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SUMMARY
The Subset Selection Problem.II. On the
Optimality of Some Subset Selection Procedures
by
Jan F. Bjdrnstad

University of California, Berkeley and Purdue University

This is Part II of a two-part paper. The problem of selecting a
random subset of good populations out of k populations‘is considered.

The populations I ..,Hk are characterized by the location parameters

1°°
0.5...,0,, and II. is said to be a good population if 6. > max 6. - A,
1 k i 1<j <k
and a bad population if 6, < max 6. - A. Here, A is a specified positive

1<j<k
constant.

Subject to controlling the minimum expected number of good populations
selected or the probability that the best population is in the selected
subset, procedures are derived which minimize the expected number of bad
populations selected or some similar criterion.

For normal populations, the optimality considerations suggest three
procedurcs as the main contenders for this problem. Two of these are the
"average-type" procedure,vand the classical "maximum-type" procedure. The

third procedure has not before been considered as a serious contender.




THE SUBSET SELECTION PROBLEM.II. ON THE
OPTIMALITY OF SOME SUBSET SELECTION PROCEDURESl
By
Jan F. Bjgrnstad

University of California, Berkeley and Purdue University

1. Introduction and Summary

This is part II of a two-part paper dealing with the subset selection
apﬁroach to the problem of selecting a subset of good populations out of k
populations nl,...,Hk. The populations arc characterized by el,...,ek
respectively, and Xi is the observation from population Hi. § = (61,...,ek)7€ 2,

X = (xl,...,xk). X is a sufficient statistic for 8, X ..,Xk are ‘assumed

1’
to be independent and Xj has density f(x-Oi) with respect to Lebesgue

measure. The ordered ei are denoted by Oll] < e 5_e[k], and H(i)’ X(i)
correspond to 0[1]. The population I is called a best population if ei =
e[k]. The risk criteria we will consider depends only on the individual

selection probabilities of the procedure. We can therefore define a subset

selection procedure by:

(1.1) | VO = [ (0, (0]

where ¥: (X) = P(selecting Hi]§=§).
The size of the selected subset is a random variable. However we will

usually require that

k
(1.2) )

lThis research was supported by the Norwegian Research Council for Science and
the Humanities.




I.e. we always selected (for non-réndomizod procedures) at least one popu-
lation.

In Part I we discussed monotonicity properties of certain risk functions
for the class of procedures called Schur-procedures. 1In Part II we study
the problem of finding minimax procedures for the criteria in Part I.

The "subset selection approach" is one of the two basic formulations
of the selection problem. The other is the so-called "indifference-zone
approach', introduced by Bechhofer (1954), where we wish to select only
a single population (or more.generally a fixed number of populations),
using the natural selection procedure. The problem is to determine how
large the sample size from each population has to be, so that the probabil-
ity of selecting the best population is bounded below by a given constant
outside a certain indifference region. The rel#ted problem of how to

‘select the best one of several populations was considered in a decision-
theoretic framework first by Bahadur (1950). Bahadur showed that for a
large class of loss functions and certain families of distributions, the
natural selection procedure is the uniformly best permutation-symmetric
procedure. The work of Bahaduf was generalized and supplemented by Bahadur
and Robbins (1950), Bahadur and Goodman (1952), Lehmann (1966) and Eaton

(1967).

For the subset selection approach there have been few optimality
results. .

The first papers on the subset selection problem were Paulson (1949),
Seal (1955), Gupta (1956) and Seal (1957). They all dealt with normai
means. Two rules werc proposed, wa and wm (see also Part I). The pro-

cedures are given by




a . 1
(1.3) Vi =1 iff X, > 1 .Z. xj - ¢
jAi
(1.4) w? =1 iff X. > max X, - d.
. 1<j<k J

Here ¢, d are determined such that the classical condition

(1.5) inf pe(cslw) >y
peEQ 2

holds with equality. CS (correct selection) stands for a selection that
includes.the best population.

wa was proposed by Seal (1955), and Wm was proposed by Gupta (1956)
and Seal (1957), and also be Paulson (1949) with a slightly different
control condition. These two procedures have been the main contenders
for this problenm.

In 1966, Gupta and Studden gave the first optimality reéult. Let
S(6,y) be the expected size of the sclected subset. It was shown that if

Xi has density f(x-ei) and f(x—ei) has monotone likelihood ratio, MLR, in

X then wm minimizes s%p S(6,y) among all permutation-invariant procedures

satisfying the basic requirement (1.5). Since the group of permutations
is finite they showed in fact that wm is minimax among all procedures
subject to (1.5) (see e.g. Ferguson (1967)). This result is generalized

to other families of distributions by Berger (1977), who also considers
the risk S', the expected number of non-best populations selected. Berger

showed that the minimax risks subject to (1.5) are

ky with respect to S(8,v)
and
(k-1)y with respect to S'(9,y)

It follows then from a mdnotonicity result for wm, given by Gupta



(1965), that wm is minimax both with respect to S and S' under the con-
dition (1.5).

Other recent papers that consider optimality problems are Gupta and
Miescke (1978), Berger and Gupta (1977), and Gupta and Huang (1977).

We shall here not consider Bayes procedures. Some of the main
contributions in this field are Deely and Gupta (1968), Goel and Rubin
(1977), Chernoff and Yahav (1977), and Hsu (1977).

-This paper dealsvwith minimax theory. The criteria discussed in
Part I are considered. For easy refcrence let us present thém here.

k-1

(1.6) S1(8,¢) = E {y,..}.
- i=1 2 (1)

Here w(i) corresponds to e[i], for i = 1,...,k.
We say that Hi is a good population if ei > e[k] - A and
a bad population if ei :_e[k] - A. A is a given positive constant. Then

a reasonable criterion is:

(1.7) B(8,¥) = ) Eq(¥).
ier -
A
Here IA = IA(Q) = {i: Oi f_e[k] - A}, B(6,y) is the expected number of
bad populations selected.

In many cases we want to attach more weight to the worst populations
than to those closest to the best. As observed in Part I the following
criteria accomplish this and will be considered later.

k-1

(1.8) : L(8,w) = . ] loglEg (¥ ;)]
i=1 - :




(1.9) . 2(0,9) = ) loglE (v.)}.
ie:% -

As we have mentioned, a widely used criterion is

. ‘k
(1.10) S(8,) = ) E,(¥,).

i=1 -
This author feels that B(0,y) and S'(6,y) are more appropriate risk functions
than S(0,y). For a discussion of the different criteria we refer to Section
6. For a given criterion we want the procedures to satisfy a certain control
condition. As mentioned in Part I scveral different conditions can be of
interest. One that we will consider is
(1.11) inf R(8,¢) > v,y < 1,
(_)E.S?,

where R(0,y) is the ekpected number ofvgoéd populations selected.

It will turn out that a new procedurc we, which was studied in a-
different context by Studden (1967), has certain minimax properties. In
Section 2 we discuss the control conditions we are interested in, and show .
how to determine wm, wa and we so_that they satisfy the different conditions.

The minimax problems we consider ére presented in Section 3. Section
4 deals with minimax theorems in the general location-model for the risk
function B(9,¥), S'(Q,w) and S(6,y), subject to the condition (1.11). It
is also shown that wa is minimax with respect to the criteria S'(8,y) and
S(0,¢) subject to the condition (1.5) if vy is sufficiently large.

