = b'f(x(m)) + e » m=1,2,...,n

m
Let X be the gxn matrix whose m-th column is f(x(m)). Let Y

be the nxl column vector whose m-th entry is y(x(m)). If XX* is non-

singular, which implies n > q, the unique best Tinear unbiased estima-

tor (B.L.U.E.) b of b is
(1.4) b= (xxt) Lxy

which has covariance matrix

(1.5) cov(b) = o2(xx")~}

Let ¢ be the prbbab%1ity'measuré on ¥ defined by



(1.6) £(x) = (number of x(m) which equal x)/n

Then we can write
(1.7) XX' = nf, F(x)f(x)"dz(x)
I
where the integral is the 1ebesgue integral with respect to £. Define

(1.8) M(£) f, x)f(x)'deg(x) = XX'/n.

Notice M(g) is a gxq matrix. £ is called the design measure or the
design and M(g) is called the information matrix (per unit variance)

of the design £. Since the left hand side of (1.8) makes sense for any

k, we take it to be the definition of M(g)

when ¢ is an arbitrary probability measure on Ik.

probability measure £ on I

A design ¢ which has the form of equation (1.6) for some integer
n>0 is called an n-exact design for sample size n. Otherwise £ is call-
ed an approximate design. An n-exact desighncan actually be imp]ement—
ed in practice by taking ng(x) observations at x € Ik . Notice for
all but a finite number of x, ng(x) is 0. An approximate design cannot
be implemented in practice, only approximated closely by some n-exact
design for large n.

One rationale for choosing a design is to make the covariance
matrix of the B.L.U.E.s E_as "small" as possible. Recall
o2

(1.9) cov(b) = o2(xx*)"L = oo 1(g )/n

when we use an n-exact design gn. There are numerous ways of defin-
ing a measure of smallness for the matrix cov(é). The one we shall use
is called the D-criterion, namely to examine detM'l(gn). We seek to
minimize detM'l(gn), or equivalently, maximizé detM(gn). A design

which does this is called D-optimum. For a brief discussion of the



rationale behind the choice of the D-criterion in the setting of second
order regression as examined here, see Box and Draper (1974).

If we restrict ourselves to using only exact designs, finding a
D-optimum design may be difficult due to the discrete nature of exact
designs. Finding D-optimum designs over the set of both approximate
and exact designs is often easier owing to the continuous nature of
approximate designs. Techniques such as calculus can then be employed
to yield D-optimal approximate designs in many cases. Furthermore
a "reasonably" efficient n-exact design can often be obtained from a
D-optimum approximate design ¢ for large n. For each x we approximate
¥(x) by a rational number j(x)/n, j(x) an integer between 0 and n,
and define g(x) = j(x)/n. The j(x) must sum to n for ¢ to be a
probability measure.

Define
(1.10) =(k) = {all designs £ on Ik such that det M(g) # 0}
(1.11) =(k,n) = {€€ & (k); & is n exact}

The condition det M(g) # 0 is equivalent to requiring that b be
estimable for the design €. In general one seeks a D-optimum design

over E(k,n) (i.e. a design E,€E (k,n) such that

det M(go) = sup : d§t M(¢)
g€ E(k,n

or since the calculations are usually intractable, a D-optimum design
over (k). Since Ik is compact, a D-optimum design (not necessarily
unique) will exist. '

Using this idea, Farrell, Kiefer, and Walbran (1965) have found

D-optimal approximate designs over the class (k) for second order



regression as in (1.1). The number of points in the support of their

319k2-10k+48) /24

designs is shown to be greater than or equal to (k+1)(k
which is on the order of q2/6. These designs give rise to reasonably
efficient n-exact designs for n > q2/6, but are hard to implement

as n-exact designs for n near q.

In general, exactly what the minimal number of points needed to
support a D-optima] design over £(k), is unknown. Pesotchinsky
(1975) has studied this problem for small k (k < 7) and has found
approximate designs which are D-optimum over =(k). These do not
necessarily give rise to reasonably efficient n-exact designs for n
near q, though.

