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ABSTRACT

Kazamaki has shown that if (Mn)n M are BMO martingales with

> 1
continuous paths and lim M' = M in BMO, then e(Mn) converges in gl to
€M), where €(M) denotes the stochastic exponential of M. While
Kazamaki's result does not extend to the right continuous case, it does
.extehd "locally." It is shown here that if Mn, M are semimartingales and
M" converges locally in §w {(a semimartingale BMO—type norm) to M then X1
converges locally in gp (1 £p < ») to X, where Xn, X are respectively
solutions of stochastic integral equaticns with Lipschitz-type coeffi-
cients and diffeventials dMn, dM. (The coefficients are also allowed to
Vary.) his is a stronger stability than usually holds for solutions of

o L. . » . W
stochastic integral equations, reflecting the strength of the H norm.



1. INTRODUCTION
Recently Kazamaki [5] and Kazamaki and Sekiguchi [6]'éhowed that if
M is a continuous martingale in E&g then the stochastic exponential E(M)
is in El, and if M" converges in the Egg'martingale'nofm to a martingale
M in BMO then EMY) converges to €M) in the El marfingale norm. Simple
examples show that chese results do not extend to the right continuous case:
M€ Egg does not necessarily imply that €(M) € 51 (cf. Remarks (3,7), #3).
One does have, of course, that M € BMO implies that €(M) is locally in gly
1

but this is not surprising since every local martingale is locally in H7!

A consequence of the results presented here is that if M € BMO then
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is locally in ﬁp for all p, 1 < p < . Moréover we show that if M
converges locally in EMghto M then 8(Mn) converges locally in Qp to €(M)
for all p(l < p < =). We extend Kazamaki's results further, however, by
working with semimartingales and general stochastic differential equations.
Suppose X, X7 are respectively solutions of

%
P

(1.1) XKoo= d o [ Xy dM
0
n n ft n,n n
(1.2} Ke = Jo 'y (FX )S_dMS

o.n . .n . . o N .
where M, M, J, J  are semimartingales and where F, F € Lip (K).

(Precise definitions are given in section 2.) Meyer [9] has extended the
notion of Egg;martingales to semimartingales. Such a semimartingale is
said te be in gw} We show that if M € ﬂw and J € gp for some p(l < p < =),
then X is locally in Ep for the same p. Moreover we show that if M" con-
verges locally in gw to M, and if F" converges to F and J" converges to J
in appropriate ways, then X" converges locally in Ep to X (1 £ p <« with pk
depending on the convergence of Fn, J% to F and J). This principal result

is the content of Theorem (3.4).



By insisting that the differentials converge locally in Ew we obtain
T
local convergence of the solutions: that is, we get (Xn) k converging

I\
to X k in Ep for stopping times Tk increasing to < a.s. (X and X" are

the,solutions respectively of (1.1) and (1.2)).. The previous best results
{(Emery [3] and Protter [12]) obtained only the weak-local convergence of a
subsequence.

Section 2 consists of preliminaries including some recent developments
not contained in Meyer [7]. One innovation is the generalization of Emery's
idea of "'carving'" a semimartingale into small Ew slices; by requiring only
that the slices be in gp, we show in Lemma (2.15) that if M converges to M
in gp then there exists an N such that for all a > N the same stopping times
that carve M are also carving times for M". The convergence theorem
described above (Theorem (3.4)) is the content of dection 3. In section 4
we sxtend a result of Carcia, Maillard, and Peltraut [4] by constructing a
lecal martingale with a given random."multiplicative jump'" at a given
totally inaccessible stopping time. We then apply Theorem (3.4) to obtain
a continuity theorem for martingales with multiplicative jumps.

I wish to thank C. Deisans-Dade for her careful reading of an earlier
version of this paper. Her comments have lead (I hope) to a much more
readablie and correct version. She also pointed out a gap in the proof of

Theorem (3.4) which is now filled,

2. PRELIMINARIES
We use the nctation of and assume the reader is familiar with the
theory of the semimartingale calculus as given in Meyer [7]. Let (@,F,P)

be a complete probability space and let (F be a right continuous

t)t 20

filtration with Ew = E and where EO contains all P-null sets.



