I-Minimax Selection Procedures in
Simultaneous Testing Problems*
by
Klaus J. Miescke

University of Mainz and Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #79-1
January 1979

Revised March 1979

*Research supported partly by NSF Grant MCS77-19640 at Purdue University



I-MINIMAX SELECTION PROCEDURES IN SIMULTANEOUS TESTING PROBLEMS*
By Klaus J. Miescke
University of Mainz
and

Purdue University

1. Introduction.

Suppose that for every i e {0,1,...,k} we are given a family
% = {figé}esﬁi ééiﬁi”Of densities with--respect to either the Lebesgue
measure on the real line R ("continueéus case') or any counting measure

on a finite or countably infinite subset of IR ("discrete case''), which have

monotone non-decreasing likelihood ratios (M.L.R.) in their arguments.

=X 1 = i
Let Ki gﬂil, e s Xini), i 0, 1, ... ,k be independent samples from
populations E%, Z, ... ,f;i about which we know that for every

ie {0,1,...,k} there exists a sufficient statistic Zi with a distribution
lying within the class of distributions given by E?i, where the parameter

ei only is unknown.

Our goal is to select a subset of {9?, .o ,9%} containing populations ''good"
compared to 5?; and excluding "bad" ones, to be defined more precisely in the
sequel. Finally, by definition, a selection procedure is a (random)

probability measure over the set S of subsets of {1,...,k}, depending on

X = (51, oo ’Xk) in the case where the control values are known and on
X = (50,51, ce ,zk) otherwise.

In the first part of this paper (section 3) we are dealing with the so-called

"known controls problem': Ignoring _9%,;?6 and 50’ for every i ¢ {1,...,k}

*Research supported partly by NSF Grant MCS77-19640 at Purdue University.



we take values eoi £ Qi and Ai > 0 and call population & 'good" if
i

0. E_e .o+ Ai and "bad" if 0.

<0 ..
ol 1 -

oi Assume that the unknown parameter

vector a priori varies randomly according to some prior distribution T,
say, and henceforth let us denote this random vector by Q= (el, “en ,Ok)
and its realizations by 8 = (el, ce ,ek).

Assume that we have at least the following partial knowledge about T:

(1.1) {6 e Qlo. >6 . + A} =m,
- =171 =~ Toi i i
{6 ¢ Qlo, <0 .} =7
- —='"i — Toi i
where @ = Q. x ... x2 , 8 . € Q. and m,, 77 are non-negative numbers
- 1 k oi i i i
wi with 7, + 77 <1, i=1, ... ,k.
i i—

Let us denote the class of priors with property (1.1) by I'. Now for any
specific loss function chosen a I'-minimax rule y?*is defined as having
smallest supremal risk over T among all selection procedures. This definition
is due to Blum and Rosenblatt (1967).

Let us adopt the following loss function:

(1.2) L(g, ) = 11, T wo 1080 * 1 L1ilre +a, =) (%)
ies oi igs oi "1
s £€:5,0 € 2, where Lil’ Li2 > 0 are fixed, i =1, ... ,k.

It is not difficult to see that for this type of loss function (and more
general for every additive loss function,cf. (2.5)) and any prior distribution
the conditional risk - given X - of a selection procedure depends only on

its corresponding conditional probabilities of selecting population

523, ces ,f?L. This was stated already (but not proved) in Lehmann (1957)

and Lehmann (1961). On the other hand, the idea of proof (implicitly in a

different context) can be found in Nagel (1970) (section 1.2). Since our



I'-minimax procedures can in fact be found with the help of these conditional

probabilities alone, we shall henceforth restrict ourselves without 1oss of

generality to the class & of selection procedures of the following form:

(1.3) 30 = 00, e, B0, X = (K, e LX),
where'wi(g) denotes the conditional probability - given X - of
selecting 5?&, i=1, ... ,k.

Now for every procedure of type (1.3) each wi can be viewed as being a

test for the hypotheses "ei <6 ." versus "6. > 6 .

. + A", 1 =1, ... k.
oi i oi i? ? ?

And since (as we shall see soon) the tests enter in the posterior risks
only via their power functions, it is not surprising that uniformly most
powerful (U.M.P.) tests will play a crucial role in this context: every
component of a I'-minimax procedure will be such a test whose level of
significance is determined by the corresponding set of values

(L

L ,Te,0 .,Ai). By this reason we shall briefly remind the reader

1127122758 Yoi

of some (mostly well known) properties of the power functions of tests in
M.L.R.-situations at the beginning of section 2.

