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1. Introduction and Summary.

Let {Pe}een Q@ c IR be a given family of probability distributions over
(IR,B), where @3 denotes the corresponding Borel-sets, and let Ki = (xil;...,x. ),
i=1,...,k, be k independent samples of common size n from k populations L with
distributions PO.’ i=1,...,k, where 01,...,ek € Q are unknown. If our goal is
to select a random non-empty subset S(§1,...,§k) of populatidns which is "good"
(i.e. is associatéd with large 6-values in a certain sense), then there are several
possible choices for a suitable criterion to make the term "good" more preéise,
One of these - a Bayes criterion with additive and especially 1inear loss functions -
will be the topic of this paper.

For simplicity we assume that the rulé S take valués in @ = {sls c {1,...,k},
s # ¢}, Qhere S = s now means that all m, are selected for which i € s, i = 1,...,k.
Moreover for every s ¢ G let |s| denote the size of s. |

For a given loss function L: nk x 4+ IR and a given prior distribution t over
V(Qk,ﬁk) (for the now random parameter vector @ with values 8 € Qk) every Bayes

solution S* minimizes ET Ee L(@,S(§1,...,§k)) among all S: IRnk -+ ( by definition.

(Here and later on we tacitly assume that L is intergrable propérly.) .The well
known standard method to find the Bayes rules S* is to minimize, after observing
=X., i=1,...,k, the posterior expected loss E(L(Q,s)])_(i = §i’ is= 1,,..,k)

_among all s e'u, which always is possible since (G is finite.

* Research supported partly by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



The first paper within this framework is due to Deely and Gupta (1968)
and deals with the "]linear" loss function L(g,s) = -é “s,i(e[k]-ei)’ where the
a's are non-negative and e[l] 53"5-6[k] denote thelo;dered values of el,...,ek.
(This notation will be utilized analogously for all vectors used in the sequel.).
The result is that, under an additional assumption on the a's, one can choose a
Bayes rule which always selects only one population.

Because of this somewhat undesirable property Goel and Rubin (1977) choose

the loss function L(0,s) = c|s| + o - max 6, and study the behavior of the

[k] L
corresponding Bayes rule in great detail.le?Because of the complexity of the
problem it is necessary. to derive'approximate solutions.). Other papers dealing
with other non-additive loss.functions are due to Bickel and Yahav (1977), where
the Bayesian aspect, however, is not of primary interest, and due to Chernoff and
Yahav (1977), where two rules (one of thése is Gupta's means procedure (c.f.
(3.12))) are compared with the Bayes rule in a '"normal model" on the basis of
Monte Carlo results. As a result Gupta's maximum means procedure turns out to
be "remarkably efficient" w.r.t. the Bayes rule.

Finally three papers dealing with additive (non-liﬁear) loss functions of
the type L(0,s) = .Z (c,-c, I{e

ies (k]

are due to Bratcher and Bhalla (1974) and Gupta and Hsu (1977,78) . In the first

(0,)) (where I denotes the indicator function)
Vi

the Bayes rule is derived and a binomial cxample is given. In the second similar
Monte Carlo-studies are performed as in Chernoff and Yahav (1977), and again
Gupta's maximum means procedures "do almost as well as the Bayes procedure'.
And in the last monotonicity ofiBayes‘rules is the topic.

This paper serves two purposes: First (in Section 2) we show that the
result of Deely and Gupta (1968) is not due to the linearity of the loss.

function but is due to the combined effect of the additivity of the loss



function and the non-negativity of its terms. Then we study the case of
additive and especially linear loss functions, thereby filling a gap lying

in between the paper by Deely and Gupta‘(1968) and thé others mentioned above.
Then (in Section 3) we show that in the normal case with symmétric normal priors
Gupta's maximum means procedure turns out to be asymptotically Bayes w.r.t. a
class of additive loss functions, wﬁereas on the other hand Seal's procedure
turns out to be Bayes w.r.t. an unrealistic additive loss function. Finally

(in the appendix) we derive some bounds for E(  max (uj + p Vj)) (where

, j=1,...,k
u e IRk, p € R are fixed known and Vo N(0,I)) to approximate the Bayes rules

w.r.t. linear loss functions in cases where n is finite.

