COMPARISONS OF THREE MINIMIAX
SUBSET SELECTION PROCEDURES
by

Jan F. Bjgrnstad
University of California, Berkeley and Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #79-3

January 1979



Abstract
The subsct selection problem is considered for normal popu-
latjons. Minimax considerations suggest three procedures as the
main contenders for this problem. Two of these are the "average~
type” procedure and the classical '"maximum-type' procedure. The
third procedure has not before been considered as a serious con-
tender.  Numerical comparisons of the performance of the three
procedures are made, which indicate that the new and the '"maximum-
type' procedure are quite comparable, although the new procedure
seems to have better optimality properties. The "average-type"

procedure appearsto be clearly inferior to the other two.
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OMPARISONS OF THREE MINIMAX
SUBSET SELECTION PROCEDURES
by
Jan F. Bjdrnstad
University of California, Berkéley and Purdue University
1. INTRODUCTION

This paper is concgrned with the problem of selecting good
populations out of k possible populations. The populations may
be varieties of grain, treatments of a disease, competing manufac-
turing processes for producing a certain article, stocks from
different companies, candidates for admission to a certain univer-
S$ity program, etc.

‘We will discuss fhe subset selection approach to the selection
problem, i.e. the size of the selécied subset is determined by the
data.
are characterized by g

The k populations Hl,...,H .,0

k 170 k

respectively. Let 8 = (61,...,8k) and let Q be the parameter
space. Let Xi be the observation from population Hi' X={X1,...,XP)°
- - pa AN

It is assumed that Xi is W(Gi,l)_and xlg...jx are independent.

k

We are interested in selecting populations with 'large 5,. Let
the ordered 6, be denoted b B q< *ee < B ,and let I..,X .
© RS 2 (1)°7 (1)

corrvespond to 8 ...
! [1]

Definition 1.1, Hi,is called a best population if Oisﬁ[k]j

and a non-best population if 0, < 6[k]<



We are also interested in the concept of good and bad populations
which will be defined in the following way.

Definition 1.2, Hi is said to be a good population if

ei > e[k] - & and a bad population if o, g.e[k] -~ A. A is a given
positive constant.

We will later present procedures which are minimax with respect
to certain risk functions. For the risk functions considered, two
subset selection procedures are equivalent if their individual selection
probabilities are the same. Therefore we can define a subset sclection

procedure by:

V) = [y (). (D]

where wi(zj.: P(selecting Hilz_z xY.

A correct selection (CS) is defined to be a selection that includes the

best population 1 Usually in a given subset selection problem the

(k)*

first thing to decide is what kind of control condition we want the pro-

cedures to satisfy. We will consider four control conditions:

inf P (CS[) > v (i.1)
[

inf pg(CSI\D) >y (1.2)
0E Q) —

inf R(B,¥) > v (1.3}
8€Q

sup  S(0,¥) < B (1.4)
nen



Here
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8 ) iig(d)i) (1.5}
i=1
b.e. 5(0,9) 1is expected size of the selected subset.
Q) = {Qfe[k]"e[k~1] > A} (1.6)
and
R(O,Y) = ) E.(b.) (1.7)
N ier 207
i A
where I, = {i : 6. > eik] - 0} ,i.e. R is the expected number

of good populations selected. We assume 1/k < y < 1.
Gupta and Studden (1966) and Berger (1977) showed that the

. . m . . .
tollowing procedure, ¥ , has certain minimax properties.

m - 3 -
wi 1 iff Xi > lg?ﬁkxj d

Bjprnstad (1978b) showed that alsoc the fbllowing two procedures,

o a L. .
¢, ¢ have several minimax properties.

