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1. Introduction

An important class of multiple decision problems is concerned with the
selection of good populations out of k possible populations.

There are several formulations of the selection problem. We will dis-
cuss the "subset sclection approach', first considered by Paulson (1949),
Seal (1955) and Gupta (1956), where the size of the selected subset is a
random variable, i.e. the size is determined by the data.

The purpose of this two-part paper is to study the problem of subset
selection in the location-model.

One of the problems with measuring performance and deriving optimality
results for subset selection procedures has been the lack of monotonicity-
results for the different risk functions that have been considered. Part I
deals with this problem. In Section 2 the general subset éelection problem
in the location-model is considered, and the performance-criteria to be dis-
cussed are presented. In Section 3 a special class, the class of Schur-
procedures, is defined. It is shown in Section 5 that this class has nice
monotonicity-properties for certain types of risk functions. Part II of this
two-part paper deals with minimax theory for the risk functions considered in

Part 1I.

1, , ‘
I'he research was supported by thc Norwegian Research Council for Science
and the Humanities.



2. The Subset Sclection Problem in the location-Model.

Presentation of some Performance-Criteria

8, respectively.

I, ,...,IL are k populations characterized by 61,..., X

1’ k
Let 0 = (0],...,0,) and let € be the parameter space. Let Xi be the obser-

vation from population “i' X = (Xl,...,Xk). Usually X is a sufficient
statistic for 0, c¢.g. X.l is the sample mean of n observations from Hi. We

will assume that Xl,...,X arc indcpendent. Xi has density f(x—ei) with

k

respect to Lebesguc mcasure. The ordered Bi are denoted by

0 < ... <90

(1] — [k]”
let IL..., X,., correspond to O,. ..
(1)” 7 (1) : [1]
Definition 2.1. ][_i is called a best population if ei = e[k], and a

- 3 atil 1 . < .
non-best population if 91 O[k]

The concept of good and bad populations plays an important role in this

work.

Definition 2.2. ”i is said to be a good population if ei > e[k] - A

and a bad population if 0.

L < 0.., - A. A is a given positive constant.

Lk]
For the risk functions we will consider, two subset selection procedures
arc cquivalent if their individual selcction probabilities are the same.

Therefore we can define a subset sclection procedure by:
(2.1) Vo0 = (9, (0,9, (0]

where wi(§) = P(sclecting Hj|§=§).
The sizc of the sclected subscet is a random variable. However we will
usually require that at lecast onc population is selected, i.e. (for non-ran-

domized procedures)



(2.2) v (0 > 1, Vx.

1

It =

i

A correct selection (CS) is defined to be a selection that includes the
best population I .
pol (%)

The usual basic condition in the literature has been:

(2.3) inf P.(CS|y) = inf E {y..} > ¥,
9699 oeq o (K-

i.e. the probability of a correct selection is guaranteed to be at least Y.
Here Y is a given positive constant, y < 1, and w(i) corresponds to
0.. E i = .
[i]’ for i 13 ,k
Subject to a condition like (2.3) a proéedures should exclude the bad or

non-best populations. One criterion for measuring how well a procedure ex-

cludes the non-best populations is given by
k-1
1 = h
(2.4 S'(8,y) = E l'g{w(i)}'

i=1

S'(6,¢) is the expected number of non-best populations selected when e[k—l] <

6 .
[k]
The related criterion for excluding only the bad populations is
(2.5) B(8,¥) = I Eg(¥;).
ie€r1n, -
A
Here IA = IA(Q) = {i: ei_i e[k]—A}. B(6,¥) is the expected number of bad

populations selected.

The risk function S'(08,¥) has equal weights on all Ee{w(i)}' In many
situations it may be desirable to attach more weight to the worst populations
than to those closest to the best. The following criterion accomplishes this

and will be considered later.
k-1
(2.6) L(8,p) = _Z 1og[Ee{¢(i)}].

i=1



Since log(y) is a concave function of y, L has the property we want: Let

k-1
= log -8},
Ip izl 1og{19w(1)} + og{ng(p) §}
i#p

§ >0, for p=1,...,k-1. Then

it p < q.
The corresponding risk function, if we want to exclude only the bad

populations, is

(2.7) £(0,9) = )1 logll (v,)}
. iﬁlA -

A discussion ot the different risk functions is given in Part II.
We will mostly be concerned with B(6,y) and 2(0,y) as the risk functions.
When using these criteria we will require, instead of (2.3) that ¢ satisfies

the following condition.

