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INTRODUCTION

Historically, most problems of statistical inference have
been formulated as those of estimation or testing of hypotheses.
In many practical situations the experimenter is faced with the
problem of comparing several populations. Suppose we have
k(k > 2) populations MysesesTy whose qualities are characterized by
real-valued parameters 815305 respectiveTy. The classical
approach to this problem is that of testing the Hypothesis of
homogeneity, i.e., HO: 6] =...= ). But in many situations, the
goal of the experimenter is not just to decide whether all the
parameters are equal or not. One of the more frequently occurring
situations for which this is so arises when the experimenter
wishes to find a subset of {w],...,ﬂk} which, in some sense, 1is
better than the rest of the given populations. Mosteller (1948),
Paulson (1949) and Bahadur (1950) were among the first research
workers to recognize the inadequacy of the c]assfca] tests of
homogeneity and to formulate the problem as multiple decision
problems known as ranking and selection problems.

Two formulations for selection and ranking problems have

been conéidered in the classical framework. To fix ideas suppose
s is better than ™S if 6, > ej. Consider the problem of selecting

;
the 'best' population, i.e., the population associated with



max 6.. The first formulation is called the 'indifference zone'
T<i<k

approach of Bechhofer (1954); the experimenter is allowed to select
only one population which is the best one with a preassigned minimum
probability P*, whenever the unknown parameters lie outside a zone
of indifference. Contributions using this approéch in the decision-
theoretic framework have been made by Bahadur and Goodman (1952),
Lehmann (1966), Eaton (1967) and Alam (1973) among others. The
second formulation due to Gupta (1956, 1965) is known as the 'subset
selection' approach in which the experimenter selects a subset of
random size depending on the observed data such that it cuntains the
best population with at least probability P*. Decision-theoretic
contributions in this framework have been made by Studden (1967),
Deely and Gupta (1968), Berger (1977), Chernoff and Yahav (1977),
Bickel and Yahav (1977), Goel and rubin (1977), Hsu (1977) and

Gupta and Hsu (1978). Especially the last five preceding papers
deal with Bayes selection rules. An up-to-date and comprehensive
bibliography for both these approaches can be found in Gupta and
Panchapakesan (1979). There also have been attempts in the lTiterature
to modify these basic formulations. In one such modification,

Fabian (1962) called s good if 6, > max 6.-A and bad, otherwise,
T<j<k

where the positive constant A is usually specified by the experi-
menter. The goal in this framework is to select the good populations
and screen out the bad populations. Contributions along these lines

have also been made by Fabian (1962), Desu (1970), Santner (1976),

Panchapakesan and Santner (1977) and Brostrom (1978). Optimality



of some of these rules has been studied by Bjgrnstad (1978).

A slightly different situation arises when, in addition to the
k treatment populations, a control population ) is considered and
the goal is to partition the k treatment populations with regard
to 0 Following the initial investigation of Paulson (1952),
Dunnett (1955), Gupta and Sobel (1958), Bhattacharyya (1956,1958),
Lehmann (1961), Tong (1969), Randles and Hollander (1971) and
Miescke (1979), among others, have studied this problem in several
different formulations.

The present thesis consists of investigations of multiple
decision problems mentioned in the preceding two paragraphs, and
also some related topics. In Chapter 1, the problem of selecting
good populations is studied from a decision-theoretic Bayesian
point of view. We consider a loss function which seems natural
for this problem. A theorem is proved to help find the Bayes rule
with respect to a permutationally symmetric prior. Some properties
of the Bayes rule are derived when an iid prior is assumed. Then to
get insight on the performance of the Bayes rule the loss is assumed
to be Cq if we select a bad population and Cy if we exclude a good
population. The rest of Chapter 1 pertains to further simplification
and approximation of the Bayes rules since these are often ana]ytica11y
and computationally intractable. Some special cases, namely,
normal and gamma distributions are considered with specific prior
distributions. Especially, it is shown that, for the normal
populations, classical rules of the type proposed by Gupta (1956)

and studied by Desu (1970) in this framework turn out to be close



approximations to the Bayes rules. In this connection, Monte Carlo
studies are also performed to see how well the classical rules
proposed by Seal (1955) and by Gupta (1956) approximate the Bayes
rules in terms of overall risks wrt exchangeable priors. The
results of this study indicate that the rules of the type proposed
by Gupta perform almost as well as the Bayes ruies throughout the
cases studied. Similar results have been found by Chernoff and
Yahav (1977) and Gupta and Hsu (1978) under different frameworks.
Since Bayes rules typically require numerical integrations tQ
implement, this makes them usually unsuitable for practic.t use.
Therefore, it was deemed useful to provide tables which give the
'best' classical rules with performances that are sufficiently close
to those of the Bayes rules. The tables also provide the average
number of bad populations selected that of good ones excluded and
the proportion of times that the Bayes rules coincide with these
classical rules.

Chapter 2 deals with the problem of partitioning k treatment
populations with regard to a control population. The goal is to
partition the k treatment populations into 'better’ popu]ations,b
‘worse' populations or 'close' populations in an optimal way.

Loss function similar to the one in Bhattacharyya (1958) is assumed,
and r-minimax rules and minimax rules are derived for the known
control case when the parameters of interest are location parameters.

Normal populations with unknown means and known variances are studied



as a special example. When the parameter of the control population
is unknown, both P—minimak rules and minimax rules (in a certain
class of decision rules) are derivgd for the location parameter
populations. Normal populations with unknown means and known
variances, and normal populations with known means and unknown
variances are provided as examples. The results regarding the
minimax rules generalize a result of Bhattacharyya (1958) for the
normal populations with a known control population. In the last
section, comparisons are made between the T-minimax rules and the
corresponding Bayes rules wrt independent normal priors for the
case of normal populations with a common known variance. Tables
are provided which shed Tight on the relative performance of these
rules.

Chapter 3 deals with a selection problem in reliability theory
and another for the selection of scale parameters. The first part
deals with the problem of selecting components (units) for
parallel and series systems from k populations with exponentially
distributed lifelength times. Loss functions are assumed which
are inversely.proportional to the expected lifelength of the system
corresponding to a possible choice of the units of the system.

A similar problem has been studied by Brostrom (1977) for the
1-out-of-2 system when there are only two populations. An optimal
rule is given for.the series system, and the Bayes rule wrt natural
conjugate prior is derived for the T-out-of-2 system when we have

k populations. Tables to implement the Bayes rule are provided at

the end of the chapter. The second part of Chapter 3 deals with the



investigation of the selection procedures based on robust estimators
of measures of dispersion for selecting the populations in terms of
scale parameters. Several selection procedures for this problem have
been proposed by many researchers, most of them being extensions of
k-sample tests. The approach here differs from these in that
estimators of population dispersions are directly employed in
constructing the selection procedures. We study the problem of
selecting t populations associated with the t smallest scale
parameters under the indifference-zone approaéh and the problem

of selecting a subset containing the population associate. with

the smallest scale parameter. Large sample solutions for both
problems are derived and asymptotic relative efficiencies

(following the definitions of Lehmann (1963) and McDonald (1969))

of the proposed procedures are stud’~d. These turn out to be same
as those of the corresponding estimators in Bickel and Lehmann

(1976).



CHAPTER 1
SELECTION OF GOOD POPULATIONS

1.1 Introduction

Suppose we have k populations LIPRREL (k > 2) from which we
~ wish to select a subset which contains 'good' populations, where the
quality of the i-th population is characterized by the unknown

parameter 6, A population m is said to be

good if 8, Z-e[k]_A’

(1.1.1)
bad if 6; < e[k]'A

where 8 = max 6. and A is a specified positive constant.
[k] ]_ij_ik

Clearly we wish to select a subset containing as many good populations
as possible while excluding the bad ones. Therefore, any reasonable
Toss function should have two loss components, i.e., one incurred by
excluding the good populations and another due to including the bad
ones. Selection problems for the related Qoa]s have been considered
in the literature by Fabian (1962), Desu (1970), Carroll, Gupta and
Huang (1975), Santner (1976), Panchapakesan and Santner (1977),
Brostrém (1978) and Bjgrnstad (1978). 1In all these papers the

selection rules are chosen to control one component of the loss, and



then the other operating characteristics of these rules are studied.
Recently Miescke (1978) has studied this problem from Bayesian point
of view. We will treat this problem in the Bayesian framework
considering two loss components simultaneously.

In Section 1.2 some definitions and notations are introduced, and
a decision-theoretic formulation of the problem is given. We describe
Joss functions which seem natural in this framework, and, for these loss
functions, a theorem is proved to find the Bayes rule wrt a permutation-
ally symmetric prior. Some properties of Bayes rules are also given
when an iid prior is assumed.

In Section 1.3 it is assumed that the loss is Cq if a bad
population is selected and Cy if a good population is excluded; the
Bayes rule wrt an exchangeable prior is derived. For the same loss
function some results about the mirimax rules are obtained for k = 2.
In Section 1.4 a simplification of the Bayes rule is given by assuming
a particular form of the posterior distribution, and it is shown that,
in some sense, some rules studied in the past are natural approxima-
tions to the Bayes rule.

Normal and gamma populations are studied as special examples
in Section 1.5. For the normal populations the rules of the type
proposed by Gupta (1956) are shown to be asymptotically equivalent
to the Bayes rule (as the sample size approaches infinity), and also
it is shown that these are also extended Bayes rules. Further simpli-

fication of the Bayes rule for gamma populations is given.



Section 1.6 consists of Monte Car]o'comparisons of the perfor-
mances of the Bayes rule, the rules of the type proposed by Gupta
(1956), and those proposed by Seal (1955) when the prior is assumed to
be a permutationally symmetric multivariate normal distribution. The
results of the Monte Carlo study indicate that the rules of the type
proposed by Gupta perform almost as well as the Bayes rule throughout
the cases studied, while those proposed by Seal perform poorly in

most cases.
1.2 Formulation of the problem

Let X;,...,X_ denote the random variables representing the k

1 k
populations Tysee Mo respectively. Let Sk be the symmetric group
of all permutations v: {1,2,...,k} >~ {1,2,...,k}, and Wij denote

an element in S, which interchanges 1 and j leaving all other elements

k

of {1,2,...,k} fixed. For x € Rk and ¥ € Sk define Xy by (§w)1 =

Xw'1i'

From now on it is assumed that

(i) given 8 = (e],...,ek) € @k, the random variables X]""’Xk

are independently distributed with X having p.d.f. f(-,ei) and
(ii) f(x,6) has the monotone likelihood ratio (MLR) property in
x and 6.

The action space ¢ consists of all possible non-empty subsets
of {1,...,k}. The action a € g 1is interpreted as the action of

selecting the populations {"1’ i ¢ a} which are asserted to be the

good populations. We will restrict our attention to loss functions
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which are invariant under Sk and monotone in the sense of Eaton (1967),

that is, for any y € Sk’ and a € G,

L(e,,¥a) = L(8,a) and
(1.2.1)

0 L(Q,Wija) for o € @k, 0, z_ej, ic€aand j ¢ a

—
—
[av)

-
o

~

l/\

where va denotes the image of a under ¥ € Sk‘ Note that the problem

is invariant under Sk in the above framework, and therefore it seems -
reasonable to consider a prior t invariant under Sk. In the remainder

of this chapter we will consider only such a permutational”, symmetric

prior.

Since Bayes rules are of main interest, attention can be restricted
to the non-randomized decision rules §: Rk > a. From this point for
sake of simplicity we will use & also for the action 6(5) taken by the
rule § whenever no confusion arises. Let § denote the class of all
non-randomized decision rules. Let rr(é,g) denote the posterior risk
of a decision rule § €8, given x, when the prior is given by 7. Let
X111 f-x[2] 5“'5-X[k] denote the ordered observations where the ties
for a Tabel are broken at random, and () and e(i) denote the w and o
associated with X[i]’ i=1,...,k. For j=1,...,k, Tet aj denote the
decision rule which chooses the subset associated with the j largest
observations with probdbi]ity one.

By partitioning the action space G into k components Qj’
j=1,...,k, where uj consists of all the subsets of sfze j, Goel and
Rubin (1977) proved the following result which seems useful in the

selection problem.
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Lemma 1.2.1. If the prior distribution ¢ of g is permutationally
symmetric on @k, then the Bayes rule s* for the loss function
satsifying (1.2.1) satisfies

r (6*,x) = Min r (5.,x).

When our goal is to select a subset containing the 'best'
population, i.e., the population associated with e[k], most of the
Toss functions considered in the literature contain two Toss compo-
hents; the optimal solution is provided by the rule which selects
all the populations if we were to study the problem wrt one of the two
loss components only, and the optimal solution is to select the
population (k) associated with x[k] if the other component only
is considered. In our formulation the experimenter is willing to
accept all the populations which are reasonably close to the 'best'
while screening out all the bad ones. Therefore, it seems reasonable
that any Toss function should contain two components: the first one
depending only on the bad populations selected in the subset and the
second depending only on the good populations which are not selected
in the subset. Such a loss function reflects the loss due to
misclassification of good or bad populations. One such general loss

function can be written as follows: For g € @k and a € G,
L(g,a) = 1éa LB(ei-e[k]+A) + 1%aLG(ei'e[k]+A)’ (1.2.2)

where LB(LG) is a non-increasing (non-decreasing) function such that

LB(y) = 0 for y > 0 and LG(y) =0 for y < 0. By this loss function
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we mean that there is no loss for the correct judgment, the loss
LB(ei-e[k]+A) incurred by selecting a bad population w, is non-decreas-
ing in 05> the parameter associated with - Similar arguments hold
for the second component LG(-) of the loss. It is easy to see that the
loss function of the type (1.2.2) satisfies (1.2.1). With this loss

function, we have the following result.

Lemma 1.2.2. Assume the prior distribution, r(g), of ¢ is permutation-
ally symmetric on @k and the loss function is given by (1.2.2). Then

the following relation holds.
> 0, 1= 2,...,k-1, (1.2.3)
where D, = rr(61+1’§) - rT(di,g) for i = 1,...,k-1.

Proof. It follows from (1.2.2) that Di is given by

©
|

= E[LB(e(k_i)'e[k]+A)I§] - E[LG(e(k_i)‘e[k]+A)|§]
= E[1(9<k_i)'6[k]+A)I§] where 2(') = LB(') - LG(')-

Therefore, Di"D1-1 can be written as

o LB o) () o e
J

f(x,6)dz(e)

= n(f)é][£(9<k_i)'e[k]+A)'l(6(k_i+])'6(k)+A)][f(§ae)‘

f(x,8,)ldt(e)
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_ _k _ . k

n =2 x

- K - .
8, = {6 €0 [e(k_ﬂ > 81 f(x,8) = 1 f(x;,0,), n(x) is a

1
horma1izing factor and By is obtained from 6 by interchanging the

.i

corponents e(k_i) and e(k—i+1)' The second equality follows from
the symmetry of t and the Tast inequality follows from the MLR
property of f(x,e}“and the monotonicity of 2(-).

From Lemma 1.2.1 and Lemma 1.2.2, we derive a Bayes rule for a

loss function given by (1.2.2).

Theorem 1.2.1. Assume the loss function is given by (1.2.2). Then

the Bayes rule §* wrt a permutationally symmetric prior t is given by

§* = §x for i* = min{i: Di >0, 1=1,...,k-1}

where min ¢ is defined to be k.
Before we state some properties of the Bayes rule, we recall the

following definitions (see Nagel (1970) and Santner (1975).)

Definition 1.2.1. Let §(x,1) denote the individual probability of

including the population s in the selected subset §(x). Then a
selection rule & is called just if and only if §(x,i) < s(x',i)

whenever x, 5_x% and x, > x! for j # i.

J J

Definition 1.2.2. A selection rule § is said to be strongly monotone

if and only if, for any i = 1,...,k,

Ee[é(g,i)] is + 1in 0. when all other components of ¢ are fixed,

is + in ejv(j ¥ 1) when all other components of ¢ are -
fixed.
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Corollary 1.2.1. Assume that e],...,ek are, a priori, independently

identically distributed and the loss function is given by (1.2.2).

Then the Bayes rule é* in Theorem 1.2.1 is just and strongly monotone.

Proof. It follows from Theorem 1.2.1 that the Bayes rule §* selects

. if and only if x, = Xk] and/or jz(y)in(YIﬁ) < 0, where

1-f 1 G(zta-y|x;)dG(z|x;) ify <2
it ; ‘
Q; (y|x)= { } and G(-lxi) is
1 otherwise

the posterior cdf of 0.5 given x. Therefore, to show that &* is just,
it suffices to show that Qi(ylg) is stochastically smaller than
Qj(y!§') whenever X, §_x% and Xj 3_x3 for all j # 1, since #(-) is
non-increasing. This follows from the fact that G(-|x) > G(.|x")
if x < x'. Similarly, we can show *hat §* is strongly monotone using

a theorem in Barr and Rizvi (1966).

Remark 1.2.1. If a selection rule & is strongly monotone, then & is
monotone (see Santner (1975)), i.e. Ee[é(g,i)] Z_Ee[6(§,j)] if 85 > ej,

1.3 Loss function c, 1£al(_m’o)(61—6[k]+A)+c2 'é I[O,w)(ei'g[k]+A)
i¢a
Even though Theorem 1.2.1 describes a Bayes rule for the loss
function of the type (1.2.2), we need a more specific loss function
as well as more assumptions about the prior distribution of & to

specify the Bayes rule more explicit]y.’ Examples of the loss functions
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satisfying (1.2.2) might be given as follows.

LB(ei"e[k]+A) = CII(-w,O)(ei'e[k]+A)’ LG(ei'O[k]+A) = 110 ) (1.3.1)

(ei—e[k]+A),
LB(ei~e[k]+A) = (ei—e[k]+A)', LG(ei'e[k]+A) = (61-6[k]+A)+ (1.3.2)

where IA(y) is the usual indicator function, y 1is the negative part of
Y y+ is the positive part of y, cy > 0 and c, > 0.