Let C denote the adapted processes whose paths are right continuous

with left limits (cadlag). For J € C let

A

It g = Hsup da ] 1zp<=).

S<oo Lp

For a stopping time T we say a process X € C is stopped at T- if

Y
=X = Xlio,ep * %ptr, e
where Xt— = lim X_. We let
s>t , st
6XT = XT - XT-’

the jump at T, and we make the notational conventions that

X = 1T s x =[x
nugpm il |§p | P &

Emery {1} and Meyer [9] have proposed Ep norms (1 < p <« and p = w)
for semimartingales. (Here w represents the first limit ordinal and is
not a peint in © .) Meyer has shown that the EP norms for semimartingales
are equivalent to the mariingale Ep norms when the process in question is a
magtingale (L<pz=orp=w;p=uncorresponds to the BMO martingales).
For a semimaitingaie M with a decomposition M = N + A where N is a local
martingalie and A is a VF process, we define (1 < p < ®)

;» e o)
3, @A) = [IN,NE 4 fo_ [aa_] IIL

For p = w, jw(N,A) is the smallest constant ¢ such that for any stopping.

time T

o«©

E{(N.N]_-[N,NT. )% + [ ldA B} < ¢ aus.
T-

|]M|] = inf j (NJA), 1 <p < =or ﬁ = W,
W M=NsA



where the infimum is taken over all possible decompositions of M. For

notational convenience we write

%] | = X s X = X
gp(T) l ¥p EP(T_) Ep

We caution the reader, however, that Emery in [2] uses the notation
-1 differently: ||X]| denotes (in [2]) the infimum of the
P (1- P (-
p U (T-) H (7-) T T-
HY norms of all semimartingales L such that L = X .

The next proposition is elementary but it may give the reader some

feeling for the ||-|[ p, horm, which can be thought of as an extension to

b

semimartingales of the BMC norm for martingales.

(2.1) PROPOSITION. Let X and Y be semimartingales with HIX] g < and
H

I[YI] < =, and let T be a stopping time. Then the following hold:
B T T

2.2) IIGXTj[T,mglfﬁw é:|lxl|Hw(T)

(2.3 !lxliéw{T“) é=2||XE’Hw(T)

(2.4 !lxligw(Tj ﬁ;iiXIIHw

(2.5) o+ Yi’gw{T-]:é lix;!g“(T-) - ?|Yii§w(T_)

PROOF. Let X = N+A be zay decomposition of X. Then loxp] < [en| + o]
or any stopping time S we have

1
F

T
ISXTII{Séf} é:([N:N]T"[N,N]S_) * fs_ldASI’

and (2.2) follows upon conditicning with respect to F

B (T)

o =5
To establish (2.3) note that ||X]] = ||x-6X.1 o [ < 2| |x||
Ijw(T_) XT [T,={ gw(T)
Inequality (2.4) is clear and (2.5) is merely the triangle inequality applied
to the semimartingales X' and YT~ ' O

We make repeated use of the following inequalities. A proof can be

found in Meyer [9].



(2.6) EMERY-MEYER INEQUALITIES. Let 1 <p <«, 1 < q < ®, or

lipsw ggg;q = W, ggg_%-+ é—= 1 Let X be predictable and M be a
T
semimartingale such that the stochastic integral X-M exists. Then
. | 1xM X B
@n llxwl]os IXi
o lel] L]l
- Ifl1 <psgw, 1<qz5w, l‘<-l=lbutr < o, then
- = - = P q9 -
2.9) | XM X M
(2.9) I ng;cr,luépnllgw
snd if 1 5 p < ©, then
2.10 XM s | % Mi| .
2.10) [Tl s s fRl Il

yhere_hp, Cps sp are universal constants.

