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ABSTRACT

Let x be a random sample with a distribution depending on a vector
parameter 6 € r". Thevdescriftion of distributions and generalized'
prior densities on ﬁ{m is given, for which the generalized Bayes estima;or_
of 0, based on X, is the same for all symmetric loss functions. These
‘diSfributions form a special subclass of exponential family. The specifi-
cation of this result for the case of a location parameter is considered.
The proof of tﬁe main theorem is based on the solution of a functional equa-

tion of D'Alembert's type.
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1. Introductiqn

Let Pe, 6 €0, be a family of probability measures on an abstract
' - space X, such that each distribution Pe is absolutely continuous with
respect to some o-finite measure p on X. We assume throughout the paper

that the coincidence of distributions P, and P, imples ©

61 62 1

® is an open connected subset of the Euclidean spacé IR". Let A be a gen-

=62, and that

eralized prior density on-®, .and define

n
(T p(x;,6))A(0)
1 J

HZFG)
: dPe n
where p(x,8) = ai—-(x), x €X, x = (xl,...,xn) €X', and 6 €@, For

‘convenience, we let ﬁx(e) be zero for 8 E 8. Also, let W($8,8) = W(S8-0).

be the loss functionvgépending only on the difference between the estimator
6‘and the true value of the parameter 6. Thus W(t) is defined‘for t € éﬁ@ .
and Qe asﬁume that for each w the set {t: W(t) < w} is convex.

The generalized Bayes estimator 8(x) of 8 based on the random sample X

. satisfies the equation

{ W(sx)-0)m_(6)de = inf [ W(t-6)m_(o)de. (1.1)
o X t€o 0 - X :

In general this estimator depends on the choice of the loss function W, which

is rarely known exactly to the statistician. Therefore, it seems rather
natural to investigate situations in which the generalized Bayes estimator is

the same for every loss from a certain set of loss functions under consideration.

AMS 1970 Subject classification: Primary 62C10, Secondary 62F10, 62H05. -

Key words and phrases: generalized Bayes estimators, CS set of loss functions,
universal estimators, exponential family, functional equation of the D'Alembert's

type. -
*Research supported by the National Science Foundation under Grant No.
- MCS 77-19640. ,



This‘problem for the case m = 1 was solved by the author (Rukhin
1978b)}. The situation where 6 is a real location parameter and A(8) is
constant has been considered in [5]. In this paper we treat the case of
arbitrary m. | |

If % is a set of loss functions W such that the integrals in (1.1)
converge for every W € %, then the estimator §(x) is called universal
if 6(x) satisfies (1.1) for all W € X. Thus a universalrestimator is
~optimal with regard to everyrloss function W from %.

Assume that all functions W under consideratién are symmetric (i.e.
W(-t) = W(t)) and differentiable. We also suppose that differenfiation
with respect to t in the right side of (1.1) is allowed under the integral

sign, and that the relation
. 1
f W, (t)g(t)dt = 0

. .
(Wi(t) = 5%— W(t), i=1,..,m) valid for all W € % and a continuous function
i

g(t), implies that g(t) = g(-t). Any class ¥ of loss functions satisfying
these conditions we call a CS (complete symmetric) set.
If §(x) is universal with regard to a CS sét %, and nx(t) is a continuous

function of t, then

f W;(t-6(§))niﬁt)dt = 0.

Hence for all t € IRm

m (8(0-t) = w (§(x)+t). o an

: 2
_Also, if the second derivatives of W(t) exist, the matrix,(f SEEEE_-W(t)ﬂX
ik -

(8(x)+t)dt) is positive semidefinite. This establishes the first part of

the following proposition.

. Proposition 1.1 Assume that 8(x) is the universal estimator of 6 € @ C:B{m,

with regard to a CS set ¥ of loss functions. If'nx(t) is a continuous function



of t € l{m, then (1.2) holds for all t € rR™. 1f (1.2) is satisfied for
almost all t, then §(x) is the generalized Bayes estimator for every

symmetric convex loss function such that the integrals in (1.1) exist.

The se;ond part of Propésition 1.1 is well known (cf. for iﬂstance
Deutsch (1965) Pp. 14,16). 1Its proof consists in.noticing fhat.if
W(-t) = W(t) and (1.2) holds, then

f W(t-0)m (6)do - f‘W(S(EJ-e)wx(e)de

f W(est')m_(6+8(x))do - | W) (e+5())de  (1.3)

5l

=1 [ [W(e+t') + W(e-t') - 2W(6)]m_(6+ 8(x))de,

where t' = t-§(x). Thﬁs for convex functions W, the quantities in (1.3)
are nonnegative, which implies (1.1).