From now on we will, unless otherwise mentioned, consider only the
Toss function given by (1.3.1) and assume that given W = W 01500050,
are iid random variables with a density and the distribution of W is
known. Such a prior distribution of 8 will be called exchangeable.
Note that we may assume that c1+c2 = 1 without loss of generality, and
S and ¢, can be interpreted as the relative weights of the losses due
to two different sources. It is easy to see that, given X = X and
W=w, ei‘s are, a posteriori, independently distributed and the
distribution of 0. depends on x only through Xy Let Gi(') = G(-[x[i],w)
and H(w|x) denote the posterior cdf of 6(1), given x and w, and the
conditional cdf of W given x, respectively. The bounds on Di in the

following Temma seem to be useful to simplify the Bayes rule.

Lemma 1.3.1. For i = 1,...,k-1, D,

i = C]'P(e(k—i) g_e[k]—A[§) satisfies

the following relations.

D, = cy-ff @ Gj(z+A)dG

dH
k-1 R

kei
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L}
|V

¢y - [[6 (z+a)dG, . (z)dH(w|x) = ¢y-uq (i),

k

I
| v

¢y - ffG;_1+](z+A)de_i(z)dH(w]§) = c]—uz(i) and (1.3.3)

¢ - J16 1 (zHa)6) (z4a)d6, _; (2)dH(u]x) = ¢ -vq (1),

]
[A

Proof. The‘first inequality follows from the fact that e[k] Z_e(k) and
the next inequalities follow from the fact that Gi(') Z.Gj(') for i < j.
Next, we state a theorem giving a simpler version of the Bayes

rule from (1.3.3) and Theorem 1.2.1.

Theorem 1.3.1. Assume the loss function is given by (1.3.1). Then

the Bayes rule §* wrt an exchangeable prior is given as follows. Let

u(i) = min{u](i), uz(i)} for i = 1,...,k-1, then

(ii) let i, = min{i: u(i) < €5 i=2,...,k-1} and jO =

max{j]c1 < v](j), j=],...,10—1},

* = e L s - .
then ¢ . where i min{m: D_ > 0, Jptl = m < ig)-

Corollary 1.3.1. For k = 2, the Bayes rule &* is given by

§; if f[62(2+A)dG](z)dH(w|§) < €

s

85 otherwise.

Remark 1.3.1. When the loss function is given by (1.3.2), it is easy

to see that D, can be written as D, = [f[1- 1 G.(z)]G (z)dzdH(w|x)-a,
1 1 J:{:k_.l J k-1 -

and results analogous to the above can be obtained in a similar way.
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In fact, recently Miescke (1978) has studied this problem with such
a loss function using a different approach.

At this point some comments about the case for k = 2 are in
order because of the special structure of the problem in this case.
As stated in Corollary 1.3.1, we can completely specify the Bayes rule
in this case. Furthermore, we can specify an essentially complete
class in this case provided we make the further assumption that
f(xi,ei) = f(xi—ei) with f(-) being the density wrt the Lebesgue

measure. The loss function given by (1.3.1) can be written as

follows.
L(g,a)
a=1{2} a-={1,2} a = {1}
e] - 62 < - A O C-l ]
-8 <8y - 8, < 8] 1-c 0 1-¢] (0 <cp <)
e] - e2 > A 1 c] 0

With this loss function the problem is invariant under the group

of translations as well as under Sk. Therefore, it seems reasonable
to considef rules invariant under both. Then the decision rule should
depend on x only through X1=Xos and our problem becomes a montone
multiple decision problem (see Ferguson (1967)) with X]—X2 having pdf,
say, q(-—(el—ez)), given ¢ = (e],ez). Note that q((x]-xz)-(e]—ez)) has
the MLR property 1in X=X, and 0176, (see Ibragimov (1956)). Hence
Theorem 6.1 of Ferguson (1967) in this case Teads to the following

result.



18

Theorem 1.3.2. For k = 2, assume that, Xj has pdf f(xi—ei)

(i = 1,2) given 6, wrt the Lebesgue measure. Suppose the loss function
is given by (1.3.1). Then the following rules Rd form an essentially
complete class among the translation and permutation invariant rules:

Rule R : Select s if and only if X; Z-X[k]_d’ d > 0.

Corollary 1.3.2. Under the assumptions of Theorem 1.3.2, a minimax

rule Rd is given as follows.

m
c1—va]ues dm~va]ues minimax risks
¢y 2 0(a) 0 1-Q(a)

Qla-dg) <oy <3 | dg fgQ(dgma)+(1-cq)a(-dg-a)
otherwise | 407 (e;)  [(1-cp)lepra(-2atQ” (c))]

y ;
Here, q(y) = [ gq(x)dx and dO is the value determined by c]q(d—A) =

-0

Czq(d+A).

Proof. From Theorem 1.3.2 and the generalized Hunt-Stein theorem
it suffices to find a d-value which minimizes the supremum of the
risk associated with the rules R, for d > 0. By invariance under
S » 1t is sufficient to consider the case when n = 6,-6, > 0. It is

easy to see that
CZEQ('d~n)+Q(—d+n)] if0<n<a

: EG[L(g’Rd)] =
g : ¢1Qld-n)*c,Q(-d-n) if & <n.

Furthermore, for 0 < n <4,
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g [L(9:Ry)] = c,l-a(-d-n)*q(~d*n)]
= coaldrn) (X4 - 1]

czq(d+n)[qg_3 - 1] = 0 by the MLR property of q.

v

Therefore, sup Ee[L(Q,Rd)] = Max[cZQ(~d—A)+c2Q(—d+A), C]Q(d-A)+C2Q(—d-A)]. ,
8 - .

The first term in the right side is non-increasing in d, and the
derivative of the second term wrt d is c]q(d—A)—czq(—d—A) which 1is

non-negative for d Z.do- Hence the result follows.

Example 1.3.1.

(A) Two normal populations with unknown means and a common known
variance: .

Suppose X] and X2 are independent normal random variables with
means 64 and 65 respectively, and a common known variance YZ > 0.

Then the minimax rule R, 1is given as follows:

dny

c]-va1ues dm—values minimax risks
o(-2-) < ¢y <1 0 1-0(-5-)

V2y /2y

A-d dn-A -d.-A
o(—2) < c; <1 Jdg = v2a og(c] 1) | cpelm) + (1-cqde(—"—)

V2y Y2y Y2y

otherwise A -V/2y ¢'](c]) (1-c])[c]+®(®_](c])- Z?—)]

Here, o(-) denotes the cdf of a standard normal distribution.

(B) Two gamma populations with a common shape parameter:

Suppose X] and X2 are independent gamma random variables with a
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common shape parameter a(a > 0) and unknown scale parameter B]

and B,, respectively. A population =, is then defined to be good
2 i

if By > A—] max B. and bad, otherwise, where a{a > 1) is a positive

o M<isk
constant. By considering the associated location parameter problem,

we can get the following minimax rule Rd , which selects s if and
m

. -1
only if x; Z.dm X[k] d, > 1.

c]-va1ues dm—values minimax risks
F(a) < ¢y < 1 1 1-F(a)
F(adl) < ¢y < = d e F(da™)+(1-c,)F(dza™ )
0 1 2 0 10 1 0
. -1 -1 2
otherwise AJF (c]) (1-c])[c]+F(F (c1)/A )]

1

1
Here, d. = ((CZ/C])ZQA~1)/(A—(CZ/C])ZQ) and F is the cdf of the

0
F-distribution with degrees of freedom 2a¢ and Zo.

1.4 Further simplification of the Bayes rule

In this section, we make more assumptions that the posterior
c-bit.-b.W

. _ 171 70
cdf of e(i) is of the form Gi(-lx[i],w) = G(————EET———J

t(x[i]) is an increasing function of Xri7e b] > 0 and b, > 0.

where ti =

To simplify the forthcoming formulae we introduce the following

notations; for fixed a* and for i = 1,...,k-1, let

L y) = J67 (y+2)de(2)

mi(ylA*) = ka-i_](z+A*)Gi(y+z+A*)dG(z).
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It follows from the above specification of the posterior that,

for 1 =1,...,k-1,

b
D. = cp- J+E_1G(z+ i (t_qt5) g—z)da(z),
—b1 A
u'l(1) = 'Q']L—b—g (tk_-l tk) + EZ_]
: <b1 A
u2(1) = ziLBEa(tk_1—tk_i+]) + BEJ and
b
vq(i) = mi[—biz (557t [5]

The following well-known results are stated here for completeness
for providing bounds on D, (see Hardy, Littlewood and Pdlya (1934),
Theorem 43 and Theorem 108).

Lemma 1.4.1. (1) (Tchebycheff) If Z is a random variable, then, for
non-decreasing real-valued functions f] and f2, E[f](z)fz(z)]‘z

E[f](z)]E[fZ(z)] provided the expectations exist.

(2) (Karamata, Schur) If ¢ is a convex function on the real line,

then ¥(y) = E ¢(y1) is a Schur-convex function of y = (y1,...,yp).
i=1

Lemma 1.4.2. Under the assumptions made in this section, the following

relations hold.

(1.4.2) c]-u3(1) f_D1 < c]~V2(i), i=1,...,k-1
0y 1 A
where u3(1) = zk_1LBE-(tk_1— E:T-j+g_i tJ) + BEJ and
b] A
vo(i) = j+ﬁ—1 Zl[sg(tk ty) BEJ-
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Proof. The upper bound on Di is an immediate consequence of the
repeated applications of (1) in Lemma 1.4.1. To obtain the Tower
bound c]—u3(1), it suffices to show that G(-) is log-concave, since
the log-concavity of G implies the Schur-concavity of 'g G(yi) in
y = (y],...,yp) from (2) in Lemma 1.4.1. Let g(ei|xi,;51denote the

posterior density of 05 given x and w, then, for y < y' and X; < x%,

Gy [x5>w)G(y[x,w)-Gly|x;w)G(y" [x; W)

P(o. < ylx;wlP(y < 85 < y'[xiow)-Ploy < y[xpw)P(y < "5 < y'[x )

/] [g<SIXiSW)g(tIX%aW)‘g(SlX%3W)g(thi,W)]det

ssy
y<t<y!

> 0 from the MLR property of g(eilxi,w) in 0. and X, for fixed w.
The last inequality and the specitied form of G(-]xi,w) imply -the
log—concavity of G (see, for example, Lehmann (1959) p. 330)." Hence
the proof is completed.

The next result is an immediate consequence of Lemma 1.4.1 and

Theorem 1.3.1.

Theorem 1.4.1. Assume the prior of @ is exchangeable and satisfies

the specification of the posterior cdf in this section. Then the

Bayes rule &* for the loss function given in (1.3.1) is given as

follows.
(i) t, , < max{t +E—a(£](c )- L9, = T
Eg.(i‘] (c)- 8935 6% = s
by “k-11177 b, T 1
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(ii) Let i, = min{i: t

0 k-1~ 1
Jar = max{j: t > t, + ———b2 m_T(C |—~—A ) or
0 k-J K b] it b2
n e (El(t '"ti) +Ay s e, 5= is-1} where
r. = max{t, + Eg-(SL_](C )- 29, t | + Eg-(l_](c )- 2
i k b T Y71 b,'” “k=i+l b i1 b,
1 2 1 2
b
1 z 2 -1 A _
T t.+ = (g, _4(cy)- 7)1, then 6* = s, for
k-1 k-1 J b] k=171 b2 i*

ko= s . .
i min{i: D, > 0, g * 1 <1 5_10}.

Note that the above result can be written in terms of rules of

the following types, which have been studied in the past.

Rule §"(d): Select migy Ity =t and/or to> -,

max max
a . 1
Rule ¢ (d): Select w,., iff t, = t and/or t. > + t.-d,
(i) i max 7 kT e
Rule 50(9): Select n(k) and select n(k_]),...,n(k_1*+]) where

* = min{i|t, , <t _ -d(i), i = 1,...,k-1} and d=(d(1),...,d(k-1)).

k-1 = “max

Here, toax ]T?ik tj = t(x[k]). Rules of the f1rst'type were first

proposed by Gupta (1956) for the problem of selecting a subset which
includes the 'best' population, and later studied by Desu (1970) for
selecting a subset consisting of only good populations. Rules s are
modified versions of the rules proposed by Seal (1955) and studied by

many others for the selection of the 'best' population. The last rule

60(9) is of the type studied by Brostrom (1978). Let dy = %— -
1
b b -b
B§~z]1(c]), d2 = %;—— E$'2k1](cl) and d(i) = —Bf-mi](cllﬁ—) for
2
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i=1,...,k-1, then §"(d,), %(d,) and ao(g) are the 'approximate'

1 2
Bayes rules suggested by Theorem 1.4.1. Since v1(i) >
b
1 A . oy, A
m Lty -t ) 5) = e, Gt -t )F ), 8
k-1 b2 k-1 "k b2 k-1 b2 k-1 7k b2
0
(

m(d2) is a special
0]
(d)) select

case of ¢ (d). Note that 6"(d;) and aa(dz) (s™(d,) and ¢

larger (smaller) subsets than the Bayes rule, and that they all

coincide for k = 2.

Corollary 1.4.1. For k = 2, the Bayes rule &* is given by

o

if to-t, + A2 z{](c])

J <
1 172 by —-b]

62 otherwise.

Thenext result is helpful in eliminating some unnecessary computations
in finding the Bayes rule.
Corollary 1.4.2. If ¢ 3_fG1(z+ g—)dG(z) for some 1 = 1,...,k-1,

2
then the Bayes rule §* selects at most i populations.

1.5 Some specific examples

(A) Normal populations

Here we assume that Mys---sm are normal populations with un-
known means Byse-50) and a common known variance 02, and that we
have independent samples with a common sample size n for each popula-
tion. By sufficiency we can reduce the problem to that based on
sample means X],...,Xk. The loss function is assumed to be given
by (1.3.1). We will consider a permutationally symmetric prior

defined as follows.
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Given W = w, (e],...,ek) have a multivariate normal distribution

with E(ei) = W, Var(ei) = 52 and Cor(ei,ej) = o where (1.5.1)

o > -(k—])-1 and W has a known distribution H(.).

A prior of the above type with o > 0 has been used in Goel and Rubin
(1977) and in Chernoff and Yahav (1977). The following well known

representation is useful for reducing the above prior to a simpler one.

Lemma 1.5.1. If Y .,Y, are equél]y correlated normal random

1°° k
variables with E(Yi) =0, Var(Yi) = 1 and Cor(Yi,Yj) = p, 1,3=1,2,...,k,
j # i, where -(k—])_1 <p <1, then Yi's can be written as

Vs o= /T-p Z; - (/ér v /T )ZO where (ZO,...,zk) have a multivariate

normal distribution with E(Zi) =0, Var(Zi) =1,1i=0,1,...,k, and

Jg:7V]—p ifi=0<j<k

Cor(2,.2;) = {
0 otherwise.

The next result follows frdm Lemma 1.5.1, the invariance of the

loss function and the detailed calculation of the posterior distribution.

Lemma 1.5.2. Let & be a translation invariant rule, i.e.,
§(x) = s(xtbl) for any real b where 1 = (1,...,1)", then the overall
risk r(t,8) of the rule § wrt the prior ¢ given in (1.5.1) can be

written as

r(e,8) = [fL(8,6(x))dN(8] (o5 & x.(ogfm 55T an
- b (1.5.2)

(x]0.(n"To%+a)1)

where N(-IB,Z) denotes the cdf of a multivariate normal distribution
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with mean p and covariance matrix g, I is the kxk identity matrix and

2 2
UO = (]"D)B .

It should be pointed out that similar reduction has been done
in Chernoff and Yahav (1977) for the case p > 0, and in Gupta and
Hsu (1978). Note that the right side in (1.5.2) is the overall risk

of rule § when 8y are, a priori, iid normal random variables

Fa8y
with mean 0 and variance cg, and that the Bayes rule wrt the prior
given in (1.5.1) can be taken as translation invariant. Hence we can
reduce the prior given in (1.5.1) to this iid normal prior. Obviousiy
the posterior cdf of e(i) satisfies the specification of tne‘posterior
cdf in Section 1.4 with by = (s52#na™%) Tno™2, b, = (o

by = 0, t. = Xri] and G(-) = &(-). It follows from the preceeding

- 2
+ng 2) 2,

that, for i = 1,...,k-1,

15(y) = [o" (y+2)de(2)

m(ylax) = Jo51 T (zran)el (zryrax)da(2)  and (1.5.3)
Al C]'Ij+ﬁ-i@(Z+”°_2‘062*"G'2>'%<X[k-1]"X[j]>+<052+nc‘2>%A)
de(z).

The Bayes rule §* can be obtained by numerically integrating Di
using Gauss-Hermite or other methods of quadrature (we eliminate
unnecessary computations using Theorem 1.4.1.). Note that

£1(y) = ¢(y/v/2) and therefore §* selects only one population (k) if
- 2L
c 3_@((002+nc 2)2A//2).
The 'approximate' Bayes rulessuggested in Section 1.4 are
2

: _ _ . o 1y .
determined by t, = X[i]’ d] = d](n,oo) a(1+ . 02)
0
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(1+ 95-1—)5/5 ¢'](c ), d = d,(n,o,) = a(1+ 93
n 2 17 270 n

%

2 ) -

Cill-—J

N

o
/n

2 1
9 (1+ gﬁ-li)ézﬁl](c]) and etc. The Bayes rule wrt the diffuse
(e}
0

/n

prior, i.e., og - =, is very often of interest, and it as well as
the corresponding 'approximate' rules can be obtained by formally

taking 062 = 0 or equivalently cg = » in the above. From these
: 2

g
(1+ 3

1

)z

l

. = 0_
expressions we see that d](n,oo) - dz(n,oo) = =
(QL]](C])—/i Q_](C])) would be small, especially when o4 = 0, for

O N

N Q

sufficiently large n. Therefore, one might expect that Gm(d](n,oo))
and Gm(dz(n,oo)) would be close to the Bayes rule for sufficiently
1atge n.