A minimal point design &, is one whose support contains the
minimal number of points such that M(g) is nonsingular (det M(g) # 0).
In our case this number is q. It is easy to show that the D-optimal
design over the set of all mfnima] point designs puts equal mass
in each of the q points on its support and hence is g-exact. Such a
design is also called a saturated design. It is therefore sufficient
to restrict attention to g-exact (saturated) designs if we seek
a D-optimum minimal point design. If the number of observations jn
an experiment is limited for some reason (e;g. cost, time, space)
minimal point or nearly minimal point exact designs may be of interest.
It is the purpose of this paper to find designs which are Qear]y

D-optimum over the class of all g-exact designs, £ (k,q)

If £ is a given class of designs and & is some given design,

we define the D-efficiency of £ with respect to = to be



(1.12) oy (5g>3) = (det Mlzy) / sup det M(£)) !/
£E€E

for our setting of second order regression. For a more general
definition and a discussion of why this gives the correct notion of
efficiency, see Atwood (1969).

In general 1f is not known what designs are D-optimum over the
class £(k,q) or even what are efficient saturated designs with respect
to. (k,q) for second order regression on ¥, Recent research on the
subject has dealt with constructing designs which appear good but
without any general optimality results. Some, such as Mitchell and
Bayne (1976) (using their Detmax computer search on 3K lattice points,
which are all the points in Ik whose coordinates are +1,-1, or 0)
and Dubova and Federov (1972) (a computer search not restricted to
lattice points) have used large amounts of computer time to find what
appear to be good designs for k < 5. For k > 5, searches require too
much computer time to be feasible. Others, such as Hoke (1974) (on
lattice points), Rechtschaffner (1967) (also on lattice points), and
Box and Draper (1974) (not restricted to lattice points) have proposed
designs using clever methods of construction. Hoke's results are
only for some special values of k. Rechtschaffner and Box and
Draper propose designs for general k, but it can be shown that their
results have an asymptotic D-efficiency of 0 with respect to =(k,q)
as Kow ,

In section 2 we shall exhibit a finite class of saturated designs
on the 3k lattice, for each k, such that the best designs in these
classes have an asymptotic D-efficiency of 1 with respect to =(k,q).

The problem of constructing these designs will be examined in section



3 and results for k = 2,3,4,5, and 6 will be compared with the results

of the studies mentioned above.

2. EFFICIENCY RESULTS. Suppose £ is an n-exact design. We shall:
write X as X(g) to indicate the dependence on £. Notice if £ €z(k,q)

then n=q and X(£) is a square matrix.

Let g€ =(k,q). Since M(£) = X(£)X*(£)/q we have

2

(2.1) det M(g) = (1/q)7 detX()

Our objective is to determine £ so as to make det M(g) Targe, or
equivalently, to make detZX(g) large. To do this we shall partition
X(g) in a convenient manner and then consider a class of designs
which enables us to calculate det X(g) in terms of the partition.
This technique will allow us to construct designs which are asymptotically
D-efficient.

Partition X(¢) so that

() _ o Yple) v,

(2.2) X(e) =
Z,(¢) Yor(€)  Y,5(2)

where Z, () s (a-k)xa , Z, (&) is kxa, ¥;;(g) is (a-k)x(a-k), Y, (¢)
is (qg-k)xk, Y21(£) is kx(q-k), and Y22(5) is kxk.

Let {-1, + 1}k denote the k-fold Cartesian product of the two
point set {-1, + 1} and let {0, 1}k denote the k-fold Cartesian pro-

duct of the two point set {0, 1}.



Define

(2.3) y(k) = {y€ =(k,q) 3 g-k points in the support of
p are in {-1, + l}k and k points in the support of

p are in {0, 1}k with at least one coordinate being 0}

The D-optimum design in v(k) will be shown to have an asymptotic

D-efficiency of 1 with respect to z (k,q) as ks,

It should be mentioned that the designs of Rechtschaffner (1967)
are of this form, although he does not choose the best designs on
¥(k) for k > 4 but rather an asymptotically inefficient sequence of
designs.

For ye v (k) we may assume its support set is so ordered that the
first g-k points are in {-1, + l}k and the last k points are in
{0,1}k with at least one coordinate being 0 as the ordering of the
support set does not change dét M(y). We shall call this standard form

Suppose y€ ¥(k) is in standard form.. NOticenY21(¢) = J i Where

q-ky
g, denotes: the-mxn-matrix-all of-whose entries—are~+1. If we sub-
tract the first row of X{v) (a row of +Is) from the last k rows we

eliminate YZJ(w) and hence

(2.4) det X(¢) = det (Yll(W)) det (Yzz(w) = Jk k)'

Notice that Yll(w) depends only on the first g-k points in the support
of y (the points from {-1, + l}k) and Yzz(w) depends only on the last
k points in the support of v ( the points in {0,1}k with at Teast one
coordinate being 0), so that these two collections of points can be

chosen independently to maximize det 2(_Y”(E-)) and det 2(Yzz(w) - Jk) .

and thus det 2X(w).