In this paper we describe under mild regularity restrictions, the
densities p(x,6) and géneialized priors A(6) for which the relation (1.2)
holds. For these families a universal estimator exists for any CS set
of loss functions.

Section 2 contains the major part of the proof of the‘main theorem,
Theorem 2.1. 'In section 3 we discuss the case of a multivériate location
parameter and the statistical properties of the distriﬁutions obtained.

The solution of a functional‘equation of D'Alembert's type is needed to com- -

plete the proof of Theorem 2.1, and is given in section 4.

2. THE MAIN RESULT. , |

THEOREM 2.1 Let {p(x,68), x € X, 6 € ®} be a family of probability den-
sities given on a differentiable manifold X of dimension p where ® is an
open symmetric connected subset of Iﬁm. Assume that, for each 6 € 0,

p(x,08) is a positive differentiable function of x. Assume also that P >m,



and that p(x,8) is continuous in 6 for each fixed x, and that A(8) is a
positive continuous function of 6. Suppose further that for some n >3

and all x € X" (except for x from some nowhere dense set N) the function
n
: nx(e) =0 p(xj,e)A(e) is symmetric with respect to the point &§(x), where
T ,

§ is a continuous function on XD\N and 5(X"VN)'= ®. Then there exist non-

“negative integers Qps---5qp satisfying qQy + «-- *qp=m such that

1 R (r)
log p(x,0) + = A(8) = J 7 . (0
: n r=1 i<i,k<q

1<o_,t-b(x)> -3<a_,t-b(x)> ,
T ey L Y e

/

—%<ar)t"b (X) >

y [eF<Opst-D(X)> PP EDM ¢

tb (x
() (2B 4,
" Here the Pﬁr)(—t) = -Pﬁr)(t), are polynomials with complex coefficients of

' T 1 ’ T . '
degree pé ), and P£ ) §_2q1-1, k=1,...,g1; pﬁ ) f;qr'l’ J=1,..,qr, r=2,...,R;
0,0, o, €€, 0,70, T=2,...,R; and dF)(x) = 4 (0, 1 < i,k < q, T=1,...R,
F®

Jpe--dg

1

and bi{x) are real functions of x. The coefficients of the poly-

nomial Pér).satisfy the relations (2.7) and (2.8).

Proof. For x € Xkand s € @ define

¥(x,s) = log p(x,s) + %-Iog ACs).

Then from the assumption that 5_E N, it follows that

n n
) w(xj,ﬁ(i)-S) = Z.w(xj,G(_X_HS)-
1 1 :

Let 2
| /2T 1 Th
w_(t) = (2m) I o, exp{- 3] — b
(o 1
. _ 1 1 oy
and

¢G(X,S) = f w(x,s—t)WB(t)dt.



Then wc(x,s) is infinitely differentiable in s and wo(x,s) -+ ¥(x,s)
as ¢ - 0.

Observe that for x £ N

=S

n .
by (x;,8(x)-5) = g fv(x;,800-s-t)w (t)at

J w(x;,8(x)+s+tIw_(t)dt
J o (2.1)

f Vx5, 800 +s-thw_(t)dt

1]
NS =B =S

wc(xj,6(5)+S)-

For fixed x E.N, define

V,(s) =

It~

v _(x.,8(x)+s).
j=1 %]
We first claim that there exist non-zero numbers Tl,...,Tm such

that

D(o,t) = det{'j%T-E%: [$5(5+Tiei)_$;(s_Tiei)]' 0} =0,
_ i s=

where el,....,em is a basis of R™ and T = (rl,...,rm). Indeed D(o,1)

is an analytic function of o for o + 0, and the limit of D(o,t) as
2

" 9 -
T>01s det[asiask wo(s)ls=0]; This determinant does not vanish for

:small o, since otherwise there exists an i, i=1,...,m, such that

s? m s? n :
fI-1 +‘—%—]exp{-% Z'—f%} L w(x,,8(x)+s)ds. = 0
o 1 of 1 3
i i

for all ¢. By known properties of the Laplace transform, this relation
n
implies that o J ¥(x;,8(x)*s) = 0, which is impossible. Thus there .
i1
exist linearly independent vectors ti = Tiei, i=1,...,m, such that for

all sufficiently small o



n
det{,()—;; %[kbo(xj,sﬂi) - wo(xj,s-ti)]ls=6(x)} $ 0. (2.2)

Denote ¢(x,t) = (’Po(x:'t"'tl)-lpo.(x,t-tl),--.',,lbofx,'t+tm)-lpo(x,t-tm))'.