2. Additive and Linear Loss Functions.

As indicated above we first discuss the result of Deely aﬁd Gupta (1968) .
Let us consider the loss function L(g,s).= _Z as’ili(g) and assume for
simplicity that as,i = a(|s|), i= 1,...,k,l§S€‘G, holds. (In fact our following
result remains valid if we replace this assumption by the corresponding one of

Deely and Gupta (1968).). Then we can state the following slight generalization

of the theorem in Deely and Gupta (1968):

Theorem 1. Let m a(m) > a(l), m =1,...,k. If the li's are non-negative then

there exists a Bayes rule which always selects exactly one population.

Proof: Given X = X the aposteriori risk of any procedure S is given by
R(S|x) = a(|S(X)|) ) Ai(§), where A, (x) = E(%, (@), x) >0, 1i=1,...,k.
i€S(x) t T
Thus R(S|x) > a([S(x)])|S(x)] min Ai(x)
‘ - AR K -

FICEC IR

> a(l) min Ai(x) = min  R({i}|x),
i=l,...,k Y T i=1,...,k -

which completes the proof.



4

Example 1. That the converse statemcnt does not hold true can be demonstrated

by the following example: Let

L(8,s)

|s| ™t iés (8 = 05 = ©

0 |s|'1 ) 6, - €, ¢ > 0.

ies

[k] ~

Clearly IS(§)|-1 ) E(Oi|§) < max E(ei|§) holds, and even strict
1€5(x) i=1,...,k

inequality occurs in many cases.

Definition 1. We call a loss function L additive, if

(2.1) L(8,s) = T 2.(0), 8,0 @5 > R, i =1,...,k,
- . 1 - 1
igs

and linear, if

(2.2) L(e,s) =c¢ z (O[k] - ei - g¢), where ¢, ¢ > 0; and c clearly can be

put equal to one.
In many situations the following assumptions assuring invariance under

permutations and monotonicity of the losses seem to be quite natural:

-k
2({6),..-508, 3, 8;), 06 €Q.

(2.3) (@ 10

k

(b) 2, (e) j_zj(g) if § € @ with 0; <83, 1,5 € {1,...,k}.

. k
] ] - 1
(c) Qi(g) > li(g ) if 8, 8' €@ with ei < ei and

6. >0', j#i, i=1,...,k.
j 205 ) #

Obviously these conditions are met by linear loss functions.
The following theorem, which to some extent can be viewed as being a

special case of Lehmann's (1957) result, can be stated now without proof:



Theorem 2. For an additive loss function of type (2.1) the subsets s(§) S

which a Bayes rule would select after observing x € B{nk satisfy the relation

S*(x) cs(x) < é*(§) U {i} for at least one i € M(x), where

(2.4) 5% (x) = (IB((@) |0) < 03,
$*(x) = (BG4 (@]x) <0} and
Mx) = {1[B(y; (@0 = min  E(a () |0,

j=1,...,k

Especially, for a linear loss function (2.4) reads as follows:

(2.5) §*(§) = {j|E(®j|§) 3_E(O[k]|§) - e},
$*(x) = {j|E(0;|%) > E(op|x) - e} and
M(x) = {iIE(Oi|§) = max E(Oj[§)}.

j=1,...,k
Remark 1. Another type of loss function which turns out to be equivalent to

our type of additive loss function is the following:

(2.6)  L(e,s) = ] 25 (&) + ] 2 (9,
i€s - igs — T

where 2;, 2;: Qk -+ [0,«), i = 1,...,k, can be viewed as being losses for
errors of the first and second kind in analogy to testing theory. Since such
a loss function can be rewritten as
- k '
- + -
(2'7) L(Q’S) = Z Zi (9) + z (2'1 (9) "'li- (9))’
i=1 ies

we arrive at the same sct of Bayes solutions if we drop the first sum on the
r.h.s. of (2.7). (Hereby in fact thc overall risk is changed only by an
additive constant. Note that the change of the conditional risk, given
X = x, has no influence on the determination of the Bayes rules.).

Conversely if we s@art with an additive loss function of type (2.1)

we can switch over to afloss function of type (2.6) analogously by choosing



2; (Qi) to be the usual positive (negative) part of 2., i = 1,...,k.
Thus Theorem 1 - applied to (2.6) - can be interpreted as follows: if
we always have to pay for every population selected, then we take as few as

possible: namely always one.