These observations plus the lemmas below are what will yield

the desired efficiency result.

LEMMA 2.1. Suppose M = (é) is a partitioned matrix where M is nxn,
A is (n-m)xn, B is mxn, and m < n. Then

2 2

(2.5) det M < ()72 det 2ax det Zpx

where A* is the (n-m)x(n-m) submatrix of A having largest absolute

value of its determinant and B* is the mxm submatrix of B having

largest absolute value of its determinant.

PROOF. By the Theorem of Corresponding Minors (see Householder

(1964 )) we have
2

An—m)

) det 2 (B )

(2.6) det AA' = § det

det BB'

2 . .
where ) det (A,_;) is over all (n-m)x(n-m) submatrices A p Of
A and ) det 2(Bm) is over all mxm submatrices B, of B. Then we

have

det 2M = det MM"

det (AA‘) det (BB')

(} det 2 ) (1 det (B ))
< (D) det A*)(( ) det %B*)
= (M2 det 2a* det 23* . O

|A

LEMMA 2.2. Suppose 91’92""’9N are N real valued affine Tinear func-

tions on Rk.

Let a and b be real numbers and suppose for j=1,...,N,
i=1,...,k that a < x;(J) <b. Let P be the NxN matrix whose r,jth
entry is gr(xT(j),.,.,xk(j)). Then | det P | can be maximized over
all possible values of the xi(j) by restricting the xi(j) to be

a or b.



PROOF. This Temma follows from the linearity of det P in each

~__Of its entries (expand det P by minors of the appropriate colum)

and from the multilinearity of the 9y O

We can now prove an asymptotic efficiency result using the above

discussion and lemmas.

THEOREM 2.1. For each k > 1 let wﬁ €y (k) be such that det M(¢§)=

sup det M(wk) (such a wﬁ exists since for each k, v (k) is a finite
v, € (k)

set). Then we have

(2.7) 1> e » 2(kia)) = (1/(HH)YA

[11

and hence Tim ekﬁpﬁ, (k,q)) = 1.

k-0

PROOF. Let g€ =(k,q). Using equations (2.1) and (2.2) if we subtract
the first row of Z}(g),(a row of +1s) from all the rows of Zz(g) we

have

ofZ1 (€)

q =
q ' det M(g) = det
Zz (E) - Jk,

q
Applying Lemma 2.T.gives
(2.8) o¥ det M(e) < ()7 det 21(z,(e))*1 det 21(z,(c) - I, g

where (Zl(g))* is the (g-k)x(qg-k) submatrix of Zl(g) having largest
absolute value of its determinant and (Zz(g) - Jk q)* is the kxk

submatrix of Zz(g) - Jk having largest absolute value of its deter-

q
minant.

If one considers the form of the entries of (Zl(g))* (the entries
are multilinear functions of the xi(j)), it follows from Lemma 2.2

that there is a y'€ v(k), with v' in standard form, such that



10

i) = sup  det 2(zy(e))

(2.9) det
g€ 2(k,q)

where Yll(w‘) is as in equation (2.2).
Ifwe let u(3) = x2(3) - 1, i = 1,200,k = 1oueess

one sees that the entries of (Zz(g) - Jk q)* are multilinear functions

of the ui(j). The ui(j) can take on any values between -1 and 0 and
hence sup det2(
g€z (k,q)

ui(j) such that ui(j) =0 or ui(j) = -1 by Lemma 2.2. This means that

Zz(g) - Jk q)* occurs for some set of values of the

the Xi(j) must be +1,0, or -1 for all i,j and it suffices to just consider

the xi(j) to be either +1 or 0. Hence there is a y "€ ¥(k) , with g" in

\.,.:
in standard form, such that

(2.10) det 2[Y (w") -3, 1=sup det 2(Z (¢) =g, )*

Recall that Y1](w') depends only on the first gq-k points in fhe
support of w"and Yzz(w") depends only on the last k paints in the
support of v". Let y be thét element of ¥(k) whose first q-k support
points are the same.as those df p' and whose last k support points are
the same as those of ¢ ". Then Y]1(w) = Y]](w') and Yzz(w) = Yzz(w").
Using equations (2.8), (2.9), and (2.10) we have for any gOEE(k,q)‘