(The symbol ' denotes transposition). It follows from (2.2) that, for

§.£ N, ? w(xj,s) is a local isomorphism at the point s=6(x). In other
words, there exists a neighborhood V of 8(x) such that the restricfion
of g w(xj,s) to V establishes an. isomorphism between V and an,open.sub-

set of R™. Thus the relation

n n
% by (x,t4t,) = { Vg (x5,t-t;) (2.3)

for i=1,...,mand t €V implies that t = 8(x).
Note also that if x = (xl,...,xp), p > m, where the x* are co-
ordinates of x, then the matrix (—ET' ¢(x,t)) has rank m for all t.
' ax '

(If this rank were less than m for some t, an application of the rank

theorem (cf. Narasimhan (1968)) shows that there exist two diffeomorphisms

'gl and g, such that g13¢-g2 has the form (xl,...,xr,O,...,O) where r < m.-
n ,
Then Z ¢(xj,t) could not be a local isomorphism.)
1 -
Let At = {x: x€ Xn/N, 8(x) = t}, so that X/N = U At. Also let

: t
. . = . d . - Y=
Xt be the projection of At on X, Xt {x: x2,...,xn,6(x,x2,...,xn)} t}f

Then X\U,Xt is nowhere dense. We next show that the set Tx = {t: x € X_}
t . ‘ .
contains a nonempty open set if Tx is nonempty.

For every s € Tx, there exists, because of (2.3), a neighborhood W;

of s such that W; n T = {t: t € Wg,¢(x,t)+¢(x2t)+...+¢(xn,t)}= 0 for

some x2,...,xn}. The implicit function theorem and the proven fact con-

cerning the rank of the matrix (—EI ¢ (x,t)) imply that Wg n Tx contains
X o : '
a neighborhood of s. Since Tx is nonempty except for x in a nowhere dense °

set, it follows that Tx contains a nonempty open set except for x in a

nowhere dense set.



For fixed t and x € Xe the relation ¢(x,t) = ¢(x1,t) implies that

¢U(x,t+s)-¢6(x,t+s) wc(xl,t+s)-¢c(xl,t-s) for all s. In fact, for some

Xoseoe X
2° >"n

n

$e,t) = - ] 9(x,t) = ¢(x;,t)
L

- and 6(x1,x2,...,xn) t = G(x,xz,...,xn). Therefore

n

'g [¢G(Xj,t+s)-wc(xj,t-s)] = wo(xl,t+s)-wc(x1,tfs),

Wo(x,t+s)—¢¢(x,t-s)

Thus forfevery s and t there exists a real function g such that
Vo (6 tes) 0 (x,t-5) = g(d(x,1)).

It can be easily proven that g is continuous, and that

g(zy)+...+g(z)) = 0

if 2z tootz o= 0. Since n > 3 it follows from this equation that
g(zy+z)) = g(z))+g(z,).

Because of the continuity of g there exists a vectoi h G'Iﬂp such that

' -g(z) = <h,z>(cf. Aczel (1966) p.302). Thus we have proved that

!

Y (x,t+s) 9 (x,t-5) =
_ i=1

hi(t,s)éi(x,t). (2.4)

Note that (2.4) is true for all s and x € Xt, where the set Tx = {t: x € Xt}

contains a neighborhood except for x from a nowhere desne set.

It follows from (2.1) that for those xj € X, satisfying §(xys-nunx ) = t,
n n

,'E'?G(xj,t) = 1 v, (xp,2t0-1).

1
Hence -
m n v n :
% hi(t,S) § ¢i(xj’t) = §[¢U(xj,t+s)-¢c(xj,t's)]

n : ‘
E[wg(xj’Zto‘t's)-wo(xj,2t0-t+s)]



m n
-% h, (2t-t,s) % ¢i(xj,2t0-t)

m n
% h, (2t -t,s) % ¢i(xj,t).

The last relation follows from the equalities

n n _
g ¢i(xj’2t0_t) = g[wc(xj’ZtO_“ti)_wc(xj’ZtO_t—ti)]

n n
, = '%[‘Pc(xj,t-ti)"l’c(xjst"‘ti)] = _§ ¢i(xj’t)-
Thus .
m n '
%[hi(t,s)—hiczto-t,s)] § b5 (x5,t) =
‘This relation implies that hi(t,s) = hi(ZtO—t,s) for all i=1,...,m. In

fact since the rank of the matrix (—EE-¢(x,t)) is equal to m, one can find

9x
. n .
'5‘1),...,§Fm) € X"/N such that the vectors ) ¢(§;k),t) are linearly indepen-
' 1

dent. Therefore hi(t,s) = hi(s), i=1;...,m, and the functional equation

(2.4) can be rewritten in the following form:

m

V(X t4s) Y (x,t-5) = | h,(s)4, (x,t).
1

It is clear that if ¢(x,t) = 0, then w (x,t+s) =y (x t-s) for all s.
Let w x,t) =¢ e t+b(x)), where ¢ (x, b(x)) 0. - Then @(x,+t) =
‘¢(x t) and

