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SUMMARY

The problem of finding the least favorable configuration for selecting
the "best'of k populations i.e. the one with the largest location parameter
by use of six different two-stage selection procedures is considered. Each
of the six procedures consists of a subset selection (screening) rule at
the first stage followed by another rule based on {the first stage and)
additional samples from the selected populations to decide finally which of
the selected populations is the best. In the indifference-zone approach it
is (or was) conjectured that the least favorable parameter configuration is
of the slippage type. It is shown that this conjecture is true for four
of these procedures. For a fifth procedure it is proved that at Teast
a certain lower bound of the probability of a correct selection has this
property which is analogous to the result of Tamhane and Bechhofer (1979) .

concerning the sixth procedure.
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1. INTRODUCTION
Suppose we are given k normal populations LERTRRL with different
unknown means and a common (known or unknown) variance. If the experimenter's
goal is to find that population having the largest mean by using suitably
cﬁosen samples, then a large variety of possible sampling plans and selection
prdcedures can be found in the literature. In this paper we are dealing with

the so-called two-stage procedures of the following type:

Stage 1: Take k independent samples (Xi]""’xin) of sizen, 1 =1,...,k,
from TyseeesTy and select a non-empty subset of these populations
according to a pre-specified rule S(X) where X = (X],;..,Xk) and X, =

X11+"'+X , i=1,...,k. If the resulting subset consists of only one

in
population, stop and decide that this is the population with the largest

mean. Otherwise proceed to Stage 2.

Stage 2: Take additionally independent samples of size m (Yil”"’Yim)
from those populations s selected in Stage 1. Among the selected
populations decide finally in favor of that population yielding the

largest Y, (or X1+Y1)’ where Y, = Y11+“+Yim'

For convenience, let us represent the rules for Stage 1 in the form
s: RX > {s|@ % s < {1,...,k}} where i € S means that the i'th population
is included in the subset of selected populations. Moreover, let us
represent the rules for Stage 2 in the form d = {dS|Q s {1,...,k},

. where for every s,dS: IR2k

+{1,...,k} and ds(g,g) depends only on those
gi's and "ils with i € s.
Let us now study in more detail the four possible two-stage procedures

(Su,d , a,8 = 1,2 which we get after combining any two of the different

a)



single-stage procedures given below [(53,d]) and (S3,d2) will be discussed

at the end of this section].
Stage 1: For i € {1,...,k} let

i e S,(X) iff Xi > max  X.-C; c > 0 fixed,

1= T 5=1,.. .,k 9

X) iff Xi is one of the t largest values of X]""’Xk;

i€S,(X

t € {2,...,k-1} fixed,

[i €S5(X) Ff X; > ¢35 Cpanenn € R fixed.]

Stage 2: For § ¥ sc< {1,...,k} and i € s let

o
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i iff Yi = max Y.,
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i iff X1+Y. = max (X.*Y.).
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A correct selection occurs whenever a procedure finally ends up with
the population associated with the largest mean, which we may assume to be
T without loss of generality, since we obviously are dealing with permutation
invariant two stage procedures.

To implement such a procedure one usually wishes to guafantee that the

1 over a certain set of

probability of a correct selection is at least P* > k™
parameter configurations. Now if the means vis Say, i=1,...,k, are
restricted to the condition vy,...,v 1 < v -4 with A > 0 fixed, then it
seems intuitively clear that the infimum of the probability of a correct
selection should occur at parameter configurations (v,v,...,v,vta) with

v € IR, which are called the least favorable configurations. Since there

is no proof for these conjectures till now in the literature except for the



special case of k = 2 populations for (S],dz) (as we shall discuss below
more explicitly) we have tried to fill this gap and solve the problems in
a more general setup (without the assumption of normality). Briefly, we
have been successful in proving the conjectures for procedures using 52

and S, but not for those using S] (cf. Remark below).

