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1. Introduction.

The classical problem of Chebyshev mentioned in the title concerns the
approximation of a power X" by polynomials Qn_l(x) of degree n-1 using a
sup norm over the interval [-1,1] . The polynomial XQ—Qn_l(x) in this
case is the Chebyshev polynomial of the 1st kind Tn(x) = cos n6 (x = cosh)

with leading coefficient set equal to one. The problem considered here is

to approximate the powers x5+1,sS+2,...,xn simultaneously using the lower
terms 1,x,...,xs . Let f'(x) = (l,x,...,xn) (primes will denote trans-
poses) , fi (x) ='(1,x,...,xs) and fé (x) = (xS+1,xS+2,...,xn) .  Further

let Q be an arbitrary (mn-s) x (s+1) matrix and A be a positive definite
(n-s)x (n-s) matrix with a fixed value, say one, for its determinant. It
is required to find the value of both Q and A which will minimize the supremum

over [-1,1] of
d(xQ,A) = (£, () - QF; () )" A(£,0(0 - R () ) (1.1)

Note that when s = n-1 we have the original problem of Chebyshev. The
solution to the generalized problem arose from a problem in the optimal design
of experiments. ‘It is arrived at fairly simply using certain '"canonical

moments" of measures on  [-1,1] . The simplicity of the solution seems to

require minimizing over the matrix A as well as polynomial part Q.
A solution to the original problem using the canonical moments. is de-

scribed in the Section 2. Section 3 describes the general solution. Some
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examples are considered in the final section together with some properties

of the general solution.

2. Solution of Original Problem.

In this section we give a solution to the original problem using canoni--
cal moments. Let q denote a vector of dimension n+l with a one in the last
component. The problem is then to minimize

2
sup | q'£(x) |

(2.1)
x€[-1,1] .

with réspect to q. If ¢ denotes an arbitrary probability measure on [-1,1]
then (2.1) may be replaced by

2
sup { (q'£(x) ) dg(x)
= sgp-q'M(a)q
where M(g) is the (n+1)x(n+l1) métrix with elements

o= fx e, i, 5= 0,1,...,n
Using game theoretic arguments it may‘be shown that

= inf s 'M‘ = s . inf q'M
o = in gp q'M(&)q gp gt a (8)q

Letting - e' = (0, ,...,0,1) it then follows that
-1 i nf (e! )2
o R g

inf e'M—l(E)e
g.



The last equality uses Schwarz inequality. Note for later reference that

equality is achieved for the supremum over q if and only if

-1 -1
q=M7(&)e/e'™ "(g)e (2.2)
The problem is now to minimize

" My C8) |
(g)e = —THE T (2.3)

e'M”

where IM(g)l and IMll(g)I are the determinants of M(&) and

M8 = £ (0] dE).

The two determinants involved and their ratio have a simple expression
in terms of the canonical moments of € . For any probability measure & on

[-1,1] et ¢, = [ x'dg(x) , i=0,1,...

Now let c; denote the maximize value of the kth moment over measures u
having the same first k-1 moments as £ . That is, consider those u on [—1,1]

~with f xldu(x) =c; for i =0,1,...,k-1 then c; = sgp f xkdu(x)

Similarly let c, denote the corresponding minimum. The canonical moments are

_ k
defined by _
c, -¢C
pk_ E ]_( k = 1,2,...
“k T %k
Whenever ci = c; we leave the pk’undefined.
If we then let
no = qo =1 nj = C{J_1PJ 1 =1,2,... (Pl+ql = 1)

the determinant IM(E)I is then (see Skibinsky(1969) or Studden (1979) ) a

multiple of two times the quantity

n+l-1
(ny5_1M23)

n
i
=1

i



The ratio in (2.3) then turns out to be a constant times

s+1-i
(ny5_1M24)

H-
=

(2.4)
n+l-i

n =381 =2wn

QUPEIELOTY,

e
—

For *s = n-1 this quantity is the inverse of
2n-1
Pon I P;q4
i=1
which is maximized for

P = 5 i= 1,2,...,2n—1,p2h= 1 (2'5)

(The general solution is given in (3.4) below). Now the measure with density

1

_— (2.6)
wfl—xz
has canonical moments P = 1/2 . See Skibinsky (1969) or Karlin and Studden

(1966) p- 120 . Since the moments g = 1, cl,...,ck and Pl’PZ""pk are
in 1-1 correspondence the minimizing measure En-l corresponding to (2.5) has
_ifsil§£- 2n-1 moments equal to those of the measufe (2.6).