Example 2. Bratcher and Bhalla took a loss function L of type (2.6) with

+ " - " A .
941(9) = Cl(l'l }(ll)), 21(9) = CZI{G }(61)’ cl’c2 > 9) 1= l:'°':k-

{8

(x] (]
On the other hand Gupta and Hsu (1977,78) took the loss function L(e,s) =
¢, - Mo, |i ¢ 53Oy * ealsls eps ey > 0 |
If we assume that the posterior distribution of O assures that for every
X € Hlnk all the Oi's are distinct with probability one, then L(9,s) can be

replaced by

L(g,s) =c; + ] (c

(0.)).
1 ies P

-c, 1
2
If we take into account that we can muitiply a loss function with a positive
constant and moreoever can add any further constant to it without changing
a given Bayes problem, then it is easy to see that the loss function of Bratcher
and Bhalla (1974) and that of Gupta and Hsu (1978) are equivalent in the sense
of Remark 1 and, especially, both arc additive.

It seems to be worth mentioning that in the normél model (cf. (3.1)) the
“converse of Theorem 1 also holds truc.
If the mi's mentioned there may also assume negative values (i.e. if

¢, < ¢, here), then there exists no Bayes rule which always selects exactly one

2 1
population. Since aposteriori the Oi‘s now are jointly (non-degenerate) normally

distributed, this follows from the fact that the Bayes rule S*, for all x € B{nk

except possibly a null set, turns out to be
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(2.8) i e S*()_() 1ff p{(.)i. O[kll)_(} = max p{@J = O[k]l)'(}

j=1,...,k
and/or P{e; = O[k]lf} > cz/cl.

Finally let us consider some other properties of the Bayes rules for additive
loss functions. For this purpose let Zi = H(Xi) be a one-dimensional sufficient
statistic for ei with distribution Q0 s Say, i =1,...,k. The rules S of course

i
depend now on Zl""’zk and are defined on D(k.

Definition 2. We call a rule S: H{k -+ @ ordered if for every

z € IRk iceg S(E) and z; < zj implies j € S(z).

We call it monotone if for every i € {1,...,k} and z, z' € H{k with

z5 :_z{ and zj 3_25, j#1, i € S(z) implies i € S(z').

Since we only need to consider non-randomized rules in this Bayesian framework
(cf. Goel and Rubin (1977)), Definition 2 for monotonicity and Definition 8 in

Gupta and Hsu (1977) coincide. Now we can state:

Theorem 3. Let {QG} have densities {f_} w.r.t. the Lebesgue measure

6 €Q 8°6 € Q

on (IR,@) with monotone non-decreasing likelihood ratios in 6, and let L

be any additive loss function. Then the following statements hold true:

(i) If L satisfies (2.3) (a) and (b) and if the prior distribution of 0 is

symmetric on Qk, then every Bayes rule can be assumed to be ordered.

(ii) If L satisfies (2.3) (c) and if

Oy5>+++,0, are apriori independently distributed, then every Bayes rule

can be assumed to be monotone.

Proof: The first part follows from Goel and Rubin (1977) (cf. Lemma 1 and

Remark 1 cited there), since our loss function satisfies the conditions stated there.



The second part is a generalization of the Theorem 3 of Gupta an& Hsu
(1977). It is éasy to see that their proof works with every loss function
whose compoﬁents 21,...,Zk satisfy the conditions stated in (II).

Note that additive léss functions of type (2.1) with li(g) = z(e[k]—ei),
i=1,...,k, for non-decreasing £ and thus in particular linear loss functions

satisfy all the conditions stated in the theorem above. Thus we can state:

Corollary 1. Let {Qe}e ¢ Q be given as in Theorem 3 and let

L(6,s) = ] z(e[k] - ei) with non-decreasing
ie€s
2: R -~ IR. Then, if ©75-..,0, are apriori independently

identically distributed, every Bayes rule can be assumed to

be ordered and monotone. .

Remark 2. In their Lemma 2 Goel and Rubin fl977) give an aid ﬁith which one

can simplify the computation of the Béyes procedure if one gdpp;s’thei; loss

function and assumes a symmetric prior distribﬁpion;

IfZ=12¢ IRk is observed and z is, without loss of generality, ordered in

such a way that 2; <...22y holds, theh_the terms ri(g) = E(L(Q,{k,k:l,..,,k-i+l})Ig),
i=1,...,k, have the property that.rj+1(5) - rj(g) is non-decreasing in
j=1,2,...,k-1. |

For additive loss functions this property reduces just to ' .
(2.9) E(Qlcg?lz)_33"3-E(£k(9)|5)’ Z) SeeeS 2o

Though it is difficult to find general sufficient conditions for (2.9) to

hold true, we can at least state the following:

Th . } .
eorem 4 Let {Qe}8 € 0

two conditions stated below is sufficient'for (2.9) to hold true:

and L be given as in Corollary 1. Then each of the




(A.1) 0

1""’Ok arc apriori indepcndently identically distributed.