3

Discussion of different two-stage procedures:

(S],dB): (S],dz) has been studied by Alam (1970) and Tamhane and Bechhofer
(1977, 1979). Alam has proved the conjecture for k = 2 and his subsequent
results are based on the assumption that the conjecture is true for all k.
Tamhane and Bechhofer (1977, 1979) on the other hand used lower bounds for
the probability of a correct selection which assume their infima at the
desired parameter configurations.

(S],d]) has not been studied up to now. Surprisingly, it turns out
that it is even difficult to prove the conjecture for this simpler procedure.
Therefore, we propose a lTower bound for the probability of a correct selection

which appears to be quite good and which is minimal at the conjectured

parameter configuration.

Remark: Recently Miescke and Sehr (1979) have shown that the conjecture holds

true also for (S d]) and (S,,d,) in case of k = 3. Their proof is non-

1° 2 2)
standard and uses geometrical arguments.

(Sz,dB): (Sz,dz) and (Sz,d]) have been studied by Somerville (1971a) and
(1974). In both papers he has claimed that the corresponding conjectures
have been proved by Somerville (1954), Fairweather (1968) and Somerville

(1971b).



Now the last paper Somerville (1971b) was shown to be in error by
Carroll and Santner (1975), and, in fact, his method of proof does not
even work for (Sz,d]). Moreover, the "loss function approach" of Somerville
(1954) and Fairweather (1968) is not applicable in our problem since the
corresponding function W used there turns out to be here an indicator
function which clearly does not have a continuous second derivative.
Therefore, the conjectures for (Sz,d]) and 62,d2) remained totally unproved

up to now.

(S,,d ): These types of procedures may be used when the k populations are
378

compared with a predetermined standard value vge Says for the means. They

proceed in the same manner as the procedures discussed above, with the only

difference that at Stage 1 S.(X) now may be empty, in which case we stop

3=

and decide that no population is better than the standard. The probability
of this event is now desired to be at least g*, say, if VyseeesVp S Vg

and the probability of a correct selection is then studied over all

parameter configurations with VsVl 5’VO~A and Vg < Vg We will

show in this paper that the infimum occurs at the point (VO‘A,...,vO‘A,VO).

Remark: Let us finally mention that S],SZ,S3 and d are well-established
one-stage multiple decision procedures, studied and used in a variety of
papers which can not all be mentioned here. To give a few references,

Gupta (1956, 1965) proposed and studied S], Bechhofer (1954) 82, Dunnett
(1955), Gupta and Sobel (1958) and Lehmann (1961) studied 53 and Bahadur

and Goodman (1952), Lehmann (1966) and Miescke (1979) investigated d.



2. GENERAL CONSIDERATIONS CONCERNING ALL PROCEDURES

Let Xi’ Yi’ i =1,...,k be independent random variables where Xi
and Yi have distribution functions F(g—ei), £ € IR, and G(”"“i)’ n ¢ IR,
j=1,...,k. F and G are assumed to be known continuous functions and the
ei's and “ils represent unknown location parameters. Since we restrict
ourselves to two-stage procedures which are invariant under permutations
of the k populations, we may assume, without loss of generality, that we
have 8,,...,8, 1 <6, and Myseoeabp ] S Hye |

Now let S be any subset selection rule for Stage 1. Then using d] or

d2 in Stage 2 the probabilities of correct selections are as follows:

P

S,d]) ) PIS(X) = s} = G(n+uk-ui)dG(n) (2.1)

K . y
S(1,...,k-1} R €8

P _(S,d

) P{S(X)

5 s3 X.4Y, < X +Y , i € s} (2.2)
scl{l,...,k-1} T .

k( 2) k 'k

with the understanding that here and in the sequel s = s U {k} if both s
and S appear simultaneously. The product appearing in (2.1) is defined to
be equal to one if s is empty.

In the sequel let |A| denote the size of any finite set A. Now we

state our main result:

Theorem: For every §,A > 0, g € {1,2} ggg_eo, g € R ;ﬁg_fpllgggpg,bng§}

(i) Subject to 87500028y 7 < 8)=6 and upse.suy g < Wt Pk(SZ’dB) assumes

its minimal value at every parameter configuration (e,...,0,0+s) and

(oewospuspta) with 6,u € IR.