Let us consider thezrules ém(h(n,oo,d)) for various values of d

1
where h(n,o,d) = a(1+ &= 15y - S dq(1+ & 1% Let (n,. &) denote
0 n 2 J n 2 (1)

00 n 00
an event (W(i)E{ﬂj:j € s(x)}) for any rule s, and r(oo,é) denote the
overall risk of § when the prior is given by (1.5.1). Since

(ﬂ(k"'1)$ ‘Sm(d](naco)))‘ < (D.' > O) and 6m(d](na00)) c (Sm(h(nsﬁoad))

for d < /2 @—](Cl)’

r(0g56" (h(n,00,d))) = r(og»s" (dq(ns0)))

k-1

= E[ J D.{I -1 H
1T (r iy €8 (hnsogsd))) (g _5y€8” (dq(ns64))
k=1

= E[.Z D, {1 1]

=1 gy €8 (hnsogsd)om gy oy68" (dy(nsag)))

0,

|v
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where Di is defined in (1.5.3) and the expectations are taken wrt the

marginal distribution of X's. Similarly, it can be shown that

r(co,6m(h(n,oo,d))) 3'r(00,6m(d2(n,00))) for d > QLIT(C])' Therefore,

we may consider the rules dm(h(n,oo,d)) only for d € [V2 Q_](c]),
k]1( ])] as long as the overall risk is concerned. Furthermore,

denoting the Bayes rule for sample size n by 6; and ém(h(n,oo,d))

by s" for fixed d € [/2 Q'](c]),zézl(c])}, it is easy to see that

m
F(OO,G )—P(GO,GE)

k-1
= E[ ] D.{I -1 5]
i=1 ! (ﬂ(k_1)§6:,ﬂ(k_1)66m) (ﬂ(k_i>€6;,ﬂ(k_i)§6m)
k-1
= ELZ (C]'Qk_](d))l +(®(d/‘/§)"c'l)1
i=1 (ﬂ(k—i)géﬁ’ﬂ(k-i)esm) (ﬂ(k—1)66:’
]
(k1))
E.E[ Z @(d/v2)-2,_4(d))1 ]
(n(k_.i )qEGm(dz(naUO) ) ’n(k—'i )E(Sm(d'l (n’Oo)))
= [o(d/v2)-2 (d)]ki]{F-[Q—-l—-z-] (cq)-(1+ 93~l—0%vé—i -
k-1 if1 VUm0 k-1 n Gg 9
5 2
o V2 -1 o- 1 %A
Fil= =0 (c)-(1+ (=) =1
R 9 " o5 0

(i-1)1( kL i-1) f [f o —](U+V)@(u+v)[@(v)_¢(u+v)]k—i~1

o(v)dvldu ify <0

where Fi(y) =
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and (") denotes the pdf of the standard normal distribution.

The first inequality follows from the fact that

(7 (k=) ¥ “(k-i)?‘sm) e Dy 2 05 xy 47 7 Xpghlnsog.d))
c (0 < D, < Cl—Qk—l(d)) and

(W(k_i)&cs:]‘, ﬁ(k_i)éfcsm) c (C]—,Q-l(d) < D‘I < 0).

The second inequality is obvious from the fact that 6m(d2(n,00))(;

. m m m m

8% < 6 (d](n,co)) and & (dz(n,oo)) c 8§ (d](n,ao)), and the last
equality follows from the marginal distributions of Xi's. It follows
from the preceeding that lim na[r(oo,ém)-r(oo,sﬁ)] = 0 for o ¢ [0, %&.

N--eo

Hence we have proved the next result.

Theorem 1.5.1. Let r(oO,S) denote the overall risk of a rule & wrt
2

the prior distribution given in (1.5.1) where Gg = g°(1-p), then

> rlogss"(dy(n,0,))) i d < /2 o (cp)

(1) rlogss"(h(nogad)))
| > rlog.6"(dy(maog))) AF d > o))
and

(ii) for d¢[v2 Q_](c]),zkl](c])],lim na[r(co,ﬁm(h(n,oo,d)))—r(oo, 62)]=O

N-—><co

for any ae[o,-%).

It is interesting to note that, for k = 2, the Bayes rule wrt the
diffuse prior, which selects n. iff x. = x and/or
i i max
Xe > X -0+ & /E‘é_](c]), coincides with the minimax rule in some

i max Jr
cases (see Example 1.3.1), and with the rule studied by Desu (1970)



30

if ¢y = P Also for k > 2, consider the rules ém(h(n,w,d)) for
various values of d. Before we state some properties of these rules

we recall the following definition (see Ferguson (1967)).

Definition 1.5.1. A decision rule 8o is called an extended Bayes

rule if, for every € > 0, there exists a prior t such that

r(T,do) < inf r(t,8) + €.
§
It can be easily shown that any extended Bayes rule 60 is

c-admissible for any € > 0, i.e., there does not exist a rule §

k

for which R(8,6) < R(Q,éO)—E for all ¢ €@", where R(8,8) =

EeL(Q,é(g)). In a manner similar to the one.-in the proof of

Theorem 1.5.1 we can show that Tim [r(cO,dm(h(n,m,d))—r(oo,éﬁ)]=0
G Ao
0
for d € [V2 ®_](c]), lel(c])]; therefore, we have the following

result.

Theorem 1.5.2. The decision rules & (h{(n,»,d)) for d € [/2 Q—](C]),

-1
e

are extended Bayes and therefore €-admissible for any € > O.

(c])], which selects ™ iff X5 = X and/or Xg > X0 b %: d,

n
The above arguments indicate that the performance of rules of
the type s" would be close to that of the Bayes rule when 9 is
large, but we could not make similar arguments for the other
"approximate' rules. Hence we carried out Monte Carlo study to see
how well these rules (studied in the past under a different framework)

perform compared with the Bayes rule. The results of the Monte Carlo

study are given in the next section.
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(B) Gamma populations

Here, we consider a problem of selecting good populations out of
k gamma populations in terms of unknown scale parameters based on hk
independent observations, assuming a common known shape parameter.
By sufficiency we reduce the data to the k independent gamma random
R ¢

variables X with a common known shape parameter o (a > 0)

1 k
and unknown scale parameters ByseesBys respectively. Population

m is said to be good if B 3_A_] max B., and bad, otherwise. Here A

1<3<k
is a preassigned constant greater than 1.

We also assume that the Toss structure is the same as that in
(1.3.1), i.e., the loss is ¢y for selecting a bad population and Cy
if we exclude a good one. Further it is assumed that B]""’Bk
are, a priori, independently distributed inverse gamma random

variables, i.e., the prior pdf of g = (61""’Bk) is

-1

k a —bsi ‘
1, B; > 0, for i =1,...,k (1.5.4) -

O I e —

i=1 F(a)B?+]

where a > 0 and b > 0 are known. Then it is easily observable that,
given x = (X1""’Xk)’ Bl""’Bk are, a posteriori, independent and
have the same distribution as that in (1.5.4) except that a and b
are replaced by a + o and b + X3 respectively.

It can be easily shown that, in the associated location
parameter problems, all the assumptions in Section 1.4 are satisfied.
Hence we have the results analogous to those in Section 1.4 with
the following modifications. For i =1,...k-1, let zi(y) =

Z[]-e<yz>]*de<z>, and m (y[a™!) = 2[1-e(yz>1?[1-G(A‘]z>1k"‘1de(z>
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where G(-) is the cdf of gamma distribution with shape parameter

a + a and scale parameter 1. Then, for i = Tho k-1,

o0 ._'l -—]
D, = ¢q-f [1-6(t.t, 0 "y)1dG(y)
L R gk
u, (1) = 2, (t £ A'])
i TV k-
u, (i) = 2.(t £ A—1)
2 PV k=141 k-
1 (1.5.5)
o -1 -1 k-1
u (1) = o ¢ (t a7 (1 ty) )

jtk-1

_— -1 -1,,-1
v](1) = mi(tk ty b |a~") and

j%ﬁ-igl(t. té-iA—])’ where ty = xpq+b.

Note that 2](y) = 1-F(y) where F(.) denotes the cdf of an F random

variable with degrees of freedom 2.4z) and 2(a+a). In addition to
the above bounds on Di’ we provide another bound in the following,

using the fact that 1-G(.) is log-concave (log-convex) if a + o > 1

(a + o« < 1, respectively).

1 -1 -1 .
> C]—lk_](‘k_—] j%g-j tjtk-'iA ) ifa+ta>1 |
D. { » (1.5.6)
! ] -1,y i .
< C -2, (+— t.t, LA ifa+ac<l.
THTTET a3k

Therefore a result analogous to Theorem 1.4.1 can be obtained with
obvious modifications from (1.5.5) and (1.5.6). In this case also, the
Bayes rule can be found by numerically integrating Dj usingi
Gauss-Laguerre quadrature while we eliminate unnecessary computations

using the result analogous to Theorem 1.4.1. Note that, for k = 2,



33

the Bayes rule wrt the diffuse prior, i.e., a - 0 and b - 0,

coincides with the minimax rule in some cases (see Examp]é 1.3.1.).
1.6 Results of the Monte Carlo study for the normal populations.

In this section we are assuming the normal model in Section
1.5 (A). In the preceeding sections we have seen that rules studied
in the past help to find thevBayes rule and that they are, in some
sense, natural approximations of the Bayes rule. Among them s and
5% are perhaps the best well-known se]éction rules. Hence it would
be worthwhile to investigate the performance of these rules in this
Bayesian framework, since they have their own merits and are also |
easy to use. Some optimalities of these rules can be found in the
literature by Gupta and Studden (1966), Berger (1977), Gupta and
Miescke (1978), Bjgrnstad (1978), Chernoff and Yahav (1977), Gupta
and Hsu (1978) among others. Especially the last two papers are much
related to our work in that they studied the performance of these
rules in Bayesian framework for the problem of selecting a éubset
containing the 'best' population.

For our Monte Carlo study we may assume that o/vn = 1 without
any loss of generality. We recall that s™ and 6% can be written in

the following more familiar forms:

m, . . : . )
§(d): Select =, if and only if x, > x_ -d, d >0
a (1.6.1)
s (d): Select ™ if and only if Xi = X and/or Xs >
1
— X.~-d.
k-1 j%i J
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We carried out the Monte Carlo study for the cases k = 3 and k = 9.
The remaining relevant parameters in this study are 4 (or cz), oS and
A. We use c = C2/C] for the tabulation purpose since c, being the
ratio of two different types of losses, seems more appealing than Cy-

The ranges of the parameter values which were studied are as follows.

6= .25, .5, 1.0, o, = (1.5)"(i = -2(1)6),

c=2"V(4=1,...,5 for both & = .25 and & = .5

i-2

c=2 (i=1,...,6) for o = 1.0.

For each of parameter sets (c, 9g> A), 400 simulations were carried
out for k = 3 and 100 simulations were performed for k = 9. In
each simulation the generation of the random vector x = (X]""’Xk)
according to its marginal distribution was involved, and then the
Bayes actions and the corresponding risks were obtained by numericaily
integrating Di's in (1.5.3). The optimal values of d in &" and &% are
estimated by minimizing the average regrets corresponding to
sufficiently fine grids of the estimated constants d, where the
range of these trial values are determined from the preliminary
computations and Theorem 1.5.1.

The estimated Bayes risks, the estimated regrets incurred by
the optimal s" and §2 are given in Table I at the end of this chapter
along with sample standard deviations of these estimates. For those
obvious cases when the Bayes rule selects only one population or all
the populations, we did not tabulate and, as a result, these cells

are left blank in the table. Table II gives the average number of



bad populations selected and that of the good ones excluded for the
rules considered, along with proportions of times that the optimal
§% and the optimal s™ coincide with the Bayes rule. From Table I,
we can observe that the performance of the rule s" is almost as good
as that of the Bayes rule throughout the cases studied, and that it

2(1—p)) becomes

becomes remarkably better as the prior variance (cg =R
large. This agrees with the argument in Section 1.5. Also we observe
that, for k = 3, rule §@ performs reasonably well when the pfior is
concentrated, and in fact it performs better than s" in a few extreme

. _ a .
cases when ¢ is very large. However, the performance of & is poor
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for moderately large g Especially, for k = 9, the performance of 6a

is disastrous and it was observed that, for most values of 9> optimal
s selects only one population for small values of c and it tends to
select much larger subsets than the Bayes rule as soon as ¢ becomes
large (roughly ¢ > 4). Overall, the rule s8 performs rather poorly
when k = 9.

Similar behavior of the rule s™ has been observed in Chernoff
and Yahav (1977), and in Gupta and Hsu (1978) for the problem of

selecting a subset containing the 'best' population. On the otherhand

performance of 6a is worse than that observed in Gupta and Hsu (1978},

and it seems that rule s has Tittle to recommend for the goal of
selecting 'good' populations while rule " performs almost as well

as the Bayes rule provided the value of d is chosen properly. This
indicates that the proper use of rule s™ can lead to efficient
statistical method since it behaves fairly well in various formulation

and also is easy to use and interpret. However, we point out that the

S
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choice of d should depend on the Toss structure of the particular
problem at hand, and we suggest the tabulation of the operating
characteristics such as the number of bad populations selected or
that of excluded good ones before setting P* based on an intuitive
feeling, if one wants to use this rule. For this reason the

estimated optimal d-values for rules s™ have been provided in Table III.



TABLE I BAYES RISKS AND REGRETS

THE ENTRY ON TOP OF EACH BOX IS THE ESTIMATED BAYES RISK AND THE HUMBERS
IN THE SECOND HHD THIRD ROW ARE THE REGRETS INCURRED BY THE OPTIMAL O
AND THE OPTIMAL 89 IN THAT ORDER.THE NUMBERS IN THE PARENTHESES HRE

THE SAMPLE STANDARD DEUIATIONS OF THE ESTIMATES,
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K=3, A—.ES
‘\\4i\ 1 2 4 B 16
‘0
YT T Bs16 (L 00500 L4812, 00245 L2870 (. 0006) | LAESgTCC 000 T
.44 | ,0046 (.0008)| .0028 (.0005)| .00602 (.0061) |.0000 (.0000)
.0185 (.0013)| .0131 (,0013)] .0002 (.0001) |.0000 (.0000)} . y
,4801 (.0061)] .4337 (.0045)| 23049 (.00207 | .1807 (.0006)] .0971 (.0002)
.67 | .0033 (.0006){ .0048 (.0006)| .0016 (.0004) |.000B6 (.0002)| .0001 (.0001)
| .0023 (,0004)| .0087 (.0010)| .0015 (.0004) |.0006 (.0002)] .0000 (.0000)
36577¢.0081) | L3442 (.0066) | L2712 (.6038Y | . 1728 (L 0017y 0964 (. 0008)
1.00 | .0025 (.0001)| .0041 ¢.0006)| .0020 (.0004) |.0014 (,0003)| .0005 (.0001)
- 1.0028 (.0006) | .0087 (.0013)| .0027 (.0005) |.0014 (.0003)| 0008 (.0002)
.2675 1.0083Y ] L2651 (.6673)| L2028 (.0048) |.1340 (.,0028)| .0827 (.0014)
1.50 | .0014 (.0004)| .0031 (.0005)] .0020 (.0004) |.0014 (,0003)| .0003 (.0002)
L0026 (,0006) ! ,0187 (.0023)| .0080 (,0013) 10037_(:ooozxm“L001s_5:0004y
LB087 (L0030 L1883 (L 0073) [ . 14147(.0053) 7] 1099977(L0032) 0592 (. 0017)
2,25 | .0009 (.0002)! .0007 (.0002) .0013 (.0003) |.0010 (.0002)| .0004 (.0001)
.0024 (.0005)| .0250 (.0028) | .0178 (.0022) |.0093 (,0012)| .0050 (,0007)
"""""" “1p54 (.0078% T 1280 (.0070)] L0969 (. 6048) |.0693 (.00315| 20380 (.0018)
3.38 | .0004 (.0002)' ,0005 (.0002)| .0003 (,0002) |.0008 (.00062)| .0004 (.0001)
L0011 (.oooayvm,oaaa_;.ooes)q“,033? (.0035) | .0193 (,00183| ,0104 (.0010) ]
T 0805 (L 00685710923 7°(L0062) L0680 (.00646) | . 04987 (. 0028)]7. 0245 (L0016)
5.06 | .0000 (.0000)| .0005 (.0003)| .0009 (.0003) |.0002 (.0001) 0000 (.0000)
L0011 (,0004) ! .0142 (.0022)| .0370 (.0043) .0245 (.0021)| ,0125 (.0011)
L0645 (.0064) 77,0534 (.0055)| .0447 (.0039) |.0317 (,0024)| .0210 (.0014)
7.53 | .0000 (.0000) | .0001 (.0001)| .0003 (.0002) | .0000 (.0000)| ,0000 (.0000)
.0016 (.0004) .0104 (.0020)| .0229 (.0035) |,0315 (.0032)! .0162 (,0013)
L0417 €.00503 ' .04377(.0047) | .02397(.0027> | .0227 (.00213]7,0080 (.0010)
11.39 | .0000 (.0000) .0000 (.0000)! .0000 (,0000) |.0000 (,0000)| .0000 (,0000)
L0516 (,0002) - .0110 (.0021) 0126 (.0027) | .0264 (.0039)| 0185 (.0014)
K=39, A =.25
1 2 4 8 16
V2362 (L 01315 1.1135 (.,0090) | .7255 (.0036)] .4013 (.0010)
.0109 (.0023)| .0182 (.0034) |.0083 (.0013)| .0016 (.0005)
.0287_(.0043)| .2674 (.0089) |.0426 (.0041)} .0047 (.0011)
J9353 (L0187 T . B451 (. 0169) 7.6359 (.0081)| .3854 (.0038)
.B7 L0117 (.0033)| .0203 (.0031) |.0153 (.0023)| .0104 (.0023)
| .0201 ¢,0038)] .1850 (,0085) |.1785 (,0088)) ,0453 (.0042)
T72387(.0213)Y.8007 (. 0168 | ,4881 (L01253] . 2947 (.0058)
1.00 L0124 (,0029) | .0147 (,0028) |.0136 (.0024)| .0085 (.0014)
.0201 (.0038)| .1235 (,0104) |.2617 (.0183)| .1171 (.0083)
T T T 4943 (L, 0233 145367 (L0181) 11,3483 (,0125)) L2221 (.0074)
1.50 L0069 (.0025)] .0117 €.0025) |.0091 (.0018)| .0075 (.0018)
) .0227 (.0041)| .0627 (.0075) |.0804 (.0105)| .0510 (.00EEY
. .3370 ¢.0188) | .2939 (.0190) |.2095 (.0113)] .1484 (.0075)
2.25 L0070 (.0018)| .0085 (.0029) |.0030 (.0011)] .0059 (.0013)
0222 (.0043) | ,0662 (,0101) |.0572 (.0105)| ,0419 (.0054)
- T re4g0 (L o208Y [T i8T4 ¢ 0161 {13527 (,0103)] .0853 (.0082)
3.38 .0030 (.0011)| .0028 (.0010) |.0023 (.0009)] .0020 (.0007)
.0189 (,0043) ! .0848 (,0101) | .0708_(.0090)| .0478 (.0081)
ST4TE (017101 1148 ¢.0120) 7. 0964 (. 0092)] 0700 (.0057)
5.06 L0024 (.0012) | .0012 (.0008) |.0018 (.0008)| .0024 (.0007)
.0186 (.0047)__:osazngogs7g"_.osos (.0102)! ,0523 (.0087)
| +0942 (.0131)17.0825 (. 0106|0529 (.0067)| " .0236 (. 0034)
7.59 ! .0005 (.0004) | .0011 (.0006) |.0009 (.0006)| .0001 (.0001)
| 10098 (.0038) | .0384 (.0084) |.0444 (.0091)| .0340 (.0049)
©.0588 (.0111) 17,0575 ¢.0093)7].03937(.0056)" L0170 (.0027)
11.39 * .000C (.0000) | .0006 (.0000) |.0001 (.0001)] .0000 (,0000)
J01ST (.0046) L0372 (.0086) |.0536 (.00B1)] .0234 (.0047) |
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TABLE I (CONTINUED)