AX. AX,
W5 =1 iff Ce Y > § e
j#i
a . -1
= f - X. -¢
by =1 ifE X > (k-1)77) Xy -c

i

iflere d,c.C are determined according to what control conditions we
want the procedures to satisfy. E.g. wm satisfies (1.1) with equality
if d = d{y), where d(y) is tabulated by Gupta (1956) and Gupta (1963),

and " satisfies (1.2) and (1.3) with equality if d = d(y) - 4. For



O

wa we easily see that (1.1) is satisfied with equality if

1
(k/k-1)* z(y) , and (1.2) is satisfied with equality 1if

]

C

]

c (k/k-l)% z(y) - A. Here z(y) is the y- quantile in the 7(0,1)-
distribution, i.e. ®(z(y)) = y, where ¢ is the 7(0,1) distri-
bution function. It can also be seen that if A is not too large
then wa satisfies {1.3) with equality if c¢ = (k/k—l); z{y) - A.
(See Bjgrnstad (1978b).)

Values of C such that we satisfies (1.2) and (1.3) with equality
are tabulated in Bjgrnstad (1978b). We also see that if instead of
C we use eA% C , then we satisfies (1.1).

The procedure wm was first proposed by Gupta (1956) and Scal
(1957). Paulsen (1949) considered also wm, using a slightly different
control condition. The procedure wa was suggested by Seal (1955).
The third procedure we was studied in a different context by Studden
(1967).

In order to describe the minimax properties of the three above
mentioned procedures, we need to define the different risk criteria

that are considered. They are:

B(8,¥) = igIZ By (1;)

B is the expected number of bad populations selected.
k-1
1) -
S (_e_s“’) - Z Eg(‘b(l))

i=1



Here corresponds to e(i]. S' is the expected number of non-

Vi)
best populations selected when 6 . < B
pel [k-1] © 7 [k]

p,0) = ] o log{E (v}
i€l =
A
k-1
L(8,¥) = igl ToglEy (b))

Also S(0,y) will be used as a risk criterion.

It is clear that not all these criteria are equally appro-
priate or meaningful. The following arguments were also mentioned
in Bjgrnstad (1978b).

A criterion for measuring performance of subset selection
procedures should indicate how well a procedure excludes inferior
populations. Since S includes the probability of selecting the
best population, clearly S' is a more appropriate measure of per-
formance than S. Also, we do not need to protect against popula-
tions that are 'close" to the best population, i.e. populations Hi
where ”i > O[R] - 4. Hence B seems to be a natural criterion. So
of the criteria B, S' and S we regard B as the most meaningful. The
vriteria £,L clearly do not have such a nice intuitive appeal as
B oor 5'. However, as shown in Bjgrnstad (1978a), they have the nice
feature of placing more weights on the worst populations than on

those closest to the best.



As discussed in Bjgrnstad (1978b) we regard (1.1)-(1.3) as
our main control conditions, and of these, (1.3) as the most.appro-
priate.

In Section 2 the minimax properties of wm, we and wa for nor-
mal populations are summarized. In Section 3 numerical comparisons
of the three procedures are performed, with B as the risk criterion

and (1.2) as contrel condition, for slippage configurations of 0 .

2. MINIMAX PROPERTIES
Let the class of procedures satisfying (1.1), (1.2), (1.3),
(1.4) be denoted by £&(y), 8 (y,8), 8(v,n), &2(8) respectively.
SI denotes the class of permutation-invariant procedures.

Define the following slippage-subset of the whole paramcter

Space Q.
p-2
QP(A) = {8€Q: e{k]'@[p] N e[k]-e{p_” > 8+ 151 (O[pdfﬂlil” (2.1)
for p=1, sk
Let
k -
2, =p51 szp(A) (2.2)

Ql consists of the cases where the good populations have "slipped”
from the bad populations.