In Section 5 normal populations are considered. It is shown that the
new procedure’we is minimax over a certain slippage-type subset of @ for

B(9,¥), subject to (1.11). We also prove that we is minimax among all




permutation-invariant procedures with respect to the whole parameter
space for 2(8,y), subject to (1.11). We derive some new minimax results
for wa, and a new minimax property of wm is proved for the case when k

tends to infinity.

2. Control Conditions

The control condition we will most consider is (1.11), i.e.

inf R(8,¥) >
8€Q

where

R(O,¥) = ]

E.(v.).
1€l 6" "1

o
A

Let the class of procedures satisfying (1.11) be denoted by #(y,A). We

observe that R(9,y) = PQ(CSIw) if 01k - e[k—l] > A. For this reason

and in its own right, the condition g

(2.1 inf Pe(Cslw) >y
0€n(a) -
is also of interest. lere
(2.2) CR8) = {0 By - By gy 2 AL

Let b'(#,A) be the class of procedurcs satisfying (2.1). Since (1.11)
implies (2.1), we have that &(v,40) C.$'(y,Aj. Let bl(y) be the class

of procedures satisfying (1.5), the control requirement mostly used in the
literature. Note that &(y,A) and &'(y,A) are two sequences of sets which
as A > 0 tend to bl(y). The condition (1.5) means that we require the

probability of selecting the best population H(k) to be at least vy, even




when e[k] is close to the other ei. However, in such a case it does not
matter much if instead of H(k) we select, say the second-best population-
H(k-l)' As a consequence of this we are really only interested in con-
trolling the probability of selecting the best population when

e[k] - e[k-l] > 4, with A not too small. Hence the condition (2.1) seems
more appropriate than (1.5). The unsatisfactory feature with (2.1) is
that we do not control what happens on QC(A). This leads then naturally
to the control (1.11) as the more appropriate condition of the three we -
have presented, since it implies (2.1), but also controls what happens on
2(a).

From the above remarks it follows that we are mostly interested in
the classes §(v,A) and 8'(y,A). We will, however, also present new
minimax results for the class SI(Y).

A fourth control condition, different in nature from the three

mentioned above, is

(2.3) sup S(9,4) < 8.
g€Q

The class of procedures satisfying (2.3) is denoted by 52(8). A
condition like (2.3) may be imposed for example because of practical
restrictions on how many populations we can select.

Let us now consider the procedures wu and wm given by (1.3) and
(1.4). The critical constants ¢ and d are determined according to what
control condition we want the procedures to satisfy. It is easily seeﬁ

(see e.g. Lemma 3.1 in Part I, and Gupta (1965)) that

]
D

inf Peccslw) occurs at 6, =...
pER -




and

inf P, (CS|y) occurs at 6,,.=...= @ =0, - A
sea(n) o [1] [k-1] © 7 [k]

for ¥ equal to wa or wm. Let dl(y), cl(y) be the values of d, ¢ such
that y* and y" satisfy (1.5) with equality, and let d'(y), c'(y) be the
values of d, c such that (2.1) is satisfied with equality. Then

d' =d, - A

(2.4)
c' =¢, - A

We observe that (1.2) is satisfied, i.e. at least one population is
always selected if and only if d > 0 and c'i 0. Hence if wa(wm) € & (v,40)
then (1.2) holdé if A <c (A< dl).

Let us now turn to our main control gondition (1.11), and procedure
wm. ‘Let d = d' so that wm € &' (y,4), and assume d' > 0. Then it is readily
seen, by using a method similar to the onc used by Gupta (1965) to find
sup S(Q,wm), that wm satisfies Cl.ll) with equality, if the density f(x-6)
hgs MLR in x. From Gupta (1965) we also see that wm € &2(6) if £(x-9) has

MLR in x, B > 1 and d = dl(B/k). This follows from the fact that

L]
[an]

sup S(Q,wm) occurs when el = ... X
BeEQ

if £(x-6) has MLR in x and d > 0.

For the remaining part of this section we will consider the case of
normal populations with known variance, i.e. xl,...,xk are independent,
normally distributed with variance 1 and ue(xi) = ei for i = 1,...,k. Let

the 7(0,1)-density be denoted by ¢(x). Then f(x-6) = ¢(x~8) in this case.

Let ¢ be the %(0,1)-distribution function, and let z(y) be defined by ¢(z(y)) =

Y. Then




¢ () =T 20
(2.5)
c'(v) = /k? 2(y) - A.

dl(y) is tabulated by Gupta (1956) and Gupta (1963).

Let us now consider the problem of determining ¢ such that wa satis-
 fies (1.11). It turns out that usually ¢ = c¢', given by (2.5). It will
be shown in Sections 4 andv5 and wa has optimality properties only if vy is
sufficiently large. In particular for the class §(y,A), wa has a certain

minimax property if y > (k-1)/k. Let

(2.6) 2,00 = mintGeen + &b, e - K.

It is straightforward to show that if y > (k-1)/k, A f-Aa(Y) and ¢ = ¢!,
then wa satisfies (1.11) with equality, and.hence wa € &(v, A) We note
that A 2 (Y] -\/_—_kZ(Y) - z(———J} if and only if z(¥) < 32( ) As is
seen above both for w and w » 1f we want to satisfy condition (1.11) we
first determine c and d such that (2.1) is satisfied, and then show that
(2.1) implies (1.11) if A is not too large.

Let for any c,
1 k
v(e) = P(Y, > &= g Y. - ¢)

where Yl,...,Yk are independent, 7(0,1) random variables. It is shown in

Section 4 (see Theorem 4.3) that

sup S(0, P ) is attained at 9, = .,, = 0
1 k
OGQ
. _ . k-1
if and only if vy(c¢) 2_-1—-.
It follows that wa satisfics condition (2.3) with equality if

¢ = cl(ﬁ/k) =\/%¥T-Z(B/k) and B > k-1.
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Berger (1977) and Gupta and Studden (1966) showed that wm has certain
minimax properties in the claés &l(y) if f(x-6) has MLR in x. We show in
Section 4 that y® has the same minimax properties under some additional
assumptions. In Section 5 it is shown that in the case of normal popu-
lations wa also has some minimax properties in the classes &' (v,4a),
&y,4A) and &2(8).

As will turn out in Section 5, in addition to wa and wm, a third
procedure, denoted by'we, has certain minimax properties in the classes
&(yv,4) and &'(y,A) when we have normal populations. w? is given by

_ e ‘ Axi ' AX;

(2.7) b; =1 iffCe > ] e J
j#i

Remark. In the general case, when Xi‘is the sample mean of n inde-

pendent normal variables with known variance 02, then we is given by

bg/nX. /o Ao/rTxJ./o

(2.8) - ¥ =1 iff Ce Yos 7 e
' : jfi

where

(2.9) by = /n Ao,

C is determined such that (2.1) is satisfied with equality. From Part I,

Lemma 3.1 we have that

inf P, (CS|y° hen 6., = ... = @ =6, - A.
ng(A) 9( |[%7) occurs when 1] [k-1] ]

This implies that C is determined by

'AYk+A2 k
(2.10) y=PCe ° > ] e )

1

I e~11

j



where Yl,...,Yk arc independent, 7%(0,1) random variables._ The critical
constant C is tabulated in Table 1, for k_i 10. For we we are really only
interestgd in satisfying (2.1) or (1.11). However, we see from (2.10)
that we satisfies (1.5) if we instead of C use eAZC as the critical con-

stant.