2

(2.11) o det M(g)) < ()% det 21(2y(e)))*1 det 2L(z,(c,) - 9, )%

k,q

q
k
< (E)Z[sup det 2[21(5)]] [sup detzlzz(g)-d

1]
£€ 5(k,q) g€ 2(k,q) K>

= (972 get 2Yll(lp) det (Y, (y) - Jeq)

By equations (2.1) and (2.4) we have

2 2
(2.12)  det Yy (v) det “(Y,,(y) - Mg = q¥ det M(y).
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Combining equations (2.11) and 2.12) we have

(2.13) det M(z) < (1)° det M(y)

for any gOEE(k,q). If wE € ¥(k) is as defined in the statement of the

Theorem, equation (2.13) implies

2 Y
(2.14) det M(g)) < () det M(yp) = () ngw(k)M(w)

for any ¢ € =(k,q). Equation (2.7) now follows from (2.14) and the
0

definition (1.12) of ek(¢*, Z(k,q)). One can show 1im ek(wﬁ, g(k,q)) =1
k-0 ~

from (2.7) and Stirling's approximation. [

The lower bound on ek(wﬁ, g(k,q)) is crude. One can show that
(1/(2)2)1/q is about .481 for k = 1, takes on its minimum value of
.382 at k =4, is .454 at k = 10, .827 at k = 100, .972 at k = 1000.

It increases slowly for k > 4. 1In the next section we shall see these

bounds are not sharp.

3. CONSTRUCTION OF DESIGNS AND NUMERICAL RESULTS. From equations
(2.1) and {2.4) we have that for any y€ ¥(k) in standard form

(3.1)  det M(y) = (1/9)% det 2Yll(w) det 2(Y22(w) = k)

We recall that Y1](w) depends only on the first g-k points in the support
of ¢ (the points from {-1, + 1}k) and that Y22(¢) depends only on :the
last k points in the support of vy (the points from'{0,1}k with at least

one coordinate being 0). The two collections of points can be chosen

separately so as to maximize first det 2Y11(¢), then det 2(Y22(1p) -Jd

k’k):
and hence det M(yp). We utilize this idea to construct D-optimal and
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nearly D-optimal designs in ¥(k) for k = 2,3,4,5, and 6. The techniques
used in these cases can be applied to other values of k to yield what

appear to be good designs in ¥(k).

First, let us outline how to choose the last k points in the
support of y so as to maximize det 2(Yzz(w) - Jk k). Recalling the form: -
of Yzz(w) - Jy k.alnd using some elementary row operations and properties

of the determinant we obtain:

X§(q-k+1) -1.-- xg(q) - 1

(3.2) det?(Ypp(9)=3 )= det?

Xﬁ(q—k+1) -1 Xﬁ(q) -1

[ 1 1 .. 1 7]

1 af(a-ke1)-1 -+« - 2x3(q) - 1

= (1722K) get?

1 2xi(qke1)-1 -+ - - 2x2(q) - 1

Since y € v(k) the xi(j), 1<i<k,g-ktl <j<aq, can take on the values
0 and 1 arbitrarily. Hence the Tast matrix in equation (3.2) is a
(k+1)x(k+1) matrix whose first row and column consists of +1s, and whose
remaining entries are arbitrary +1s and -1s. The problem of maximizing
the square of the determinant of such a matrix has been studies in detail
for many values of k. See, for example, Ehlich (1964a), Ehlich (1964b),
Yang (1966), Yang (1968), and sections 17.4 and 17.6 of Raghavarao (1971).
When k+1=0 (mod 4), the matrix which maximizes the square of the
determinant on the last line of equation (3.2) is commonly called a

Hadamard matrix in standard form.
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Once the matrix which maximizes the square of the determinant
in the last line of equation (3.2) has been found, the x;(j), 1<_1i <k
and g-k+1 < j < q, can be determined. The so]utibns will be either
0 or +1, and these solutions determine the last k points in the support
of the D-optimal design in ¥ (k)-