(A.2) L is linear and the prior distribution t is symmetric on Qk.

Proof: Under (A.l) note that, given Z =z with 2] Seee2 24, the ei's are
independent and stochastically ordered in the same order as the zi's. With
standard analysis one can show that this implies that even the dependent
variables ol - O[k]""’ok - O[k] are stochastically ordered in the same

direction. Thus by the monotonicity of 2 the assertion follows.

Under (A.2) for every z € IRk with Zy .27y and i € {1,...,k-1} we have

k
E(zi(g)lg) - E(zi+1(9)lg) = E(0;,7 - eilg) = b f(ei+1 - 6;) m £y (z)dt(6)
Qk r=1 1
=b (6. . .-6.)[f, (z.)f (z. )-f, (z, J)f (z.) n £, (z)dz(e),
{ei<£i+l} ie170) | 0; 17 854 “irl 8 117705, 1 ]rfi,i+1 b, o

where b is a normalizing factor and the last identity follows by the method which
Goel and Rubin used to prove their Lemma 2. Thus by the M.L.R. property of

{fe}e € Q the proof is completed.

3. The Normal Model.

In this section we assume that apriori Xl,...,Xk are independent samples
of common size n from k normal populations with unknown means 61,...,6k and a

. 2 -
common known variance ¢~ > 0. By sufficiency we can reduce our set of data

to X = (Xl,... 10

to the 0's we assume an exchangeable normal prior. More precisely our

,Xk), where X .,X, are the corresponding sample means. As

"mormal model" is as follows:

(3:1) (a) X|e =89 vN(8, qI) and

(b) O vNml, r I+ tU), where

Gz/n, meglR, r >0, t>-r/k, 1= (1,...,1)',

q

U=11"and 1 denotes the kxk identity matrix.

Note that r > 0 together with t > -r/k is necessary and sufficient for
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r I+t U to be positive definite. This model was chosen by Chernoff and
Yahav (1977) (with t > 0) and by Gupta and Hsu (1978).

By (3.1) it is easy to see that we have

(3.2) (a) o|X=2x~N(y, al+bU), where

=
1]

r(q+r)'1 X +q t((q+r)(q+r+kt))-l U)_<+q(q+r+kt)_1 m 1,

o
1l

rq (g#r)") and b = q®t((q+r) (q+r+kt)) !, and
(b) X v N(g, &1+DU), where
é = m.l, a = g+r and ﬁ = t.

Let us include non-additive loss functions L(g,s) into our next considerations.
Then one intuitively feels that one can put m and t equal to zero without
changing the problem, if L is translation-invariant, i.e. if L(e,s) =
L(g + n 1, s) holds for all 9°€ Qk, s § 0 and n € R. Moreover one should
expect that the Bayes rules then are translation-invariant, too:
S*(x) = S*(§ +n 2) for all n € R and all x € DRk except possibly a null set.
Ideas of this kind primarily arc due to Chernoff and Yahav (1977) and
also to Gupta and Hsu (1977). Nevertheless since the formulation and proof
of a general theorem in this direction.is missinglup to now we feel that it
is justified to do this in our present paper.
Now if any random vector Y is distributed according to some N(p,a I + b U)
with a > 0 and b > —a/k, then at once onc has in mind the following ("cbnditional

i.i.d.") representation:

al/2 V o+ bl/2 W1+ y where

(3.3) Y

1<

~ N(0,I) and W ~ N(0,1) are independent.'
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But this holds only in cases where b > 0 (i.e. where the correlations of the
Y's are non-negative), and therefore does not help us in our more general
setup. But, fortunately, there exists another representation, which always

can be used for our purposes:

Lemma 1. Let p € B{k,.d >0 and b > -a/k. If

I/ZY‘+ k-l((a+k b)l/2 - al/z)U V o+ oy,

(3.4) Y=a
with V v N(O, 1),
then Y v N(y, a I +bU).
The proof is standard and therefore omitted. Besides we remark that in (3.4)

(a + k b)l/2 can be replaced by - (a + k b)l/z.

Theorem 5. Under the normal model (3.1) for every loss function L(8,s) which

is translation~invariant the following three assertions hold true:

(i)  For every rule S: IRk + G and every x € IRk the posterior risk

E(L(0,S(x))|X = x) does not depend on m and t.

(ii) Every Bayes rule can be assumed to be translation-invariant.

(iii) For every translation-invariant rule S the overall riék E(L(Q,S(§)))

does not depend on m and t.