We vecord here a trivial but useful observation.

f2.11; PROPOSITION. Lst X be predictable, let M be a semimartingale and

supposs the stochastic integral X«M exists. For any stopping times S, T

with & < T z2.s5. we have for l<pge,1<2qg=x<®and l'+ l’= l*
Pkl bl el -—p q r
el <] e
B (1-) 5P (T Hl(T-)
[ [X-M-x07] | <h_||x]] | -1 | G
() PP H* (T-)
If 1 <o £, 1 295 =, ;-+ -~ = l—but r < o, then
== P 9 r—
S i S
1% M-X M7 | < e llxl] | [M-M] |
st (T-) sP(m Hi(T-)
and if 1 < p < =, then
) S S
| [%-M-x-M7] | > = s, X[ o M
sPer- SE(T H™(T-)



PROOF. Let N = (M—MS)T', The proposition then follows by an application
of the Emery-Meyer inequalities (2.6) o

We shall also use a technique developed by Doléans-Dade, Meyer, and
Emery, the idea of which is contained in the next definition, which was
first given in Emery [1].
(2.11) DEFINITION. Let € > 0 and M be a semimartingale. M is said to be

carved in slices smaller than e if there exists a finite sequence of stopping
T

times {carving times) 0 = TO < T1 < ... < Tk such that M = M k, M€ Ew,
and for 1 =1 % k,

. Tinl.
(2.12) [ |M-M o < g,

We write M € Dm(e) if M is cut in slices smaller than e. We also write
M€ Dm(a,k) tc signify the number k of non-zero carving times needed to
cut M into slices smaller than €.

(2.1%) DEFINITION. For € > 0O we say that M is in Dp(e,k), l1<psge
or p = w if there exists a finite sequence of stopping times 0 =

T

T. <T, < ... <7 such that M = M k-

0 1 K , M= gp, and for 1

fia

i<k,
2.14) | Hls Tio1,
(2.14) P iM-M |

| HP (T, -)

Note that M € Dq(e,k) implies that M € Dp(e,k) for q 2 p, or g = = and

P = w.

The next lemma is due to Emery ([1] or [3]).

(2.15) LEMMA. Let M be a semimartingale. For each € > 0 there exists an

arbityarily large stopping time T and a constant k depending on T and e

such EEEE.MF_ € Dp(s;k), l<p<=andp=uw.




PROOF .

3 L) oo . . .
It suffices to prove the result for the H norm since it is

Stronger than the gp norm, 1 < p<®orp=uw. Let M= N+A be a de-

composition of M. By letting Ct )
s<t

predictable projection (alsc called its ""compensator'') we have that

6N51{|5N5|iy/2} and Ct be its dual

N = Nt + (Ct—Ct) is a martingale. It is a simple matter to check that Ct

- has locally integrable variation and that Y is a bound for the jumps of

~

N.
bounding the jumps of N.

?

I = infd .
Rk+l S 2 Rk' }ﬁR t]
J k’ o
Rk— co
For each k, A cD(y).
Siap = infle 28,
Skj -
For each k, N is in H and since
S, S - S, S
ooy y Ry Ky
N t t t
we have
. S} t
IS < lomong
Ho3, ) k+1
= Tl
< Hoeng  *
kel

lda_| 2

&

(See Meyer [8] for the details). So we assume that M=N+A with Y

Let R0=0 and inductively define:

t
vor [ |dA_| 2 k.
0 1

Let SO = 0 .and inductively define:

IN,N]_-[M,NL. > %2 or IN,NT. > k).
t r t

k
) - 6N, 1.
“INNYg )% e e |,
"k k+1 L
Tz
* [NNIg  _-[N,NIg )% + |eN
k+1 k

2. 2%
(y7+y7)* = vy = (1 + /E)Y

Thus taking vy

S

A

k+1 -

L

€/2(1 + v2), we have N € Dw(e/Z) and A € Dm(e/2). But it -

is a simple matter to check that the sum of two elements of Dw(s/Z) is in

'Dm(e).

a



The next lemma will be used in the proof of Lemma (3.25), which in
turn is crucial to the proof of Theorem (3.4). It is important because we
can have M" € Dp(u,k) for n > N where the constant k does not depend on n.
The case of interest for us is p = w.