We next discuss the problem of determining C such that we € &(v,4),

inf R(e,wc) = vy,
eeq

As seen in Theorem 2.1 below, usually C will be given by (2.10).
Note that we always select at least one population with we, if and

only if C > k-1.

Theorem 2.1, Let Xl""’xk be Lndépendant; X A5 Z(ei,l) fon
i=1,...,k.

(i) Let k = 2,3 and C > k-1. Then

(2.11) inf P (CS|¢°) = v = inf R(0,4%) = y.
eeq(a) - - 6EQ h

(i) Llet k >4and C > k-1 . Then (2.11) hotds Af

(¢]
EGA(wl) 2 b (y)

whenre
(v/9 if k=4
(2.12) b (Y) = J v/7 if k=5
(11/75)y 4§ k > 6
and \ ‘

A
9 = (O,A,---,A)o

11
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Remark. Let AY be defined by

e
(2.13) E, G =b ().
g Y

E A(wf) is tabulated in Table 2. We see that E A(wi) typically increases
0 0 ,
in A to begin with and decreases from a certain point. It is clear from

Table 2 that if A < AY, then we € &(y,4). (For general ¢/vn we require
Ao
if k = 10 and v = ,95 then AY ~ 1.5.

f_AY). Using Table 2 we can find approximate values of AY. .For example

To prove Theorem 2.1 we need the following two lemmas.

Lemma 2.1. &ti<j. MMmeCiRJdeeD]-eﬁ]iA.

Then
(5] . (]
48 nondecreasding Ain e[i]'

Proof. We can without loss of generality assume 6, < ... f-ek and

1_..
. . € e
consider r(0) = h@(wi * wj). Now,
Ci-1 A(y,+6)) k-1 A(y +6,  )ik-1

P - T I 1 1 L 8 1 2 e+l

Eg(wi) = f@ Si - AloglC Qzl e * T gzi e 2Elé(yz)dv()_f).
We get:

k-1 Ay
or Logid Y o(y.-
56;--f{¢ 0, -,Alo;,[C 221 e ] oy ej)
) ) kil Ay eAyi
- %[0, - =1log[= e 1j¢(y.-98.) |0}
j A C 2=1 i1 kil eAy2
i-1 j-1 k-1 2=1

I é(y,-6,) 0 ¢(y,-6) I o(y, ~0 Ydv(y).
g=1 2 72 Q=i+l L 72 9= 2 T2+1 <




From this expression we find that ar/aei > 0 if

. Ay, ~y:) . k-1 Ay
(2.14) m+ 7 e *15. exp{(6,-6.) [y. - l1og[l Te %
2#1 ] 1 1 A C 2=1
Let Ypax = max(yl,...,yk_l); Then
8y, -y.) (8,-8.)y. (6.-6.)y
[1 + Z e XL le J 1771 > o J 17 max.
L#1
Hence the left side of (2.14) is greater than or equal to
k-1 Ay
. N TP %
oxpl(0;-0,) (v, - 1oz zzl e 7 21,
since C > k-1 implies that
k-1 Ay
1 1 2
Ypax > 7108 [& Y oe “]. Q.E.D.

2=1

Remark. 1If C < k-1, then Lemma 2.1 is not necessarily true as seen
by the following example.

Let k = 2. If Lemma 2.1 holds then
e ¢ » e ey
E, _, (0+) > By Lo AT+S) >y
eleez 172 01 92 AYT1 T2
since
. e
E, o _a(05) = v.

01 02 ANT2

However:
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log C
By _g (U5+95) = 20( ) <y
6,=6,""172 AVE

if

&2/, k-1.

¢ <

Lemma 2.2. Let k > 4and C > k-1, and Let p be such that 1 <p < k-3,

Assume that
R(8,¥°) = ]f Ly (v5.))
i=P+] 8°7(1)
L.0. e[p+1] > e[kl A and e[p] < e[k] - A 14
inf P (Ccs[y%) = v
peR(a) 2
- then
2.15 R(8,4%) > ——555L4.+ k-p){1 1)k-l-p}E 9
( . ) (_bw ) __2k_1_pY ( ‘p) - (E‘ é(p+1)(¢1 .
Here g(p+l) 45 gdven by
O - A hon i < p+l
Jov) K -
i e[k] horn i > p+2,

Proof. Let y = we. We may assume that ei = e[i] for i = 1,...,k.
Then

k
R(8,¥) = ] E.(v.).
= i=p+1 9 1

Each Ee(wi), i > p+l, is nonincreasing in each of ©

l,...,ep, SO we can let

= = = - i q :
61 ce ep ek A. Define 6" by:




@
h
o
=
=
Y

g+l.

e
I
—~—~—A
D
-
H
&
-h
o]
=
[
| A
Q0

Let i > p+3. Then

kp . 2(k=p) -4 (k-p) -4
o) 2 a2y B 0) * 30y BaUpet) * iR B (o)

It follows that

k k
. k-p k-
(2.10) LoBgu) > SRE (0 +y )+ KBV g oy
i=p+l 07717 — 4 T0MTp+l Ypa2 4 (k-p-2) i=p+3 6 p+l
Let ¢ be an integer, 1 < q < k-2. Then for i> q+2:
: k-q__ k-q-2

This implies that

E k-q + k=4 E
(2.17) ) E g (Vgti) 2 =5 B0+, 1) + 57— Eg (b +0:) .

i=qe1 2 79°"q "q+l 2(k-q~-1) i=q+2 6 "q "1
The idea in the proof is to apply Lemma 2.1 to decrease first ep+l’ then
Gp+2 etc. to ek A in L-(wk and then use the fact that y = F l(wk)
Let OO = (p+1)- From (2.16) and (2.17) it now follows from induction
that

k m-1
(2.18) I Bow) > (k-p)( Pk YEg (o)
i= p+1 - -0
K- k
T E pam-1(¥ i)
27 (k-p-m) i=p+m+l QP p

for m = 2,...,k-p-1.

By letting m = k-p-1 in (2.18) we get:

).

15
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k - k-p-2 .
- © ke~
B, (¥;) > (k-p)( E 279, () + 5P By )
i=g+1 p(V3) 2 L T R
k'g'l -i k- .
> (k-p) ( 270k (b)) + B Q.E.D.
i=1 -0 2

Proof of Theorem 2.1. The result for k = 2 follows directly since for

6 €0°(a), R(8,y%) = Ee(¢f+¢§)-i L. (2.11) for k = 3 follows immediately

from lLemma 2.1. For k > 4, we have from lLemma 2.2 that (2.11) holds if

: k-p-1 |
k-p 1 o
Jk-p-17 " (k-p) (1 - (3) )Eep+l(wl).i Y

for all p such that 1 < p < k-3. Since E (we) > E (we) for all p > 1,
- = 0p+1 17— eA 1 -

(2.11) holds if

(2.19) ' E A(wf) > y-  .max g(m).
: 8 ' 3<m<k-1
where
. 5ym-1
gm = =B g
m-m(1/2)

It is readily seen that

g(3) = 1/9 ifk = 4
max  g(m) = g(4) = 1/7 if k =
S<m<k-1 g(5) = 11/75 if k > 6. Q.E.D.