Proof: Under the normal model (3.1) let L(e,s) be translation-invariant.

(i) Given X = X, © is distributed according to N(y, a I + b U) where U, a
and b are given by (3.2) (a). In this situation we choose for © the representa-
tion given by Lemma 1.

Let S be any rule, S(x) = s, say, and p ¢ R. Then since U y = (y1+...+yk) 1

for every y € ﬂRk, we get by the translation-ihvariance of'L(Q,s)
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-1,1/2

(3.5)  E(L(0,8) X = x + p 1) = E(L(x(q+r) " 'x + (rq(ag+r) )% v,5)).

Since the r.h.s. does not-depend on m, t and p, part (I) is proved by putting

p = 0,

(ii) If, given X = x, one s* € (i minimizes the 1l.h.s. of (3.5) for one p € R,
then it does it for all p ¢ R simultaneously. Thus every Bayes rule is
translation-invariant, if one neglects possible pathological choices in cases
where several solutions appear.

~(iii) Let S be a translation-invariant rule and let for X € B{k

R(S[x) = E(L(0,8(x))|X = x)

denote the conditional risk of S - given X = X. ‘By (3.5) we see that
R(S|x) does not depend on m and t and moreover is translation-invariant in x.

- Now, marginally, X is distributcd éccording to N(ﬁ,a I + b U) where ﬁ, a
and B are given by (3.2) (b). If ﬁe chooée now for X the repreéentation given
by Lemma i then we see that the overall risk E(L(o, 8(5))) = E(R(S|§)) does

not depend on m and t. Thus the proof of the theorem is completed.

Remark 3. In the present (Bayesian) framework Theorem 5 clearly fits all our
needs. But it should be pointed out that the following simple fact can be
viewed as being the basis of this theorem:
"Let Y v N(p + p 1, a I+ b U) with y € IRk, P é IR, a>0and b > -a/k. Then
there exists a random vector Z with Z ~ N(p, a I ) such that h(Y) = h(Z)
everywhere for every translation-invariant h: B{k > Hlk".

For the remainder of this paper we restrict our considerations to
additive loss functions-with translation-invariant zi(g), i=1,...,k. Since

by Theorem 5 we can put m = t = 0 without loss of generality, our model can

considerabiy be simplified to
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(3.6) X|@ =0 ~N(e,q I), ©~N(, rI),
which in turn implies

(3.7) o|X = x o N(r(q+r) ! x, T q(q+m) "t 1), X ~ N(0,(q+r)I).
Thus, given X = Xx, e has the representation:

(3.8)  ©=r(g+n) x + (r qlern) D% v with v a4 NGO, T).

The next result is to some extent sharper than Theorems 3 and 4:

Theorem 6. If under the normal model (3.1)

L(8,s) = Yo (e[k] - ei) with nondecreasing %, then (2.9) holds
ies

and every Bayes rule can be assumed to be ordered and monotone.

Proof: By Theorem 2 every Bayes rule selects according to small values of

E(a(e - ei)|§). Since & is non-decreasing, we have for every § € @

(k]
2Oy - 93) = max  2(0.-6,), i = 1,...,k. But by (3.8) we get for
toashk
every x € R
(3.9)  E(i(6py - 0)[x) = BE(_ max z[r(q+r)'1(§j_ii)'+ (r q(qrr)~1)1/2

j=1,...,k

which clearly implies the desired rcsult.
Example 3. Under the normal model (3.1) consider the additive loss function
-1 k .
(3.10) L(0,8) = ) [k Yy o0, - 0, - €], e > 0.
ié€s j=
Since it is translation-invariant, by Theorem 4 we can assume that (3.8) holds,
and the unique Bayes rule S* turns out to be
k

(3.11) i€ S*(X) iff7xi_3 ktoy X - rl(g+r)e,
j=1

which is the well known procedure of Seal (1957).
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There is a long story about the question how good different well
estéblished procedures like this perform in certain circumstances. One
result is that Seal's procedure is not safe to use and especially inferior
to Gupta's maximum means procedures (cf. Definition 3) with respect to many
aspects. This is shown for example in Seai (1957), Deely and Gupta (1968)
and Gupta and Miescke (1978). One new argument in this direction now seeﬁs
to be to us that Seal's procedure under the normal model turns out to be a
Bayes solution w.r.t. a very unrealistic loss function. |

Perhaps the best known subset sclection procedure is due to Gupta

(1956, 65):

Definition 3. Gupta's maximum means procedure is given by

. . s g 172
(3.12) i¢ Sd(g) iff Xi > X[k] -q d, d > 0,

In the classical (non-Bayesian) approaéh due to Gupta one has to choose

an P* > k'1 and then d(k,P*) is given by the requirement that Sd should contain
the best population with probability at least P* for every fixed © € Qk.
(Conversely if d is predetermined then P*(k,d) is fixed.)