(2.8) inf R(0,y) > v.
0 € Q

where R(0,¢9) is the expected number of good populations selected.

3. The Class of Schur-Procedures

The notion of a Schur-concave function plays an important role in this

work. To describe it we necd the following definitions.

Definition 3.1. Let Rk be thc k-dimensional euclidean space, and let

5, t (S Rk. The ordered components arc denoted by: s[lj < ... j_s[k],

t,. ,<...< . . ; . is maiorize < )
1= _ﬁ[kl We say that s is majorized by t, s < t, if

k k
(3.1) X s, = .Z t



and

) ’ E »
(3.2) jgo t[k—j] 3_j=0 S[k—j] for p = 0,1,...,k-2.

Definition 3.2. Let g be a rcal-valued function from Rk. Then g is

said to be Schur-concave if

$ < t=g(s) > g(t).
5t s) 2 g(t

If g(s) < g(t), g is called Schur-convex.

Definition 3.3. Let A be a subsct of Rk. We say that A is a Schur-

concave set if the indicator function IA(g), is Schur-concave, i.e., if

ul

<u, u€A=u'cA.

m

Remarks. (from Marshall and Olkin (1974)).

(a) If g is Schur-concave or Schur-convex then g is permutation-symmetric.
(b) If g (or logrg) is concave and pérmutation-symmetric then g is Schur-
concave. So if A is a convex and permutation-symmetric set, then A is a
Schur-concave set.

(c) A Schur-concave function achicves maximum at a point where the coordi-
nates are equal.

We will assume that the marginal density f(x-6) has monotone likelihood
ratio (MLR) in x. The joint density is h(x-8) = 'ﬁl f(xi—ei). From Marshall
and Olkin (1974), h(x) is Schur-concave if and oni; if log f is concave, i.e.
f is strongly unimodal. For a discussion of strongly unimodal densities we
refer to Hajek and Sidik (1967) and Ibragimov (1956).

From Lehmann (1959), p. 330, we have that log f is concave if and only if

f(x-¢) has MLR in x. So our assumption of MLR is equivalent with the assump-

tion that the joint density h(x) is Schur-concave.



Marshall and Olkin (1974) deal with preservation theorems of Schur-
concavity for the location-model, and is the main reference for this section
and Section 5. Articles decaling with the concept of Schur-concave functions
for other types of distributions are Proschan and Sethuraman (1977), Nevius,
Proschan and Sethuraman (1977), and Hollander, Proschan and Sethuraman (1977).

A reasonable rcquirement on a procedure is that it is just.

Definition 3.3. (Scc Nagel (1970)). P is said to be just if wi(§)

is non-decreasing in X, and non-incrcasing in Xj’ j+i; fori=1,..,k.

Since we are dealing with the location-parameter case it is natural that
a sclection procedure is also translation-invariant. It is readily shown
(sce e.g. Berger and Gupta (1977)) that ¢ is a just and translation-invar-
iant procedurc if and only‘if

(1) wi is a function only of the (k-1)-differences {xj—xi: j # i}, and

(ii) If XiX; S YiYi Vj$i, then b, () > 9. ().

Let X* = {Xj-Xi: j # i}. Then X* has a location-density with parameter
0% = {Oj—oi: j ¥ i}. TFrom well-known properties of a location-family of
distributions (sce Lehmann (1955) and Alam (1973)) we have the following

result.

Lemma 3.1. X has densify h(x-6). Let y be a just and translation-

Lnvardiate procedune. 14 05-0{_5 oJ.-oi fon all j # i, then

ng,(wi) > BoQh) for i=1,... k.

In panticulan,

4]
D

inf pe(cslw) occwns when 6, = ... ,
g CcqQ = :



Remarks. Since the distribution of X* depends only on 8%, then

Ee(wi) depends only on 6*. If we want ¥ to satisfy the basic condition-

(2.3) with equality we must have

(3.3) Eo(wi) =y, fori=1,...,k; 0= (0,...,0).

We arc now in a position to define the class of Schur-procedures.

Definition 3.4.