(i1) Subject to the additional restrictions 0, > 6 ggg_uk > i Pk(S3,dﬁ)

assumes its minimal value at every parameter configuration




(05...50,048) and (u,...,u,u+A) with u > ug-4 and o > 8,6 .

Proof (first part): From expression (2.1) it is clear that Pk(S,d]) for

every S is non-increasing in Hyse s ek ] and non-decreasing in e The

same is seen to hold true for Pk<s’d2) since for every ¢ € IRk and

H

s o 1,...,k=1} P{S(X) = s;3 XY, < X HY, L 1€ S|X

K £} also has

this property.
This accomplishes the first step towards a solution of our problem.
We can assume from now on that (“1""’“k) = (Hyew. psuta) for some p € IR,

respectively, u > ugh holds. Then (2.1) reduces to

P (Sud) = ] PEs(X) = s [ G(nta)!%las(n) (2.3)
sc{l,...,k=-1} IR
k r-1
= ) Pik € S(X), |S(X)] = r} [ G(n*a) " 'dG(n)
r=1 R
or, alternatively,
P (55d) = Prk € (03 G(n+a)* Tda(n) (2.4)
IR
k-1 .
+ ) Plk € S(X), [S(X)] < r}f G(n+a) " [1-G(n+a)]dG(n).
r=1 IR
And (2.2) reduces to
P (S.d)) = ) PIS(X) = s3 XU, < X +a+U , § €5} (2.5)
K2 e, ke - P kK

where U],...,Uk are independently and identically distributed random variables
with distribution function G, which are also independent of X1""’Xk' (End
of proof's first part.)

Formulae (2.3)-(2.5) and the next Temma will be used repeatedly in



Sections 3 (and 4) when we give the second part of the proof, consisting

of four versions corresponding to the four procedures under consideration.

Lemma: For every Ac B < {1,...,k-1}, r € {0,1,...,|A|},

€ R and 5],...,b| € IR

a],...,alA‘ Bl

POLET €A, X; 2 23] <3 X; < by, § € B} (2.6)

is nonincreasing in 6,5 2= 1,...,k-1.

Proof: For r = 0 the assertion is clearly true. For r > 0 and 2 € A,

(2.6) is equal to

PO €A, 142, X, > a0] < r-13 Xj<by> J €B, § 1 aIPIX < by}

3_a1}| = r; X, j_bj,j €B, jf 2IPIX, gymin(ag,bl)}

+ P{|{i]1 €A,i § 2, X, ;

1

which obviously is nonincreasing in 8, Similarly one can prove the assertion
in case of £ € B \ A, whereas in case of & € B it is trivially true.since in

that case (2.6) does not even depend on 0,

3. THE SECOND PART OF THE PROOF
3.1 Case (Sz,d])

For every fixed t € {2,...,k-1}, we have |SZ(§)| = t with probability

one, and thus (2.3) reduces to

P (S,sd;) = Pk € S,(X)} {RG(m‘A)t-]dG(n). (3.1)

Moreover, we have



PLk € S,(X)} = PLILI[X < X3 < t-1} (3.2)

i

v

/ P{l{i[Xi £, 1% k}| < t-1]X, = £}dP{X, = &}
R

v

]

[POLGEX; > gvoys 14 k3] < =13 dF(e).
R !

Since the integrand obviously is nondecreasing in o and by the

Jemma is nonincreasing in 91,...,ek_], the proof for (SZ’d]) is completed.

3.2. Case (Sz,dz)

Let t € {2,...,k-1} be fixed. Then using the fact that (U1—Uk,..{,

Uk-1—Uk) is symmetrically distributed, from (2.5) we get
Pk(SZ’dz) = . (3.3)
P{X < X.s U.-U, +X. < X +a, j=1,...,t-1}
. - - 2 i Jj ok Ti. k
1<1]<12< <1t-15k 1 Zfs i€ J

P{X < Xia E¥0) 3

{R )
: e . . [
t-1 ]5J1<12<...<1t_]§k—1 ng ies

S = {i],...,it_]}

a; +X1.j < g+ek+A, J=1,...,t—]}dF(g)dP{Uj—Uk=aj, j=1,...,t-1}.