P(X,t+5)-P(xX,t-5) = 2 h, ()4, (x, t) (2.5)
i=1

Now it follows from the proof of Theorem 4.1 that there exist nonnegative

integers q.,...,q  (q+...+q,=m), such that
_ 120 % 9 I

R cr)
o(x,t) = J ) dsp’ (X)
r=1.1§j,k§g

%<ar,t—b(x)

2<(1 :t—b (X)>
X [e T

(2.6)

p(r)(t-b(x)) pgr)d)(x%-t)]

i - ,t-b
‘e b(x)>p(r)ct 2y ¢ e b0 e ) t)],




i i
1 m
(r) Y1 (r) (r) :
where Pk (t) = ZrFii---im ‘IW R Pk (-t) = —Pk (t) are polynomials

with complex coefficients of degree p( ), pﬁl) <'2q1—1; pﬁr) :_qr—l, r.> 2,

@20, a 0, r > 2, a_ € ¢7; d(r) ® = 4P @), i,k=1,...,q,, r=1,...,R.

Independence of the polynomlals Pé r) and vectors o, of x can be seen by

substituting (2.6) in (2.5). Also, there exist complex numbers Bﬁkl).w.k s
1 m
such that
(ki) (1) g (k) L
L BV, — (2.7)
k1 km 1 1l 1m 1 i +k m+km,
‘and for all x
(1) (%K) (1) (21)
ldlk kT e @By
m 1 m
qor r > 2,
(R) _ k m
rFil"‘im = <er...er ff,e£>, (2.8)

where rNi is a lower triangular matrix with zero diagonal, ﬁ} is a fixed
vector, e, are linearly independent vectors, and the matrices rNi satisfy

the relation (4.20). Letting o go to zero completes the proof.

3. bISCUSSION. THE LOCATION PARAMETER CASE. It follows from Theorem 2.1
thét any family of densities with a universal estimator has the.form
p(x,8) = C(8)exple(x,0)},

where C(6) = [J\(e)]l/n and @(x,t) is given by the formula (2.6). Thus ptx,e)
belongs to the-expdnential family. When the prior density X(e) is from fhe
_ coﬁjugéte family, i.e, has the fqrm i
2O = [C0)] Texple(xy,0)} - x, € X,
the posterior density is symmetric.

The most interesting example 6f the densities (3.1) arises when 6 is a .
location parameter. Then © = IRm =X, u is LebeSquelneasure, and

p(x,8) = p(x-6) = C(8)exp{e(x-0)},

so that C(6) = constant.
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Theorem 2.1 implies that ¢ is symmetric with respect to some'point‘eo.

By shifting the initial density we can assume that 6 = 0. Also if

©(c-t) @(c+t) for all t and some c, then Q(t-c) = @(t+c) for all t, implying

that ¢ 01

From the proof of the Theorem 4.1 it is clear that

@(x-t) = DEhEHEY p D,

whefe_the matrix D(x) has elements di;)(x), and the vector function h arises
from the polynomials Pér)(x). Thus for all t

P-b(x)-t) = P(x-b(x)+t),
so that b(x) = x, and 7

9(t) = DEOR(/2), h(t/2)>.
It fbllows.that D(x) = D and all functions dii)(x) are constant. Note that
p(x-6) can be written

P(x-8) = C exp{ Z T (x)Q&(S)}

'with linearly independent functions {Tz(x)} and {ere)} where the Ql(e)
2

L
are polynomials of the form 611...6mm, ll+...+2 < max p( ), or have one of
T,j
: @8> 21 .zm (r) © -<a_,0> Ll L
the two forms e 0.7...0 7, 2. +...+8 < max p.r ore * 6. tl..0 m)
1 m 1 m — j Yy 1 m
'£1+"'+2m < max pgr). - Therefore
j
2 max pgr)+m 2 max pgr)+m
r,j 3 R 3]
L < ’ + 27
n r=2 m
Another formula for the density p is
p(x) =C exp{<exp[—x1L1 .-xmLm]a,b>}.
Here Ll""’Lm are commuting matrices of order L, a,b fixed vectors. To

see this, note that because of (3.2), the linear space £ spanned by all.
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functions log p(--6), 6 € Elm, is finite-dimensional with functions
Tl(x),...,Tk(x) constituting its basis. Define the‘operator M(8), 6 € Itm,
acting in £ by M(8)¢(*) = ¢(--8), ¥ € £ Then M(8) is a finite-dimensional