A subset selection procedure y = (wl, .,wk) is

said to be a Schur-procedure if

(i) ¢ is just and translation-invariant.

(ii) wi is the same Schur-concave function of 5; = {xj-xi: j#1il,
Vi, i.e. wi(§) = w'(§;) for some Schur-concave function y': Rk-1 -+ R, for
i=1,...,k.

Consider now the case where ¥ is a non-randomized procedure, i.e.
() = I, (), A S RS
it A, - S ¢ )
Then ¢ is a Schur-procedure if
= *
) = 10xh)
k-1

for some BC R and

(3.4) B is a monotone decreasing set, i.e. if u € B and
vs _<'_uj, j = 1,....k-1, theny € B

and

(3.5)

B is a Schur-concave set.

As the following observation indicates, many'reasonable procedures are

Schur-procedures. Consider the class C discussed by Seal (1955), which

can be described as. follows.



]
Let XIlJ < ... j_XIk_ll he the ordered {Xj:-j f i}. Let c =
_ g k-1
_(cl,..,ck 1) € Rk_], c; > 0 and X c; = 1. The procedure wg is defined
B i=1
by
~ k-1 [
(3.6) v.5 = 1 iff } ¢, X,y < d(c).
1 j=]. J [J] - -

Here d(c) is determined such that (2.3) holds with equality. From Lemma

3.1 and (3.3), d(c) is determined by

k-1
(3.7) P (jzi Y Yo 2 d(e)) = v

where YO’Yl""’Yk—l

arc the ordered (YJ""’Yk—l)' Note that condition (2.2) implies that

arc i.i.d. with density f(y), and Y[l] < ... f-Y[k—l]'

Y > 1/k and d(c) > 0.
Then

c. =1},
i

C = {ys:

It~

i=1

All procedures in C arec just and translation-invariant.

Lemma 2.3. Let

Assume v< € C. Then
o € c, <=> vS 48 a Schuwr-procedune.

k-1
Proof. Lot A= {y € R*L: T ¢y <d(e)} vS(x) = I.(x*).
— - j=p 4B = i- AT
Clearly A is a monotone decreasing set.

=) We must show that A is a Schur-concave set. Now, assume

y € A and y'

<Y'
>~ m*



k-1 k-1 k-1 | k-1
Lo e b oo vyt v e Loy
Yo G ) ey
k-1 k-1 k-1
¢ jzl y[j] + (cz—cl)j=2 y[j] + ...+ (ci-ci_l)jzi y[j]
* t O k)Y [k-1]
k-1
Ly

Hence y' € A.
(<=) Assume cj < cj, for some j' < j. We shall show that A is not a
Schur-concave set. C(lecarly there exists i such that ¢, < ¢y Let y' <y
g ' - L ot
and such that 2 =Y., Yo =y, Vj, and
Y50 7Y Y T Y )

k-1

C.y.
L 37

(1) d(¢)

o~

j
(ii) yj = yj for j # i, i-1.

(iii) y: <y,

Then
kil kil kil kil
c.y.- c.y! = (c.,-c. ) ( y.- y!) < 0.
j=1 37 521 1) o=l 7Y 5250
Hence y' § A. Q.E.D.

Remark. The problem of choosing a rulc from the class C was considered by
Seal (1955,1957) and Gupta (1956), for the case of normal populations. Two
rules were proposed. They correspond respectively to ¢,

1. Let us call them wa and wm ("a" for average,

=...=ck_1=1/(k—1)

and c,=..

1 .=ck_2-0, c

k-1"
"m'" for maximum). Hence

a .
(3.8) v," = 1 iff X, 3(1/k-1).£ X;-c

jFi
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(3.9) ‘1’1m = 1 iff X, > max X.-d.

1<j<k
wa was proposcd by Seal (1955), and wm was proposed by Gupta (1956), Seal
(1957) and also by Paulson (1949). wa,wm have since been the main conten-
ders for this problem. We see that both wa,wm are in CO’ and are therefore

Schur-procedures.