(2.16) PROPOSITION. Fix ap, 1 <p <®orp=w and let M be a semi-

martingale such that ||Mi§ p < . Buppose M" is a sequence of semimartingales

such that lim ||M—Mn|| . = 0. Then for any € > 0 there exists an arbi-
>0 I_:[
trarily large stopping time T and constants N and k such that M € Dp(e,k)

ggg_Mn € Dp(e,k} for all n > N.
PROOF. Lemma (2.15) assurs us of the existence of an arbitrarily large T

such that M € Dpfe/z,k)= Choose Y = €/8 and choose N so that n > N implies

[lM-M™|] <y. Let 0=T, <T <...<T =T be the stopping times that
1P 0 1 k :
carve M into slices. Then
Y] n Tj-l ! n n T'wi T'—1
oty 2N =l -t T e e T >
HP (T, -) HP (T, -)
- T,
< 2f MM ] v [ o-m T
= < i P(T ) \ HP(T _)
= i+l = i

A

4HMH-»-MH P + 2/2 < &,
H

Thus the same times TO,....,Tk carve each Mn into k slices, each smailer
than =, for n > N. ' d
The most general coefficients used in scalar stochastic differential
equations for which unigue solutions exist are those which satisfy the con-

ditions described in the next definition.
(2.17) DEFINITION. Let K > ¢ and let F be an operator mapping C into
itself. F is said to be in Lip(K) if the foliowing two conditions are

satisfied:



10

(2.18) For X, Y in C and each stopping time T, X = yT- implies
0T = o

*
(2.19) (FX-FY)* < K(X-Y)* as processes, where X, = sup |Xs|.
s<t

_ ) n
We state our results in terms of local convergences. Processes X

converge locally in a norm ||-|| to X if there exists a sequence of

stopping times (Tk)P>1 increasing-to « a.s. such that for each fixed k,

1im |1 (xX%-x) 5] = o.
>0
We remark that in [12] we used a convergence designated 'weak-local',

and Emery in [2] uses simply the term "local' to denote weak-local

- Vi . -
“convergence. The preresses X converge to X weak-locally if
T
" |]'= 0 for each k. We will not need this type of convergence,

lim || (x7-X)
I-~c0
but see Remavk (5.7), #4, in ssction 3.

3. STOCHASTIC DIFFERENTIAL EQUATIONS.

We consider the following type of equation:

(3.1 X, = I+
© i

B ~1R

t i
f (F 0 _dMy
10
wherse M° are semimartingales, Fi are in Lip(K), and J is either a semimartin-

gale or & € ¢ (1 < i < k). For simplicity of notation, we assume k=1. We

are interssted only in the case ||M!| . = We refer the reader to Emery
{2,3] for an account of vecent results concerning this equation. In partic-
ular, unique solutions exist.

Whether J € € or J is a semimartingale governs what norm we use for the

soluticn X. The semimartingale-nomm ||-]| P is a stronger norm than the

H
C-norm ||| P’ however the following lemma allows us to work exclusively
= S :
with ||| p—and still deduce the results for ||-]] D’ should J be a semi-
S H

martingale.
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(3.2) LEMMA. Suppose M, J, Mn, and J" are all semimartingales for n > 1.

Let X and X" be solutions respectively of

t
J o+ / (FX)_dM_

<
n

<
i}

t
n I, 1 T
Je ¥ fO(F X7) _dM

where F and F" are in Lip(K), some K independent of n. Suppose that (1) Jn

tends to J locally in HP, (2) F'X tends to EX locally in SP, (3) ||M <
tends Co J locally 1n o Lends to locally 1n » o

and M tends to M locally ig_gw._”Then X" tends to X locally ig_gp if

and only if X' tends to X locally in SP (1 £p < ).

PROOF. Necessity is simply a consequence of the fact that the Qp norm is
stronger than the §p norm. Without loss of genérality we may assume that the
convergence hypothesized in comnditions (1), (2), and (3) above is global,
‘not local. Further, by stopping at an arbitrarily large time T if

necessary, we may assume that IIFX;II p < », Then by hypothesis (2), the

assumption that [an~X|| tends to 0, and the inequality

sP
EXEH < TP FIFC-rC ]|+ (e
- §p N - §P - - _p - _P
< x| 1x"-x L F™X-Fx| | FX ,
< XX _II§p + 1 |l_p + || _Il_p
we may assume IIFnXT is bounded uniformly in ﬁ. Using the Emery-Meyer

g

inequalities we have:

EP

3.3 X"-x Lyt.g FX -F'X M
(3.3) ¥ o< | | . | [ FX_ _Ilspll ||Hw

+ [P ™R M iy M-M"
e ISR L TN
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and since ||F'X -F"X [l < k|[|x —anl and ||F'X"|| _ is bounded uniformly
- - Sp — - T Sp - Sp
in n, the right side of (3.3) tends to O as n tends to «. d
In view of Lemma (3.2) we need state the next theorem, our chief result,

only for the case where J € (.