operator, and M(el+e = M(el)M(ez). It follows that

5)
M(8) = exp{-0,L-...-8 L},
- where the matrices Ll""’Lm are commuting and have the order L. Therefore
log p(x) = <M(x)a,b} |
for some vectors a, b € .
Because of (2.9) the linear subspace g% of  generated by the yectors

n 1, . .
[exp{t1L1+...+tmLm}-exp{-t1L1-...-tmLm}]a, tis...t €RT, s of.d1men51on

1’

m. In other words, there are exactly m linearly independent vectors among

k k. ‘
L 1...mea, k1+..;+kh odd. Note that the subspace i%, which is spanned by

1
latter vectors, is invariant for all operators Lf,...,Li.
The symmefry condition ¢(-x) = ®x) implies that
<[M(t)-M(-t)]a,b>.= 0,
i.e. the vector b belongs to the orthogonal.complement of the space gb. The

universal estimator §(x) satisfies the relation

n
<[M(t)-M(-t)]a, } M*(xj-6(§Jb> = 0.
1

4. THE FUNCTIONAL EQUATION OF D'ALEMBERT'S TYPE
The theorem proved in this section gives a solution of the following

functional equation:

o(s+t)-g(s-t) = .Zl h; (8)k, (). (4.1)
N |

Here ¢ is a real continuous function defined on an open connected subset §

(containing zero) of Euclidean space R™ and (4.1) holds for some continuous
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e

functions hi’ ki’ i=1l,...,m, and for all s, t, s+t, s-t € §. Without loss
of generality it can be assumed that hi(s) and ki(t) are linearly indepen-
dent. (Otherwise we can replace in (4.1) the linearly dependent functions
Qith their representations as linear combinations relafive to a basis of
" linearly independent functions, the result of which is an equation of
similar form).

Let <o,B> = ? o. B denote the inner product of any two vectors o,

c=1
B € ¢m. With this notation, the equation (4.1) can be rewritten as

@(s+t)-p(s-t) = <h(s),k(t)>,

: where h'(s) - (hl(s),...,hm(s)) and k'(t) = (kl(t),...,km(t)).

Theorem 4.1 Let ¢ be an even continuous function defined on a symmetric .

k

open connected subset of R, 6 € §, which satisfies (4.1) for some linearly

independent functions hi and ki’ i=1l,...,m. Then there exist nonnegative
integers Q5+ --59p> qi+...+qR=m, such that ¢ admits the following repre-

sentation:

q 4 i< 5>
o(s) = 2 d(”[P”)(/zn . Z ) d(”[e ’
j=1 - J r=2 j=1

a
<Q, s>
-2 ’ (I’)

p(r‘(s/z) e (-s/2)1%,

where the P§r), 2}r)(-t) = -P§r)(t) are polynomiais with coﬁplex coefficients

of degree p§r), p§l) § r)

dgr) € Hll, j=l,...,q.,r=1,...,R; o e q”, ar#o, r=2,...,R. The coefficeints

F(J)
(k]) . . ‘s - ()

B k satisfying condition (4.18). The coefficients @i 5 of the poly-

1 1.--m )
nom1a1 P§r) j=1,...,qr, r=2,...,R, satisfy the relation (4.19) with matrices

.Ngr)
7

§_2q1-1, j=1,...,q1, P < qr-l, j=1,...,qr, r=2,...,R;

of the polynomial P}l) satisfy the relations (4.11) for some constants

satisfying condition (4.20). ‘Every function ¢ of such a form is a

solution of (4.1) for some functions ki; hi’ i=1,...,m.
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Proof. The symmetry assumption @(-t) = @(t) implies that k(-t) =

-k(t) and that
<h(s),k(t)> = <h(t),k(s)>.

Note that elements Ei’ i=1,...,m, can be found such that the vectors
h(Ei) are linearly independent (cf. for instance Aczel (1966) p. 201). If
the matrix A is defined by the relation k(fj) = Ah(fj), then k(s) = A'h(s)
and |

<Ah(s),h(t)> = <Ah(t),h(s)>.
Hence A'=A. Since the functions hi(t) are linearly independent, A is non-
singular, and

o(s+t)-p(s-t) = <Ah(s),h(t)>.

Now for all s, t, u

@(s+t+u) -gp(s+t-u) <Ah(s+t),h(u)>

’_and

o(s-t+u) -g(s-t-u) <Ah(s-t),h(u)>.