Remarks. (a). Let k = 2. Then it is readily seen that

inf R(6,p%) < y
oen

if
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A >V2{z(y) + z(1 - %J} .

Hence (2.11) is not necessarily true if A becomes too large.

(b) By applying the geometric-arithmetic mean inequality, it is readily

C Z.(k-l)OXP{A/E¥T-ZCY) !

seen that

and therefore

(2.20) A 5_//;5;-2(Y) = C > k-1,

We conclude this seétion with a few_comments on the case of unknown
variance 02, i.e, Xi is the sample mean of n normal random variables with
unknown variance 02, such that Var(Xi) =.02/n. Let S2 be the usual unbiased
estimator of 02 such that vSZ/oz has a chi-square distribution with v =
k(n-1) degrees of frcedom. Then wa, wm is modified by replacing d with
d S/vh and c with c,-S//A (see Gupta (1965) and Seal (1955)). It is

easily seen by conditioning on S that

inf P (CS]W) occurs at 8, = ,,. =6,, for y = wa,wm.
.o 6,0 1 k
b,0€qQ -

Selected values of dv such that‘wm € bl(y)'is tabulated in Gupta and Sobel
(1957). The values of <, such that wd € xl(y) can be obtained from the t-
distribution.

The obvious modification of we, given by (2.8) is to replace o by
S. Hencc the modified rule w; is given by
8y /X, /8 eaovﬁkj/s

b. . =1 iff Ce >
m e
j#i
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By conditioning on S we easily see that

igf Pe(CSIwe) occurs at 6[1] = ... = e[k—l] = e[k] - GAO/VE.
(k] [k-1]
3_0A0//H

0

However no tabulated values of Cm exist.

3. Presentation of the Optimality Problems

The notion of good and bad populations is the main concept. Our approach
is in principal similar to the one considcred by Lehmann (1961) for the
problem of comparing populations with a standard or control.

The risk functions‘we are mostly intcrested in are B(6,y) and 2(0,9),
given by (1.7) and (1.9). Specifically we consider the problem of finding

subset selection procedures, which subject to (1.11)

(3.1) minimize sup B(6,y)
9691 B
and
(3.2) minimize sup ¢(9,y).
QEQl

Ql (to be specified later) is the set of parameter-values where we want the
selection-procedure to have good performance. In Section 4 a solution
fo the goal (3.1) is found for'ﬂ1 equal to a slippage-set of the type
given in Part I, (5.6). In Section 5 we find a solution to the goal (3.2)
for normal populations with Ql = {, the whole parameter-space.

The general minimax theorems in Section 4 are given for the class
&§'(v,4) of procedures satisfying the control condition (2.1). For appli-

cations, we then have to show that the optimal procedure also lies in
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&(y,A), so that the procedure is also optimal in the class §(y,A). As is -
seen in Section 5 for normal populations, this will usually be the case if
A is not too large. (See also Theorem 2.1)

Other risk functions of interest for the class &(y,A) are S'(9,y)
and L(8,y) given by (1.6) and (1.8). As is shown later, the optimal
procedures for the goals to (3.1) and (3.2) will also have certain minimax
properties for S' and L. TFor the class of procedures bl(y) satisfying the
classical control condition (1.5), Berger (1977):has shown that the minimax'
risks are (k-1)y and ky for respectively S'(6,y) and S(8,¢). Using this
result Berger showed that wm is minimax fo; S and S' in the class &i(y).
In Scction 4 it is shown that wg is also minimax if v is large enough.

For the class of procedures Lz(y) satisfying (2.3), the goal is to
(3.3) maximize inf R(0,y) and inf Pe(CSlw).

0€Q eeq(a) -
Also the dual problem of
(3.4) minimizing izf S(8,¥) for y € H(y,A)
0En

is considered.

4. Some General Minimax Theorems in the Location-Model

The model: xl,...,xk are independent. Xi has density f(x-ei) with

respect to Lebesgue-measure. The joint density is

P(x-0) = ] £(x,-6,).

1

1

e~

Let §i be the vector in Hlk where the ith coordinate is equal to 1 and the

rest is equal to zero. Define Qﬁ by

. A_ b
(4.1 0, = AS;.
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Let p, (x) = P(X-eé), and definc the statistic
it L=v

]
(4.2) T,(X) = —=<~ } p.(x), for i = 1,,..,k
1 P; X) j#1 J

wo is the subset selection procedure given by:

0 1 if Ti < C
(4.3) pi(x) =

' 0 if T, > C

i

where C is determined by
(4.4) B (W) =y for i=1,...,k.

eA 1

-i

Let us recall from Part I (see pefinitions 3.3 and 3.4), that a pro-
cedure ¥ is said to be just if wi(§) is non-decreasing in Xg and non-
increasing in xj, i #1i, fori=1,...,k, and ¢ is_said to be a Schur-
procedure if (i) ¢ is just and translation-invariant and (i1) wi is the
same Schur-concave function of 5; = {xj—xi:j#i}, for all i. (For a

definition of a Schur-concave function we refer to Part I, Section 3.)

Let now
p-2

4.5 Q () =1{0 €Qir 06, .,~0, <A and 0 -6 >A {0 -6..)1,
R 010 1t 2™ O pg P12t L Oy
for p = 1,...,k and let

k
(4.6) 9, = USlp(A).

p=1

Let us review the properties of Schur-procedures, derived in Part I,
we need to prove our first result. (See Part I, Theorems 5.3 and 5.4.)

If f(x-6) has MLR in x, and y is a Schur-procedure, then
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(4.7) sup B(0,4) = B(0[,¥) and sup  S'(9,)

5(0%,9)
e, ocq (4)

for i =1,...,k.

The following result concerns B(Q,w) and S'(6,y) for v € &'(y,n).

Theorem 4.1. Assume £(x-8) has MLR in x, and that ¢°, defined by
(4.3), 48 a Schur-procedunc. Let 2 be given by (4.6). Then wo mind-
mizes fon all c € &' (v,4)

sup B(68,¢) and  sup S'(6,v).
e, 0€Q (8) i

Proof. We prove the theorem only for B(8,y). The proof for S'(6,y)
is exactly the same. It is readily seen from (4.4) that wo € &' (v,4).

(See e.g. Part I, Lemma 3.1.) From (4.7) we have that

sup B(9,¢0) = B(Q?,wo) for i =1,...,k.
Qewl
This implies that for any ¢ € #&'(y,4)

sup B(8,9) - sup B(8,p")
geﬂl 9691
k k
A 1 A O

==

|v

1

1
]
~
o~
=
~
<
'
<
—
o
(el
<

0 c ¥ .0
f(wj'wj)(igj Pj)dV + E-jzl{fwjpjdv‘— fwjpjdV}

—

I v
]
—
I o~ X

since

fw?deV= v and fwjpjdv >y for j =1,...,k.
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It follows that

]

sup B(6,y) - sup B(Q,wo) 3_%- , f(w--wq)( L p;-Cp.)dv > 0.
peq, QEQI j=1" ) I idj 3

4

Q.E.D.