4. ‘Two Fundamental Convexity Lemmas
The monotonicity-results for the different risk criteria are based on

two lemmas that deal with convexity-properties for a certain sum of

functions.
Lemma 4.1. Let g be a real-valued, Schur-concave function from Rk'l,
non-incheasing Lin each component. Degine G: Rk + R by:
7 k-1
(4.1) Guw = T gud)
i=1
whesre
. = ) o . :
(4.2) u¥ {u[j] urgyt # i} and u[l] < .. f_u[k].
D v- )
let v <cuand v, >u,.. 01 i =1,...,k-1 (L.e. v, = u
“m T (1] = "14] i=1 * =1
and Vi) Z-U[i] forn i = 1,...,k-1). Then

G(u) < G(v)

Proof. Let v < u. Sincc G(u) only depends on (u seeescer ), G is
rootr v-ou u p [1] (k]
m

permutation-symmetric and we can assume that

ul < .. :_uk and v1 < .. j_vk.

From Hardy, Littlewood and Polya (1952, p. 47) there exists a finite

1 ' 2 . i
> ... >u” such that 90 = u, u = v and for each i, gl,

0
scquence u >
T m m m -

=
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91+1 differ in two coordinates only. Now Uy > Vi and uy :-Vi for i < k-1.
1 1+1 .
Hence we can assume U > U for i = 0,...,2-1. We may therefore assume

without loss of generality that

W > vy and up < vp for some p < k-1,

and

it
<
+
<

u, = v, for i # p,k, and U + U

Let now i < k-1, i { p. Then

(4.3) Y (u.-u.) = ) (V.-v.).
2 I 'S B
Since w > vy we have
k k k
AX (uj—ui) > 32 (vj-ui) = .2 (vj—vi) forn > p
j=n j=n j=n
4.4)
k k
.Z (ujfui) = _Z (vj—vi) o for n < p.
J=n Jj=n

From (4.3) and (4.4) it follows that VI < u*i, which implies that
i ©

(4.5) g(un) < g(vy) for i <k-1, i #p.

Since g is non-incrcasing in each component we have that

4.6 u*) < v¥),

(4.6) gut) < g(v¥)

(4.5) and (4.6) = G(u) < G(v). Q.E.D.

Remark. A natural question is whether G(u) is in fact Schur-concave. The

reason why we nced V[i] z_u[i] for i < k-1 is that we can then assume in
the proof that u; > ui+1

proving Lemma 4.1. Of course this does not mean that this condition. is

for all i = 0,1,...,2-1. This is essential in
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necessary. llowever the counterexample given below shows that G is not in
gencral Schur-concave if g is a Schur-concave function, non-increasing in
each component.

Let us first statc a result that gives necessary and sufficient condi-~
" tions for a permutation-symmetric function to be Schur-concave. Suppose
h: R™ > R is permutation-symmetric and differentiable. Then, from
Ostrowski (1952), we have that h is Schur-concave if and only if

h(x)  dh(x)

( ax; ) 0eg7xg) <0 Vit and Vxp,.x).

4.7)

(The inecquality is reversed for Schur-convex functions.)
As a counterexample to Schur-concavity of G, let k = 3 and g(xl,xz) =

(-x —xz), where ¢ is the distribution function of the N(0,1)-distribution.

1

g is Schur-concave and decreasing in each component. G depends only on

< u, <u,. Then

2 3

(Q[l]’u[Z]’u[S]? SO we can assume uy

G(u) = ¢(2u1—u2—u3) + ¢(2u2—u -u

1 3)'

(Note: G corresponds here to S'(§,wa), wa given by (3.8), with v = 1/2 and
normal populations.)

It is readily seen that

G  IG()
<

3u1 8u2

So (4.7) is not satisfied, and G is not Schur-concave in u.
The next question we want to ask is: What kind of assumptions on g do
we need for G to be Schur-concave? The following result gives sufficient

conditions.
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Lemma 4.2. Let g be a neal-valued gunction grom Rk'1

, hon-increasing
in each component, admitting partial derivatives. Assume that g 48 permu-
tation-symmetric and concave. G 448 defined by (4.1). Then G(u) 44 Schur-

concave 4n u.

Proof. Let v < u. We can assume v, < ... <v, andu, < ... <u . It
—_ “m - 1 - — 'k 1 — -k
is enough to consider the case where v_+ v_=u_+u , v '<u_for some p <gq
P q P Q° q q

and vy = uy for i # p,q. As in the proof of Lemma 4.1 we see that
gu¥) < g(vy) for i < k-1, 1i#p,q

(since y; < g; for i # p,q) and
- m

* *
gluf) < glvy)-
So result is proven for q = k.