K=3» A=.50

?dfg\\, 1 2 4 8 16

.4609 (.0016)| .3297 (.0012)| .1995 (.0008)
.44 | .0024 (.0005)| .0006 (.0002)| .0000 (.0000)
0334 (.0029)| .0033 (.0008)| ,0001 (,0001) | .
4686 (.0053)| .3897 (.0026)| .2558 (.0011) |.1456 (.0001) [.0773 (,0003)
.67 | .0038 (.0008)| .G023 (.0005)| .0010 (.0003) |.0001 (.0001) |.0000 (.0000)
i .0487 (,0028)| .0185 (.0017)| .0024 (.0006) |.0000 (.0000) |.0000 (.0000)
T3E7E (60760 3424 (.0056)] L2511 (.0028) [15327¢.0014) . 0869 T.000E)
1.00| .0036 (.0008%| .0027 (.0005)| .0022 (.0004) |.001l (.0003) |.0006 (.0001)
0175 (,0018)| .0160 (.0016)| .0053 (.0008) |.0016 (,0004) |.0006 (.0002)
o813 UL 0088 L2710 (.0068) [ L2005 (.0045) [.1361 (.0024) |.0803(.0011)
1.50 | .0027 (.0008)| .0023 (.0005)| .6020 (.0004) |.0009 (.0002) |.0008 (.0002)
.0115 (,0015)| .0180 (.0024)| .0078 (,0013) |,0033 (.0006) |.0014 (.0003)
TB033 (. 0083)] L1833 7(. 00727 [ .1561 (.0043) [.0987 (.0030) [.0590 (.0016)
2.25| .0010 (.0005)| .0010 (.0004)| .0011 (.0003) |.0008 (.0003) |.0004 (,0001)
7| L0103 (.0014)| .0318 (.0034)| .0143 (,0020) |.0082 (.0011) |.0048 (.0006)
$1470 (.0083)| 12747 (. 0065YT L 1081 T 06505 L 06627 (L0028 . 0439 (L001R)’

3.38 | .000G (.0002)| .0604 (.0002)| .0007 (.0003) |.0005 (.0002) |-0004 (.0001)
R 10084 (,0013)| .0343 (,0038)| .0318 (.0030) |.0153 (.0016) ' .0079 (,0009)
0984 (.0072)| T1207 € 0060 | Ti0726 (.0044) [.0457 (00255 O3107C.0016)
5.06| .0000 (.0000)| .0008 (.0004)| .0000 ¢.0000) |.0002 (.0001) |.0001 (.0000)
.0045 (.0009) .0241 (.0032)| 0379 (.0039) |.0203 (.0020) |.0122 (.0011)
1 T06E3 (L 00815]I0564 CL 00500 | L0462, 0038) ], 0298 (.0021) [L01797(.0013)
7.59| .0003 (.0001) .oooa (.0001)| .0002 (.0001) |.0000 (.0000) |.0002 (.0001)
10045 (.0010)] .0184 (.0030)| .0299_(.00:1) | .0877 (.005R) |,0150 (,0012)
0335 0000437 L0292 (.0043)] L0287 (. 0030y 0200 (.00619) 1.01187(.0011)
11.39] S0000 (.00005| .0000 (.0000)| ,0000 (.0000) |.0001 (.0001) |.0000 (.0000)
_+0026 (.0013)] .0108 (-OOEEJM,LQQQQ.S;QQﬂl). .0300 (.0038) .0215 (.0014)

K=33 A=.50

2 4 B ’ 16

T1.5947 (0148178385 (L 0118)(1.0429 (. 00377 |.5953 (L00IE)
.44 | .0198 (.0033)| .0296 (.0046)| .0070 (.0018) |.0011 (,0001)
] L0C03 (.0052)| 2614 (.0170)| .0306_(.0n49) | 0017 o006y | ]
1.1473 (.0193)] 1.2235 (. 017357 .98497(.01i8) | 6407 (.0051)7] 3672 (.001B)

.67 | 0083 (.00215| .0223 (.0041)| .0222 (.0031) |.0L12 (.0003) |.0042 (.0012)
| .0083 (.0021) ".20ﬂ1 (.00399)| .3023_(.0J46) | .0735 (.0065) |.0110 (.0020)
L7783 (. 02345 T.e2ve (L0240)] L7342 (0179) 7] L5097 (.0L1CE) | 32197 (L0055)

1.00| 10072 (00289 .0238 (.0039)| .0191 (.0035) |.0138 (.0026) |.0088 (.0019)
.0108 (.0029)| .1071 (.0082)| .3424 (.0164) |.2757 (.0126) |,0931 (,0062)
S637 (Loe37y| L6186 ¢.0261)] L8207 7(.0194) | 3625 (L0116) | .2497 (. 0066)
1.50 | .00G4 (.0021)| .0186 ¢.0041)] .0107 (.0024) |.010! (.00&3) |.0085 (.0016)
L0096 (.0028)| .0654 (,0078)| .2469 (,0148) |.4252 (.02:0) |.1834 (,0073)
S4021 (L0249)| .3444 (.0R02)| .33397C. 0180 2324 (L 0124) [ 1500 (L0076
2.25| .0043 (.0018)] .005L (.0024)| ,0082 (.0019) |.0067 (.0016) |.004L (.0009)
0054 (.0016)] .0443 (.0068)| .1228 (.0141) |.1368 (,017P) |.1280 (. QISS)

S2420 (,0209)] L2668 (.02113]7.18257(L0154) | . 1559 (.0120) 0954 (.00E7)

3.38| .001S (.0010)] .0032 (.0010)| .0032 (.0013) |.0019 (.0007) |.0023 (.0007)
L0053 (.0018)| .0424 (.0081)] .0815 (,0130) |.1092 (.0136) |.0771 (.0163)
L1868 (.0191)] L1284 ¢.01507 7 7I5307C,0152) |.0924 (.0083) [.07237 (. 0056)
5,061 .0004 (.0003)] .0005 (.0004){ .0032 (.0012) |.0017 (.0008) |.0008 (.0004)
L0128 (.0029)) .0324 (.0071)] .0683 (.0103) .0880 (,0134) |.0727 (.0114)

V08P I6T34)] L1101 (L0123 L0883 C.0071Y |, 0333 (.00363 |
7.59| .0001 ¢.0001)| .0012 (.0009)| .0009 (,0005) :,0003 (.0003) |.0000 (.0000
L0041 (.00R21) .0357 (.0078)| .0852 (.0143) {.0¢8B3 (.0121)> |.0382 (,0074)

1114 ¢.016351 087D (0T34 IILL

Sl U0BeR (LO0E21Y] L0754 (L0118 7. 0898 U 01y L0421 0084Y [ . 053 (.0035)
11.591 .0001 (.0001) .0000 €.J000)| .0014 (.0007> |.0000 (.0000) |.0002 (.0002)
L] L0083 (L0026)l 0235 _(.0089)| .0441 (.0089) |.0629 (.0107) |.0481 (.0079)
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TABLE I (CONTINUED)
K=3, A=1.0
oy .5 1 2 4 8 16
.1933(.0022) | .1462(.0018)
.44 | .0000¢.0000)| .0000(.0000)
L0012¢.0004)] .0001¢(,000L) ] . . . B
.3610(.0026) ] .3213¢.0027) | .P276(.0023) | .1435(.0017)
.67 | .0028(.0005)| .0016(.0003) | .0011(.0003>| .0000(.0000)
: .0808(.0080) | .0315(.0034) | .0035¢,0009)| .0001¢. 00013} )
3460(.0054) ] .3515(.0045) | .2968(.0032) ] .1983(.0019) | 11587, 0012 .0625(.0007)
1.00 | .0028(.0005)| .0018(.0004) | .0023(.0005)| .0011(.0003) | .0002¢.0001) |.0002(.0001)
.0385(.0024) | .0774(.0044) | ,0293(,00287 | ,0087(,0012) | .0013(,0005) |.0002¢.0001)
.2750¢.0072) | .2948(.0066) [ .2613(. 005> | .19228(. 00323 | 7. 1287(.0018) | .0706¢(.0009)
1.50 | .0012(.0003) | .0022(.0005) | .0030(.0006> | .0022(.0005) | .0008(.0002) |.0002(.0001)
.0154(.0015) | .0385(.0034) | .0228(.0024) | ,0135(.0016) | .0056(.0008) | .0018(.0004)
SI835( 0074 ] . 2117¢.0075) | .1822(. 00615 [ .1488(.0042) | .1015(,0025) | .0587(.0013)
2.25 | -0005(.0003) | .0009(.0003)| .0009¢.0003) | .0011(.0003) | .0003(.0002) | .0005(.0002)
] .0070¢.0011) | .0389(,0041) | .0272(.0032) | .0150(.0019) | .R067(.0010)_ | .0031(.0008)
S 1202¢.0068) T T1438¢. 0065) | - 1344¢.0060) | .1649(.0040) | .0661(.0026) | .0424(.0015)
3,38 | .0003(.0001)| .0005¢.0002)| .0008¢.0003)| .0009(.0003) | .0004(.0062) |.0004(.0001)
S0045(.0008) | »0296(.0033) | .0435(,0046) | .0198(.0024) | .0141(.0015) | .0074(.0009) ]
DG4 (. 00597 . 6897¢. 0067y | ~0888(.0055) | ~0682(.0039) | .0482(.0025) | .0275(.0013)
5.06 | .0000(.0000) | .0005(.0003)| .0005¢(. ouo3> .0004¢.0002) | .0003¢.0001) !.0001¢.0000)
i ,0023(,0006) | ,0231(.0030)_ .0478(.005 L03B5(.0036) | .0222(.0020) | .0087(.0010)
.0536(.0051) ] . 0635(. 00523 | . 0608(. oo4s; J0476(.0033) | .0335(.0022) ' .0171(.0012)
7.53 | .0000(.0000)| .0001(.0001>| .0002(.0001) | -0G00(.0000) | .0001(.0001) .0000(.0000)
" | .0018(.0005) | .0182(,0028)| .0384(,0047) | .0366(.0043) | .0251(.0022) .0125(.0012)
10351¢.0042) | 7. 0376(.00415 7 L 0416(.0042) | .0323¢.0023) | .0207(.0019) ~.0138(.0011)
11.39 | -0000¢.0000)| .0000¢.0000); .0001(.0061)] .0001¢.0001)| .0001(.0001) ,0001(.0001)
|| .0011¢.0004)| .0088(.0019); .0329(.0048) | .0435(.0059) | .0358(.0025)  .0186(,0013)
K=9, A=1.0
e S
G .5 1 2 4 | 8 16
0= - e I . .
1.2743(.0089) |1.0626(.0037)| .7235(.0076) |
.44 | .0203(.0044) | .0073(.0022)| .0000(.0000) | :
_ | .1686(.0144) | ,0175(,0048)| .0005(,0008)] .. i ‘ o
1.3251(.0184) |1.4650(.0147)|1.2372(.0097) | .8253(.0065) | .4712(.0045)
.67 | .0168(.00303| .0256(.0052)| .0284(.00621| .0053(.0013)| .0020(.0009)
| | .1037(¢.0073)| .6476(.0328)| .1879(.0180) .0242(,0050) | .0042(.0015) |
T ESEF (02510 |1, 0771¢. 030091, 0578(. 02005 | .8267(.0118) | .5314(,0063) '| J3081(.0029)
1.00 | .0131¢.0026)] .0212(.0038)| .0283(.0050)] .0R245(.0045) ! ,0122(.0025) | .0053(,0009)
S0193(.0030) | ~1833(.0116)| .5966(.0264) | .3853(.0190) | .0391(.0085) | .0234(.0035)
UB0B5(. 02100 | .7150(.0280)] .7205(.0264) | .6264(.6203) .3338(.0117) |.2565(.0060)
1.50 | .0043¢.0014) | .0178(.0042)] .0154¢.0035)| .0119(.0025), .0103(.0020) ' .0032(.0014)
| 1.0053(,0017)| .1088(.0095)] .3235(.0219)| .6319¢.0311), .3399(.0165) |.1375(.0081)
TRB95(.0215) ] . 47241, 0264) | L4437 (. 0269) | .4031(.01938) .2852(.0132) |.1771(.0071)
2.25 | .0030(.0010)| .0071¢.0019)| .00B1(.0018)| .0055(.0014) .0082(.0022) |.0049(.0012)
L _l.o072¢,0021) ] .0685¢.0088)! .1925(¢.0177] .4051(.0293) . ,5105(,0170) |.2417(.0087)1
72431¢ 0187) 7 .2580(.0227)] .2926(.0237) | .3417(.0154) | .1732¢.0112) | .1138(.0065)
3.38 | .0021¢.0010) | .0021(.0013)] .0050(.0018) .0043( 0013)| .0022¢.0009) |.0032(.0003)
10023(,0012) | .0293(.0082)| .1266¢.0172) | .2275(.0233) | ,3120(.0349) |.2348(.0230)
T1355(.0168) | .1680(.0167)] +1920(.0165)1 +1211¢.0124) ] 1087(.0078) |.0610(.0051)
5.06 | .0002¢.0002)| .0006(.0005)| .0006(.0003)| .0024(.0014)| .0010(,0006) | .0006(.0003)
.0023¢.0011)] .0257¢,00B1)| .1062(,0159)| .1277(.0193)| .1334(.0158) |.0921(,0144)
T1P45(.0146) ] T 1149¢;0158)[ .1331¢. 01587 .1126(.0115) | .05E6(.0070) | .0403(.0045)
7.59 | .0002(.0001)| .0011¢.0006); .0015(.0007)| .0019(.0009>| .0005(,0003) |.0601(.0001)
T 00BS(.0019) | .0273(.0066)| .0642(.0120) | .1009¢.0170)| .1124(.0198)_| .0678(.0134)
L0B4B(.0124) | L0BL7(.0113)] . 0668(.01228) [ L0694 (. 0088) | . 0364(, 0049 |.0249(.0030)]
11.39 ] .0000(,0000) | .0006(,6000)] .0001(.0001)] .0000(,0000)| .0000¢.0600) |.0000(.0000)

_»0030(.0014)

.0111¢,0041)

.0882(.0073)

.0931(.0185) |

»0501(.0L18) 1.

0653(.0183) ]
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Zallcl .5 1 2 4 8 18 .5 1 2 4 8 16
K=3, A=.25 K=39, A=,25
.44 .6046 2.1681 3.7070 5.2520 .4076 1.6880 3.1407 4.1256
.67 .2266 1.3308 2.4711 3.1836 3.9854 .2717 1.2081 2.2187 2.8318
1.00 2737 1.0657 1.7797 2.5294 3.3921 .2454 1.1081 1.8152 2.4658
1.50 .1057 .7517 1.4668 2.1038 2.8730 .3251 1.0582 1.5509 2.0677
2.25 .1078 .8520 1.3554 1.9026 2.5029 .5292 1.1970 1.5469 2.1488
3.38 .1833 .7986 1.4192 1.8781 2.4361 .6631 1.0959 1.6487 2.1310
5.08 .2648 .8280 1,2892 1.7989 2.4360 5197 1.2944 1.8346 2.0436
7.59 .1686 .B242 1.4017 1.9438 2.42829 .6326 1.0.14 1.9337 2.4431
11.33] .2569 .B643 1.4390 1.5710 2.2446 .8844 1.4214 1.9083 2.4002
K=3, A=.50 ‘ K=3, A=.50
.44 2.1572 3.7576 4.6502 .7906 2.0710 3.4331 5.0995
.67 1.0331 2.1839 3.3917 4.2796 4.6762 .0000 1.2464 2.2379 2.8148 3.9145 -
1.00 .6040 1.4808 2,3435 3.1461 3.8496 .2222 .B727 1.6505 2.2304 2.9658
1.50 .4939 1.2570 1.9361 2.6181 3.1P60 .1333  .6862 1.4193 2.0923 2.6452
2.25 .5304 1.1760 1.8682 2.2840 2.8038 .2595 .9927 1.4305 1,9776 2.5138
3.38 .4552 1.1332 1.6755 2.3222 2.7550 4240 .9194 1.5243 1.8893 2.4630
5.06 .4940 1.0801 1.68E5 2.1657 2.7569 .4329 .8559 1.3859 1.9873 2.5174
7.59 .3775 1.0029 1.6789 2.2435 2.7378 .4683 1.0987 1.3360 1.8157 2.5915
11.33] .4938 1.1011 1.6307 2.0799 2.78224 .2981 1.1815 1.3571 2,0548 2.5919-
K=3» A=1.0 K=9, A=1.0
" .44([3.9204 5.3177 2.6400 4.2282 S5.2869
.67|1.7627 2.8075 3.9441 5.0438 .7982 1.8799 2.9796 4.1874 5.1159
1.00| .8969 1.7525 2.6293 3.3965 4.1991 4.7542) .1615 1.0949 2.0000 2.7778 3.1879 4.2627
1.50| .5250 1.2341 2.0514 2.6403 3.3854 3.7850| .0263 .7834 1.5887 2.2136 2.8867 3.4756
2.25| .508! 1.0389 1.6517 2.3356 2.9320 3.5011) .1360 .7598 1.3617 2.0292 2.6420 2.9813
3.38| .3056 .9678 1.5832 2.2664 2.8035 3.2363| .1543 .7958 1.3381 2,0995 2.4958 2.9756
5.06| .4045 ,9447 1.6608 2.1144 2.6623 3.2453) .3714 1.0135 1.4671 2.0125 2.7515 3.0522
7.59| .4046 .9013 1.5872 2.1949 2.7446 3.2540| .3567 .7652 1.4258 1.8957 2.6211 3.0094.
.3753 .9377 1.5558 2.2023 2.7268 3.2337| .2749 1.0730 1.6401 2.2073 2.7092 3.1258

11.39
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CHAPTER 2

r-MINIMAX RULES FOR PARTITIONING
TREATMENTS WITH RESPECT TO A CONTROL

2.1 Introduction

In many fields of research one is faced with the problem of
comparing k experimental categories with reference to a 'standard’
or a 'control'. Following the initial investigation by Paulson
(1952), this problem has been studied in several different formulations
by Dunnett (1955), Gupta and Sobel (1958) and Lehmann (1961) among
others. Tong (1969) has studied a problem where the treatment
populations are to be partitioned into two sets, one consisting of
‘better' populations and another consisting of ‘worse' populations.
Later Randles and Hollander (1971) applied r-minimax principle to the
same problem.