Since every probability term obviously is nondecreasing in 8> it follows

that Pk(SZ’dZ) also has this property.



Now we show that for every fixed ¢ € R and a;,-..»3; € IR the
integrand is nonincreasing in e],...,ek_]. For sake of simplicity we

prove it for 6, Let bj = g+ek+A-aj, j=1,...,t-1 and E = g+ek.

P{X < X.,E X. < bs, j=l,...,t-1}
. . 2 i’k i J
1§J]<12<...<1t_]5k-1 s e J
s = {igseeniy qd
= | o ) . PIX, < Kys £
IRk—Z 1§J]<12<...<1t_]§k—] pés 163

S = {igseesipq)

10

(3.4)

Xy <by s 1,...,t-]]X2=gz,...,Xk_]=gk_]}dP{X2=g2,...,Xk_1=gk_]}.

J

Let now 52""’£k—1 ¢ IR be fixed and assume, without loss of generality,

that g, < &3 <...< & 4 holds. Then the integrand reduces to

X f_b‘l,

PIXys Xot < Rpepere &1 k-t+1

X _<__ b2 ,...,Xk_" _<__ b.t_“ le = 52,...,Xk_-l = Ek_-l}

k-t+2
Xogpp < Do seesXiiy Shey 1%y = EpoennXy g = £ gt

Finally we have to distinguish. between two cases according to whether

Ep-t+] < &g ©Or not. In case of €, _1.q < &> (3.5) reduces to

(3.5)



P{X-I < < b'] 5 (3'6)

k t+1 —

X

T R S T NI T L\ Y SERRRL 0 Bl

+ PIX < X; <bqs

k-t+1 1

Xpopep < D oeeesKiy S bpq [Xg = EpsennsXy g = Ey)

= P{X1, -t+] < < by
Xpopsp < Do seeesXpq < bey X = 8panenky g = Egds
whereas if g 14 2 &0 (3.5) reduces to
PIXy Xy < 3 X teq £ D7 s (3.7)
Xopap < Dp oeesXly by [Xp = EpneeaX g = £

Since now these last terms are nonincreasing in 6, the proof for (S2 d2)

is completed.

3.3. Case (53,d])

For every fixed CysevesCy € IR and using (2.4), it suffices to show
that for every r € {1,...,k} P{k € 83( > 185 (X)| < r} is nonincreasing

in 6150 -+50 and nondecreasing in 0y Now

k-1
Plk € S5(X), [S3(X)] < r} = (3.8)

= PO 2 e T RIS T PO 2 g s T E Theke

The first factor does not depend on 8, and by the lemma is nonincreasing
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in 8ys...58, 1> whereas the second factor does not depend on 6,,...,8, 4

and is nondecreasing in e Thus the proof for (S3,d]) is completed.

3.4. Case (S3,d2)

For every fixed CyaeesCyo from (2.5) we have

P (S,.d,) = ’ P{X. > C.s X. < Cs3 (3.9)
k'73°72 ~ _ i =i J J
sc{l,...,k-1} i€ JEs :
R R
i€s

which clearly in nondecreasing in 8 since in every summand we have

s = s U {k} by our convention. Again, for sake of simplicity, it will be

shown that'Pk(S3,d2) is nonincreasing in 8y Now
Pk(S3,d ) = - ) k-]}P{Xi > Cis X] < Cqyo Xj < cj; (3.10)
=tEerero ié€s jEs
J
Xi + Ui < Xk + A+ Uk}
i€s
+ y P{X. > C., Xy > Cqys X; < C.3
~ _ i="ir T =1 ) J
SE{Z,...,I( 1} i€ s J éS
Jfl
X] + U], Xi + Ui < Xk + A+ Uk}
i€s
= ) P{X. > C., Xy < Cqys X; < C.3
z _ i— "7 1773 J
SS{Z,...,k ]} _i E S j és
jf
Xy +Us < Xk+ A+ Uk <yt Uyl
ié€s
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Clearly, every summand is nonincreasing in 61 and, therefore, the proof for

(53,d2) is completed.