The main purpose of the first part of this paper is not so much to generalize
results of Randles and Hollander (1971) and Huang (1974), but rather to
demonstrate how close our problem is connected with the classical theory
of testing hypotheses and how easily well known results of this theory

can be transferred to solve problems of the type considered here. Within
the scope of identification and selecting the best population alone, this
was demonstrated already by Miescke (1979). Finally, it should be pointed
out that one can find other interesting results in the papers by Gupta

and Huang (1975, 1977) where T'-minimax procedures are studied in a more

general setup.



In the second part of this paper (section 4) we are concerned with the

"unknown control case': instead of having the'eoi's as control values,

5?5 now plays the role of a control population with which the other
populations are to be compared.

The only things which change with respect to our previous situation are
obvious in nature and therefore can be sketched very briefly: Now we
have X = (50’54’

0= (@0,@ ,Ok) and Q = QO X 27 e, XR

1 k’
0

,_)_{_1())

I and L are given as before with the only change that now 6

1)

ol’ ok

coincide with eo, the unknown parameter of Eo’ which is viewed as realization
of the random variable OO. The really crucial assumption we have to add

is as follows: for all populations we have the '"continuous case',

QO,Qi, ces ,Qk coincide with IR and Qy %} .o ,ek are location parameters
for _92, j%)
In this setub Randles and Hollander (1971) tried to show that within@°,

,g?k in the usual sense.

the class of procedures described by
(1.4 30 = WX e s Y (XLXD D,

X= (XX, el X)),
the I'-minimax procedures have components which (as one may expect) turn
out to be the U.M.P. one sample test based on Zi - ZO for "ei - 60'5_0"
versus "ei - eo Z-Ai” where the levels of significance of these tests are
determined by the corresponding set of values (Lli,LZi,ni,w;,Ai).
Now in the terminology of Randles and Hollander (1971) or somewhat more
generally in ours (cf. (2.5) - (2.7) ) we state: in the proof of their
Theorem 4.1 Randles and Hollander (1971) have assumed, apparently, that for

any two rules y = (wl, - ,wk) and y* = (wf, e w;) from @P°



(1.5) sup r(i)(r,w;) < sup r(i)(r,w.), i=1, ...,k
Tel Tel 1

implies

(1.6) sup r(T,¥*) < sup r(t,y).
Tel Tel

But this clearly does not hold true, since in

(1.7 sup r(t,}) = sup ) r(l) (t,v.)
Tel el i=1 =

g (1)
<l sup et (1,9), yeP°

i=1 Tel
the inequality may be strict/
What remains is that Randles and Hollander (1971) in fact have proved only
-minimaxity of the candidate with respect to the subclass of 9 consisting
of all translation invariant rules.
The main purpose of the second part of this paper is to give an alternative
proof of the theorem of Randles and Hollander (1971). The usual method of
finding T-minimax procedures (i.e., finding Bayes-rules componentwise
with respect to a common least favorable prior) does not work here, and in
fact we have to generalize this standard method to admit also the use of
improper priors. This will be done at the end of section 2. It should be
pointed out that we do not use the Hunt-Stein argument of Randles and
Hollander (1971) to derive our main result in section 4. Moreover, we hope
that our general method is of interest in itself and may serve as a tool to
derive further I'-minimax results in the future.
Finally, in section 5 we give an example with normal populations. Especially
two designs are compared which perhaps can be described best in short

by the key-word "paired comparison versus random sampling' because of its



analogy to a well-known problem arising in connection with the two-sample

t-test (cf. Lehmann (1959), p. 206).

2. Preliminaries.

As announced already in section 1 let us briefly recall some relevant
properties of the power functions of tests in M.L.R. - situations. For

this purpose let X= (X ,Xn) be any one of the samples Xi5 o0 ’zk

1’ 1

given in section 1 with distribution properties as stated there, and for
convenience let us omit subscript i in our considerations below. The

testing problem of interest to us is as follows:

(2.1) H :98 < eo versus K:98> 60 where eo e @ is fixed.

Then as is well known the U.M.P.-test;qi at level o e [0,1] is given by

(2.2) X =1 0@, 0 if 2> (=, 9 c(a,

where h : [0,1] > [0,1] and f»Eps g (X)) = a.