- Let w denote the k experimental categories or 'treatment'

1200

populations and let =, denote the 'control’ population. We assume that |

0
each population is characterized by a real-valued location parameter

ei (i = 0,1,...,k). We consider a problem in which the treatment

populations Myse--sm are to be classified as 'better' than, 'worse’

than or 'close' to the control r, if the corresponding parameter

0
values are much larger than, much smaller than or sufficiently close



to the value of 85 Similar problems have been considered in

Bhattacharyya (1956,1958) and in Seeger (1972) when 6 .+ 58 are

0"
means of independent normal distributions. We apply the r-minimax
principle to this problem. TI-minimax principle is known as one of
the techniques for the use of incomplete prior 1nfdrmation. It is
assumed that although a prior distribution on the states of nature
is not available, it is known to belong to some family, I, of
distributions. It then requires the decision maker to select a
decision rule which minimizes the supremum of the overall Bayes risk
over distributions in r'. Such a rule is called a r-minim.x rule.
Such a principle was first used by Robbins (1951) and independently
by Hodges and Lehmann (1952) and Menges (1966). The name T-minimax
was first used by Blum and Rosenblatt (1967). This principle has
been applied to various problems by Jackson, O'Donovan, Zimmer and
Deely (1970), Solomon (1972a, 1972b), DeRouen and Mitchell (1974),
Gupta and Huang (1975,1977) ,Berger (1977) and Miescke (1979).
In Section 2.2 definitions and notations are introduced, and
a formulation of the problem is given. The loss function and the
incomplete prior are introduced. Results analogous to standard
ones on minimaxity are given to help find r-minimax decision rules.
| In Section 2.3 a r-minimax decision rule is derived for the
case in which %9 is known and a minimax decision rule is found for
the same case when a specific Toss functionvis assumed. A solution
is provided for the example in which 6gs---s0 are unknown means

of normal distributions.
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In Section 2i4’ the case in which the control population
parameter e is unknown is treated. Rules are derived which are
r-minimax among procedures for which the classification of the
i-th population depends oﬁ]y on X, and X0 where X« e oX) are
independent random variables representing populations TyseeesTyo
respectively. Specific examples are again given. One example is
to classify normal populations by their locations (means) wrt the
mean of a normal control population. Another 1is to classify normal
populations by their variances.

Section 2.5 consists of comparisons of T'-minimax rules with
Bayes rules wrt independent normal priors for the case of normal

populations with common known variance.
2.2 Formulation of the problem

Let X ,X;,...,X, be k+1 independent random variables representing

0
the control =

1°° k
0 and the k treatment populations LETRER respectively,
with X, having probability density function fi(x—ei) with respect to
the Lebesgue measure on the real line R where 6 €o® =R, 1i=20,
T,...,k. The random variables XO""’Xk may represent sufficfent
statistics or other statistics based on which we wish to make
statistical decisions. We assume that each fi<') (i = 0,1,...,k) is
symmetric about the origin and strongly unimodal, i.e., fi(') is
log-concave on the real line. Hence fi(x—ei) has the monofone
likelihood ratio (MLR) property. Obviously, we do not need any

is assumed known; therefore, it will be

observations from w. when 6

0 0
understood that, in such a case, the random variable XO is deleted from

our consideration.
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] XX ak where

(a1,...,ak) €a is

i
(&)

The action space G can be written as G

I

Gi = {1,2,3} for i = 1,...,Kk. The action a

to be interpreted in such a way that, for i = 1,...,k, the treatment
population s is classified as 'worse' if a; = 1, 'close' if a; = 2
and 'better' if a; = 3. The Toss L(8,a) incurred by the action a € G

for § = (84,64,...,6,) is assumed to be of the following form.

o)
k
L(g,a) = § Li(e.ay) (2.2.1)

where Li(g,aj) is defined below and denotes the loss in each
component problem incurred by the component action aj- For arbitrary
but fixed positive constants A and By such that Ay < by, WE define

five disjoint and exhaustive subregions RW’ RI s R RI s RB of the

1 2
real Tine R by R, = (-, -A2], RI] = (-Az,—A1), R. = [—A],A]],

CS

R12 = (A],AZ) and RB = [Az,w), anc define Li(g,ai) as in the next
table.

Table of loss Li(Q’ai)

ction ai
State of nature 1 2 3
8;76p € Ry 0 =3 21+a3
8,76, € RI] 0 0 24 (25 > 0,i=1, ,4)
65760 € R¢ %7 0 25 (2.2.2)
Vei~eo S R12 24 0 0
61'60 € RB _ z]+23 z] 0
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This loss function reduces to the one considered in Bhattacharyya

(1958) and in Seeger (1972) if o, = fp = Ly = gty = 1. Note that

1 3

the above loss function assumes the indifference zones in the sense

that we do not distinguish between the actions 1 and 2 (2 and 3) when

8.-6
i

€R (61—60 € RI , respectively). It should be pointed out

0 I

that'Bhatt;charyya (1952) considered this loss function to avoid

an irreqgularity of a similar loss function without indifference
zones. In fact, Bhattacharyya (1956) derived an admissible minimax
decision rule assuming a simple 0-1 type loss function when 6, is

assumed known and e],...,e are unknown means of normal distributions.

k
However, the irregularity of such a loss function has been pointed
out in the sense that the minimax risk does not tend to zero even
if the sample sizes increase indefinitely, and the same problem has
been studied afresh by Bhattacharyya (1958) with a loss function

of the type given in (2.2.2). '

For given x = (XO’Xl”"’Xk) consider decision rules of the form

8(x) = (Sl(x),...,dk(x)) ' (2.2.3)

where 6.(x) = (6,(1]x), 6.(2]x), 6,(3[x)) and, for j=1,2,3, &,(j|x)
denotes the conditional probability of taking action j in the i-th
component problem. Note that there is no loss of generality in

considering decision rules of the form given in (2.2.3). The risk
k
function of a rule ¢ for fixed 6 is then R{g,8) = .Z R'(-’ai) where

i=1 !

Ri(g’di) = Ee[Li(g,Gi(§))]. For a prior distribuiion t(6) of ¢, the

r.(r,éi)

e
overall risk of a rule § wrt t is denoted by r(t,8) = ) ;
i=1

where ri(T,si) = fRi(Q,éi)dT(Q).
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Suppose that partial prior information is available to a decision
maker such that, for each i, he can specify Yi = P[ei—eo € RWURB] and

y% = P[ei—e € RC] where Yi+y% <1 fori=1,...,k. Letr denote

0
the class of all such prior distributions, i.e.,

r={c(6): / de(e)=y. / dT(Q)=y% for (2.2.4)

i
61—6 €R, ,UR 8.-0,€R

0"W B i 07¢

Now our goal is to find a Tr-minimax rule 8* as defined below.

Definition 2.2.1. A rule 8* is a r-minimax decision rule if

sup r(t,6*) = inf sup r(t,8),
TEr § €T

and sup r{t,6*) is called the r-minimax value.
TEr

Many authors have found I'-minimax rules by finding Bayes rules
with respect to 'least favorable' priors in the class I'. However,
such a method was found not to lead to the solution of our problem;
the following results analogous to standard results on minimaxity

are found useful.

Lemma 2.2.1. Suppose {Tn, n=1,2,...} is a sequence of priors in T.

If Tim inf r(rn,é) > c¢.and if sup r(t,8*) < c, then &% is a I'-minimax
n § T€T

decision rule and ¢ is the r-minimax value.

Proof. The result is an immediate consequence of the following

inequalities.
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sup inf r(t,8) > 1im inf r(rn,a)
T€r 6 n §

Y
(e}

sup r{t,s*)
T€r

| v

> inf sup r(t,6)
§ <t€T

> sup inf r(r,q8).
€l §

The next result is uséfu] when we have certain invariance under a
finite group. Following Ferguson (1967), let G = {91""’9N}’ G
and é.denote the group of transformations on the sample spaceg%;‘
the induced group on the parameter space and that on the action

space, respectively.

Lemma 2.2.2. Suppose that a given decision problem is invariant
under a finite group. If gt € T for any t € T and g € G where
gr(B)

behaviorial decision rules 1is r-minimax.

r(é"](B)), then a r-minimax rule within the class of invariant

Proof. Let 61 denote the invariant rule generated from a given

N
rule s, i.e., GI(X,A) = %— ) a(gj(x), §j(A)) for each x € & and
j=1

A < G. Then clearly 61 is invariant, and

I 1 N g. g. .
sup r{t,6) = sup = 7 r(r,8 J) where s Y(x,A) = §(g.(x),g.(A))
T€r ter N §=1 J J
1 N
= sup i ) r(gjr,d)
'[‘ﬁl" j:]
1 (§.7.6)
< sup r(g.t,8
N j=1 ze€r J
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N
5_%— Y sup r(t,8) since gt € T for any T €T and g € G
j=1 re€r

= sup r(t,68).
T€r

This completes the proof.

It should be pointed out that our decision problem is invariant
under the symmetry about the origin, and that randomized decision rules
and behavioral rules are equivalent since the distributions of X's are

assumed to be continuous.
2.3 Known control

In this section eo is assumed known and thus we may assume 0p = 0

without Toss of generality. Hence x and ¢ in this section denote

(X1""’Xk) and (61""’9k)’ respectively.

Lemma 2.3.1. Suppose that a decision rule §(x) of the form in (2.2.3)

is determined by ¢.(1[x) = I

_wS-dj)(Xi), 5i(215) = I[_di’dij(xi) and
61(3|§) = I(d 00)(xi) for di >0and 1 =1,...,k. Then, for i=1,...,k,
.i’
sup ri(T’61> <y (2.3.1)
T€r

where, for i = 1,...,k,

ry = é. Loy fs(xan ) oy s (FL (k0 D4 (08 ) )4, (T-y v )
| | £ (x*a,)]dx

d.
i
+_£ g]yifi(x—Az)dx.

Proof. It follows from (2.2.2) that, for 0; < ~dos
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[ee] x>

5858, o {d fi(x—ei)dx t g é fi(x—ei)dx
i .

v
—
D

-
(o)
~—
1

i
[ee]

fi(x+A2)dx+z3_£ fi(x+A2)

i i

dx

d.
1 =5
= i fi(X-Az)dX+23 / fi(x+A2)dx by the symmetry of f.(-).

d,
i

In a similar manner it can be shown that

d.
1 co
<& / fi(X-Az)dX+23 / fi(x+A2)dx for o, > 4,,
R.(6,6.) -e d,
it .
22y £ f1<X+A1)dX for by < |6j|<A2.
1 -d.

1 [ee]
If Ay < 04 < Ay, then Ri(g’éi) = QZ[{m fi(x—ei)dx+£ fi(x—ei)dx],
i

therefore, Ri(g’éi) = ZZEfi(di_ei)_fi<_di_ei)]

fi(ei"di)
b B 05t e mray 1

where R% denotes the derivative of Ri w.r.t. 0.

It follows from the MLR property of fi(x-ei) that R%(g,&i) has at most
one change of sign, from negative to positive if there is any sign
change at all; therefore, Ri(g,ﬁi) attains it supremum over

ei € [-A15A1] at either ei = —A] or ei = A]. Hence it follows from

the symmetry of fi(') that, for 0, € [-A],A]],

Ri(Q’Gi) < 2y £ [fi(x-A])+fi(x+A])]dx.

i

It follows from (2.2.4) that sup r.(7,8.) < r..
cep i’ =i
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Now we derive the r-minimax rule in the following result.

Theorem 2.3.1. Assume that independent random variables XT”"’Xk
have strong unimodal symmetric p.d.f's f](x]—e]),...,fk(xk—ek),'
respectively, and that the loss function is given by (2.2.1) and
(2.2.2). Then the r-minimax rule §* is given by 6?(]]5) =

I(—m,—di)(xi>’ 5?(2[5) = I[_d:,di](xi)and 6?(3]5) = I(di,w)(xi) for

i =1,...,k where each di is determined by di = c: = max(ci,O) with

o being defined by

Q3Y1fi(X+A2)+22Y%(fi(x'A])+fi(X+A]))+24(]_Yi~Y%)fi(x+A])

(2.3.2)
< > Zlyifi(X—AZ) as X >, < Cj.

Proof. We first show that the decision rule ¢* is well defined by
verifying the existence of a c, satisfying (2.3.2). Note that the

difference between both sides in (2.3.2) can be written as

x3yif1(x+A2)+22y%(fi(x—A])+fi(x+A]))+z4(1-y1-y%)fi(x+A])—z]yifi(x—AZ)

i (xta,) filx-ay)  f

. . 5 (x+aq)
= fyxap)legy Fxa,) Lavile

1.(x-AZ) * fj(X—Az)

)+24(]_Y1'Y%)

f.(x+ta,)
1 ] - ].
fj(x-A2$ 1Y4-*

Then the existence of such a oy follows from the MLR property of

fi(x-ej). Consider a sequence of prior distributions {rn} of o

under which eq,...,8, are independent, P(61=A2) = P, = -AZ) = v./2,

1 1

— _ _ — 1 _ “] — - —] -

P(Gi—A]) = P(ei = -A]) = vi/2 and P(ei = -0q-n ) = P(ei—A1+n ) =
-1

(1-Yi—y%)/2. Then clearly T, €T for n » (AZ—A]) , and the overall
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risk of the Bayes rule wrt T for the i-th component problem can be

written as, for i = 1,...,k,

1gf ri(Tn’Gi) = [ p_(x)dx,
.i - 00

where pn(x) = %~min{pn(1,x), p(2,x), pn(3,x)},

o (1x)=0,73 (£ (x=a) 4 (b ) 4y (v vl )F (xmdg= 1)

(2q%e5)v,f5(x-0,),
p(2.x) = 2y, (F, (x+8,)4F_(x-0,)) and |
p(3:5) = (#2050 (v )4y (T -y ) vyt ey

(fi(X+A])+f1(X—A])).

Since strongly unimodality of fi(') implies the continuity of fi(')’

pn(x) converges, as n » «, to p(x) = %— min p(j,x) where p(2,x) is
1<j<3

defined as above,
D(T,X) = QzY%(fi(X'A])+fi<X+A]))+Q4(]'Y1—Y%)fi(x‘A])+(2]+23)Y1f1(X"A2)

and

P(3,X) = (2]+23)Yifi(X+A2)+24(]“Y1'Y%)fi(X+A])+£2Y%(fi(X+A]) +

Since pn(x) is bounded above by p(2,x) which is integrable, it follows
from the Lebesgue convergence theorem that

Tim inf ri(rn,éi) = [ p(x)dx = %—f min  p(Jj,x)dx. (2.3.3)

n G.i -0 - ]iJi3
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Furthermore, it can be easily shown that, for any a > 0, fi(x—A)—

;
x > 0, <0. It follows from (2.3.3) that

fo(x+a) > 0, < 0 as x > 0, < 0 and therefore p(1,x) >, < p(3,x) as

o

0
Tim inf ri(Tn’éi) = %—f min  p(j,x)dx + %—f min  p(Jj,x)dx
nooe, ~o 1<j<2 0 2<j<3

= émin[23yifi(X+A2)+24(]—y1-yi)fi(X+A])+ (2.3.4)

zzy%(fi(x+A])+fi(x4A])), 274 f (x—AZ)]dx

i
0
+ [wxlyifi(x-Az)dx.
The second equality in the above follows from the fact that p(1,x) =
p(3,-x) and p(2,x) = p(2,-x). It :oliows from (2.3.2) and (2.3.4) that
Tim inf ri(Tn’Gi) = £'[23yif1(x+A2)+z4(1—yi~y1)fi(x+A])+22y1

n S,
1 1

(fi(x+A])+f1(x—A]))]dx

d.
i
+ {m z]yifi(x—Az)dx
> sup Ti<T,5?) by Lemma 2.3.71.
T€T
Therefore,
o k
Tim inf T(Tn,é) = Tim _Z inf ri(Tn’ai)
k
> ] sup ri(t,6%) (2.3.5)
i=1 7ér

sup r{t,s*%).
T€r

|v
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Here, the first equality folliows from the fact that the Bayes rule
consists of the Bayes rules for the component problems. Lemma 2.2.1
then yields that the decision rule &* is r-minimax among all decision
rules.