Let gé = (0,...,0,A) and let AY be determined by

e, _ 5
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where
bk(y) = v/9 if k=4
=Y/7 if k =5 (2.4)
= (11/75)y if k > 6

then from Bjgrnstad (1978b) we have the following result,

Theorem 2.1 Xy, X are independent. X. is W[GL)17

el 1’ k i

for i = 1,...,k. Assume C > k-1, i.e. at least one population is
C . . e

sclected by ¢, If k >4 and A E_AY or k < 3, ‘then vy
minimizes

(i) sup B(6,y) and sup  57(6,¢)

BeER QGQQ(A)

for all yes(y,n), and

(11) sup  2(6,y) and sup  L(6,y)

0EQ B8E€Q (a)

for all ye€B (v,A) N @I

Rema vk . Values of AY can be found from Table 2 in Bidrnstad(1978h).

et now

1 v _
5,00 E ) oy
and

“minl [0 + 220509 1, [20n) - 255 )

2ot

AL y) = (k/k-1)

o - . a .
the minimax properties of ¢° are given by the next result,
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from Bjgrnstad (1978h).

Theorem 2.2, X,,...,X%

1 are independent. Xi is W(Oi‘l)

k

for i=1,...,k.

ol

(a) Let C = (k/k-1)% z(y), such that ¢%€ §{y) . ‘Then
v® minimizes for all pE $1(Y)

sup S'(6,9) (sup S(8,y) )

6€Q 8€Q
if and only if

y > &-21/(k-1)  (k-1/k)

1 P
(b) Let ¢ = (k/k-1)%z(8/k), such that ¢%¢ 8,(8). Let

B > k-1 and assume k >4 and A 5~A2(8) or k < 3. Then wa

maximizes for all e $. (B)

inf R(8,Y)
8EQ

4

2

(¢) Let ¢ = (k/k-1)2 z{y) - A. Assume A E.Aa(Y)' Then
v2€ 8(y,8) and minimizes for all ¢€ § (v,4)

sup 5(6,y)
gef

c . . m - . - .
The minimax properties of ¢ are given in the following result.

Theorem 2.3. X, ,...,X

1’ v are independent. Xi is 7“01,1)

for i =1,...,k.
(a) Let d = d(y), such that me £j.(y). Then wm minimizes
for all Lpea&l "M

sup S(gjw) and sup S’(g,w).
8EQ nEQ

(b) Let d = d{y) - A, and assumec & < d(y). ‘Then wmc S(y,N).
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Let ¢ € H(y,AM or 8 (y,a). Then

lim inff sup Bk(Q’W)} > lim{ sup Bk(g)wm)}
ke 8€EQ kv 9€0

where Rk = B/k. 1I.e. wm i1s asymptotically minimax in the classes

Sy, A) and ®(y,A) as ko with respect to the whole parameter

space 8, for the standardized risk B/k.

Remarks. (1)  Part (a) of Theorem 2.3 follows from Gupta and Studden
{1966), who showed the same result in the case of a monotone like-
Lihood ratio (MLR) location-family. Also Berger (1977) has similar
results for other families of distributions.

(2} Part (b) of Theorem 2.3 is proved in Bjgrnstad (1978b)

{3) Theorem 2.2(a) 1is generalized to MLR location-families in
Rjprnstad (1978b).

{4} The three theorems indicate that from a minimax point of view,

m

0, wa and we are the main competitors in this problenm.
3. PERFORMANCE - EVALUATION OF THE THREER
MAIN CONTENDERS

From the remarks in Section 1, it follows that we consider
B(0,9) and 2(8,%) to be the most suitable measures of performance,
subject to the control condition (1.3). For this problem Theorem 2.1

e . s . m a . .

tells us that Yo is minimax, while ¢ and ¢ are not minimax. In

thig Sgction we will give a more comprehensive comparison of the
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three procedures, using B(8,¢) as the criterion and assume d, c,
C are determined so that (1.2) holds. There are two things we
will look at. The first is to find out how much better webpor-
forms under the least favorable configuration 81=...=6k*1=0k-A.
Secondly we compare the three procedures under other configura-
tions of 8. The configurations that will be considered are of
the slippage-type: 61=...=6k_1=8k—6 for some selected values of
k, 4 and § > A.