The power function of this test has the following properties:

(P.1) (U.M.P. - property) For every test ¢ and every a e [0,1]

sup Eé¢(§) < a implies EGW(K) :_Eb?; (X)
6 <8 ;
-0 for all o > eo'

(P.2) For o e [0,1] fixed, Ee$;(§) is non-decreasing in 9 ¢ Q.
.3 For 6 ¢ Q fixed,Ee@z(zj is non-decreasing in a ¢ [0,1].
(P.4) For 6 > eo (6 < eo) fixed, EGWE(E) is a concave

(convex) function in o e [0,1].
The first three properties are assumed to be well known to the reader. To

prove (P.4) let us first look at the "continuous case.'" There we have



- -1
(2.3) EecpZ(K) =1 - Fe(Feb(l -a) ), ae [0,1], 6 € @,
where Fe and Feh denote the cumulative distribution functions
0o
-of f.e and fed.

Thus for 6 > eo (6 < eo) the M.L.R.-property implies that

(2.8) B0 = £ (F - w) ) /£, (F - w)
(o] 0 (o}

is a non-increasing (non-decreasing) function in o ¢ [0,1], a fact which
clearly implies (P.4).

The proof of (P.4) in the '"discrete case' proceeds analogously if one
takes into account that for every fixed 6 ¢ @ Ee¢;(5) now is a piecewise
linear function in o ¢ [0,1] and that, instead of derivations, one has to
take ratios of differences.

As already mentioned in section 1, we need a generalization of the usual
method of finding I'-minimax selection procedures which is the well known
trick of looking componentwise fér k Bayes-rules with respect to a
common prior T, which, at the same time, is least favorable for these

k Bayes-rules. This result is due to Randles and Hollander (1971) (cf.
Lemma 3.2 there)., Since in section 4 (in the "unknown control case') we
have to take into considerations improper priors, too, we propose now a
generalized version of this method. It should be pointed out that, to the
author's knowledge, this idea of approach is primarily due to Lehmann

(cf. Lehmann (1957) 6.(ii) ).

Our next considerations up to the end of this section are valid in both
the "known controls" - and the ''unknown control" - setup. In this sense X

is understood either to be equal to (Kl, oo ,zk) or to be equal to



(30,51, ce ’Kk) throughout the following, and 6, & and T of course are to
be interpreted analogously.
Let us somewhat more generally admit an additive loss function:
@5 s =] L@ J L P@,ses, 0ea,
ies iés

where the L§i)'s all are non-negative functions.
Moreover let us denote the overall risk of a selection procedure
Yy = (wl, ce ,wk) with respect to a prior T by

()
R CARY

I o~

(2.6) r(r,3) =

i
where for every i e {1, ... ,k}
@.n Wi,y -

- @ Eg -1 @ a- Egh; (0 )] dr(®)

is the overall risk of y in the corresponding i th component problem.

Let & denote any class of procedures. Then we can state:

Lemma: A selection procedure QT ='(w£, ce ,wi) is T'-minimax with respect

to @ if there exists a sequence of priors T, € 'y, nelN={1,2,...},

such that for every i ¢ {1,...,k} the following holds true: for the

. s B
i th component problem there exists a sequence of Bayes-rules wi

with respect to Tn, ne N, and with

(2.8) lim inf r(i) (Tn, w?n) > sup r(i) (T, wg).
ni >0 Tel



Proof: Let ¢ = (wl, v ,wk) be a selection procedure. Then
SNCY
sup r(1,9) =sup z T (T,wi)
Tel el i=1
k . k .
(i) (1) B
> sup z T (t_,¥.) >sup Z T (t_,v.)
n i=l ot n i=1 noom
. k
i (i B
> diming ) r¢D (T o¥5,)
n =+ o i:]_
k
> 7 tming - r® By
i1 ;oo e n’ " in
k . k .
> Yosup t® @l > sup § @ eh
i=l Tt eT Tel i=1

3. Known Controls.

Within the framework given in the first part of section 1, we shall derive
now T'-minimax selection procedures with respect to & using techniques and
results of the classical (Neyman and Pearson) theory of testing hypotheses.
For every i ¢ {1,...,k} let _qi,a,wu's [0,1], denote the U.M.P. level o test -

based on Ei ~ for the testing problem:

(3.1) H. : 9. <6 . versus K. : 6. >06 ..
i i— Toi i i oi

Moreover for every i € {1,...,k} let Ai € [0,1] be the set of values

B ¢ [0,1] satisfying

, ra. *
(3.2) Lyg TP - Lyy ™3 B 4 5 % ,8%y)

s . %
mim ALy mjo - Ly my By e, %))
o e [0,1] oi i
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The non-emptiness of A .o ,Ak is guaranteed by (P.3) and (P.4). Now

1,

we can state

Theorem 1. Every selection procedure ET(E) = (wi(z), . ’¢£(53 ) with

T . . . . .. .
wi(z) =f¢§’&m(§i)’ a; € Ai’ i=1, ... ,k, is I'-minimax with respect to 2.
i 13

Proof: We apply our Lemma for ¥ = & in the simple version of Randles and

Hollander (1971), where the sequences of priors and Bayes-rules reduce to

a single prior To and to single Bayes-rules w?, cen ,wi. Thus we have to

find a T, € I''such that for every i € {1, ... ,k} and every a, € Ai

(a) q; " is Bayes-rule with respect to T for the i th component
i

problem, and simultaneously

(b) T _ is least favorable for ¢¥ _ .
o} i,0,

Here we choose a T similar to that considered by Randles and Hollander

(1971): Under T let @1, ces ,@k be independent and moreover for every

ie{l, ..., k} let ©, assume the value 8 . + A, (6 ., 6 . + A./2) with
i oi i i

01’ o1

probability ™ (ﬂi, 1 - mo- ﬂi).

Let i ¢ {1, ... ,k} be fixed and let Tél) denote the marginal distribution

of (Ol, ce. 50 ,Ok) under Ty Then for every selection

i-1° Oi+1’
procedure  the Bayes-risk for the i th component problem in view of

(2.7) is given by

.3 e,

=B (1) {L,, n7 E ¥ (X
Ty 21 i (91""’91—1’eoi’ei+1""’@k) i
+ L. m [1 -E Y. (x)]3
1i i (el"'"ei—l’eoi+Ai’ei+l""’ek) i
=Ly "7 By A (X)) + Ly [1-Ey ) TRX)]
(e X1 01 1

where
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it LN (@1"7ffei-lfeif1?""e¥) &

can now be viewed as being a test = based on Ei - for the testing problem (3.1).

Taking B = Ee ~$1(§i), by (P.1) we get
oi
3.5 oW ) e e )
= Lpg miB o+ Ly Do By g g (XD
o1 1

Thus, the class of Bayes-rules for the i th component problem consists
just of those qﬁ,dii with a, € Ai’ i=1,...,k. Thus (a) is proved.

To prove (b) let ai'e Ai’ i=1,...,kand t ¢ T be fixed. Then

(3.6)  2(T, (9% ,...,* ) ) = ORI
1’“1’ ; "lfe‘*:k‘ . =1 S ey

I B

I (6;) By 9., (%)

(_w,eOi] 1 -3 1 t

* ol e eag e O 1 Eeifgi;@i(Ki)]}

A
e ol

- % _ e I
Ul ™ By @ o )~ Lyymy =By o f o (XD)]D
1 oi ;i\} of i 1

1l
p{
Y
—
Q
r~
&
Q
3éi
Q
A—
f—

where the inequality follows from (P.2) and the condition T ¢ T.

To implement T-minimax procedures in concrete situations, note that we can
always take values a, € Ai which result in non-randomized tests

qﬁ 0.’ i=1,...,k. More precisely standard analysis leads to
5O
i
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Corollary 1. Every selection procedure QT = (wi, e ,wi) with

T . . o
wi X) =1 (0) §§_Zi Z_(<? s where c; satisfies

(3.8) [Lp; 7 £5.9 (& - Ly my

fi,6 4 (9] (¢ - 0 20,
o1 ol 1

c#fc., i=1,...,k, is I'-minimax with respect to Q.

4. Unknown Control.

In this section we shall derive T'-minimax procedures within the framework
described in the second part of section 1, and again we shall use techniques
and results from the classical (Neyman and Pearson) theory of testing
hypotheses.