The solution to the original problem, namely that Tn(x) ;with leading
coefficient, minimizes‘(Z.l) now follows. It can be readily seen that using
the corresponding q = 9 _1 from (2.2) the polynomial .qﬁ_if(x) is orthogonal
to  xk,k = 0,1,...,n-1  with respect to the measure in (2.6).

The measure E.-1 corresponding to (2.5) is an '"upper principal representa-’
tion" for the measure (2.6). It concentrates mass proportional to 1:2:2:...:2:
at the n+l zeros of (l—xz)Tﬂ(x) = 0 . This can be verified by noting that

gn—l provides a quadrature formula corresponding to the measure (2.6) which is

exact for polynomials of degree 2n-1. This quadrature formula is a classical



Bouzitat formula of the second kind. (See Ghizzetti and Ossicini (1970) ).

It may also be verified by noting that the support of gn—l must be the ppints
where Ti(x) attains its supremum, i.e. the zeros of (l—xz)Tﬁ(x) =0

The corresponding weights at these points may be obtained by matching up the

first n moments and requiring total mass equal to one.

3. The General Solution.

As indicated in the introduction the problem now is to find the Q and A
which will minimize the supremum on [-1,1] of the quantity d(x;Q,A) defined
in equation (1.1). A considerable simplification is obtained if we use some
of the results from Karlin and Studden (1966) page 367. It is. shown there
that the minimizing Q and A are of a certain form. For any £ we partition
the matrix M(g) according to fl and f2 by defining

Mo (8) = M. = fffide, M = fffldeand M =M _ = [f £lde

11 11 1717~ 22 272 12 12 172
so that

M My,

M(E) =

The minimizing Q is shown to be of the form
| R _ -1 |
Where'gs maximizes the determinant of the matrix

ATHE) = My, (8) - My (E)M]E(EDM, () (3.2)

The matrix A was normalized to have determinant equal to one. The minimizing
A is the matrix A(gs) suitably normalized. Since the normalization does
not change the problem we can restrict the matrix A to have determinant equal

to that of A(gs)



Now the identity

_ | -1
Ml =Ty | Dy, - My MM (3.3)

shows that minimizing IA(E)I is equivalent to minimizing (2.4) for general

$. The minimizing measurq\gs can readily be shown to have canonical moments

=1 .
Pi = 7 l‘odd
(1
> i=1,2,...,s
_ n-i+l .
PZi = ﬁ m—— 1= s+l,s+2,...,n-1 (3.4)
1 i=n

-
"One can now convert back to the measure Es , then to the ordinary moments

of £ and then to the métrices Q and A. It is also possible to evaluate the
ordinary moments Qf gs used in Q and A directly from the canonical moments
given in (3.4). These relationships, which originate with Stieltjes, are
described more.fully in;Studden (1979) or Skibinsky (1969) and relaté the

power series generating the ordinary moments with its continued fraction ex-

pansion.
Let 60 =1 Gi =‘qu_-2p2i i=1,2,... and define Uij recursively
by UOj =1, j=20,1,... and for i < j
J
ij = kgi Spiel Vi1 k 1371i2,... (3.5)
- Whenever p; = 1/2 for i odd the ordinary moments c. = fxldg are then
given by
Crio1 = 0, Coi = Uii i=1,2,...n (3.6)



‘The relationship between the P; and the ¢y is slightly more involved
when the symmetry producing Pyi 1 = %— is not present.
The minimizing measure ES also has a simple description. See Studden

(1979). The support of ES consists of the points + 1 and the n-1 zeros of

' ' ' 1 ) ' -
P (¥t (x) - ®Phos1 (Xt () =0 (3.7)
where
-1 _(n-s+l) -
o, =5 T?E:7§I§T s =40,1,...,n-1

and pi and ii are the Legendre and Chebyshev polynomials Pk(x). and Tk(x)
normalized so that their leading coefficients are one.