We can derive a minimax rule using the proof of the above result.
For this purpose, assume that 2 T 8y =0y T 1 and Ly = &< 1. Let
us consider a rule sM of the type given in Lemma 2.3;1 where eéch di

X
is determined so that, for Fi(x) = fi(t)dt,
Foldi=n,) + oF.(~di-ap) = Fu(-do-aq)+F, (~d*ag). (2.3.6)

Note that the existence of such a positive di follows from strong
unimodality and the symmetry of fi(')' Let us define ¥ and y%:]—yi

for each i = 1,...,k by

Y1l= [fi(di_A])+f1(di+A])]/[fi(di—AZ)—Zfi(di+A2)+f1(di_A1)+fi(di+A])]‘

Since Y; € [0,1], we can consider a family of priors, r given in
(2.2.4). Then it follows from Theorem 2.3.1 that the corresponding

r-minimax rule is of the same type as 5M except that now d? = max(ci,O)

where Ci is determined so that

H(C_]) = 'Y_i[,Q.'f:_i(C_i‘f'AZ)—f_i(Ci-AZ)]"'Y.'i(fi(c.i'A])','f.i(C1+A])) = 0.

Since H(di) = 0 and di > 0, dﬁ = di’ i.e., the rule 6M is the r-minimax

procedure ; therefore it follows from (2.3.5) and (2.3.1) that, for

some sequence of priors,
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ok
1;m 1gf r(t,»8) z_igl V[P (dimy)  + 2F (=dy=0,) Ty i [F (-dy-ag )+
) Fi(—d1+A])]
k
= L sup Ri(g,am)
iZ1 o

sup R(Q,éM).
0

| v

The last equality in the above follows from similar arguments as in
the proof of Lemma 2.3.7. Therefore, we have the next ger~ral result

which includes Bhattacharyya's (1958) result as a special case.

Corollary 2.3.1. Under the assumptions in Theorem 2.3.1, if £]=£2=24=1

and 2,=2 < 1, then a minimax decision rule &' is given by 5?(1|§)

M ) . M _
I(~w’_d1)(xi), 55(2]x) = I[-di,di?('i) and 6.(3[x) I(di,w)(xi) where
each d, is determined by (2.3.6).

The following example illustrates the application of these results.

Example 2.3.1. Suppose s represents normal population N(ei,oz) for

i=0,T,...,k with %9

of size n, is taken from each of the k populations LFLPYRRRRLIS By

and 02 known. We assume that a random sample

sufficiency we can restrict our attention to the decision rules
depending only on the sample means XyseeosXy where X; has normal distri-

. . . 2 .
bution with mean 61 and variance oy = oz/ni for i = 1,...,k.

(A) r-minimax rule: Application of Theorem 2.3.7 yields the r-minimax

decision rule §* of the type in Theorem 2.3.1 with X578 replacing

X5 and di being oimax(ti,o) where ti is determined by



.

2{x, €. )t —2e.(t.-r.) -2x,(t.-€.)
e 1 1 1+12Y%[e 11 1 te 11 1 J+24(]'Y1“Y%)

-2xn. (t.-€.) ,
e 1 (2.3.7)

“where Ai + ei = Az/oi and xi—ei = A]/Gi for i =1,...,k.

(B) Minimax rule: We assume 89 = kg = 8y = 1 and fy =8 < 1. Then a

M

minimax decision rule & is of the type in Corollary 2.3.1 with X;=04

replacing X; and d1 being Oiti where ti is determined by
@(ti—xi—ei)+z®(—ti~ai~ei) = @(—ti—xi+ei) + @(-ti+xi—ei) (2.3.8)

with As and Ei defined as in (A).

2.4 Unknown control

In this section we will consider the case when 60 is unknown and
will derive a r-minimax decision rule &* in the class @O of decision
rules § = (6],...,6k) for which 5 depends only on XO and X, .

We state the following well-known lemma of Ibragimov (1956).

Lemma 2.4.1. The convolution of two strongly unimodal probability
density functions is also strongly unimodal.

It follows that the pdf of Yi = Xi-X given by

0

oo

g'(Y'(ei“eo)) = f fi(X+Y'ei)f

; (x-8)dx, (2.4.1)

0

is strongly unimodal and symmetric about the origin. The next result

follows from this fact and Lemma 2.3.1.
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Lemma 2.4.2. Suppose that a decision rule §(x) is defined by -
ai(]|§) = I<_m,_di)(x1—xo), 61(215) = I[_di,di](xi-xo).and Gi(3l§) =

for d. > 0, 1 = 1,...,k.

e
=
(4]
jun
-
—+
o
s
-
&
pa—
-
-
~ -
-

sup ri(r’é‘) < v, (2.4.2)
where, for i = 1,...,k,

Py = é'[23Y191(Y+A2)+22Y%(91(Y“A])+91(Y+A]))+Q4(]“Yi'Yi)91(Y+A])]dy
;

d.
i :

- F Img]ngi(y'Az)dy'

We now proceed as in Theorem 2.3.1 by considering the following
sequence {rn, n=1,2,...} of prior distributions.

Under T, (i) 61'60""’ek_00 are independent,

(ii) P[61-80=A2] = y./2 P[ei-eo —A2],

P[ei—60=A]] = y%/Z = P[ei-eO = —A]],

- 1
P[ei—e = -hy- n] and

_ 14 _ o
PLo,-00=8y% 1] = (T-v4-v4)/2 0

(i11) e, has uniform distribution over [-n,n] and is

independent of e]—eo,...,ek—eo.

It can be easily shown that the Bayes rule in QO w.r.t. L is determined
by Bayes rules for component problems and that the Bayes rule for the
i-th component problem depends on x only through X; and X It follows

from simple computation of the posterior risk of each possible action
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that the overall risk of the Bayes rule for the i-th component

problem is given by

[es] [os]

. 1 '
inf ri(Tn,Si) =f | Zﬁ-pn(s,t)dsdt
568, —e

where  p (s,t) = min{p (1,s.t), pn(Z,S,t), Pn(1,-5,-t)},

n
Pn(1,s,t) = 2,1} [ani(S‘U"A])+f1(S-U+A1)]fO(t-u)du +
y 1
+ 24(]‘Yi~Y%)—£ fj(s—u—A]- ﬁ)fo(t—u)du +
n
+ (z]+23)y _f f (s—u—AZ)fO(t—u)du and
n
Pn(Z,S,t) = R]Yi _£ [fi(S‘U+A2)+f1(S‘U“A2)1f0<t-u)du.

From change of variables s = nv-w and t = nviw, it follows that

inf r'(Tn’Gi) =[ f %—pn(nv~w, nv+w)dvdw
6&.;90 —c - .
(2.4.3)

1
> [ 0 -% pn(nv—w, nv+w)dv]dw.

Note that hn(v,w) = pn(nv—w, nv+w) can be written as

hn(v’w) = m1n{hn(1,v,w), hn(a,v,w), hn(1,-v,-W)}

n(v+1)

o3 n(v_1)[fi(z~w—A])+fi(z-w+A])]f0(z+w)dz +

where hn(l,v,w) =9

n{v+1) 1
+ 24(]~Y1-Y%)f( ])fi(z—w—A]~ ﬁ)f0(2+w)dz +
n(v-
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n(v+1)
+ (z]+23)y1 f

f.(z-w-0,)f (z+w)dz and
n<V~1) 1 2’0

n{v+1)
hn(Z,V,W) = Z]y. f

A, [fi(z—w+A2)+fi(z-w—Az)]fO(z+w)dz

Furthermore it is easy to see that, for any (v,w) € (-1,1)xR, hn(v,w)
converges to h(w) = min{h(1,w), h(2,w),h(1,-w)} where

(oo

h(1,w) = sz% / [fi(z—w—A])+fi(z—w+A])]fO(z+w)dz +

z+w)dz +

-+
—

. / fo(zow-0,)f

i’ O(

+ (£]+23)y1 {mfi(z~w—A2)f0(z+w)dz and

N(2aw) = vy [ LF; (2w )4F  (2oueny) 1F o (20)dz

Since hn(v,w) is bounded above by h(2,w) which is integrable, it

follows from (2.4.3) and the Lebesgue convergence theorem that

| v

lim inf r.(t_,6.) > { h(w)dw
nses it'n*°y -
(2.4.4)

5/ mintp(1,y),p(2,y),p(1,-y) by

where p(]SY) = ng%[gj(Y'A])+gi(y+A])]+24(]”Y1"Y%)91(Y'A]) +
(2]+23)Y191(y—A2) and
p(2,y) = 2yv;L9;(y+a,)4g, (y-4,) 1.

The identity in (2.4.4) follows from (2.4.1) and a change of
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variable. Since p(1,y) >, < p(1,-y) as y > 0, <0, (2.4.4) yields

that

lim_inf ri(Tn’éi) i_fmin[23Y191(Y+A2)+24(]-Y1‘Y§)91(y+A1) +
n 66£0 0

275 (g (y+ag )49 (y-09))5 297495 (y=8,) Jdy +
(2.4.5)

-0
+ f Q]Yigi(Y“Az)dY-

-0

_ Now consider a decision rule 8* defined by 6?(1!5) = I(_w _d )(x.—x
S
* o — * = - 1=
61(2|§) I[—di,di](xi xo) and 61(3|§) I(di,w)(xi xO) for i=1,...,k
where each di is determined by di = max(cj,O) so that

273595 (V#85) 42575 (95 (y=07 )49 (y+ay) )+, (v =y 19,5 (y+ay)
(2.4.6)
<52 2495 (y-ay) asy >, < ey :

From Lemma 2.4.1, Lemma 2.4.2, (2.4.5) and (2.4.6) it follows that

. N
1im inf ri(Tn,di) > sup rj(r,dj),

n 6&@0 TET
and this in turn implies that
T T ] (c01)
Tim inf r(z_,8) = 1im inf o orL{t_,8;
no§€s n n i1 seg, ' "7
0 0
) (v 6:)
> lim inf r.(7 .6,
TElTn seyy M
k
> 1 sup ry(e,6%)
i=1 ter

Iv

sup r{t,8%).
T€r
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Lemma 2.2.1 then yields the next result.

Theorem 2.4.1. Assume that independent random variables X <X

00
have strongly unimodal symmetric pdf's fO(xO—eO),...,fk(xk-ek),

k

respectively, and that the loss function is given by (2.2.1) and
(2.2.2). Then the r-minimax decision rule &* 1na§0 is given by

SO = T gy (. ox) S5@1%) = Ty 4 7(x47xg) and
P00 7%
I(di,w)(xj_xo) for i =1,...,k where d, = max(ci,o)

1

s%(3]x)

with c. being determined by (2.4.6).

Remark 2.4.1. Note that the symmetry of fi(') can be replaced by

the symmetry of 91<') for Theorem 2.4.1 to hold. It can be easily

shown that the relation (2.4.4) holds without the assumption of the

symmetry of fi(')' Then all the steps after (2.4.4) still remain true

provided gi(-) is symmetric. It should also be pointed out that the

symmetry of gi(-) follows when fo(-), f](-),...,fk(~) are identical.
The next result follows in exact]y-the same manner as Corollary

2.3.1 was proved..

Corollary 2.4.1. \Under the assumptions in Theorem 2.4.1, if

Ly = o = 24 = 1 and fy = & < 1, then a minimax decision rule 6M

. M _ M =
ing, is given by 61(]]5) = I<~m,_di)(x1—x0), 5i(2‘5) I["di’d1]

M _ - =
(xi—xo) and Gi(3!§) = I(di,m)(xi xo) for i = 1,...,k where di > 0

X
is determined so that, for Gi(x) / gi(t)dt,

Gi(di—A2)+£Gi(—d1—A Gi(—di—A])+Gi(—dj+A]).

2)
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We illustrate the application of the above results by the following

examples.

Example 2.4.1. Consider the same problem in Example 2.3.1 except

that 6. is unknown. In this case a random sample of size o is also

0
taken from the control T Let XO’X1"“’Xk denote the sample means

corresponding to Moo ety respectively. Here, Og = Oz/no-

(A) r-minimax rule: The r-minimax rule &* in Y given in Theorem

2.4.1 is determined by d. = (c§+og)‘

Rl

max(tj,O) where ti satisfies

: 2, 2\-% 2 .-
(2.3.7) with At g S A2(01-+GO) 2 and A -€; = A](o1~+00) 2,

(B) Minimax rule: Assume By = 8o =8y T 1 and oy = 0 < 1. Then the

minimax rule 6M in 8 given in Corollary 2.4.1 is determined by

2.2
d; = (oy*ag

defined as in the above. This offers a partial solution of the

1
)?ti with t, satisfying (2.3.8) where A and ¢; are

problem in Section 5.1 of Bhattacharyya (1956).

Example 2.4.2. Assume that ms represents normal population: N(0,0?)

for i = 0,1,...,k with 0? unknown, and that we have a random sample
of size n taken from each population s Consider a problem of
partitioning the treatment populations in terms of variances
o%,...,oi with a loss structure analogous to that given by

(2.2.1) and (2.2.2), i.e. a loss function obtained from the latter
by substituting log c?, Tog Ay and log As for 05 By and Bos
respectively. Thus By and Ao here are assumed such that 1 < Ay < By
By sufficiency we need to consider only the decfsion rules depending

on S%,...,Si where S? denotes the sample variance corresponding to
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- Since nS?/o?(i = 0,1,...,k) are independently distributed chi-
square random variables with degrees of freedom n, it can be easily

seen that the associated location parameter problem satisfies the
assumptions in Theorem‘2.4.1 except the symmetry which are not necessary A
in this problem because of Remark 2.4.1. Therefore, with obvious
modifications we have the following results.

Let ¥, denote the class of decision rules § = (6] ..,6k) for which

N w
.

for 1 =1,...,k.

-
oM

5, depends only on sg and s?, and tet Ti denote s./s

(A) r-minimax rule: A r-minimax rule &* in SO is given b~

s¥(1]T,) = 1 (T2, s%(2]T.) =1 _ (T.) and 6%(3]|T.)
i i (O,d.]) i 1 1 [d.],d.] i i i
i i i
I(d 00)(Ti) for i = 1,...,k. With each di being determined by

di = max(ci,l) so that

n . n
Aaty Anty Anty Ay Anty Ay 5
2 n v 2 0\n, "2 N, 1,2 (2 n,"1,2
b by ) il T gy (G S (v () (@)
(2.4.7)

< >y as Y 2, < Ch.

(B) Minimax rule: Assume By = o =2y 0= 1 and fy =2 < 1. Then the
minimax rule 6M in 84 is the same as §* in (A) except that di = d

for i = 1,...,k where d is determined so that
(2.4.8) Gn(d/A2)+z[1-Gn(dA2)] = Gn(A]/d)+]—Gn(dA])

where Gn denotes the distribution function of F-distribution with
degrees of freedom n and n.
We note that if m, represents N(pi,of) with both M and o? unknown,

then the above results still hold with n-1 replacing n where s? in
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such a case is the best unbiased estimator of 0?.
2.5 Comparison of r-minimax rules with Bayes rules

When we represent our a priori information about the parameters
by prior distributions over the parameter space, one method for the
use of such information is to_find a rule which is r-minimax with
respect to the class of such priors. Another way is to select one of
such priors‘and use the corresponding. Bayes rule. Thus Bayes rules
wrt prior distributions in r are natural competitors for a r-minimax
rule.

In this section we consider k+1 normal populations N(ei,oz) with
02 known, and will derive Bayes rules wrt a normal prior and then
we compare them with the corresponding r-minimax rules from both
points of view. Assume that (eO,...,ek) have prior distribution T

under which

(1) 8s-- -0y are independent and
(2.5.1)

(ii) each 0. has a (marginal) normal distribution with mean My and

. 2
variance v..

Let x denote the sample means based on samples of size n.

000X
(i = 0,1,...,k). To simplify forthcoming formulae, let us introduce

the fo]]owihg notations.



m, = (ofzx.+v72u.)(otz+v;2)'1

i R A B RS » Yy T (m.—mo)/b :

The following theorem describes the Bayes rule.

Theorem 2.5.1. Assume the prior =

0
the Bayes rule 68 wrt T is given by 6?(]|¥) = I(_oo -d )(yi),
R |
s2(2ly) = 1 (v;) and 65(3]y) = 1
i [-d;,d,TY4 iy (d,
where each di = max(cj,O) is determined so that

23®(—A1—€1—y) + 24[¢(-xi+ei—y) - @(—Ai*ei—y)]
+ 22[®(Ai—Ei—y)—Q(-A1+Ei—y)] - Z]Q(—A1—61+y)

>0, <0 as vy 3-Ci’ y z_ci

,w)(yi) for i =1,...

as specified in (2.5.1). Then

with ¢ denoting the distribution function of N(0,1) distribution.

70

(2.5.2)

(2.5.3)

Proof. It suffices to find the Bayes rule for each of the k component

problems. This reduces to comparison of posterior risks of three

possible actions. Let p](yi), pz(yi) and p3(y1) denote the posterior

risks of action 1,2 and 3, respectively, in the i-th component problem,

then it can be shown that

P1(y) = (eqtagle(-a;-€ty)ta, lo(h+e;-y) - o (hy-€4-y) I

+ 12[¢(xi—ei—y) - ¢(~xi+ei-y)],

o
N
—
«
—
1]

z][®(—xi—€i-y) + @(—Aj—61+y)] and

=i
w
—_
<
~—
1

= p]('Y)-
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Note that p,(y)-p,(y) can be written as E H(z) where Z has normal
1 3 N

distribution with mean y and variance 1 and H({-) is given by

r .
2t if z 3_A1+€1
4 if A.-€. <z < ALFE,
4 i i i
= if -3 .+ -
H(z) % 0 if -aHe, <2 <€
-2 if -x.-€, < z < - t€,
i i i i
(e +2,) i -x.-€..
X (21 23) if 2 < -h-€

Since the density of normal distribution N(y,1) has MLR property,

it follows that p](y)—p3(y) has at most one change of sign. Furthermore,
it can be shown that'p](y)—p3(y) is increasing on ("Ei’ei) and
p1(0)-p5(0) = 0. Thus p;(y)-ps(y) > 0, <O asy>0,y=<0.