The above provides a method for choosing the last k points in
the support of a good design in ¥(k). We now outline a method for
choosing the first g-k points in the support of a good design in v(k)-
Our object (see equation (3.1)) is to make det 2Yll(w) as large as
possible. The first g-k points in the support of a design we (k)

k

must be elements of {-1, +1}". If ¢y is in standard form, then the

5™ column of Y,;(¥), 1 <3 < g-k, Tooks like

B.3) (Loxg (350 5% (3% (3)x5(3) 5% (3)x5(3) 5. - % 1 (3)%, (3))

The problem of maximizing the square of the determinant of a (g-k)x(q-k)

matrix whose jth

column is of the form given in equation (3.3) and
where the xi(j) are restricted to be +1, is in general unsolved.
Srivastava and Chopra (1971a), Srivastava and Chopra (1971b), and
Srivastava (1972) have studied this prob]embusing balanced arrays of
strength 4 on two symbols and have constructed matrices of the form
of Yll(w) which have large absolute value of their determinant, at
least for smaller values of k (k < 10). We next define balanced
arrays of strength 4 on two symbols and present some of the results

of Srivastava and Chopra.

Suppose T is a kxn (+1, -1) matrix. Such a matrix will

be called a balanced array of strength 4 on two symbols with index
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set m' = (mo,ml,mz,m3,m4) if évery 4xn submatrix Ty of T satisfies

the following: Tlet y be any one of the 16 possible 4x1 (+1,-1)

column vectors. Then y occurs as a column of TO m. times, where i

is the number of +1s in y. This holds for all possible choices of y.
Suppose T is a kx(q-k) matrix and is a balanced array of strength

4 on two symbols with index set m' = (mo,ml,mz,m3,m4). Let

(3.5) u; = mg + 4m1 + 6m, + 4my + m,
Up = (m4 - mO) + 2(m3 - ml)
Ug =My - 2m2 + My
Uy = (m4 - mO) - 2(m3 - ml)
Ug = my - 4m1 + 6m2 - 4m3 + my
Also 1let
(3.6) 5= ud - k(k-1)2ud/2 + (3k-5)uluy + (k-2) (k-3)uluy/2
* (k-1)(3k-8)uu5/2 + (k=1)(k-2) (k-3)u uzug/2
- (3k-2)ugub - (k=1)(k-2)u u5/2 - 2{k-1) (k=2)uqu,u,
+ 2kujug - k(k-2) (k-3)u5ug/2 + k(k-1)(k-2)u,uu,

¢ = (ugtig) [ug-(k=-3)ug + (k-4ug] = (k=2)(uymtiy)°

One can show, using the results of Srivastava and Chopra (1971a),

that if y€ ¥ (k) is in standard form and the first g-k points in the
support of ¢ are the columns of T,. then

2

(3.7) det “Y,(v) k-1

- oy k(k-3)/2

(16m2) .

Srivastava and Chopra have constructed kx{g-k) matrices T which

are balanced arrays for several values of k and with several different
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index sets. These are tabulated in Srivastava and Chopra (1971b)

and subsequent papers by these authors. Using equations (3.5), (3.6),
and (3.7) and the tabulated balanced arrays of Srivastava and Chopra
we can, by trial and error for a given k, find the kx(qg-k) balanced
array that gives rise to the largest value of det 2Y11(¢), by testing
each of the possible index sets given in the tables. This maximizing
balanced array determines the first g-k points in the support of a
design yg€ v (kL as mentioned above equation (3.7). For k = 2,3, and
5 it is possible to show this is indeed the design Yo that maximizes
~det 2Yll(q)) over all y€ y(k). For other values of k this is unclear,
but for small values of k (k < 10) the designs produced from balanced
arrays in this manner appear good. For k > 10 few balanced arrays
have been constructed.

The techniques out]inéd above provide a method for choosing both
the first g-k points and the Tast k points in the support of a design
€ ¥ (k) , and thus determine y completely. These techniques have been
used for k =1,2,3,4,5,and 6 to construct optimal or near optimal
designs in ¥ (k) so as to provide numerical results for comparison
with known results in the literature. We now give the supports of
the designs constructed using the above method and the values of the
determinant of the information matrix of these designs.

k = 2: Support set is  {(1,1)',(1,-1)',(-1,1)',(-1,-1)',(1,0)',(0,1)"'}.

det M(y) = 5.49x10~°

k = 3: Support set is  {(1,1,1)',(1,1,-1)"',(1,-1,1)',(-1,1,1)",(1,-1,-1)"

(-1,1,-1)",(-1,-1,1)",(1,0,0)",(0,1,0)',(0,0,1) ' }.