3.5. Concluding Remarks

In the case of normal populations as described in Section 1 we have
Xi " N(nvi, noz) and Yi N N(mvi, mcz), i=1,...,k, for some 02>O. Thus for every
o € {1,2,3} and g8 € {1,2} the probability that (Sa’de) finally leads to
a decision in favor of population M, can be represented by a certain
function Ha,B(Vl’vZ""’Vk)’ To prove the conjectures we could, alterna-

tively, have tried to show that H is nonincreasing in vi,...,vy 4 and

asf
nondecreasing in Vs But this turns out to be a very difficult and

cumbersome way.

4. A LOWER BOUND FOR (S],d])

To prove the conjecture for (S],d]) in view of (2.4) it would suffice
to show that for every r € {1,...,k} P{k € S](g), IS](X)I < r} is
nonincreasing in e],...,ek_] and non-decreasing in ek' For r = 1 and
r = k this probability is equal to P{X],...,Xk_] < Xk—c} and P{X1,...,Xk_]4§
Xk + ¢}, respectively,where each of them clearly has the desired property.
Thus the conjecture for k = 2 is proved.

For k > 2 it turns out to be rather difficult to prove the conjecture.

Therefore, we derive a lower bound for the probability of a correct
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selection, which assumes its minimal value at the desired parameter
configuration.

For k > 2 and r € {2,...,k-1} we have

P{k € S](X), IS](§)| <r}= (4.1)

= [Pk €S
R

(X

AL ERRE

Z_{RP{|{1|X1 > gte -C, 1 % k} < r-1,

X],...,Xk_] <&t tcl dF(g).

The preceding inequality holds also for r = 1 and f011ows_fromvthe fact

that we have

tk €S(X), [S(X)] <) = (4.2)
= {JGiX; 2 Xmc, 1 k3] <r-1, X = omax Xg)
j=1,...,k
k_] 0 .
U2=1{|{1!Xi > X,=C, 1 tkoe}| < r-2, X > X-c, X = jzl’Té?,ka}.

Now the integrand in the last integral of (4.1) clearly is nondecreasing in
By and by our lemma it is nonincreasing in e],...,ek_]. Thus; using (2.4),

we get

P (S154y) 2 PLZysnnnsZy < 2 +6+c}{G(n+A)k_]dG(n) (4.3)
R

k( >*k-1 — "k
k-1
+ z P{l{ilzi > 7
r=1

(F6-Cs i + k¥ < r-1,
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Zyseosly < 7 e [6(n+a) " [1-6(w+0) JdG(n)
R

where Z]""’Zk are independently and identically distributed random
variables with distribution function F. Now the right hand side of (4.3),
being in a form similar to (2.4), can be brought into a form similar to

that of (2.3). Then it is equal to

k
L P{{i]Z; > Zp4s-c, 1 kb= r-T, (4.4)
r=1
Lyseo sl 5_zk+a+c}{RG(n+A)”']dG(n)
SL—. k=i-1 i i
= ’ZO {R( 5 JF(g+s-c) [F(g+s+c)-F(e+s-c)] dF(E){RG(nM) dG(n).
1:

Thus we finally arrive at the following result:

Corollary: For k > 2

P (Sq5dy) 2 : (4.5)

k-1

> [ [ {F(g+s-c)+[F(g+s+c)-F(g+s-c)16(n+s)}" 'dF(£)dG(n).

R IR
Note that for k = 2 this lower bound for the probability of a correct

selection is exact.

This research was supported by the Office of Naval Research Contract

N00014-75-C-0455 at Purdue University.
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It is shown that this conjecture is true for four of these procedures. For a
fifth procedure it is proved that at least a certain lower bound of the proba-
bility of a correct selection has this property which is analogous to the
result of Tamhane and Bechhofer (1979) concerning the sixth procedure.
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