Next, assume that q < k. It remains to show
4.8 r(u*) + g(u*) < g(v*) + g(v*).
(4.8) g(_p) g(_q) __g(_p) g(_q)

Let e, € Rk-1 denote the vector (1,..1,2,1,..,1) where the i'th component

is 2 and the other components are 1. Define for y € R, and fixed u,v, the

vectors y, z € k-1 by

= = * .
y =y utYeq-1
zZ =z = u*+ye_ .
z = z(y) = up+ye,

Let
t(y) = g(y) + g(z).
We see that

t(0)

g(g;) + g(g;),

t(y% 25 + (VY
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wherc yo = uq~v(l = v)—up. Since g is concave it follows that t is concave
in y. Let y1 = (uq—up)/z. Now y] j_yq so to show (4.8) it is therefore
sufficient to show that t'(yl) = 0.

L.et now g; = Bg/byj; i=1,...,k-1. Then

k-

t'(y) = - 1

ikt

Let a =(1/2)(up+uq). Then

1 k-1
8 (-2, () + igl g;(2) + 2g,(2).

1
yly’) = (ul,...,up_l,up+l,...,0,uq+1,...,uk)—a(l,...,l)
1
z(y’) = (ul,...,up_l,O,up+1,...,uq_l,uq+l,...,uk)-a(l,...,l).
Let m be a permutation of (1,...,k) such that mi is the new position of
clement i, i.e. w(1,...,k) = (ﬂ_ll,...,ﬂ_lk). Then the permutation Ty

of y is defined by (“Z)i =y Let ™ be the permutation defined by:

-1.°
T i
-1. . . .
Ty 1 =1 for i <p-1, 1i>q
-1, . . .
To L= i-1 for p+l < i < qg-1
-1
Ty P = gq-1.

We see that g(yl) = noz(yl). Since g is permutation-invariant, the partial
derivatives satisfy

gy ) =gy V(mi).
It follows that

g;(z) = g ; (y) when y = y'.
LIPS

Hence 0
1 kil Z qil
t'(y’) = - g.(y) - 2g . (y) + g.(y) +2g  .(y) + g. ;) =0.
ji=p 1 q-1% ip-1 1 ! A-17%7  ope it

i#q-1 i>q Q.E.D
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Remark. The condition on g in Lemma 4.2 implies that g is Schur-

concave.

5. Properties of Schur-Procedures

From Marshall and Olkin (1974) we have the following two results.

Lemma 5.1. Let YioeeY have a joint density h(y-yu), where h(y) 44
Schun-concave. Assume v(y) 48 a Schur-concave function in y and bounded.
Then

EUQ(X) = fv(x)h(x—y)dv(x) L8 Schur-concave An .-

Lemma 5.2. Let ¢y(u) be Linear and Aincreasing in u for all y.
Assume Ul,...,Um,Y ane. independent, and that Ui have a common density f(u)
and log f(u) 44 concave. Then the joint density of Y, = ¢Y(Ui), i=1,...,m

45 Schun-concave.

Applying Lemma 5.1 and Lemma 5.2 wc obtain the first interesting result

about Schur-procedures.

Theorem 5.1. Let XpoeneoXy be. {independent. X. has density f(x—ei)

and £ has MLR {n x. Let y be a Schur-procedure. Then

: 1 - 0 4 * = - . 3 :
Le(wi) 44 Schur-concave 4in 9 {ej 6.t J #il.

Proof. wi is a Schur-concave function of X* = {Xj—Xi: j #i}. X* has
density h(x*- 6%) where h(y), y € RK™!, is the density of Y* = (,-v;: 5 # )
and Yl""’Yk are i.i.d. with density f(y). From Lemma 5.2, h(y) is Schur-

concave, since log f is concave. The result now follows from Lemma 5.1. Q.E.D.

Consider now the risk function S'(0,y) defined by (2.4). One of the

main results for Schur-procedures is a monotonicity-result for S'(6,y).
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Theorem 5.2. Assume the conditions of Theorem 5.1 hold. Let ¢ be

a Schur-procedure and Let

(5.1) o' < 8 and eti] 3_6[1] forn i =1,...,k-1.
' Then
(5.2) S'(6,p) < S'(8',¥).