Let us first, however, use some of the numerical evaluations
thaf have been made in the literature. Deely and Gupta (1968) tab-
ulated S'(g)wm)/(k-l) for the slippage configurations: 01:"':Uk—1:
Gk—é, for selected values of &, vy, and k. They assumed that wm
satisfies (1.1). Now, let us assume wa satisfies (1.1). Then under
the slippage-configurafion given above we have that

ST(8,4™)/(k-1) = d(z(y) - —>—
K (k-1)

). (3.1)

Using (3.1) and the tables in Deely and Gupta (1968) we find that for
small § (<.5), wm and wa perform equally well, but for large §

wm performs a lot better. The same conclusion is reached if we con-
sider the equally-spaced configurations: 8i+1'0i =9, for i=1,...,k-1,
by using tables in Gupta (1965). For the criteria wheic wa is minimix

and wm is not (see Theorem 2.2), we find that wa is only stiphtly

better than ¢".
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We should also mention that Chernoff and Yahav (1977), Gupta
and Hsu (1977b) and Hsu (1977) have performed Monte-Carlo studies
to compare the procedures wm and wa with Bayes procedures for
certain loss functions, in the case of normal populations and
normal cxchangeable priors. They all found that the Bayes proce-
durcs can be approximated well by a procedure of the type wm. Gupta
und Hsu (1977b) and Hsu (1977) showed that while this is true also
for wa if the prior is concentrated, the best wa (compared to the
Bayes procedure) can do very badly if the prior is diffuse.

From thé above observations it follows that wm overall seems
quite superior to wa. We also note that we has not been considered
hefore,

We now consider the problem of comparing the three procedures we,
wm and wa, using B(8,y) as a criterion and assuming d, c, C are de-
termined so that (1.2) holds with equality. The comparisons are made

under the slippage configurations 96 given by

QG: 61:"'=6k~1:6k~6 tor & > A.

In this case B(gd’w) = (k—l)EO (wl). Let

28
P (0} = E; (v,).
$ 051



14

Pd(w) is tabulated in Table 1 for we, wm and wa. The probabilitics

for we and wm are obtained by Monte (Carlo methods. For wa we have

P(S(wa) = o{z(y) -f—{; b —2 . (3.2)
(k-1

For all cases we let y = ,90. For each combination of (k,4,8)
one simulgtion of 5000 interactions of X = (Xl,...,XLQ was carried
out to estimate Pg(we] and Pﬁ(wm). The top entry for each k is
Pd(we), the middle entry is Pa(wm) and the bottom entry is Ps(wu).

The critical constant C in we is determined in Bjgrnstad
(1978b) by Monte Carlo methods. Hence the actual control—levéi-for
we may not be exactly y = .50. Although we can use the tables in
Gupta (1956) and Gupta (1963) to find the critical constant d for
¢m,'d is here determined by Monte Carlo methods to make Pé(wc) and
P6(wm) comparable. By using the 25,000 cbservations we have for cach
pair (k,A) we estimated the actual control levels for wc. They all
lie in the range: .894-.911. To get Pd(wﬂ) comparable to the other
two probabilities, we have, in those cases where the estimatced con-
trol levels of we turn out to be significantly different from .90,
calculated P§[wa) from {3.2), using these estimatedAlevels.

The comparisons in Table 1 confirm earlier comparisons of wu and

wm in that wm seems to do a lot better than wa. For small A and &
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not too large we sce that ¢eznuiwa perform equally well, which is
not surprising since v and Wa are approximately the same procedures
when A is small. However, we observe that we otherwise performs
almost uniformly better than v? over slippage configurations, and
the improvement is considerable for 4 > 1.

Comparison of v™ and ¥° does not give such a unique answer as
the comparisons above did. We know that Pé(we) is less than Pg(wm)
when 8 = A, However, for most cases the differences are quite small,
Only for k = 10 and A > .5 does we perform quite a bit better than
wm under the least favorable configuration.

For § » A we see that wm is usually better than @C. The improve-
ment is substantial for small A. However for A > 1, the improvement
is not much different from the difference between we and‘pm for § = 4.
S0, we can say that for small A, wm seems to perform, on the whole,
better thanlpe, For 4 >1.5 the procedures seem quite comparable.