It follows from these relations that

Ps+t+u)-(s-t-u) + p(s-t+u)-q(s+t-u)

<A[h(s+f)+h(s-t)]h(u)>

<Ah(s),h(t+u)> + <Ah(s),h(-t+u)>.
Define matrices A(t) by tne formula \
h(Ej+t) + h(Ej-t) = 2A(tjh(fj), j=1,...,m.
Then |
A[h(t+u) + h(-t+u)] = 2A'(t)Ah(u)

and

<Ah(s),A(t)h(u)> = <h(s),A'(t)Ah(u)>.
Thus for all t

AA(E) = A'(t)A (4.3)
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and »
Ch(t+u) + h(-t+u) = 2A(t)h(u). (4.4)

Note that A(-t) = A(t) for all t. It is also clear that

2A(s)A(t)h(u)

A(s) [h(t+u)+h(-t+u)]
= %[h(5+t+u)+h(‘5+t+u)+h(5-t+UJ+h(—s—t+u)]

= [A(s+t)+A(s-t)Th(u).

. Because of this relation the ﬁatrices A(t) satisfy D'Alembert's functional
. equation |
A(s+t) + A(s-t) = 2A(s)A(t). (4.5)
An immediate consequence of (4.5) is that all matrices A(t) are commutative.
It is known (cf. Suprunenko and Tyshkevich (1968) p. 16) that the whole
space R™ can be represented as a direct sum of invariant subspaces Qr’ with
respect to all A(t), for r=1,...,R. The irreducible parts of the restric-
tions A(t)]Qr are equiyélent, while for riw the irreducible parts of A(t)IQr
and A(t)IQw are not equivalent. Because of Shur's lemmé (cf. for instance
[7] pp. 4,8) all irreducible parts of A(t)|Qr, r=l,;..,R,'are one—dimensional_
opefators. Hence all matrices A(t) can be simultaneously reduced to the
fdrm A(t) = T_lB(t)T,‘with_complex matrices T and B(t), the latter being of
the form |
B, (t) 0 ... 0 \
0o . Bz(t) “es 0

B(t) =l

0 0 Bt
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Here Br(t), r=1,...,R, is a lower triéngular matrix of dimension q. =

dim Qr given by

v (e 0o ... 0
(r) (r)
b)) Py, 0
B(t) = :
() (@ , (r)
b} () b2 b

“where 5™ () £ 50 (1), v, ang qp*...+d, = m.
If A = (T"))*AT™!, then A* = A and
AB(t) = B*(t)A. (4.6)

Therefore A has the form

A1 0. 0
0 A2.. 0

A= >
0o 0 AR

with symmetric q, * 9, matrices Rr’ rfl,,..,R. It follows from (4.4) that
: if £(s) = Th(s), then
» 2B(t)f(s) = f(s+t)+f(s-t) : (4.7)
and <Ah(s),h(t)> = <Rf(s),f(t)>ﬂ Clearly f(-sj = -f(s).
Let £'(s) = (fl(s),...,fR(s)), where the vector-function fr has dimension

4, T=1,...,R. The relations (4.5) and (4.7) imply that

Br(s+t) + Br(s-t) = 2Br(s)Br(t) ‘ (4.8)
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and
ZBr(t)fr(s) = fr(s+t) + fr(sgt), r=1,...,R. (4.9
It follows from (4.8) that

b (sety + b (5ot = 26 ()b 1y |

h All solutions of this D'Alembert's functional equation are known (cf.

Kannappan (1968)) to be of the form

b(r)(s) = cosh (afr)sl+...u£r)sm) = cos}y<ar,s>, (4.10)

for some complex numbers a(r),...,a(r).
1 m

Consider first the case of vanishing o, say, a,=0, i.e. bcl)(s)=1.'

1
Then Bl(t) = I+N(t), where Nq(t)=0, 9=q;, and I is the identity matrix.
It follows from (4.8) and (4.9) that

N(s+t)-2N(s)+N(s-t) = 2N(t)+2N(t)N(s)

and

£, (5+6)-2f ()4, (s-t) = WO (5). (4.11)

If one defines the operator L(t) by the relation L(YE(-)=f(--t),
t € H{m, then (4.11) can be rewrittén as

L) -Le-t/ 1% (5) = N (5) .

It follows by induction that

[L(t/2)-L(-t/2)1%%, (5) = [2N(0)]%, (s) = o,

~ so that (cf. for example Aczel (1966) p. 130) each coordinate function
f§1)(s) of fl(s) is a polynomial. It is easy to sée that f§1)(s) is a poly-
nomial of degree less than 2q1‘(Actually, f§1)(s) is a polynomial of degree

less than 2j, j=1,...,q.) Thus

(1), o (3)
£ = ) RS o
.1z§2q-1 1 m i !...i!
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i : 3 (D 0if Y
where s'_(sl,...,sm). Since fl(fs)—-fl(SJ, we have Fi;---im—o if lah

is an even number. Analogously,

. Skl...sm
by @ = TR Ry,
k%iZq«Z 1 m kll...km!
‘and 80 g i } k. is an odd number or % k, =0
K, ...k g ?