{3.4) THEOREM. Let M, (M ) be semimartingales. Let F, (F ) be in

Lip(K) for some K and all n. Sugpose_J, (J )n> are in C and that X, (X )n>l

are solutions respectively of

(3.5) X

t
J, + fO(FX)s_dM

: t
n n,n n
(3.5) Xp = Jp + fo(F X"y M.

Fix a p (1 < p < =) and suppose (1) J" converges locally in §p to J,

(2) anm converges locally ig_gp to FX_ ( ]|M|| © and M" converges

"U'II::

}ocal}x_ig.gw to M. Then. X" converges locally

Hnen

(3.7) REMARKS.

(1) Because of the local nature of stochastic integrals (cf. Meyer [7,p.307]),

n
¢la and J3 = 371,

vfur A€ 5 Then it is elementary that t - Xt and t > Xt (X is the solution

one can replace Jt and JZ in (3.5) and (3.6) with jt =J

of (3.5) with J replaced by 3) agree on A a.s. (cf., e.g., Protter [11,p.48]).
This gives us a way to handle the situation if the initial conditions J0 and
Jg are not in LP: if there eXist sets Ak € EO increasing to © such that
||(Jn—J)1A ll tends to 0 for each k, one can define Tk=k1A and one concludes
S ) k
that the modified stopped processes XtAT {T >0} converge to X

k
Sp for each k. Of course, the Tk increase to © a.S.

1 in
N
tAT, {Tk>Ol
(2) If we know that J, (Jn)nzl are also semimartingales and that JU tends
locally in gp to J, then Lemma (3.2) allows us to conclude that X" tends to X

locally in Ep. We also remark that local Ep convergence does not in general
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imply local Qq convergence for q > p. See [12,p.344] for a simple example
- of processes which converée in gl but do not converge locally in QP for
any pv> 1.
(3) Neither the Ew nor the stronger Em norm can be .used to extend Kazamaki's
result: if Nt is the compensated Poisson process of intensity one and jump

is in Em and gw, but

size a, and if T is the first jump time, then Mt = NtAT
EM) is in H' if and only if a < 1.

(4) . As will be clear from the proof, the hypothesis that X converges
locally in §p to FX can be weakened to F'X converges weak-locally in §p

to FX (or in Emery's terminology, F'X converges "locally" to FX in §P-)

(5) One need not state the convergence of the coefficients in terms of X.
For example, if as in [10] we assume F" is of the form Fn(w,t,x) with

Fn(-,O,x) =0 a.s., and if we require

lim P j sup IFn(-,t,x) - F(-,t,x)| >e} =0
oo lzx <m

for each ¢ » 0 and each m € N, then the conclusion of Theorem (3.12) still
holds.
PROOF of Theorem (3.4). By stopping at a large stopping time if necessary,

we may assume without loss of generality that:

(@) lim ||J"-J]] =0
- sP
() lim |[F™-F2|| =0
no-e §3_)
0.

(c) lim ||M*-M|] =
neo H'

"We choose and fix an a such that 0 < o < l/SpK. We know (Lemma (2.15)) that

there exists an arbitrarily large stopping time T such that MT- € Dw(a/Z,k)
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for some k < ». By proposition (2.16) and reduction (c)} above we know
there exists an N such that for all n > N we have (Mn)T_ € Dw(a,k), where
k does not depend on n. Let T be such a stopping time, and let 0 =

T0 < T1 < .00 < Tk = T be the times that carve M (and also M* for n > N)
into slices less than a. We then have

(d) M€ D(3,k) and (M)’ € D(o,k) for all n > N, k < =, and

0 < < K.
o l/sp

Observe that for any stopping time R we have that:

(3.8) HEXE] < [ |F™E-F_|]
P (R-) sP(r)
+ | |F% -F"x || + | [F'%_-Fx_||
sP(R) s (R)
+ |[¥x_-Fo_]| + |Fo_[|
- sP®) sP (R)
< x| 2] + 2k] [x_| ]
Sy sP (R)
+ [P -Fx | + ||Fo_|| :
5P (R) s (R)
Since FO is left continuous we let Rn = inf{t > O: |FO_| > n} and
lim R_ = wba‘s° and |IFO || 2 n. Thus without loss of generality we
e D TR
can assume = n
e | FO .
© iRl -
Since }]FnX_~FX_|| D tends to 0 by reduction (b), it is bounded, and hence
S
(3.8) implies that ||F X"]| is bounded if ||X]| < » and
¥ (r-) s (R-)
sup ][X?[| . < w, That there exists an arbitrarily large stopping time
n SY(R-) : :
R such that ||X|] < © and sup ||X"|] < o is perhaps the crux of proof.
sP (R) n sP(R)

Given (d) this fact is the content of Lemma (3.25), the statement and proof of

which follow this proof. Thus by (e), inequality (3.8), and Lemma (3.25) we
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may assume without loss of generality that

(f) sup lananl < o,
n - gP

From equations (3.4) and (3.5) we have that
t o a t n,n _n
J, + fO(F X _-FX_ )dM_ + fO(F Xg_-F'X__)dM,

n Y
(3.9)  X;-X, = J7

t
+ f ang_d(Mn—M)s.
0

By the Emery-Meyer inequalities and Proposition (2.11) we have for any

stopping time R > 0 a.s. that equation (3.9) yields:

w1 n n
3,10 X= J - F - M
(3.100 || xIISp =1 Jllsp+spll X_ FX_HSPII Ile
+ s K| [x"-x]| Ml ]
P sF (R-) H' (R-)
.n n
F'X M -M
+ s HIPCH I IIHw
=y, + s K| |M]| [x%-x] |
P HY (R-) P (r-)

vhere sp is given in (2.11). Note that by reductions (a), (b), (c) and (f)

we know that lim v = 0.
n>e
Let 0 = TO'< T < ... < T, = T be the "carving times" whose existence is

assured in (d). Then for R = Tl and leiting B(1,n) =Y, inequality (3.10)
yields: o

x|, s eany e x| XX
§°(T,-) o 8T(T)

'where T = spKa < 1. Subtraction yields

(3.11) | |x"-x]| < 8(1,n)/(1-1).
sP(Tl-)
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Recall that GXt = Xt—Xt_, the jump at t. One easily sees that:

(3.12)  ||exT -ox. || < ||edR -8a. ||
XT1 Ty P T, TP

+ | ]F™x-Fx]|

[ToMp 1rp ol
sP (1;-) MTl [Tpselt g

+ K| [x"=x] | Iy
§P(T1_) Tl [Tl’ [ gw

+ |[[Fxg ] [leM-M)p 1rp orl

Tl— s (Tl_) Tl [Tl’ [ Ew

and since IIGMT 1[T w[ll o ;=||M|| " (Proposition (2.1}), combining (3.11) -
. I R H

and (3.12) gives us that

1im ||x"-x] | = 0.
< sP (1))
Now suppose we have established that lim ]IXn—X[| = 0, and consider
n*>eo S Ti)
Ti+l" We have that X, and X? are solutions reSpectively of (3.4) and (3.5)

. n . .
with Jt and Jt replaced respectively with xtATi + Jt - JtATi and

: T.
n n n . . . i
_XtATi + Jt - JtATi and with M and M" replaced respectively with M-M © and
T.
Mn—(Mn) * {nequality (3.10) then gives us, taking R=Ti+l,
POt et s kb B S
§ (Ti+1_) ) E (Ti+1_) é (T1+1_)
< B(i.m) + x| [X-x]| p
5 (T4
where r = spKa < 1. Thus
. n .
(3.13) x| | < B(i,n)/(1-1)
. P, _
ST (T. )
= ti+l

where lim B(i,n) = 0. A calculation analogous to (3.12) shows that
oo
1im | [x"-x}] =0,

p
e 2 (Ti+1)
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and hence by a (finite) induction we conclude that lim ||X"-X|| =0
| nee s?(m)
and the proof is complete. 0
The next two lemmas were used in the proof of Theorem (3.4). Lemma
(3.14) has some interest in its own right, since it gives a bound on the
gprnorm of the solution of a stochastic differential equation in terms of

other norms which are (at least theoretically) known.