Similarly, we can show that p3(y)-p2(y) >0,<0asy=<cs,y>c, for
some real number c. unless p3(y)~p2(y) < 0 for all y. Therefore the
result follows.

Thus comparison can be made between the r-minimax rule §* given
in Example 2.4.1 and the Bayes rule 68 given in Theorem 2.5.1 under
the relations v, =®[(-A2+ui~u0)(V§+VS)_%]+®[(—A2~U1+uO)(V§+YS)_i] and
Vi = o8y ug) (Vi) E 1o (-0 - ug) (vEvE) R1. e compare
these rules under the assumption that B = ko = 2y = 1, Ly =4, n, =n
and v? = VS for i = 1,...,k. There are two ways of any meaningful
comparison of these rules. One way is to examine the increase in
overall risk wrt 0 resulting from the use of the Ir-minimax rule.

Another way is to compare these rules in terms of sup r(t,8). When
TEr
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n. = n and v? = vg, the Bayes rule depends on x only through

;
k
Xy=Xnse-.sX ~X, and it can be shown that sup Y(T,GB)= 7 osup r.(r,55).
170 k 70 c s i 1
&l i=1 té€r

Thus it suffices to compare these rules with respect .to classification
of one population. We choose Gy for this purpose without Toss of

generality.

Now we introduce the parameters used in the comparison as

follows.
2 2
VYo . ™ _Apthy 8oy _H1THg
B =5 =5, B - » B = and B = .
1 2 2 2 5 3 5 4 5
% ¢ 2/2v 2/?v0 2vy

The overall risk wrt Ty of these rules can be written as
29(~-A-B-C) + ¢(A-B-C) + o(D-E) + 2o(-D-E)
- @O(-A-B-C,—D—E;p) + (]—Q)¢U/—A-B—C, D-Ejp)

A-B-C,-D-E;p)

@O(—A+B-C,D—E:p) + @0(

@O(—A+B-C,—D—E;p)—@O(A—B—C,D—E;p)

+ @O(—A+B—C,D—E;p)—@O(A—B-C,—D—E;p)

@O(A+B -C,D—E;p)+(1—z)®O(A+B—C,—D—E;p)

where @O(-,-;p) is the cdf of a bivariate normal distribution with

zero means, unit variances and correlation coefficient o, A=52, B=53,

L
B and §*, D = d]B] = for 68,

max(t1,0)(1+8]) = for 6*, E = p ]34 for GB and E = P8y for &* with

C =y 0= B%(1+B1)'§ for both &

D
d] and t] being those in Theorem 2.5.1 and in Example 2.4.1. Also

sup r](r,S]) for both rules can be written as
€l
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viLo(R+[S|-T-U) -0 (-R+[S|-T+U)+eo(-R+|S[-T-U)]
* Yi[®(-R-S+T—U)+®(—R+S-T+U)]V[Q(—R+S+T-U)+¢(-R-5-T+U)]

+ (1-yi)@(—R+]Sj-T+U)

' 1 1
where xvy = max{x,y), T = 8287, U = 84 % for both GB and &%,

]

S = 64655 for 68, S=0 for §*, R

I

-2 1
812(1+B])2d] for 68, R = max(t],O)
with d] and t] being those in Theorem 2.5.1 and in Example 2.4.1.
Note that Y1o M and 61 in Theorem 2.5.1 can be written as
By xxg By — —
= — — + > Ay T 82/1+B] and E] = 53/1+s]. Thus the
/1+3] V2 o/vn /1+e]

Y

constant d] does not change for the different values of Byg when 818,
and By are fixed. Particularly, if g = 1, then d] is easily found to
be 32/1+s] which does not vary for different values of B3- Table IV

. _ B _
and Table V give r](TO’GT) and sup r](T,él) for 81 = 67> 63 for ¢ = 0

T€r
and ¢ = 1, respectively. As by products they also provide the constants

to implement these rules. It can be observed from these tables that
the increase in overall risk wrt T from the use of &* is only slight
compared to that in sup r](r,d]) from the use of 68. In this sense,
§* is more robust agg$ast other formulation. As it can be expected,
such a robustness of §* becomes more prominent as the difference
between the prior means (34) increases and the prior variance (3])
gets smaller. When the prior variance is large and we have the same
prior means, both rules compare favorably with each other. In many

cases, we can observe that the r-minimax decision rule compares

favorably with the given Bayes rule in terms of overall risk.
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CHAPTER 3

- SELECTION PROCEDURES FOR A PROBLEM IN RELIABILITY
AND FOR A PROBLEM OF SCALE PARAMETERS

3.1 Introduction

In this chapter we discuss two selection problems, one arising
in reliability theory and another for symmetric scale parameter
populations. The first problem deals with an g-out-of-m system
where m components are to be placed and at least 2 of them should
function to make the system work. In many situations several brands
(populations) of components are aviilable from which we need to
choose m components for a system. Note that it is allowed to draw
more than one component from a population. It is assumed that
the lifelength of a component from population s is exponentially

1 for i = 1,...,k and that the components

distributed with mean A;
in the system are statistically independent. Brostrom (1977)
considered the T-out-of-2 system when only two populations are
available. He assumed a loss function depending on (A],AZ) only
“through A]/AZ so that the problem is invariant under the scale
transformation, and then studied the admissibility and the minimaxity
of some rules. In Section 3.2, we consider two cases; (A) m-out-of-m,

i.e., series system and (B) 1-out-of-2 system when k(k > 2) popula-

tions are available. We assume a loss function inversely proportional
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to the expécted 1ifelength of the system, and derive a uniformly best
decision rule among the permutation invariant rules for the series
system and a Bayes rule wrt a natural conjugate prior for the 1-out-
of-2 system. Tables to imp]emént the Bayes rule are provided at
the end of this chapter.

The second part of this chapter consists of the investigation
of the selection procedures for scale parameters of symmetric distri-
butions. Contribdtions for this problem have been made by Puri and
Puri (1969), Blumenthal and Patterson (1969), Gupta and McDonald (1970), .-
Bhapkar and Gore (1971) and McDonald (1977) among others. Since ranking
the populations with régard to scale parameters is equivalent to ranking
them in terms of measures of dispersion, we can consider selection
procedures based on estimators of measures of dispersion. In
Section 3.3, we consider two problems; (A) selection of the t 'best'
populations under the indifference-zone approach, (B) selecting a
subset containing the 'best' population. We consider selection
procedures based on the p-th power sample deviations and on the
trimmed standard deviations for problem (A), and derive a large sample
solution of the sample size required by the basic probability condi-
tion. Asymptotic relative efficiencies of the procedures in (B) are
shown to be the same as those in (A) as well as those of the corre-

sponding estimators of Bickel and Lehmann (1976).
3.2 Some selection problems arising in reliability theory

Let = STy (k > 2) denote the available populations (brands)

10
and assume that each component from ms has an exponentially distributed
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1

lifelength with mean lifelength A; for i = 1,...,k. Based onn

independent observations X.q,....X. from each =, (i=1,...,k), we
want to find an 'optimal’ selection rule assuming a suitable loss

function. By sufficiency the problem can be reduced to the one based
n
on Xq,...,X, where X. = )} X.. has gamma distribution with mean
1 k 1 j=1 1] .

-1 . -2 . .
i and variance L Throughout this section Tet x[1] 5"'5-X[k]

denote the ordered observations x],...,xk, and n(i) and A(i) denote the

m and the A associated with X[i] for i = 1,...,k. Given x

(x .,xk), the posterior risk of a decision rule 6 will »2 denoted

100
by r(s,x).

(A) The series system

Here we denote the action space by G = {(11,...,1m):
1< 11 53"5-im < k} where (1],,,,,i“) is to be interpreted as the
action of drawing the j-th component from T for j =1,...,m. For
the series system the expected lifelength othhe system for the

m
action (1],...,im) is easily seen to be ( ) As )']. We will consider

=1 J
a loss function which is inversely proportional to the expected life-

length corresponding to an action, i.e., loss function is assumed to

be

. .
i) = ). (3.2.1)

Thus the posterior risk of a decision rule §, which leads to an action

(i],...,im) € G with probability 1 is given by
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S
= (nyse.oondiong 2> g > 1, jZ]
are integers} and let a A b = min(a,b). The next result leads to

=m, n.'s

Let N, = {n n; ;

S
considerable reduction in the number of decision rules to be

compared for the Bayes rule when the prior of A is assumed to be

permutationally symmetric.

Lemma 3.2.1. If the prior distribution of A is permutationally sym-

metric on (O,w)k, then the Bayes rule ¢* is determined by

r(s*,x) = Min Min r(sn »X) (3.2.3)
1<s<kam QSENS -s ‘

where GQS se]gcts an action of drawing nj components from T (k-3+1) for

J=1,...,5.

Proof. For s =1,...,k Am, let us define ug to be ag = {(1],...,15;

n],...,ns): ng € No» 1 =15

(1],...,15; n],...,ns) is interpreted as drawing nj components from

< k, ij 1 ij, for j # j'} where

7. (j = 1,...,5). Note that the action space ¢ can be partitioned
into kam components G (s = 1,...,kam) where we should choose s
different populations for m components. Again, G  can be written as

G.= U G. whereg_ ={(iq,...,7_): (Tqsccsi s nyseeiyn Ye ¢*}.
neN s ng 1 1 s’ 1 s s

The loss function given by (3.2.1) can be written as L{x,a) =

S

Y n.x, foracu, . MNow consider a decision problem with the

=19 05

action space G oo the above loss function and the observation
-s
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vector x. Clearly this problem is equivalent to partitioning k
populations LA ERERELN into s+1 subsets (y],...,ys,ys+]) where Y;
is of size 1 for j = 1,...,5, Vo4 is of size k-s and the action

(iy,...,1.) corresponds to the action ({ms Foeostmy Totms N<i<k,

i i
i i],...,ik}). Note that this decision ;rob]em 1ssinvar1ant under
the permutation group, and that the loss function satisfies the
monotonicity and the invariance properties of Eaton (1967) with
A;] being the parameter ej'in Eaton's paper. Since the density
f(x,Ai) of X; has the monotone }1ke]ihood ratiovproperty in x and
e{ = A;], it follows from Eaton's result that the rule which éssigns
(k-] 1) to Y5 for j = 1,...,s and the remaining brands to Yot is
Bayes wrt any permutationally symmetric prior distribution of a.
Hence, the result follows.

The following lemma is necded for the main result.

Lemma 3.2.2. Assume that X1""’Xk’ given o = (61""’6k) € @k, are
independently distributed random variables with Xi having pdf
f(x,ei). If f(x,6) has the monotone likelihood ratio (MLR) property
in x and 6, and if the prior distribution, t(g), of o = (e],...,ek)

is permutationally symmetric on @k, then, for i > j,

Lo (6 (1)) %] > ELg(05))]x]

provided g(-) is non-decreasing on @ where e(i) is the 6 associated
w1th.x[i].
- k.
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J [983))-9(0(5))Fx0)ée()=L] +/ oo ;))-ale5))1F(ee)dr(0)

2) O Qg
= [ Lale,;y)-g(e, ) 1[F(x,0)-f(x,0")d(e)
I Laleggy)-ates)
0
where f(x,08) = 1 f(xi,ei) and 6' is obtained from s by interchanging
i=1 :

6(1) and e(j), keeping other components fixed. Therefore,

E[g(e(i))'g(e(j))lx] = n(&)éo[g(e(j))'g(e(j))][f(ﬁag)_f(KaQ')]
d(0)

where n(§) is a normalizing factor. The result follows from the MLR
property of f(x,6) and the fact that 9(6(1))-9(9(j)).i 0 for
o€ 9 if g is non-decreasing.

Now we state the following result.

Theorem 3.2.1. For any permutationally symmetric prior distribution

of A on (O,w)k, the Bayes rule &* = § s j.e., &% draws all m
-1
components from ﬁ(k)' '

Proof. It follows from (3.2.2) that r(én ,X) can be written as
- -s

r(sn ) = E[ Z n A(k_j+1)|§] for n € N.
Therefore

S
r(ﬁn ,%)‘E[(m-s+1)A(k)+jzzx(k_j+])l&]

S
= E{(m- ) nj)l(k)+ Z nj (k J+])|X]'E[(m'5+1)A(k) JZ (k- J+])]X}

j=2 9 2
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=

>~

, DO ) i 14

| v

0 by Lemma 3.2.2.

Thus Min r(s_ ,x) = r{6 _,x) where 6§_ =6 _, with n* = (m-s+1,1,...,
: - s°< S n -s
NN, =S =S

1) € N> 1.e.,6s draws (m-s+1) components from (k) and one component
from each ”(k-j+1)(3 = 2,...,5). Sjnce, for any s; 2 < s < kam,
. s
r(8gsx)-rl6yx) = E[jgg(x(k—j+1)_x(k))]

> 0 by Lemma 3.2.2,

the result follows from Lemma 3.2.1.
The next result follows from considering a permutation
symmetric prior which gives mass 1/k! at each parameter point

obtained from a fixed paraiieter A € (O,oo)k by permuting its components.

Corollary 3.2.1. The 'natural' rule &* is uniformly best among the

permutation invariant rules.
It follows from the above result that the natural rule §* is

admissible and minimax among all decision rules.

Remark 3.2.1. If we consider a loss function L](g,(iT,...,im)) =
m
(m Min a)7 - (7

; A )'], it can be easily shown that Lemma 3.2.1
1<i<k

\ELN

holds for this loss function. Assuming an exchangeable prior for A

on (O,w)k, it can be verified that the Bayes rule &§* for the loss

function L, satisfies r(s*,x) = Min r(s_,x) where the rule 8 is
1<s<kam



85

as in the proof of Theorem 3.2.1. Even though this is a considerable
reduction in a number of candidates for the Bayes rule, specification
of it seems difficult except when m = 2. Further simplification of
the Bayes rule with respect to a specific prior would be interesting

along with some numerical results.

(B) The 1-out-of-2 system

Here, the action space is (¢ = {(i,j): 1 < i < J < k} where

(i,3) is the action of drawing one component each from s and nj,

respectively. For the 1-out-of-2 system the expected lifelength of

]+Af]-(x.+x.)"l.
J LN

Again as in (A), the loss function is assumed to be given by

the system for the action (i,j) is given by A;

L2 (1,3)) = 03105 -0ym )DL (3.2.4)

As mentioned earlier, Brostrom (1977) considered a scale invariant
Toss function obtained by dividing (3.2.4) by L(x,(1,2)), i.e., the
]oss incurred by an ‘'intermediate' action which we don't have in the
case when k > 2.

We will derive a Bayes rule with respect to a prior distribution
of A. The prior distribution of x is assumed to be independent
natural conjugate gamma distribution with two parameters, i.e., fhe
joint a priori pdf of A is given by

. k 8% a-1 7B
t(d) = 121[}—(@ Ay e '],e>0andg > 0. (3.2.5)
The improper prior corresponding to the vague prior knowledge can be

given by the above with o = g = 0. It can be easily observed that,
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given X = X, A(])""’A(k) are, a‘posteriori, independently
distributed gamma random variables with mean (n+a) (X[i]+8)_] and
variance (n+a) (x[1]+8)_2.
As in (A), the action space G can be partitioned into Gy =
{(i,i): 1 = 1,...,k} and G, = {(i,d): 1 <i <J <k}. Then the
decision problem with G (s = 1,2) is equivalent to partitioning
s ey into two subsets ME and Yo with Y1 being of size s and

0 being of size k-s. Then by the same arguments as in Lemma 3.2.1,

we have the next result.

Lemma 3.2.3. Assume that the prior of A on (O,oo)k is permutationally

symmétric. Then the Bayes rule 8* is given by
r(s*,x) = Min{r(61,§), r(62,§)} (3.2.6)

where 5] chooses 2 components from =(k), and 62 chooses one compo-
nent from (k) and another from T(k-1) °

Now we state the Bayes rule.

Theorem 3.2.2. Assume that the prior is given by (3.2.5). Then the

Bayes rule &* is given by

(5] if X[k_-l]+8 < C(X[k]"'B) '
§* = (3.2.7)

5, I xpq7te c{xpy+8)

where ¢ = H71 (0) € (0,1), H__(c) = EI ey ) % (n+a) for ¢ > 0
% o N US+c Y +cly

and U, V are iid gamma random variables with mean (n+a) and variance

(n+a).
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Proof. It follows from (3.2.4) and (3.2.5) that

n+o
X[k1™®

r(61,x) = %—E[A(k)|§] = %- and

- 2 2 -1
6225 = ED (e (k-1) P )P 1) 0 10 ey P ey )1
1 UV (U+r, V) Xrk-17"8
: : ] for vy = s
T [u2+rkuv+r§v2 O T X

where U and V are gamma variables with mean (n+a) and variance

(n+a). Since H, n(t) is non-increasing in t > 0, r(dT,g) z‘r(62,§)

if and only if Ha,n(rk) <0, f.e., rp i-Héln(O)' Furthermore, it can
be easily observable that
(1) = B 2 (e < 0
? U Hv+

1

n(O) < 1. Hence the result follows from Lemma

which implies 0 < H&
3.2.3.

As it was pointed out, the Bayes rule wrt the vague prior
knowledge can be obtained from (3.2.7) by taking o = g = 0. (It can be
easily shown that x1(x]+3)'],...,xk(xk+5)'] are marginally independent

beta random variables with mean n(n+a)'] when the prior is given by

(3.2.5). It follows that the overall risk of the rule s, is given by

wlro

r(8)) = 5 (n+a)p”! E[Zp1] <s2

where Z[]] is the smallest order statistic based on a sample of size
k from beta distribution with mean a(n+a)—]. Therefore the overall
risk of the Bayes rule 6* is finite. Furthermore it can be shown

that the risk function R(g,&) is a continuous function of ) for
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non-randomized rule s. It follows that the Bayes rule &¢* is admissible

in the class of non-randomized decision rules.