Let us now briefly sﬁmmarize the impressions we are left with.

# scems to have the most desirable minimax properties of the three
procedures. Also the procedure wa has quite a few nice minimax proﬁ—
erties. However, as has also been observed by other authors, wa

m . .
seems to behave very poorly compared to ¥ under configurations of

8 different from the lrast favorable. Our evaluations here indicate
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that the same is true relative to we. This leaves we and wm as
the principle procedures. Although we has more desirable minimax
properties than wm, the comparisons here seem to suggest that the
two procedures are quite comparable. For small a, wm appears to
perform better on the whole. However, for A in the range we are
usually interested in, it is seen that neither of the procedures
seems to be clearly better than the other.

So to summarize, we have derived a procedure, we, that appears
to be comparable to the classical procedure wm in most cases, and

that has some optimality properties not possessed by Y.



Table 1
The probability of selecting population Hl when 61=...=ek_1=

Ok—d for we, wm, wa satisfying control condition (1.2).

k 8 1 6 1.1 2.1 3.1
o° .881 .848 . 800 .629 .446
3 " .884  .839  .763  .511  .248
v .888 . 845 .791 .656 .497
v .882 .860 .839 .759 .656
5 " .881 .858 .794 .600 .322
W . 884 .860 .834 772 699
T .876 .866 .845 . 790 723
7 " .885 .863 .820 .634 . 366
v? .880 .864 .846 .806 .761
»° .879 .868 .857 .816 .781
10 " .888 .867 .836 .684 .423
p? .880 .869 .858 .833 .805
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Table 1, contd.

A= .5, v = .90

5 1.0 1.5 2.5 3.5
" .761 .685 .580 .356 167
P .769 .674 .560 .286 .110
¥ .761 .694 .619 .458  .304
v .767 .733 .662 .501 .328
Y 772 718 .615 .373 162
v 774 .739 .701 .620 .532
v .765  .739  .687  .559  .408
o™ 779 .742  .643  .415  .199
v 762 .738 712 .657 .599
v .763 . 749 ,714 .620 .509
P .786 .751 .678 .469 .240
e .765 .748 .731 .695 .657




Table 1, contd.
A =1.0, v = .90

1.0 1.5 2.0 3.0 4.0
.524 .419 .312 L137 .037
.525 .414 .298 L1117 .028
.549 .465 .385 .242 .134
.548 .482 .394 211 .075
.555 .466 .360 .158 045
.578 .535 .490 .402 .319
.562 .510 .438 . 260 .105
.581 .499 . 399 L1583 .057
.580 . 548 .519 .457 . 397
.560 .524 473 .311 .138
.593 .527 .442 .232 .070
.581 .561 .540 .498 .456




Table 1, contd.

20

A=1.5, v = .90

k 8 1.5 2.0 2.5 3.5 4.5
v .276  .180  .112  .035  .006

3 " L2711 .184  .107  .029  .004
v .34 246 .186  .097  .044

v© 321 .233  .148  .055  .013

s Y™ .331 .227 140 .043 .008
v® U355 .314  .276  .206  .149

v .335 266 .197  .079  .018

7 Y L341 .257  .185  .058  .011
v .367  .339 311 259 211

v L343 .278  .214  .100  .026

10 ™  .366  .273  .200  .075 - .015
v U382 U362 .343  .305 269




Table 1, contd.
A =2.0, vy = .90

2.0 2.5 3.0 4.0 5.0
.093 .056 .029 .004 .0002
3 .094 .053 .028 .003 . 0002
135 .096 .065 .027 L0100
125 .084 . 049 .010 .001
128 .081 .045 .008 . 001
170 143 119 .080 .052
135 .099 .057 .013 .002
.135 . 096 .048 .010 .001
. 201 .180 .161 126 .097
.158 110 .077 .019 .002
.164 .111 .073 .015 .002
.204 190 .176 150 127
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