Since we now are dealing with location parameter M.L.R.-families, we can
utilize the following well-known fact (for a proof see Randles and Hollander
(1971), Lemma 4.2):

For every i ¢ {1,...,k}, if o, and 6, are the location parameters of

Z, and Z , then Y, = Z. - Z has the density
1 (o] 1 1 (0]
4.1) g,y - (8, - 6)) = l; £, (yru-6,)£(u-6 ) du- y ¢ R,

which likewise has the M.L.R. property if éi = ei - eo is considered as

location parameter for Yi'

For every i e {1,...,k} let E%?a, a € [0,1], denote the U.M.P. level o test -
]

based on Yi - for the testing problem

(4.2) H. : 8. <0 versus K. : 6, > 0.
i i—- i i

Moreover let for every i ¢ {1,...,k} K; C [0,1] be the set of values B ¢ [0,1]

satisfying
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- - %
(4.3) Ly, 7 B - L. m EAi o g (Y

= min { L, wfa-L.m E, @* (Y.
o e [0,1] 21 1 Ii i Ai i,a i

The non-emptiness of K',...,K£ again is guaranteed by (P.3) and (P.4).

Now we can prove the following theorem stated in Randles and Hollander (1971):

Theorem 2. Every selection procedure ET(}) = (wg(z), cen ,wi;(X)}f with

. . .. . o}
, i=1,...,k, is '-minimax with respect to Z°.

T _ % re
ll’i(_)_(_) - cpi,OLI(Yl)’ ai € Ai

Proof: The basic tool for the proof will be our Lemma for ¥ = 590, now
in its general version.

Let us represent every T € I by t = (T,t), say, where t denotes the condi-

tional distribution of (Ol, cen ,Ok) - given @O - , and T denotes the
marginal distribution of Oo. Especially let t be denoted by te if
o
© = 6_1is given.
o) o

Our sequence L I'n n e N, now is chosen as follows: for every n ¢ IN. let

T, = (Tn,w); where

(i) Tn is the uniform distribution over [-n,n], n € IN, and

(ii) Given Oo = 60 - under L Ol, cen ,@k are independent, where. each
-0

@i assumes the value 60 + A (eo,eo + A/Z) with probability

™ (ﬂ{,l'?’ﬂ{v— w{), i=1,...,k.
Finally let wél) denote the marginal distribution of
)
(Ol, “ee ’ei—l’@i+l’ e ,@k) under w 60 e R,i =1,...,k.

e 2
o ° B
First we derive within & appropriate Bayes-rules win with respect to T,

nelN i=1,...,k:
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Let i € {1,...,k} be fixed up to the end of the proof. Then for every
selection procedure Yy = (wl, e ,wk) e 9° and n e IN‘the overall risk with

respect to T for the i th component problem i$ given by

RO RS

J’ E (i) {L,. w  E v, (X LX)
R weo { 2i i (e ’91""’91-1’60’@i+1"‘"ek) A ot

+

L. . [1 - E . (X {igﬂ" dr_(6 )
15 M (855015 +0,0;_120+8;,0, 1,...,0) Vi =or=idlf Tn'o

g [ eyt ot han e,

Thus the Bayes-rules (which by definition have to minimize this risk) turn .

out to be of the form

(4.5 W, (XD = 1 (h, 0) iff

Ly: 7 .ﬁ[ £ (2, -06) £ (2, -8)dT (6)

< (=) Ly o ﬁ{-fo (z,-0) £ (Z, -8 -28)dT (8),

where h = h(Zo,Zi) e [0,1] may be chosen arbitrarily, since it has no

influence upon the risk.

Our next step is to verify (2.8). To begin with, note that for every

a £ [0,1] we have
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(4.6) sup r(i)(T;ET )

TeT 1,0

= sup sup P (@0, T
T t,(T,t)e T » @

sup s up _[.E o {L,. I (0, - 8 )E @Y
Tt (el R o <.21 (-»,0] * O ;-0 71,0707

. I - - Sk :
MERCT (ei 60) [1 E@.-e'qg.a (Yi)l
[Ai,oo) i~ Vg WY he
i / G
s ? P R {L21 m Eo qﬁ,a (Yl)

ook P" EAfﬁ;a(Yi)l} T (8y)

— - _ . "-* ~ .
= LZi T+ L1i ™. [1 EAi:%isq (Yill )

Unfortunately, to verify (2.8) we have to leave now the scope of power
functions and enter that of density functions (see also our Remark 2 stated

below). For this purpose we note at first that for every a, € Ké we have

4.7) Ly, 7o L. m [1 - B,

?;,aﬁYi)]
it

= ﬁ[ min L2i LY gi(u), L1i LIS (u - Ai) du.