Remarks. 1) 1In Section 5, Theorem 4.1 is applied to normal popu-
lations. It is shown that wo is the procedure we, defined by (2.7). It
follows from Theorem 2.1 that in this case wo € 8(y,a) if A f_AY; AY is
| defined by (2.13). 2) As mentioned in Part I, one way to interpret

2, is to say that Ql consists of the cases where the good populations
have "slipped" from the bad populations.

In Section 5 it will be shown that for normal populétions, wO is mini-
max also with respect to £(8,y) and L(g,w). More precisely, in the normal

ciase we have that wO also minimizes sup 2{8,¥) and sup L(6,y) for all
6€Q oeq(a) T

permutation-invariant procedures in &' (y,A).
Next we consider the problem of finding solutions to the dual goals

(3.3) and (3.4). First we will consider the two simpler problems of

(4.8) maximizing  inf P (CS|y) for ¥ € 8, (8)
pea(a) 2

and

(4.9) ' minimizing sup $(0,y) for ¢ € §'(y,4).
pen  ~

By the Hunt-Stein theorem we can restrict attention to translation-in-
variant subset selection procedures, i.e. we can assume that wi is a

. . . - o s . = o v ius " .
function of x¥ {xj xi.Jfl}. Let % {Oj ei.Jfl}. Then x¥ has location

k'l, where g is thc density of (U -Uk,.;.,Uk_l-Uk),

density g(y-6¥), y € R 1




and U ..,Uk are i.i.d. with density f(u).

1’
The solutions of problems (4.8) and (4.9) are given in the following

result.

Theorem 4.2, Let Xl,..'.,xk be independent; xi has density f(x—ei)
gon i = 1,...,k. Degine y* by
1 4§ g(x¥+n) > cg(x¥)

(4.10) VD = , |
0 £f g(xf+a) < cg(x})

Here p = (A,...,A) . Assume o* {8 a just procedwre and that

(4.11) sup S(9,y*) occwrs at 61 = ,.. =0

3 k

I§ ¢ 48 determined by

(4.12) fw;(Z)gcz)dv(Z) = B/k for i=1,...,k
then ¢* maximizes for all ¢ € SZ(B)

(4.13) inf P (CS[¥).
peQ(a) -

1§ c 48 determined by

(4.14) VI eyrdv(y) = yfor io= 1,...k

then y* minimizes fon all v € &' (y,A)

sup  S(8,y).
QGQ

Proof. Let y € SZ(B). We can assume that y¢.is translation-invariant.

Since y* is just,

23




inf PG(CSIw*) occurs at the k points 0% = -85 i =1,...,k.
6€q(s) - :

Hence

inf Pe(cslw*) - inf pe(cslw)

seqQa) - eeqn(a) -
k
2 LI - v (0 1ely+n)dv(y)
i=1
1 K c :
2 LI - v ]+ dv(y) - £ (S00,4%) - S(0,9))
i=1 |
1 k
=% LW - e - g ldvey) > 0.
i=1

The proof of the second result goes in a similar way and is omitted.

Q.E.D.

Remarks, 1) Assume

(4.15) inf R(§,¥*) = inf P (CS[y*).
oEn 0EQ(A) -

Then if (4.12) is satisfied, y* maximizes, for all y € &2(6)

inf R(6,p).
pen T

If (4.14) is satisfied then yY* minimizes for all ¥ € 8(y,4)

sup S(0,¢).
0 €Q -

In Section 5 it is seen that for normal populations, (4.15) is true if
A is not too large.
2) By employing an idea used by Spj#tvoll (1972) for multiple

comparison problems, Gupta and Huang (1977) prove a result similar to

24
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(4.13). However, they do not assume that ¢ € &2(8), only that S(0,¥) <8
for 6 ¢ QO = {Q: 0l = ..., = Gk}. We will see that for normal populations

¥* in fact satisfies (4.11) if A is not too large and B is large enough.

At last in this section we consider the classical problem of minimizing

sup 5(0,¥) and sup S'(6,¥) in the class SI(Y). From Berger (1977) we have
Y] Q2

that
inf  sup S(9,¢) = ky
&1(7) Q

(4.16)
inf sup S'(Q,w) = (k-1)v.

kl(y) Q

As mentioned in Section 1, wm is minimax in'él(y) for S and S' if f(x-6)

has MLR in x. Berger (1977) observed that‘if Yy < (k-1)/k then wa is not
minimax for S, and if y < (k-2)/(k-1) then wa is not minimax for S'. We
shall show that if Y > (k=-1)/k (v > (k-Z)/(k-l)), then wa is in fact minimax
for S (S8'). Hence, Berger's condition is not only sufficient but also

necessary. More precisely the following result holds.

Theorem 4.3. Xl,...,xk are independent. X, has density £(x-6,)

for i =1,..k. Assume that f(x-0) has MLR 4in x and that

£(x) = £(-x) fon all x. Then
(4.17) sup S'(8 ™) = S'(0,4%) = (k-1)y 4if and onty if y > K22,
pen 7 - : ~ k-1
(4.18) sup S(0,9™) = $(0,4%) = ky 4if and onby if v > kT;l;
oen T B ' -

From (4.16) we then have the following corollary.
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Corollary 4.1. Assume the conditions in Theorem 4.3 hold. Then

v® s mindmax in L () for s 4§ and only if vy > (k-1)/k, and fox

S' A4 and only 4if vy > (k-2)/(k-1).

Remark. Berger (1977) showed that if y is minimax in &l(y) for
the risk S, then ¢ is minimax also for thc risk S'. Corollary 4.1 implies
that in the other direction the result is not true, since wa is minimax for

S', but not for S if

k- k-1
1 =Y <

[y

We prove Theorem 4.3 only for S. The proof of (4.17) for S' is completély
analogous. The proof goes by a series of lemmas.

A location-density has MLR in x if and only if it is a strongly
unimodal density. Using the result from'Ibragimov (1956), that the
vconvolution of two strongly unimodal densities is again strongly unimodal,

we readily get the following result.
Lemma 4.1. Assume the conditions in Theorem 4.3 hold. Let
1
V., = == } (X, - X,)
i k-1 i j i

and

1
W, = == ) (0.-0.), for 1,...,k.
i k-1 541 j i

Then A has density g(v-ul), whene g 48 symmetric around zero, 4.e.

g(v) = g(-v) and g(v-u) has MLR 4in v.

Let G(V-ui) be the distribution function of Vi’ and let c(y) be the
y-quantile in G, i.e. G(c(y)) = y. Then the critical constant c in wa is

equal to c(y).
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S(Q,wa) is permutation-symmetric in (61,...,6k), SO we can assume

Let ti = (ei+

1 - ei)/(k-l). Then

ii b %

. i-1 k-l
S =) = ] Glet + [ gty - I (ked)eyd

i=1 j=1 j=i

where t = (tl,...,tk_l) and ti > 0 for all i.
The "if" part is the important and difficult part. The next lemma con-

siders this case for ''large'" t.

Lemma 4.2. Assume the conditions in Theorem 4.3 hold. Let
y > (k-1)/k and k > 3. Then
k-1

(k-2)t, + ) (k-j)tj > 2¢c(y) = H(t) < ky
j=2

Proof, It is enough to show that EO(¢?+¢g).i l. Let ¢ = c(y). Now,

nguf;) < 6(-c-tp) =1 - G(evty),

and result follows. . Q.E.D.