Proof. lLet g be defined by
20O = Egly(y)}.

9; is defined in (4.2). Then

k-1

i g(er).
i=1 1

S'(6,¥)

From Theorem 5.1 and Lemma 3.1 we see that the assumptions in Lemma 4.1 are
satisfied and result follows. , ' Q.E.D.
As mentioned in Section 3 a nice property of Schur-concave functions is
that they achieve their maximum at a point where all components are equal.
S'(9,¢) is not quite Schur-concave, but by applying Theorem 5.2 we can show

a similar result for S'(6,y) over certain subsets of Q.

Theorem 5.3. Assume the conditions of Theorem 5.1 hold and that

A8 a Schur-procedure. Let & > 0 and define the s&ippage-set

k-2
= e M - -
(5.3) 9 (8) = {8 € Q: by y=0py 19 26+ izl (6rx-1778 1t
Then
sup  S'(8,9) = S'(8°,¥)
6 €@ (8)

where
(5.4) o =6, 05, =04oni=1,...,k1.

{k] * T[] e
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> ] € . ¢ - ; j
Proof. Let 0 Qk(d) We can assume e[k-l] 6[1] > 0; otherwise the

theorem is trivial. Also, S'(8,y) is permutation-symmetric so we can let

el_i cee < ek. From Lemma 3.1 it follows that S'(6,y) is non-increasing
in ek. Therefore we may take
k-2
6, =0, *+ 8+ _Z (81785
i=1
Let now 0 = 8 e = (o 6,+6). Then 80 < 6 and 6%,. > o .. for
0 k-1 = 0’ "2 0’ - m - [i] — "[i]

i < k-1. From Theorem 5.2 it follows that

S'(0,¥9) < S'(e ¥) = S'(B s¥) . Q.E.D.

Remark. There is one Schur-procedure, wm given by (3.9), that has

. . . 8
been shown to achieve its maximum at 6" over the set Q(6) = {9: ]

> 8§
k] k-11 &
8§ > 0. More precisely, Gupta (1965) showed that

(5.5) sup  51(0,4") = 51 e%, 4™,
E Q(8) ) o

(5.5) is not true in general for Schur-procedures. Consider for example
wa, given by (3.8),and let 6 = 0. Then it is readily seen that

sup S'(0,v IS S'(e W% if v < (k-2)/(k-1).
€ (%)

We shall next consider the corresponding problem for the risk

B(6,y) = Ee(number of bad populations selectedlw)

(sec Definition 2.2 and (2.5)).

Theorem S.4. Assume the conditions of Theorem 5.1 hold and that

44 a Schur-procedune. Let

QP(A) = {6 €Q:0,,-0 <A GO

.
(K] °[p) K701y 24+ L Cppoymopsp)?

forp=1,...,k-1.
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Let
) k
(5.6 Q= U (8.
17 o P
Then
A

sup B(?:lp) = B(? »¥)
9 €q

whene 0° is defined by (5.4) forn 6 = A.

Proof. Let 6 € Ql. We can assume 61 < :_ek. Let first

6 € 2, (4). Then B(0,¥)

S'(9,¥). From Theorem 5.3 it follows that

i

B(6,¥) < B(6",0).

v
[
+

~3

r
@

Now let 8 € 0 -@ (), i.e. 0,~8, < & and 0051

for some p, 1 < p < k-1. In this case

p-1

B(8,¥) = 1 Eg(¥,).
i=1 -

Let 6' be defined by

6! =

r = i - t = i > -
K ek, ei ei, for i < p-1 and ei ep_l for i > p,..,k-1.

Clearly, from Lemma 3.1

p-1 k-1
B(OW) < 1 Eo(¥) < I Eg (¥) = B(8",¥)
i=l1 - i=1 -
Now 6! € Qk(A), so the result follows from Theorem 5.3. . Q.E.D.

Remarks. (a) As expected, since B has fewer terms than S' when e[k]_e[k-l] <A

we get a stronger result for B than for S' in the sense that . D Qk(A).