This follows from the simple fact that every_cﬁ:*i a

3

with oy 5 §} can be viewed
i
as being a Bayes-test for the following auxiliary Bayesian testing problem,
where Yi is known to have either the density gi(u) or the density gi(u - Ai),

the losses of errors of the first and second kind both are equal to one and

. e - -1
the prior probabilities are L2i L (L1i mLo* L2i ni) and

~-1 .
Lli ™ (L1i T+ L2i ni) , respectively.
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Thus to verify (2.8) it suffices to prove that we have

(4.8) 1im inf 3 (CT_5w) wiﬁ)

n > «©

> 1{ min {L2i m gi(u), Ll'

i ™ gi(u - Ai)} du.

Now by (4.4) and (4.5) and the fundamental principle of Bayesian analysis
(i.e., interchanging the order of integration with respect to observables

and parameters) we get
(1) B.
R (O

. n
. . 1
= f f min {L,. 17 5— f f (z -n)f.(z.-n)dn
E 2 2 *
R ®m i1 0“0 iv%i

n
1 :
Ly, 5 5 _fn £,(z,-n) £5(z; - A; - n) dn} dz_ dz.

Substituting first z, =nv+u and z; =nv - u in the outer integrals and

then n = - + nv in the interior ones, we arrive at
(1) B
(4.100 o, e )
n(v+l)
= [ [ min Ly, 75 £.(g +w) £, (g - v dg,
R R n(v-1)
o n(v+l)
n{v-1) :
[ ] e
> min L,. w7 f (g+u) £.(8 - u) dg,
- R -1 2i i n(v-1) o] i
n(v+l)
Lyg My f £,E +u) £,(8 - A, - w) dg) ‘dvidu
n(v-1)

Now, after all, we are in position to apply Lebesgue's dominated convergence

theorem to the last double-integral, since the 'min''-terms converge to
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min {L2i T8 (2u), L1i LPR-) (2u - Ai) (pointwise in (u,v) ¢ R x (-1,1))
which, at the same time, may serve as an integrable upper bound for them.
Thus, we have

(4.11) 1im infg rd) (T >%), w?ﬁ )

n-—>o®

> min {L2i m g (2u), L1i L (2u - Ai)} dv du

e

/
R -

= j min {in LP-# w, Lli LA (u - Ai)} du
R

and therefore (4.8) is verified and our ptroef is completed.

Remark 1. Since by (4.6) we know that for every i ¢ {1,...,k} and a € K;

(4.12) sup D (t, ¢* ) = r() ((T,w), E? )
Te T

i,a. o.
7y 7

holds for all T and therefore in particular for T,, T

10 Too , and since

we moreover know that

(4.13) r) ¢ (T W), wfn) :_r(i) C (T W), Eﬁi“i)

holds for all n € Hi,we have in fact proved that for every w£ (as defined

in Theorem 2)

(4.14) 2 r (D) (T, w?n) = i g ? (1) (7, wi)f_

11
n >
Remark 2. At no point prior to inequality (4.10) it was possible to complete
the proof with the help of Lebesgue's dominated convergence theorem alone. A

thorough analysis shows that one is always faced finally with the impossibility

of finding an appropriate integrable upper bound. Clearly this is because the
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sequence Th, 'n ¢ IN approximates an improper distribution (the "uniform
distribution over 'IR').

It should be pointed out that there is an interesting paper by C. Stein
(1965) where admissibility of formal Bayes-rules with respect to improper
priors is under concern. Clegrly, the T-minimax procedures of this section
are of this type. But, unfortunately, Stein's ideas do not apply in our
framework, since he used Taylor expansions of L(8,s) with respect to the
second argument s , which of course is only possible in cases where the
action space is an interval of R, thus in estimation problems for example.
On the other hand, it is not difficult to see that the T'-minimax procedures
of section 3 are in fact admissible.