It remains to consider H(t) for t € A(y), where
k-1
A =t (Dt v ] (ke < 2e(v)
j=2

Lemma 4.3. Assume the conditions Ain Theorem 4.3 hold. Let k > 3 and

tet t0 = £9,...,t% ) €ary). Then
t 1 k-1
0 0
H(E s ety 5t ,0,...,0)

, . . , 0
Ls nonincreasing 4in t_ fort <t forl<m<k-1,

' 0
Proof. Let first m > 2, and let v = (vl,...,vm,O,...,O) = (tl,...,tm_l,

t ,0,...,0), tm < tg. Then v C A(y). Let h(vm) = H(v). We shall show
m < v
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that the derivative

h'(v.) <0 for v <-t0.
m - . m— m
It is casily seen that
m
(4.19) h'(v) <0<« m< § r (V).
m - - 1 -
i=1
where
i-1 m : m
r (V) =gle+ ] jv. - ] (k-3Iv)/glc + [ jv.).
.o j .o, j o j
j=1 j=1 j=1

m m m
Let a=c+ ) jv,andy= ) jv. + ) (k-j)v.. Then r,(v) =
j=1 ) j=i =i ? T
g{a-y)/g(a), and for i > 3 we have that y < 2a. From Lemma 4.1 it follows
that r. > 1 for i > 3. To show (4.19) it remains to show that T, v, > 2.

Since (r,+r,)/2 > vr 1.

12 it is enough to show that

(4.20) r.r, > 1.,
From the MLR-property of g, and the fact that (k-2)v1 + a < 2c we get

g(C+v1)g(C-(kr1)v1)

>
172 ~ gz(c+v1+b)
m
where b = X jvj. Now, g(c+v1) > g(c+v1+b) and since kv1 < 2(c+v1)
j=2
(4.21) g(c—(k-l)vl) 3_g(c+v1).

Hence (4.20) is proved, and the Lemma is proved for m > 2, Now letm = 1.

Then

h' (v,) <0 &1 < g(c-(k-1)v) g(c+v,)




which follows from (4.21). _ Q.E.D.

Proof of Theorem 4.3. The "only if" part is seen by letting tl > o,
Now assume y > (k-1)/k. Consider first the case k = 2. It is readily seen
that H'(tl) < 0 since c(y) > 0. Let now k > 3. From Lemma 4.3 we get

that
t €A(Y) =H(t) < H(0) = ky
Together with Lemma 4.2 this completes the proof.

For later use we will also consider the case where wa € 8 (y,a). i.e.
¢ is determined by (2.4). Then ¢ = c(y) - A. In the same way as we.

proved Theorem 4.3, the following result cén be proved.
Theorem 4.4. Assume the conditions in Theorem 4.3 hold. Let
v& € 9 (y,0). Then

sup 5(0,4%) = S(0,4%) éf and only 4f & < c(y) - (D).

QEQ

5. Optimal Subset Selection Procedures for Normal Populations

Let xij =(i=1,...,k; j =1,...,n) be independent and normally
distributed. ij is ﬂ(oi,oz) where 02 is known. A sufficient statistic

. _ i -1 - [
is X = (Xl,...,Xk) where Xi = (n 7) Z Xij' Let A vnA/o, so that Hi is

- 0
’ J
a good population if
(5.1) 0, >0, -4, =, A >0
) i k] 0 Y~ ? 0
Since o is known, we may just as well assume o/vn = 1, and denote AO by A.

Hence we assume that Xl,...,Xk are indpependent, and Xi is ﬁ(ei,l).

29
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Let us first consider the problem of minimizing

sup B(0,y) and inf S'(0,9)

QEQI QEQk(A)
for all ¢ € $'(y,A). Here Ql is given by (4.6) and Qk(A) is given by
(4.5).

From Theorem 4.1, the optimal procedure wo is given by (4.3). We
find that |
A(X,-X.)

T, = J e J 1
i 4.
j#i
Hence the optimal procedure is we given by (2.7) and C is determined by

(2.10). Note that for a general o/vn, y° has the form in (2.8).

From Ostrowski (1952) we have that a permutation-symmetric and

differentiable function, h: R" > R, is Schur-concave if and only if

(ah(;)/axi - 8h(§)/3xj)(xi-xj) <0 | Vi#j and,V(xl,...,xm).

Using this result it is readily seen that we is a Schur-procedure. It
follows that we minimizes

(5.2) . sup B(6,y) and sup  S'(6,y)
genl h QEQk(A) -

for all ¢ € §'(v,4).
From Theorem 2.1 we have that wexé &(y,4) if A j_AY, where AY
is defined by (2.13). Hence if A f_AY, then we minimizes (5.2) for all

v € 8(y,4).

Remark. Studden (1967) considered the identification problem, i.e.

1
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the case where 0[1]""’0[k] are known. It was shown that we is the best
permutation-invariant procedure in &' (y,A) for the risk S(Q,w), when
0 = ... =6 = 0 - A.
[1] [k-1] (k]

Let us next consider the problem of minimizing

sup 2(6,%) and  sup  L(8,y)
0€Q - - 8€0(8)

for all permutation-invariant procedures y € &'(y,A). We shall see that
we is also optimal for this problem. We should remark that this does not
necessarily mean that we-is minimax for all y € §'(y,A), since the
criteria ¢ and L do not correspond to any loss functions.

Let wI be the class of permutation-invariant procedures. In order
to describe &I, let m be a permutation of (1,...,k) such that =i is the

new position of clement i, i.e.

w(l,...,k) = (n'll,...,n‘lk).

Then the. permutation mx of x € Rk is defined by-

(vrx)i =X for i = 1,...,k.
T i

Definition 5.1. y = (wl,...,wk) is permutation-invariant if

wi(g) =y (mx)

for i = 1,...,k and all (myx).

It is readily seen that if y € wI then

(5.3) - Josp; = fugupy, for all (i,3) # (3,31

Here




/2 1.2

k
. exp{—%— ) xi - 57 + x4},

P, () = p(x-65) = (2m) 7 L :

We recall from Part I that a procedure ¢ € K, the class of non-randomized

convex procedures if and only if ¢ is just, translation-invariant and

satisfies
v, () = I, (x¥) for i =1,...,k

where A is a permutation-symmetric, monotone decreasing, convex set.

was shown in Part I (see Corollary 5.1), that

(5.4) sup £(0,9) = sup L(8,¥) = R(05,9) for i = 1,...k
8€ Q 6€(a)

if vy €K.

The main result for the criteria 2 and L now follows.

Theorem 5.1. Assume Xjseeer Xy are Aindependent and X, L5
7Mei,1). Then ¢ minimizes

sup £(06,y) and sup L(6,¥)
e€n 7 peQ(a) T

gorn all v € §'(y,0) N &I.
Proof. we is given by:

€ sna *

where

k-1 Ay,
A={y e RE"!, T e J <cl.
j=1

It
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A is a convex set. Illence we is a member of fhe class K, and from (5.4) we
have that
sup £(8,4%) = sup  L(8,y°) = z(gﬁ,we) for i = 1,...,k.
B €Q Bca(a) '

This implies that it is enough to consider L(B,y). Let y € 8'(y,A) N NI'

Then
sup L(6,¥) - sup ,L(Q,we)
6€Q@) 8€Q(A)
k koo
> log It fy;p, - log 1 fy’p
i=2 i=2
k- - . k
= 1og(fo,p)""! - 1og(fySp "7t = log(fv,p,/f¥5p))
from (5.3).