det M(y) = 1.05x10™%
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k = 4: Support set is {(1,1,-1,-1)',(1,-1,1,-1)',(1,-1,-1,1)',
(—1,1,1,-1)',(-1,1,—1,1)',(—1,—1,1,1)',(1,1,1,—1)',(1,1,—1,1)',
(1,-1,1,1)',(—1,1,1,1)',(—1,—1,-1,-1)',(1,0,0,0)',(0,1,0,0)',
(0,0,1,0)',(0,0,0,1)'}.

det M(yp) = 7.95x107

k = 5: Support set is {(1,1,1,1,1)",(1,1,1,-1,-1)",(1,1,-1,1,-1)",
(1,1,-1,-1,1)',(1,-1,1,1,-1) " ,(1,-1,1,-1,1) ', (1,-1,-1,1,1) ",
(-1,1,1,1,-1)",(-1,1,1,-1,1) " ,(-1,1,-1,1,1) ', (-1,-1,1,1,1) ",
(1,-1,-1,-1,-1)",(-1,1,-1,-1,-1) " ,(-1,-1,1,-1,-1) ', (~1,-1,-1,1,-1) ",
(-1,-1,-1,-1,1)',(1,1,0,0,1)*,(1,1,0,1,0)",(0,0,0,1,1,)",
(0,1,1,0,0)',(1,0,1,0,0)'}

det M(y) = 7.89x1078

k =6: Support set is {(1,1,1,1,1,1)',(1,-1,-1,-1,-1,-1)",
(—1,1,-1,-1,—1,-1)',(-1,-1,1,-1,—1,-1)';(-1,-1,—1,1,-1,—1)',
(-1,-1,-1,-1,1,-1)",(-1,-1,-1,-1,-1,1)",(1,1,1,1,-1,-1) ",
(1,1,1,—1,1,-1)',(1,1,1,-1,-1,1)',(1,1,-1,1,1,-1)',(1,1,-1,1,-1,1)',

(1,1,-1,-1,1,1)",(1, -1,1,1,1,-1)',(1,-1,1,1,-1,1) " ,(1,-1,1,-1,1,1) ',

(1,-1,-1,1,1,1)",(-1,1,1,1,1,-1)",(-1,1,1,1,-1,1) ", (- 1,1,1,-1,1,1)",

(-1,1,-1,1,1,1) " ,(-1,-1,1,1,1,1)" »(1,0,1,0,0,0)',(0,0,1,1,1,1)",
(0,1,1,0,0,1)',(1,1,0,1,0,1)',(1,1,0,0,1,1)',(0,1,1,1,1,0)' }
det M(y) = 1.53x10710

For purposes of comparison with other exact designs ¢ in the
literature we Tist values of (det M(2))!/9 for some of the designs in

k

the literature. Here * denotes designs on the 3" Tattice.



17

[det M(g)]1/9

New Box and Mitchell Rechtschaffner* Dubova
Designs* Draper and Bayne* and Federov
k q (1978) (1974) (1976) (1967) (1972)
2 6 .420 423 .420 .420 .423
3 10 .400 .423 .410 .400 .423
4 15 .392 .374 425 .392 432
5 21 .459 .317 .456 .450 No Design
6 28 | .446 .268 No Design .428 No Design

The new designs presented here compare favorably with other minima]
point designs in the literature for small k. In fact for k = 5 and
6 the new designs are better than any proposed previously. It is im-
portant to emphasize that the construction of good designs in ¥(k)
using the techniques presented above, is relatively easy. The computer
searches of Mitchell and Bayne or of Dubova and Federov require large
amounts of computer time and cannot be carried out for k > 5. The
constructions of Box and Draper or Rechtschaffner are fine for small

k but can be shown to have an asymptotic D-efficiency of 0 with respect

to the class of all minimal point designs. For these reasons, the
new designs and construction techniques appear to be an improvement

over results presently in the literature.

4. REMARKS. Although we have only discussed the problem of multi-
variate second order regression, the same ideas can be applied to the
problem of finding D-optimal saturated designs for multivariate

polynomial regression of higher orders. Lemmas 2.1 and 2.2 can be
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used, after performing some row and column operations on the design
matrix, to show that asymptotically D-efficient designs can be found
among the class of all non-singular saturated designs which take as
many observations as possible from {-1,+1}k. The problem of finding
the best designs in this class for various values of k is a difficult

combinatorial problem, though.
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