In analogy to section 3 we conclude this section with

Corollary 2, Every selection procedure y = (wi, ces ,wi) with

wi X) =1 (0) §§_Yi > (<) Ci» where o satisfies

(4.15) [L2i ﬂ{ g () - L1i ﬁi g; (¢ - Ai)] (ci -¢) >0,

c # Css i=1,...,k, is T-minimax with respect to 2°,

5. An Example.

Let Zi = (Xil, .o ’Xin ) be independent samples from normal populations

N(ei, 02), i=20,1,...,k. Then for given Ai, L L,., s ﬂ{, i=1,...,k,

1i’ 721

and 02 > 0, Theorem 2 provides us with the I'-minimax procedure (see also

Randles and Hollander (1971)):

A. 2 L,. w7
=T . ta v oo .1 o 1 1 21 i
(5'1) Kbi (_)_(_) =1 iff Xl - XO 2--2*— + Ai (ni + o ) 1n 'L——_"_—. N

o} 11 i

i=1,...,k, where Y;, ii,...,Xk are the corresponding sample means.
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Now the natural question arises whether in case of n >k it is better to

split the sample X into k disjoint sub-samples X . of sizes m. with
-0 —oi i

m o+ ..o+ =T, then to switch over to the differences 6f sample means
i; - _;i, i=1,...,k, and finally to take the I'-minimax procedure provided
by Theorem 1:
A, 2 L,. w5
r _ P = i o 1 1 21 1 .
(5.2) l!)l (E) = 1 iff Xl—X013-2~+A—(-ﬁ—+ﬁ—) In _—T’ 1—1,...,k.
i i i 1i i

If comparison is made in terms of supremal risks over the corresponding I's,
the answer, as one may expect, turns out to be in favor of E?: Since the

risk components to be compared with are given by (3.2) and -(4.3), respectively,
and since moreover the tests‘qg,é and E?,B’ assdciated with wi and ﬁi,

i=1,...,k, in view of (2.3) satisfy

- o
(5.3) o, %Le K7 Xog)

= e(eiB) v A, (G4 D o2

i i

)

-1 1 1, 2.-1/2
< oo (B)+Ai((ﬁi_+ﬁ—o-)o)

)

1,...,k,

= ©* Y _ ¥ .

where ¢ denotes the c.d.f. of N(0,1), we conclude that

(5.4) sup r(,9) > sup_ r( (T,t), §)
TelTl

holds, where I' and T denote the corresponding classes of priors.

If, on the other hand, comparison is made in terms of risks, this time

pointwise over pairs of "comparable priors," then it is not possible to
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give an unique answer in favor of one of the two competing procedures.
But there is an exception:

Suppose we are given L mo= L,. m7, 1,...,k. Then if <t is any prior of

11 2i 1

(91 - @0, cee Ok - OO) with respect to g? and if (T,t) is a "comparable

prior" of (Go, 0 s Ok) with respect to @T in such a way that under

1’
(T,t) the conditional distribution of @i - Oo - given 60 = eo - does not
depend on.?q) e R (i.e., eo acts here as location parameter) and coincides

with the marginal distribution of Oi - OO under 1, denoted by Ai, say,

i=1,...,k, then standard analysis leads us to

.5 D mn, -

_ 0 A, _
I G I (ﬁ? 5—:’-) A an
r Ay 11, 2.-1/2
+ oLy [ e (G 0T @y ()
Ai i o
0 A,
S lpy of o G gh o) 2y @
R T SRS S
SN ERRE A
1

N R S IR N
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SUMMARY

I-Minimax Selection Procedures in Simultaneous Testing Problems

Suppose we have to decide on the basis of appropriately drawn Samples which
of k treatment populations are good compared to a control population, where
the populations can be identified by certain parameters 61,...;6k and 60.

In the first part of this paper we assume that 60 is known and that

61,...,6k vary randomiy according to a certain prior distribution, about

which we only have tliepartial knowledge that it is contained in a given class

I of - priors. In the second part eo additionally is assumed to vary at random.
Though we derive in both cases (under the assumption of monotone likelihood
ratios) T-minimax procedures which by definition attain minimal supremal

risk over T , the emphases are different: while we try to demonstrate

in the "known controls case" how well known results from the theory of

testing hypotheses can be utilized to solve the problem, our main purpose

in the "unknown control case' is to give a new proof for a theorem which

was stated but only partially proved by Randles and Hollander (1971).

Finally, an example in the "paired comparison versus random sampling" setup

is given.
A M S subject classifications. -~ Primary 62 F 07
Secondary 62 F 15
Key words and phrases. Gamma minimax procedures, simultaneous testing,

Bayesian procedures, improper prior distributions.
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