(3.14) LEMMA. Let M be a semimartingale, let F € Lip(K) and let J € C.

Let X be the (unique) solution of

. t
(3.15) Z, = J, +.f0(FZ)S_dMs.

Suppose that (1) ||M|] p =W <@, (2) ot =3 <=, 3 [|ro_|] _ =
H P s?

T < . Let a be a constant such that 0 < o <-1/SpK, where sp is given in

(2.10). Let T be a stopping time such that MT_ € Dw(a,k). Then

||| 2C<w
sP(T)

where C = C(p,j,K,t,m,a,k) is a constant depending on the seven pérameters_

in its argument.

. PROOF. First suppose that ]]M|| o 20 Then by the Emery-Meyer inequalities

(2.5) we have

fin

3.16 X/ J FX |! M
a6 I < 11l e s R I

A

e sl Il + 11Fo_f )

j + T + r||X||
SP

fin

where 0 < r = spKa < 1. Then by subtraction we have

3.17) Xl <G+ ro)/Q-r)
5P
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provided that [|X]| p < », We show this by successive approximation.
S

Let Xg = Jt and recarsively define

t
n+l n
Xg ~ o=, 0+ fO(FX ) dM, .

Then clearly I!Xnii p < « for each n using induction and the Emery-Meyer
: ) S

inequalities. Moreover one easily checks that for £ > 1:

2 N
(3.18) O < g+ § 2t
p i=1

Ion

where 0 < r = %)Ka < 1. Fix a large N. Then for m > n > N we have:

(3.19) R ST e el
s? sP

and combining (3.18) and (3.19) yields

(3.20) X 2 2N 2/ o)

S

for m > n > N, and the right side of (3.20) tends to 0 as N = «. Thus

>l is Cauchy in the Banach space (g,ll-l[ p). It is a simple matter to
= B S

check that X° converges in |]-]] p to a solution Z of (3.15), and then Z = X
S
by the uniqueness of the solution.

Now remove the assumption that ||Ml| o S0 We know that MT_ € Dw(a,k).
H

Let 0 = TO < Tl L, < Tk = T be the ”c;rving times" of Definition (2.13).
1 T, - Tl_

Let N = M . By the unicity of solutions we know Xt is the unique solu-

tion of

t 1
Z, = J, fO(PX)S_dNS.

The preceeding reduction gives

(3.21)  |]x]] < C(p,j,K,T,0) < =,
| Sp(Tl—)

Since XTl = XTl_ + GJTl + FXTl_éMTl, we have that



(3.22) | |x]| < | 1x}] + 2j + s_mK||X|| + s mKt.

Inequalities (3.21) and (3.22) imply

(3.23) | 1x] ] < C(p,j,K,t,m,a) < =,
P (1))
= 1
el TielT 1§ Tie1”
Now set N = Mt - Mf for 1 < i < k-1, and note that Xt is the

solution of the following equation:

Tierm Ty t i+l
Z, = Xepp + I+ f (Fz)  dN."".
i 0
Since |[N1 l|| X o we get as in (3.17) that
H”
| Ti+1—
(3.24) Hx 20 = dix] +2j + 1)/ (1-1)
| 5P sP (1)
and since
X = + 68J + F §
i xTi+1‘ Tia1 XT1+1' MTi+1
it follows as in (3.21) through (3.23) that
[ I ek ma, i) < =
Since this is true for 1 < i<k and 1 = T, we have the result.
(3.25) LEMMA. Let M, (M )r>1 be semimartingales; let J, (Jn)n>1 be in C;

let F, (k ) be in Lip(K). Let X, (X ) be solutions respectively of:

-
1]

t
R fO(FX)S_dM

3
H

t
n ., n n
Jp + fO(F X" _aMy,

Assume that (1) IIM!| o < and lim IIMn—M|| 0; (2) l|J|| < o and
H

e

]
:':8

lim | |J™-J]| p = 05 (3) Lin | | F'x-FX] | p = 0 Let T be a stopping time

n--o .§ ) S
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such that ||F0 || < wand M € D“(a /2,k) for some a, 0 < a < 1/s_K,
R - gP —_ _— p
$(T)
where s is given in (2.10). Then inf sup ||X"|] < o,
P N n>N sP(m)