The prime'here denotes differentiation. We note that Tﬁ(x) is the
Chebyshev polynomial of the second kind and Pi(x), k=1,2,... are orthogonal
to (l-xz)dx » however we prefer to leave things in terms of Pk and Tk'
The weights that ES assigns to each of the Zeros x. of (3.7) and +1

is given by

2

i=0,1,...,n (3.8)
2n+1+U25(xi)

£,(1) =

where Uy (%) is the Chebyshev polynomial of the 22§-kind,

sin(k+1)6

Sin o s X = cos 0

U (x) =

4. Examples and Further Properties.

The reduction of the minimizing A and Q to the form (3.1) and (3.2) is
given in Karlin and Studden (1966). The same theorem also says that with
the matrix A of the form (3.2) the quantity d(x;Q,A) » with the minimizing

Q =»Q(Es) and A, = A(g) , satisfies the inequality



d(x;Qs,As) < n-s (4.1)

, 2
For s = 1n-1 the expression d(x;Qs,AS) reduces to Tn(x) . Equation

(4.1) is then just the familiar fact the Tﬁ(x) <1 for xe€[-1,1]

The polynomial T is orthogonal to xk,k = 0,1,...,n-1 with respect to
n

(2.6). Since the minimizing measure En-l and (2.6) have the same moments
co,cl,..'.,czn_1 it follows that tn and xk are orthogonal with respect to
gn—l' There seems to be no analog to (2.6) for the general measure gs.

However if we define

1
f

(8guqs---08y) " = AZ (£, - Q)
then the polfnomials g;> i = s+l,...,n are orthonormal and orthogonal té
l,x,...,xS with respect to the measure gs. See Kiefer (1962) or Karlin and
Studden (1966).
As a specific example consider the case m = 3 . Using equation (3.4) we

note that all the odd canonical moments are equal to 3 while the even moments

are
P, Py Pg
s =0 3/5 '2/3 1
s =1 1/2 2/3 1
s =2 1/2 /2 1

A few further calculations using (3.6) and (3.5) give the ordinary moments.

The odd moments Cyj_q . are zero while the even moments are given by the

following:
c c c
2 4 6
s =20 3/5 13/25 63/125

s =1 1/2 5/12  29/72

s =2 1/2 3/8  11/32



Equation (4.1) for the three cases then gives

s = 2
3 3 3 3
(x~ - Z—x) 16 (x” - Z—x) <1
s=1 2 1\ 2 1
X——Z- 6 0 X-—z—
< 2
3 5 : 3 5 -
X - g-x 0 18//_ X - g-x
s = 0: :
X ! 63 0 -13 X
2 3 5 2 3
X—g Z 0 5 0 X—g- i3
x3 -13 0 15 x3

For s = 0 the measure &0 has equal mass 1/(n+l1) on the zeros of

(1 - xz)P'(x) = 0, which forn = 3 gives x=+1 and x = + 1¥5 . For
n . -— —_—

2

S = n-1 the measure ¢ has mass on the zeros of (1 - x )T;(x) =0

n-1

which are xv = Ccos %F- s = 0,1,...,n. The interior zeros have weight 1/m

while +1 have weight 1/2n each. For s = 1 andn= 3 there is weight 3/10 on

x=+1//6 and 1/5 on x = +1

As a final remark observe that go and & give essentially equal weight

1
to the zeros of (1—x2)P;(x) =0 and (1 - xz)T;(x) = 0 respectively. The
zeros of all the classical polynomials distribute themselves according tQ
the density given in (2.6). Therefore EO and gn-l both converge (weakly)
to the measure with density (2.6) as n»e . The measures ES, which also

depend on n, can be shown to lie between EO and En_ so that they all

1

converge to (2.6) uniformly in s.



[1]
[2]

3]
[ 4]

(5]

10

Ghizzetti, A. and Ossicini, A., "Quadrature Formulae," Academic
Press, New York, 1970,

Karlin, S. and Studden, W.J., "Tchebycheff Systems: with Applica-
tions in Analysis and Statistics," Interscience, New York, 1966.

Kiefer, J., An extremum result, Can. J. Math 14 (1962), 597 - 601.

Skibinsky, Morris. Some striking properties of binomial and beta
moments, Ann. Math. Statist. 40 (1969) 1753 - 1764 .

Studden, W.J., Dg-optimal designs for polynomial regression using
continued fractions, Dept. of Statistics Mimeo Series #79 - 2,

‘Purdue University, Jan. 1979.