1°"""m 1 1
Substituting these expressions for fl(s) and N(t) into (4.10) shows

that
(kj) (i) (k)
LB Lk Fil.i °F #hyo ik (4.12)
j 1 m "1 m 1 m m
If A1 = {aik,lii,kfg}, Bipe = Oggs then (4.6) implies
: (lk) - (21)
Lo ik kT ogaB g - (4.13)
L m % 1 m
- Note from (4.12) and (4.13) that if kj 3_2j, j=1,...,m, then
) (k) ' g1 (k)
Z a. F(1 . F = } a, F: . F)
ik O RERE klf..km ER" ik 11+21---1m+2m k17£i"'km"2m
Hence if ) (ij+kj) > 2m, it follows that
1
(1) (k) - :
.Z Sakfa g Bl T 0 (4.14)
1° m 1 “m
, m (i)
- Indeed we can take Z 1J > 2m+1, wh1ch w111 imply that F 1 i = 0.
ipeeeip

Now let us return to (4.10) and con51der the case of non-zero o, say,
a2=a+0, q2=p, Bz(t)=B(t). In this case, B (t)—I is nonsingular for all t
such that <a,t>d42Nia for integer a. Therefore, there exists a t, and a
.nonsingular complex lower trlangular matrlx G such that GZ-B (to) -I =

[B(Zto) I]. Indeed
B(t)-1 = 2[sinh <o, 1[Im0 ],

where Mp(t) = 0. Thus we can take
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' ot : p-1 k+1
G = /Z sin he<a,~ B> [T+2M(t) + § L1 k=3I Mk(to)].

k=2 - 27k!

Clearly G2 = Bz(to)-I, and G commutes with all matrices B(t).
Now let

G(t)

G—l[B(t)(G-B(tO)) + B(t+t )]

B(t)-6™1 [B(t)B(ty)-B(t+t )],

iIt is easy to check (cf. Kannapan (1968)) that
G(s+t) = G(s)G(t),
so that G(s) = exp{slG1+...+sme}. Here the G, are complex triangular
-matrices with diégonal elemetns ail equal to agz), i=1,...,m.
| It follows from the definition of G(t) that

G(t)+G(-t) = ZB(t)-Gf1[23(t)B(t0)-B(t+to)-B(-t+to)] = 2B(t).

Sinbe all matrices B(t) commute, the matrices Gi’ i=1,...,m, commute as well.

From (4.6), one concludes that

ALG; = [6;1°A,
The equation (4.7) implies that
. m
fz(sft)+f2(s-t) =2 cosh.(iz1 t.G)f,(s).
Also '
m
fz(Sft)+f2(t—s) = 2 cosll(izl 536, (1),
so that
: om m
f2(5+t) = cosll(-z tiGi)fz(s)+cosll(.Z siGi)fz(t).
i=]1 i=1 .
. . 2a+l . ’
On the other hand, if <a,s+t>}i 57,2 an integer, then
by o ' s+t
£,(s)+£,(t) = 2coslt(§-igl(si-ti)Gi)fz(—i—J
m - S m i
- 1 ; h (1 -
cosh (3 izl(si ti)Gi)[cos (3 i=1(si+_ti)Gi)] £,(s+t).

Therefore
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m m m
cosh (3 ] (s;-t;)G;)[cosh ( | t;6;)f,(s)+coshi( ] 5.6.)f,(t)]
i=1 i=1 i=1
m
=cosh (3 ) (s;4,)6,) [£,(s)+£,(8)],

i=1 .
or

m m
[cosh (3 } (si+ti)Gi)+cosh (3 Zl(si—Sti)Gi)]fz(s)

i=1 i
m m
+ [cosh (3 '} (3s;-t;)G,)+cosh (3 ) (s;+t;)6.)1£ (1)
i=1 i=1
m
= 2cosh (3 ) (54806 [£,(s)+,(0)].
_ =

Combining these relations one obtains
m \ m
1 - 1 -
[cosh.(3 %(si+ti)Gi) cosh (3 %(si 3t,)6,)1£,(s)

m m
+ [cosh (3 §(51+ti)Gi)_COSh (% %(3si—ti)Gi)]f2(t) =0

or v
m m m m

sinh (3 ) (s;-t:)6;)sinh QO t;6,)£,(s) = sinh () 5.6;)sinh (& ] (s;-t,)6;) £, (t).
1 : 1 1 1

This implies that
m
£,(t) = sinh (] t.6.)%,

. 1
where f is a constant vector.