From the proof of Theorem 4.1 it follows that for any y € & (y,4)

we have

k
(5.5) LY fep, >

From (5.3) the left side of (5.5) is equal to k(k-l)fwzpllsince

. ‘ ‘ e -
v €& . lHence f\};zpl > f([)zpl. , Q.E.D.
Let us now summarize the minimax properties of we.

Theorem 5.2. X e Xy e Aindependent. X, 48 %(8.,1) for
_aeorem o.< 1 I i i

i=1,...,k. Assume C > k-1, dL.e. } w?_i 1, AY 48 gdven by (2.13).

i=

I k >4 and A 24, 0 k<3 then v© minimizes

33
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(i) sup B(O,y) and sup S'(8,y)
g€~ o€q, (4) "

gon all v € 8(y,A), and
(ii) sup 2(0,¥) and sup L(8,y)
oeQ 0€Q(A) -

gorn all v € 8(y,n) flﬂl.

Remark, As is seen from Table 1 and Table. 2 usually A f_AY implies

that C > k-1.

Next we consider the problem of finding solutions to the goals (3.3)
and (3.4), by applying Theorem 4.2. We shall therefore first consider the
two simplér problems (4.8) and (4.9). Secqhdly we will show when the

optimal procedures satisfy (4.15), and hence are solutions to (3.3) and

(3.4).
The density g in (4.10) is the 7%_1(0,2)-density, where § = (cij)
and 055 = 2; % =1 for i # j. This implies that
2T, kL2
k.t Yi© 7ok
g(y+n) = o i=1
g(y)

It follows from Theorem 4.2 that the optimal procedure y* for the problems

(4.8) and (4.9) is given by

o1 oipe L i
w; = 1 iff T (Xj Xi)-f c.
AL

ie. g = wa. For given c, let dF =_dP(c). For problem (4.8) c is given

C=Cl =/']'(':T z(B/k)
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(see Section 2). TFor problem (4.9), c is given by (see (2.5))

c=¢c'= /E¥T z(y) - A.

From Theorem 4.3 and Theorem 4.4 we see that wa is the solution of problem

(4.8) if B8 > k-1 and of problem (4.9) if

p————g
(5.6) A f.y/ ng {z(y) - z(kila}.

From Section 2, wa(c') € 8(y,A) if A f_Aa(y), where Aa(y) is given by (2.6).

For wa(cl) it can be similarily shown that (4.15) holds if k >4 and A < AZ(B)

8,8 = Jor )+ 2Dy

. - " a
We now summarize the minimax properties of y~. (See also

or k < 3. Here

Corollary 4.1.).

* Theorem 5.3, xl""’xk are Andependent. xi AL ﬁ(ei,l) fon
i=1,...,k.
(a) Let ? € 5 (), 4.e. ¢ = /E§T-z(y). Then v® minimizes fon
L p € 8 (v)

sup S'(0,y) ( sup S(8,¥))
pEQ pcQ

if and onky if v > (k-2)/(k-1) ((k-1)/K).

(Y Let v* € u)(8), de. ¢ = /Ko z(8/k). Let 8 > k-1 and

~
7

-1
3. Then v* maximizes fon alk

assume k > 4 and A i_Az(B) on

NG

inf R(8,y)
pe€Q -




(c) Let v? € §(y,n), 4.e. c = /E¥T-z(y) - 8. Assume & < A (y).
Then v minimizes for all y € (y,n)

sup S(6,y).
geEn  ~

Remark. The general normal case where Var(xi) = oz/n, will give

exactly the same procedures using AO = AVi/c instead of A.

We will now discuss the case where k is large, and same normal
model. Consider first we, and let Ck = C be determined by (2.10). ILet
k -« ., Then it is easily seen . that CO = lim (Ck/k-l) exists and is

k-0
given by ’

~ 1.2
log CO = Az(y) - §-A .

Therefore, as a supplement to (2.20) we have
lim (C./k-1) > L 4 < 2z(y).
k- . -

Consider next the upper bound AY(k) = AY’ given by (2.13), that in-
sures we € 8(y,A). For given A > 0 we have

E ,(¥9) » 0(z(y) - 24) as k + =,
o0 "1

Hence

Lin () = 3(z(v) + 2(1 - Tk}

koo

from Theorem 2.1.

Let us now compare the procedures wm, ¢a, we for the case k + », We

use the standardized risk Bk(g,w) = B(9,¥)/k, and assume that the procedures
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lie in the class #§'(y,A). It is readily seen that

sup Bk(g,we) + ¢(z(y)-4) as k » =
geﬂl

and

E (0] > 0(z(x)-A) as k + =,

Ok

It follows that wa is asymptotically minimax in the class &'(y,A) with

respect to the slippage set Ql.

Let us next consider the procedure wm, and let dk = d', given by

(2.4). T.e. dk is determined by

Y = P(Y1 + A > max Yi - dk).

2<i<k

where Y ..,Y, are i.i.d. 7(0.1).

1’ k
We will assume that A is :such that dk > 0. Then, as mentioned in

Section 2, ¥" € $(y,4).

From Gnedenko (1943) (see also David (1970), p. 214) we have that

p
(5.7) max Y. - /2 /log(k-1) + 0 as k - .

2<i<k

Let D, =d, - V2 vYlog(k-1). From (5.7) it follows that D. = lim D
k k 0 Koo

exists and is given by

k N

D

z(y) - A.

It also follows that



E 0] > 0(z()-8) as k » «.

O

Hence

sup By (0,9 + 0(z(y)-4) as k > w.
8 €N

‘We have now proved the following result.

Theorem 5.4. Left ¢ € 8(y,A) on 8'(y,A). Then

lim inf{sup Bk(g,w)} > lim {sup Bk(e,wm)}.
ko 9 €Q k> © 9€Q h

I.c. wm 45 asymptotically minimax in &' (v,A) and $(y,A) with nespect Lo

the whole parameten-space.

Remark. Bickel and Yahav (1977) considered the case k » » in a
decision-theorctic framework, for thc identification problem where
(6[1],...,0[k]) are known,

A is typically a small number. It is therefore of interest to see
what happens to wi = we as we let A » 0. Of course, for A = 0 the situ-
ation reduces to the case of minimizing sup S'(6,y) for ¢y € si(y). Let

, S,
now ¢ € § (y). Then from Studden (1967) we have

S.

wi(gc) % v (x) as 4+ 0.

It follows that
B(g,wz) > S'(g,w”) as A ~ 0 for, V0.

This result together with Corollary 4.1 indicates that we, for small A,

is minimax for the risk B with respect to the whole parameter-space § if
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Y 2 (k-2)/(k-1). |
The minimax propertics of we hold also for other normal models.

Assume we have a two-way layout without interaction, i.e. the model is:

X:.; j=1,...,n, i =1,...,k are independent. ) Xij,is ﬁ(eij,cz), where

2 .
o~ 1s known and

eij =y + oy + Bj; g ai = § Bj = 0.

Let g = {Oij}’ X = {Xij}, o = {ai}, B ={Bj}. Bj corresponds to the block
effects, so the main effects are

ei =y + o, for i = 1,...,k.