1

(b) Ql consists of the cases wherc the good populations have "slipped" from
the bad populations. Also Ql contains the 'classical' slippage-set

{6 € q: O] = -+ = Ork-17 & 81k) " [k-1] > A}

(¢) In Part II, Theorems 5.3 and 5.4 are applied to derive a certain optimal

procedure which will be minimax with respect to slippage sets of the type Ql

and Qk(A).
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The last risk funcétions we will consider are.L(9»¢) and l(g,w)
defined by (2.6) and (2.7). As mentioned in Section 2, L(8,y) and 2(8,y)
are in many cases more appropriate criteria, since they place more weights
on the worst populations.

Let us consider the following class K of non-randomized procedures.

¥ E'K if and only if ¢ is just, translation-invariant and satisfies
= * 1 =
(5.7) wi(§) IA(gi) for i 1,...,k

where A is a permutation-symmetric convex set. Since ¢ is just, A is also
a monotone decreasing set.

K is cailed the class of non-randomized, convex procedures and is a
subclass of the Schur-procedures.

wa and wm are both convex procedures. Our aim is to show that L(9,y)

is Schur-concave for the normal case, if § € K. More precisely:

Theorem 5.5. Assume X, ,...,X, are independent. X, is N(ei,oz)

1’7 k
whese 02 As known. Let v € K. Then
k-1

L(8,¥) = ) log{Bgy 5y}

i=1

44 Schur-concave 4in 6.

As an immediate consequence we get the following result.

Corollary 5.1. Assume the conditions of Theorem 5.5 hold. Let

(5.8) ‘ Q(s) = {0 € q: elk]-e[k_l] > 8}, 8§ > 0.
Then

sup L(6,y) = L(Bd,w),

8 € Q) “
and

sup 2(6,9) = Q(GA,w).
6€Q -
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Here 9? QA ane defined by (5.4).

Remark. In Part II, Corollary 5.1 is used to derive an optimal procedure
for L(0,¢) and 2(6,9). The procedure is minimax for % with respect to
the whole parameter space Q.

In order to prove Theorem 5.5 we will apply Lemma 4.2. First we need

the following basic result, which follows from Kanter (1977).

Lemma 5.3. let Y = (Yl,...,Ym) have a density h(y-p) with respect to
the Lebesgue-measure v. Assume that log h is permutation-symmetric and

concave. Let A be a permutation-symmetriic convex subset o4 R". Then
g = P (Y €A = [ hiy-)dv(y)
= A

45 Log-concave and permutation-symmetric in y.

Remarks. (a) If log h is concave and permutation-symmetric then h is
Schur-concave. Hence the condition on h is stronger in Lemma 5.3 than in
Lemma 5.1.

m
(b) Let h(y) = 1 f(yi). Then log h is concave if and only if h is

i=1

Schur-concave.

A class of log-concave densities is given in the following result.

Lemma 5.4. Let h(x) = f(xAx') where £ 48 a decreasing and Log-concave
punction with continuous second-onden derivative. A 48 non-negative deginite.

Then log h 44 concave.

Proof. Let A = (Aij), H=1log h, & = log f; &', &" are first- and
second-order derivatives of %£. Then

LY < 0, " < 0.
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BZH

ij a9
is readily shown that

Let H H is concave if -(Hij) is non-negative definite. It

Hlj(§) = 2.2'(§A§')-Aij + 42"(§A§')(gxpxip)(gqujq).

Now

L yyyy (Qx lp)(Z i)

| 2
= XA, 0.
i,] P g gylxp i) 2

Since A is non-negative definite it follows that -(Hij) is non-negative

definite. Q.E.D.

Remark. Lemma 5.4 shows that if Y is Nm(O,Z), L is positive definite,
then Y has a log-concave density.

Proof of Theorem 5.5. Let g: RE"! 5 R be defined by

g(o1) = 1og{59w(i)}

(g does not depend on i.) From Lemma 5.4 and the remark above we have
that the density of X; = {Xj—Xi: J # i} is log-concave and permutation-
symmetric. From Lemma 5.3 it follows that g is concave and permutation-
symmetric, since wi is given by (5.7). From Lemma 3.1 g is non-decreasing
in each compdnent. From a general theorem of analytic intégrals for the
exponcntial family of distributions (first proved by Sverdrup (1953), see
also Lehmann (1959), p. 52), it follows that g has partial derivatives.

The result now follows by applying Lemma 4.2. Q.E.D.
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