m
Since G,=o,I+N,, where N.=N§2) and N?=0, i=1,...,m, exp{z t.G.}
‘ i im T T ;] i

k1 k . ,
m et Tk kn ko ko m -
exp{iz1 tiai} z EITTTTT;F— N1 ...Nm .  Clearly N1 "'Nm = 0 if % ki > p.
Theérefore o
@ 4y < bloxp T a.t.ip® LB 2)
£1°/(t) = z(ex a,t. P (t) - expl- o, t 3P (-t)], j=1,...,p,
j ) = Elexp 2 ot JPT(e) - exp 151 181857 (01, 3 p
- "where sz)(t) is a polynomial of degreee less than P>
| ? k1 km : k1 km‘
‘ t. ...t k k t, ...t .
g?}a)= y E%——%%<M}“.%Fﬂef-= y E%——f%¢£” L (4.19)
ees r Zkijp-l ikt kg

Zkifp-l 1 m
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the ej are basis vectors, and

. 2 * * 2~ .
2aiA2N1 + A2N1 ZaiNiA2 + [Ni] A2,- i=1,...,m. (4.16)

We can, finally, give the formula for ®(s). Because of (4.2),

©(25) = <Ah(s),h(s)> = <Af(s),f(s)> = ) a P fl)(s)p(”(s)
| 1<i,jeq,
R a s 4@ L@ @

P11 W TR @ TN e g

r=2 1ci,j<q, "1
(r) (x) () (@)
o S.+...H S . it ] S,.~...0 S .
x [e 1 1 mompU)igye 11 m ) ey, 4.17)

Here the coefficients FFJ) . of the polynomial Pgr) satisfy (4.12) for some
i i P j

: . 17" "m o
quantities BﬁkJ) X which satisfy condition (4.13) (with @0 replaced by aég)
IR L.

The coefficients @éJ) x are defined by (4.15) where the matrices Ni satisfy

| IR
(4.16) (with general index r instead of 2). Note that bécause of (4.14) the

degree of the first term in (4.17) does not exceed 2q1.

The formula for ¢(s), given in the theorem, follows from (4.17) sincg
~ *
A =UDU_ with unitary matrix U_ and diagonal matrix D_, r=1,...,R. In
T TTY T T

this case (4.13) must be changed to

LUK ) (ki) .
44 IR R I (4.18)
. _ . m 1 m
and (4.15), (4.16) to Nk
_ R
P (1) = 3 i <[N(r)] [N(r)] £ e
] rk.<q -1 X1t Ky r’j
i : :
k tkm (4.19)
_ 1 """'m ¢
= K.k % ...k,
Zkiggr—l 1 m -1 m
q
where [Nir)] T . 0, i=1,...,m, r=2,...,R, and
200 NF) 4 p (N2 2 2N L M2 (4.20)
1 r 1l . r 1 1 1 T 1 T

where D is the diagonal matrix with elements {dgr), i=1,...,9_}.
T , j 2ir
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It remains only to prove that every function ¢ of the form (4.17)
.satisfies‘(4.1). From our argument it follows that the matrix B(t) is
nonsingular on an everywhere dense set. For such t it follows from 4.7
that |

2£(t) = B L(t)£(2t),
~and that

£(s) + £(8) = 260 ECY = BEGHB EYe(set)

if B(E%EJ is nonsingular.
It is clear that if
®(25) = <Af(s),£(s)>,
‘where A satisfies (4.6), then
" ®(25) - P(2t) = <Af(s+t),F(s-t)>. (4.21)

Indeed for s and t such that B(E%ED and B(E%ED are nonsingular matrices

<Af(s+t),f(s-t)>

<ABEH ! &Y )+ 1,8 EGHE EY (£(s) £ >

s+t -1 s+t

B SO+ (0 1,8EHE T EY 1£9)-£ 171>

<A[£(s)+£(t)],£(s)-£(t)> = <Af(s),f(s)> - <Af(t),f(t)>.

Sinc f isvéontinuous, the relation (4.21) is true for all s and t. This

completes the proof.

Corollary.' If m=1, then the given solutions of (4.1) reduce to the
known ones (cf. [1] p; 175): ¢(s) = a cosh<a,s> + b, or ¢(s) = <B,s>2 +d.

If m=2, all solutions of (4.1) have one of the following forms:

_ 2 2 . _ 2 2, _
®(s) = a;s] * 0,815, + 0557, a1+0, ®(s) = B;s] + ByS1S, + BgS5; or @(s) =
. 2 e ,
y1[51n}1(6151+6152)] +;72(g151+g252)51n11(6151+6152) x cosln(61s1+6252) +

2 2 .
ys(glsl+£252) [cos}1(6151+6252)] , Where Y361£1 = 0 and YSGZEZ = 0. This
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shows that the solutions of (4.1) corresponding to a certain m are not

necessarily linear combinations of solutions corresponding to smaller m.
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