Let B be arbitrary and let pi(§lg) be the density corresponding to

6. = A, ej =0 for j # i. Then

i
1 AOLLT(X -X.)

T(¥) = (o (xleN7T ] p.xl8) = ]

FRE = LYyt s

j#L j#i

where as before
-1 n
by = vnA/oand X = (n). 'El X5

Hence the procedure wo defined by (4.3) and (4.4) is again we. Since wo

is independent of B and is a Schur-procedure in X = (X .,Xk) we see

1°°°
from the proof that Theorem 4.1 still applies. It follows that for the
two-way layout without interaction wc minimizes

sup B(g,y) and  sup S'(8,v)

g&q; QGQL(M

for all y € &(y,A) if Ay f_AY. Here 9 = {g: o € Ql} and Qﬂ(A)f=

{g: 8 €0l
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6. Concluding Comments

Usually in a given subset selection problem the first thing to decide
is what kind of control condition we want the procedures to satisfy. From
the discussion in Section 2 we sec that the three control conditions (1.5),
(1.11), (2.1) seem to be of special intercst. In Section 2 we found (1.1
as the most appropriate condition of thesc.

Using these control conditions we have derived minimax procedures with
respect to different risk functions. Howcver, it is clear that not all the
risk criteria we have considered are equally appropriate or meaningful. A
criterion for comparing procedures should measure how well a procedure
excludes populations that are inferior to the best population. Now S(9,v)
includes the probability of sélecting the best population, so clearly
S'(Q,w) is a more appropriate measurc of performance than S(Q,w). Analyzing
this point of view further, we do not need to protect against populations,
that are '"close" to the best population, i.e. populations Hi where

A. Hence B(0,y) seems to be a natural criterion. So of the

Oi > 6[

k]~
criteria S, S', B we regard B as the most meaningful. The criteria L,%
do not have such a nice intuitive appeal as S' or B, but as shown in Part I
they do have the nice feature of placing more weights on the worst popula-
tions that on those closest to the best.

As a conclusion we regard Bfg?w) and 2(8,y) as the most appropriate
of the criteria considered in this paper.

From Section 5, we see that for normal populations, the procedures
we, wm and wa have certain minimax properties. One of them, we, has not
been considered before as a serious contender, but as seen in Theorem 5.2,

we seems to have the most desirable minimax properties of the three proce-

dures.
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The critical constant C for procedure we, given by {2.8).

TABLE 1

42

Ml g .25 .50 1.0 1.5 2.0 3.0
Yy = .75
3 2.16 2.35 2.52  2.15 1.16 .39 .01
4 3.23 3.51 3.78 3,35 1.95 .74 .03
5 4,29 4.67 5.04  4.52 2.74 1.09 .04
6 5.36 5.83 6.27  5.76 3.56 1.47 .06
7 6.42 6.97 7.52  6.84 4.38 1.84 .08
8 7.50 8.13 8.79  8.14 5.22 2.30 11
9 8.56 9.30  10.09  9.49 6.29 2.77 .14
10 9.63  10.46  11.29 10.60 7.11 3.17 .17
y = .90
3 2.34 2.87 3.76 . 4.89 4.11 2.15 .13
4 3.47 4.20 5.45 ° 7.05 6.29 3.48 .27
5 4,60 5.54 7.12  9.28 8.17 4.75 .39
6 5.73 6.88 8.82 11.61  10.54 6.38 .56
7 6.84 8.15  10.33 13.56  12.68 8.07 .77
8 7.97 9.48  12.03 15.59  14.74 9.23 .94
9 9.09  10.81  13.65 17.70  16.89  10.73 1.13
10 10.23  12.14  15.31 19.60  18.74  12.07 1.29
y = .95
3 2.44 3.20 4.69  7.37 7.51 4.87 .46
4 3.63 4.72 6.83 10.83  12.11 8.45 1.05
5 4.80 6.17 8.82 14.13  15.83  11.39 1.50
6 5.98 7.66  11.00 17.67  20.57  15.26 2.22
7 7.14 9.07  12.83 20.76  23.18  17.83 2.67
8 8.33  10.59  14.94 23.56  26.75  20.81 3.31
9 9.50  12.03  16.80 27.07  30.56  23.12 3.76
10 10.67  13.50  18.83 30.12  34.02  25.88 4.29




TABLE 1 (continued)
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@[ .10 25 50 1.0 1.5 2.0 3.0
Y .975
3 | 2,54  3.53  5.66  11.04  13.95 11.15  1.66
4 | 3.77  s.18  8.17  16.36  21.11  17.72  3.27
5 | 4.99  6.77  10.68  20.89  28.59  25.29  4.94
6 | 6.22  8.40  13.03  25.27  33.55  29.73  6.24
7 | 7.45  10.04  15.71  30.37  41.12  36.78  8.06
'8 | 8.68 11.72  18.00  35.32  48.33  43.66  9.84
9o | 9.86 13.21  20.56  39.85  54.33  52.07  12.57
10 [11.09 '14.86  22.89  44.51  66.18  65.44  15.24
= .99

3| 2.64 3.90  6.93 1655  25.19  24.66  5.96
4 | 3.93  5.74 10.10  25.76  43.62  46.78  13.71
5 | 5.19  7.51  12.98  33.29  59.04  69.01  21.93
6 | 6.46  9.25 15,98  38.65  71.15  87.79  31.11
7 | 771 11.02  19.06  45.29  81.13  95.94  34.82
§ | 8.99 12,77  21.63  50.93  87.22 109.38  40.11
9 110.26  14.60  24.54  55.25  96.25 115.48  45.54
10 |11.48  16.22  27.13  59.52 101.30 126.29  52.35

For k = 2, C is given by

C

exp{ V2n Az(y)/o - nAZ/oz}.




TABLE 2
The probability of selecting population Hl, using we,
when 6.=...=8_=8_4+A
2 k1
.5 1.0 1.5 2.0 3.0
Y .90
4 .36 .33 .14 .03 .00
5 .34 30 .11 .02 .00
6 .33 .30 .10 .01 .00
7 .33 29 .09 .01 .00
8 .32 28 .09 .01 .00
9 .32 .27 .08 .01 .00
10 .32 .20 .07 .01 .00
Yy = .95
4 .41 .50 .20 .05 .00
5 .39 .48 .18 .04 .00
6 .38 .47 .17 .03 .00
7 .36 .44 .14 .03 .00
8 .37 .43 .14 .03 .00
9 .37 .42 .14 .03 .00
10 .36 41 .13 .02 .00
Y = .975

4. .45 .60 .30 .10 .00
5 .43 .63 .29 .09 .00
6 .42 .62 .26 .07 .00
7 41 .62 .25 .07 .00
8 .41 .60 .25 .06 .00
9 .39 .60 .24 .06 - .00
10 .39 .58 .25 .06 .00

44




TABLE 2 (continued)

) YL .0 .5 2.0 3.0
99

4 .18 .77 .48 .19 .01

5 .16 .75 .46 .17 .01

6 .46 .73 .43 .16 .01

7 .44 .71 .39 .14 .01

8 .43 .71 .37 .13 .01

9 .44 .71 .36 .12 .01
10 .43 .67 .35 12 .01
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