Remark 3.2.2. If a loss function is given by L2(§,(1,j)) =

%—( Min A.)—]—[A;]+A3]—(A1+Aj)-]], it follows from similar methods

T<i<k
that the Bayes rule wrt the prior given by (3.2.5) is given by
-1 1 1 t

a,N

(3.2.7) with ¢ = G (0) € (0,1) and Ga

(=7 mta-1 ~ nra-T
E[fgivl for t > 0 where U and V are iid gamma random variables with
mean and variance equal to (n+a).

At the end of this chapter tables of the constants ¢ are provided
to implement the Bayes rules given in Theorem 3.2.2 and Remark 3.2.2.

(c)

Values of ¢ are found by numerically integrating H n(c) and G, n
using Laguerre polynomials. 1In doing this the first fifteen
Laguerre polynomials were used (see Abramowitz and Stegun (1964)).

3.3 Some selection procedures for symmetric scale parameter
populations

Let = ST denote k independent populations with continuous

1o
cumulative distribution functions F](x) = F(x/o]),...,Fk(x) =

F(x/ok), respectively, where o5 > 0, i=1,2,...,k, and F is symmetric
about the origin. Suppose we are interested in ranking or screening
these populations with regard to some measures of dispersion. One
measure of dispersion for a symmetric distribution G is a non—negafive
functional t(G) or equivalently t(Z) with Z being a random variable

with distribution function G (see Bickel and Lehmann (1976)) such

that



89

t(aZ) = at(Z) for a > 0

t(Z+b) = ©(Z) for any real b and (3.3.1)

©(Z) < t(Z') whenever |Z'| is stochastically larger than |Z].
It follows that the measure of dispersion of Fi is T(Fi) = o, t(F) for
i=1,...,k. Hence ranking the populations with regard to the measure
of dispersion becomes equivalent to the ranking in terms of oi’s. This
leads to selection and ranking problem in terms of ai’s.
Several procedures for this problem have been proposed. When we know
the functional form of F, some suitable esfimators of oi‘s are usually
used for selection or ranking purpose; For example we might use sample
standard deviations for normal populations and sample mean deviations
for double exponential populations. When we do not assume the func-
tional form of F, we may use the estimators of some measures of disper-

sion of Fi's and study the robustness of the selection procedures.

This is the approach taken in this section.

(A} Selection of the t 'best' populations - Indifference-zone approach

(i=1,...,k) be the independent observations from
X-8 .
1) where F is continuous and sym-

Let Xi]""’xin

population m, with cdf F.(x)=F(
i i o
metric about the origin. Here Gps---50) are unknown and 615-.,6, may
be either known or unknown. Let o717 22 01k be the ordered oi’s
where no a priori information about the correct pairing of s and or4]
is assumed. Our goal is to select the t(1 < t < k-1) populations
associated with t smallest scale parameters o179t based on the

independent observations Xi]""’x i=1,...,k.

in?®
The indifference-zone formulation, due to Bechhofer (1954), of

- this problem may be briefly described as follows;
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).

(i) Choose an appropriate statistic T and observe T1.=T§n
T(Xi1""’xin) for i = 1,....k.
(ii) Use the natural procedure RT which selects populations
associated with t smallest Ti values.
(iii) For preassigned P* ¢ (1/(t),1) and A > 1, determine the (3.3.2)

smallest sample size n=n(k,P*,a) such that inf P(CS|o) > P*
g€a(a)

where Q(A):{g:(o1,...,0k): OL41] Z_Ac[t]} and CS stands for a

correct selection of the t populations associated with

O[]]""’O[t]'
Several optimum properties of the above procedure with suitable statis-
tic T have been proved under certain assumptions on F (see, for example,
Bahadur and Goodman (1952), Lehmann (1966), Eaton (1967)).

First we will consider the case when the Tocation parameters are

known.

Case (I): o 58y known

10

In this case we may assume 6y =...7 6, = 0 without loss of
generality. Let us consider the following selection procedures based
on robust estimators studied by Bickel and Lehmann (1976); for

lT<pszand 0 <a <528 < 1,

1
: LDy ey s
Procedure R(p): Use T(Xi1""’xin) (n jZ]lxij] YW in (3.3.2)
Procedure R{a,8): Use T(X X, )=l [EB]XZ /([ne)-[na])1%
rocedure ,8): Use Y SU L s ng)-In 2
’ ARG L IS Lt

in (3.3.2),
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where X? < < X2 dencte the ordered X? X2 and [-] is
1[-l] D> _il:n] - « 1"9"'91'n
the greatest integer function. Mote that R(2) is the procedure
proposed by Bechhofer and Sobel (1954) for the normal pobu]ations.
This procedure will be taken as the standard one for the comparison
of procedures.

The next result gives the least favorable configurations for

the above procedures.

Lemma 3.3.1. Let R, denote the procedure defined by (3.3.2) where

T
the statistic T is scale invariant, i.e., T(axil""’axin) =

aT(Xi]""’Xin) for any a > 0. Then the following holds:

inf P(CS|o) = P(CS]é = (1oeo51,0,00050)) (3.3.3)

oca(s) t-times

Proof. Using a theorem of Barr and Rizvi (1966) it follows that
P(CS|o) = P( Max T, .y < Min T,.y|g) with'T ceey T being
- ]i\]it ( ) t'ﬂix]ik ( ) - (]) i (k)

associated with O] S0 o2 0] is a non-decreasing function of

o seses0 and non-increasing in o seees0 . Therefore
[t+1] [k] (1] [t]

the result follows from the scale invariance of T.

It follows from the above result that we have the same least
~favorable configuration as long as the statistic T is scale
invariant. However, this slippage configuration of parameters is
not the least favorable for the procedures based on ranks (see
‘Rizvi and Woodworth (1970)). Now the sample size n required by the
basic probability condition can be found by

P( Max T. < Min Ti|g) = P* (3.3.4)
gt Y ik
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subject to the condition
6= (1,0 3T30,...50). (3.3.5)

To solve this we need the complete knowledge about F. But if we
do not wish to rely on the distributional assumption on F, we can

find a Targe sample solution.

Largé Sample Solution and Asymptotic Efficiency

To find the large sample solution for n, following
Lehmann (1963), we use the device of replacing a by A ar ' determine
the large sample solution of n required to satisfy (3.3.4) subject

to the condition

k] T oL = Ang[t] = A °r17- (3.3.6)

As Lehmann (1963) and Puri and Puri (1969) have pointed out,
considering A, @s a sequence depending on n is only a mathematical
device to approximate the actual situation and in practice An will be
identified with the given value of a.

Assume that Vﬁ_(T(Z],...,Zn)‘T(F)) is asymptotically normally

distributed with mean 0 and variance v2(F) when 21""’Zn are

iid random variables with cdf F(z), where t(F) is a measure of

dispersion of F satisfiying (3.3.1). Let Yo = T(211""’Zin) for

i=1,...,k., where Z]],...,an are kn iid random variables with cdf
F(.). Then from (3.3.6), we see that equation (3.3.4) is equivalent
to P(Y1 < b Yj, i=1,...,t, j = t+l,...,k) = P*. This implies,

after taking logarithmetic transformation, that
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Tim P(U,-U, < vh (Tog & )<(F)/v(F), i = 1,...,t, j = t+1,...,k)=p*
i 7] n
N0
where U],.'..,Uk are iid standard normal variables. This equation

will be satisfied if and only if

p o= qe AEVEE) o(n2)
n /ETF
where A* is determined by
pr=t [ ot 1 (x)oK E(a%-x)do(x). (3.3.7)

- 00

Thus we have proved the following result.

Lemma 3.3.2. Consider the procedure R, in (3.3.2) with T being

1
scale invariant and satisfying the properties in the above paragraph.

Let n be the solution of (3.3.4) subject to (3.3.6), then as n » «

An =1+ é/_i:_((_;)yq.o(n—%) (3.3.8)
n

where A* 1is determined by (3.3.7).
It follows from the above result that, for given A and P*,

a large sample solution of n is given by

. 2
n= (252 v AF) (3.3.9)

A=1 TZ(F) o
The values of a* satisfying (3.3.7) can be found in Bechhofer (1954).
From the central 1imit theorem it follows that if fx4dF(x) <@y

then (3.3.9) holds for R(p) (1 < p < 2) with «(F) = (f|x|PdF(x))P

N

£ .2
and v2(F) = p 2 (fIx[PaFG)IP LS IxI2PaF(x)- ([ |x|PaF(x))°T.

Therefore, the large sample solution for the procedure R(p) is given by
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2p
* (2 Z -2
(E1Z[")
where the expectations are taken wrt the distribution F(-). Let
. B 1 [ne] 1
us consider R{a,g) and let Tn(a,s) [TEETTFHET j:[%u]+]z[j]]

2 2

yeeesl with Z ,Z
n

2 2 :
where Z[]] 5,..§Az[n] are the ordered Zy 10y
being iid random variables with cdf F(-). Then the following
theorem (see, for example, Stigler (1973)) gives the sufficient
condition for the procedure R(a,8) to satisfy the assumptions in the

above lemma.

Theorem 3.3.1. Let G(-) denote the cdf of Z%- Assume
that a = G"](a) and b = G_](B) are uniquely determined. Then
as n > =, the limiting distribution of vl (T2(a,8)-72(a,8)) is normal
with mean 0 and variance vz(a,ﬁ) whore t(a,B) = [E%E‘?de(y)j%’
2 a

v (asp) = (B~a)'ZE(B-a)C+(b-T2(a,8))28(1—8é+(a-r2(a58))2a(1-a)

-2(b=1%(a,8)) (a-2(a,8) ) (1-6)7 and c:é%g-g y2d6(y)-t(a.8)".

It follows that under the assumptions in the above theorem, the

large sample solution for the procedure R(o,8) is given by

2
8* 12 v (a,8) '
(5=) V4( ; (3.3.11)

a,B

Now comparison between the procedures is in order. To this end,
the procedure R(2) is taken as the standard one and, following
Lehmann (1963), the asymptotic relative efficiency (ARE) of a
procedure wrt R(2) is then defined to be the Timiting ratio of

the reciprocals of the corresponding sample size required to achieve
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the same minimum probability of a correct selection over o(a).

These are given as follows:

ARE(R(p),R(2);F) = B [-EL— - 1—ElZ
b e2%)? (E|z|P)?
(3.3.12)
ARE(R(a,8),R(2)3F) = [ 24 17 < (0,8)
(£29)2 7 v¥(a.8)

where the expectations are taken wrt the distribution F(-). Note
that the above ARE's are the same as those of the estimators in

Bickel and Lehmann (1976) where one can find several examples of

2,ptl
3 T
the ARE's. For example, ARE(R(p).R(2);F) > TP for
4/r  T(p+ jﬁ

all F which‘is the cdf of a scale mixture of normal distributions

with a common mean.

Case (I1): Bys- -0y unknown
1

3 PyP
’Xij Xil )© for

n
RNC)

In this case we use T, = T(Xil"“’x
J

in 1

[ng] ,
the procedure R(p) and T, = [ ) (Xi[.]—M.)z/([nﬁ]—[na])]% for the
j=[nal+1 Jao
. . 5 _ 1
procedure R{a,B) where Mi is the median of Xi1"“’Xin and Xi =5

n

) Xij' Then it follows from Bickel and Lehmann (1976) that the
J=1

results analogous to the case (I) hold for R(p) without any further
assumption, and hold for R(a,8) with the further assumption that F

is differentiable with positive and continuous derivative f.

(B) Selection of a subset containing the 'best' population

Here we consider the problem of selecting a subset of k

populations which includes the population associated with the



96

smallest scale parameter with at least probability P*. This problem
has been studied by Gupta and Sobel (1962) and Gupta (1965) when

a specific form of the cdf is assumed. Also nonparametric or

robust selection procedures have been proposed and studied by

Sobel (1967), Blumenthal and Patterson (1969), Wong (1976) and
McDonald (1977) among others.

Let Xi]"gléxi be the independent observations from s with
cdf Fi(x) = F(~Ejlﬁ for i = 1,...,k. Here, F is assumed to be
continuous and s;mmetric about the origin,oi is unknown and e,i is
known. We may assume 6y =-..= 06, = 0. Let Or1] 202 9 denote
the ordered o's and Uy denote the population m associated with
ori Our goal is to select a subset of random size depending on
the observed data so that, for given P*(%—< p* < 1),

inf P(rSg) > p* (3.3.13)
o

where @ = {g=(0],...,ok): o, > 0, i =1,...,k} and CS denotes the
correct selection of a subset which includes n[]].
We will consider the procedure R*(p)(1 < p < 2) which includes
m. in the selected subset if T. < ¢! Min T, where T, = T(X.],...,X. )=
] i = l<ic<k i i in
n — =J<!
(%— ) lxijlp)p and c(0 < ¢ < 1) is determined to satisfy (3.3.13).
J=1
Then it can be easily shown that, for the procedure R*(p),the
infimum of P(CS|o) occurs when all the oi'S are equal; therefore,
the constant ¢ = c(n,k,p,P*) is obtained by f[]—G(cx)]k"]dG(x) = p*,
’ 0
where G is the cdf of T, when o,=1. By the same reasonas in (A)

1 1
one can find a large sample solution of ¢ if he wishes to avoid the
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distributional assumption on F. Similarly as in (A) we can get the

large sample solution of c as in the next result.

Lemma 3.3.3. Let ¢ be the constant satisfying the basic probability

condition. Then, as n - o,

A 2p 1 1
¢ = 1-d n“p1[—(—g[—z—:—o7 A+ o(n®) (3.3.14)
E Z L

where the expectations are taken wrt the distribution F(-) and d is

determined by
k-1 -
Jo© ' (x+d)de(x) = P*. (3.3.15)

Values of d satisfying (3.3.15) are available in Gupta (1956)
for various values of k and P*. Let Sp and SE denote the random
size of the selected subset and the random number of the non-best
populations in the selected subset, respectively for the procedure
R*(p). It follows from the result in Gupta and Sobel (1962) that
sup E(Splg) = kP* provided f(x) = F'(x) is log-concave. Since
§§§11 values of SB are desirable, we would like to keep E(S;|g)
as small as possible. Let us consider the following slippage

configuration;
Ao{H =001 T 9y for some A > 1. (3.3116)
Then for a given€ > 0, we would 1ike to have small sample size n
where n is determined, subject to {(3.3.16), by
E(S*]g) =€. (3.3.17)

Following McDonald (1969) we define the asymptotic relative

efficiency ARE(p,2;A,F) of R*(p) to be the limiting ratio of
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n(2,6) to n(p,€) as € » 0. To find the large sample solution of

(3.3.17), we use the device of replacing A by A .

Lemma 3.3.4. Assume (3.3.14) and (3.3.16). Then as n » =,

a

i 2p 5 2
b, = T+ R ][—E@p—? 1T+ o(n™®) (3.3.18)
(E]Z]")
where the expectations are taken wrt F(-) and a* is determined
by (k-T) f@kmz(d-x)©(d—A*—x)d®(x) = € for d given by (3.3.15).
Hence the large sample solution of (3.3.17), keeping in terms
1
of order n*, is given by
2p
A* 2 -2+ E
n(p.€) = (5o3)°p [“‘Jjégg'g -1].
(E1Z]")

It follows that the ARE of R*(p) relative to R(2) is given by

4 2p
EZ 11/ E|Z]

B} 1]
€22° T (E|Z)P)?

2
ARE(p,238,F) = £ [

which is the same as that in (A).
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Table VI

Lists c-values to implement the Bayes rule in Theorem 3.2.2.

which depends on n and o through the quantity m = n+a.

m c m C m C
1.0 .3033 11.0 .8870 21.0 .9388
1.5 L4392 11.5 .8916 21.5 .9402 -
2.0 .5342 12.0 .8958 22.0 .9415
2.5 .6021 12.5 .8997 22.5 - .9428

. 3.0 .6530 13.0 .9034 23.0 .9440
3.5 .6925 13.5 .9067 23.5 .9451
4.0 .7240 14.0 .9099 24.0 .9462
4.5 . 7496 14.5 .9128 24.5 .9473
5.0 - L7710 15.0 .9156 25.0 .9483
5.5 . 7890 15.5 .9182 25.5 .9493
6.0 .8044 16.0 .9206 26.0 .9502
6.5 .8177 16.5 .9229 26.5 L9511
7.0 .8293 17.0 .9251 27.0 . 9520
7.5 .8396 17.5 .9271 27.5 .9529
8.0 .8486 18.0 .9291 28.0 .9537

- 8.5 .8567 18.5 .9309 28.5 .9545
9.0 .8640 19.0 .9326 29.0 .9552
9.5 .8706 19.5 .9343 29.5 .9560

10.0 .8766 20.0 .9359 30.0 .9567

10.5 .8820 20.5 .9374 30.5 .9574
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Table VII

Lists c-values to implement the Bayes rule in Remark 3.2.2.

which depends on n and o through the quantity m = n+a.

m c m C m c
1.5 .7854 11.5 .9817 21.5 .9904
2.0 .8592 12.0 .9825 22.0 .9907
2.5 .8957 12.5 .9832 22.5 . 9909
3.0 L9173 13.0 .9839 23.0 L9911
3.5 .9315 13.5 .9845 23.5 .9913
4.0 .9415 14.0 .9851 24.0 .9915
4.5 .9490 14.5 . 9856 24.5 .9916
5.0 .9548 15.0 . 9861 25.0 .9918
5.5 .9594 15.5 . 9866 25.5 .9920
6.0 .9631 16.0 .9870 26.0 .9921
6.5 .9662 16.5 .9874 26.5 .9923
7.0 . 9688 17.0 .9878 27.0 .9924
7.5 L9711 17.5 .9882 27.5 .9926
8.0 .9730 18.0 . 9885 28.0 .9927
8.5 .9747 18.5 .9888 28.5 .9928
9.0 .9762 19.0 .9891 29.0 .9930
9.5 L9776 19.5 . 9894 29.5 .9931
10.0 .9788 20.0 .9897 30.0 .9932
10.5 .9798 20.5 .9900 30.5 .9933
11.0 .9808 21.0 .9902 31.0 .9934
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