PROOF. By Proposition (2.16) we know that there exists an N such that for
n > N we have M € Dw(u,k) with k not depending on n. We can assume without

loss of generality that ]]Mnll o < 2m for n > N. Note that

H
[ 1F%_] | < |F%-Fx|| + | [Fx-Fx] | + | [Fx-Fol|
sP(T) sP(T-) sP(T-) sP(T-)
+ | [Fol| ;
sP(1-)
< 2k] |x]| + | |F™x-Fx|| + ||Fo] | ,
sP(T-) sP(1-) sP(T-)
hence sup lIFno_il = T < @ provided that ||X|| < =, But
n>N sP(m sP (T-)
IIX | D < < by Lemma (3.14). Applying Lemma (3.14) to X% as well, we
ST
see that for n > N:
XM 2 c,i LK,T,2ma,k)
sP(m) g
where j_ = ][Jn![ v, which is bourded as well by hypothesis (2). This
? sP (1)
completes the proof. _ a

4. AN AMUSING APPLICATION.

Recently Garcia, Maillard, and Peltraut [4] have shown that given a totally
inaccessible stopping time T and a constant K, there exists a marfingale L
with precisely one jump (at T) such that LT/LT_ = K. We extend this result'in
Lemma (4.2) to allow random jumps in Ll and F.. measurable, and in Theorem (4.4)
we establish a "continuity" result for local martingales with (random)-

"multiplicative jumps''.
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Let T denote a finite totally inaccessible stopping time, let At =

1[T w[? and let (Mt) denote the BMO martingale Mt = A _~-A_, where A is the

"
dual predictable projection of A (also called the compensator of A). Let
1 . .
A = A~ =
€L (ETr)’ and N, E{ 1l£t}' Define F mapping C to C by (FC)t N.C,.

Suppose X is the unique solution of

t
“.1) X, =1+ / FX__dM_.
0
t
Then X is the stochastic exponential of the local martingale Yt = f NS_dMS,
.0
and so
XT
e MO
which implies that XT/Y__ = A,

(4.2) LEMMA. The local martingale X of (4.1) is locally in HP for

1<p<oo, )
0 ) st
Define F~ by F'C = (FC) .

PROOF. Let S' = inf{t: |N_| » 2}1

N {INO];}}'
Then FL € Lip(2). Since M is in BMQ, it is in also in Ew when considered

as a semimartingale. By Lemma (2.15) we can find a stopping time T2 with

L

P‘(T2 < SE) < I/ZR and such that (1) MT T € Dw(a,k) for some k < = and
0 <a < i/s 2; and such that (2) ||F£O_|| g < - Thus by Lemma (3.14)

g sP (1)
we conclude -

Xl <=
sP ()

%

Since lim § = ® a.s., also lim TK = «», and the proof is complete. L]
Q300 L

Let A" be a sequence of random varigbles in LI(ET_) and let
N: = E{Ap-llgt}. Define (FnC)t = NEC,t for C € C. Suppose X" are solutions
of

t
: n _ n.n
(4.3) Xe =1+ j’O FXg_dM_ (n21).
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Then each X" has multiplicative jump of size A" at time T.

(4.4) THEOREM. If A" converges to A in LY(1 < q < =) with |A"

fin

Y € Ll for n » 1, then X" converges locallyvig_gP (1 £p<q) to X.

PROOF. Let Y = E(Y[gt) and let S* = inflt > 0: Y, 2 k}. Then by
stopping M at Sk we can assume without loss of generality that F and

'€ Lip(k) for all n. By Hblder's inequality we have ||FnX—FX|| p =

+ %-= By Lemma'(3.14) we

1 1
q P’

n ' n

N'-N)X N"-N X f
H0m0xl] < 1NNl for
know there exists an arbitrarily large stopping time R such that

X1, <= By boob's inequatity |[N'-¥]| _ € qta-1)"1|[A"-A[|
s* (R) s4 L4

which tends to 0 as n tends to «». An application.of Theorem (3.4) gives

the result. ]
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