It is conjectured and partially proved by many authors that Sd performs
well or even is optimal in many situations. But up to now it was not possible
to find Sd to be close to a Bayes rule in any given model, except perhaps in |
the Monte Carlo-studies of Chernoff and Yahav (1977) and Gupta and Hsu (1977).

In this spirit our following results seem to be interesting.

Theorem 7. If under the normal model (3.1)

L(g,s) = ]} z(e[k] - 8, - €), where ¢ > 0 is fixed, # is non-
ie€s ‘
decreasing, continuous, bounded and satisfies %(p) = 0 if and only

if p = 0, then the following procedure S is the limit of Bayes rules

for large n:
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(3.13) i € 8(X) iff Xi 3 X[k] - e.

Proof: Given X = x, by Theorem 2 and 5 and especially (3.8) the following
rules are Bayes rules for n = 1,2,...:
i€ S*(x) iff B(g[ max {r(q+r) L(X. - X.)
n- j=1 k ;!
seoos

+ (ra @0 Y2 W) - el <o,

Since % is bounded and continuous, for large n (by Lebesgue's dominated

convéfgénce theorem) the expectation converges to gf max {ij-ii} - e].
j=1,...,k° |

Thus in view of the additional assumptions which we imposed upon g the
theorem is proved.

"Though we have seen that the limit of Bayes rules is vefy similar to
rules of type (3.12), this does not completely satisfy our requests, since

procedures of type (3.13) have a P* = P*(k,q"l/2

e) which tends to one for
large n. Thus for a moment we alternatively take another loss function as

given in the theorem below:

Theorem 8. If under the normal model (3.1)

L(g,s) = Z (G[k] - Oi - ql/2 d) with a fixed d > 0, then Gupta's maximum means
ieg€s

procedure Sd

is the limit of the (unique) Bayes rules as n tends to infinity.

Proof: Given X = X, by .Theorems 2 and 5 and especially (3.8) the unique Bayes
rules for n = 1,2,,.. turn out to be
(3.14) ieg S;(§) iff

X, > B( max {x, + (r-lq(q+r))1/2V-}) - r—l(q+r)ql/2 d,
j=1,...,k J J

if the ij's are distinct. By (A.9) we have
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- - -1 1/2 = N
(3'15) x[k] i E(j=]_1:]?).(,k{x.—’ + (r Q(Q"'r)) VJ }) i x[k] + Az ()_() > Where
A ( ) - 2 "]. 1/2 k—l T 2 -1 + -1/2 - - ))
2 X) = (2r q(qﬂ‘)) JZ]_ ((2r q(q r)) (X[J]_x[k]

and the function T is given by (A.1l).

Since by (3.7) X, unconditionally, has non-degenerate normal distribution,
we can assume that all the ij's are distinct. But then by (A.2) we havev
K2(§) = o(ql/z) and the proof is completed by noting that r remains fixed and
q = 62/n tends to zero if n tends to infinity.

At least we shall study the casc of linear loss functions in more detail.

Here we have to distinguish between two possibilities:

(3.16) L.(e,s) = Y (e - 9, - 8), with fixed ¢ > 0 and
1= . [k] i
ies
1/2 . .
(3.17)  L,(8,s) = § (o -9, -q/°d), with fixed d > 0.
2°: - [k] i
ies _
By Theorems 7 and 8 we know that asymptotically L2 leads to exactly one population
(the best in every situation where ¢ = 6 is fixed) whereas L1 leads to a

screening procedure cven in the limit. On the other hand for every finite n
both L1 and L2 give us screening procedures.

For the case of finite n we give now some approximations to the Bayes
rule which apply to Ll and L2 simultaneously. These approximations are very
easy to handle since they do not involve any integral and can in fact be
evaluated with the help of the functioﬁ T alone. For convenience we formulate

our results in terms of Ll'

The results for L2 follow easily since one has to replace e by ql/zd only.

Corollary 2. If under the normal model (3.1) Ll(g,s) is given by (3.16) and

e > 0 and n are fixed, then with probability one we have for o = 1,2 and
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(3.18) S (X) < S*(X) ggée(g),

where for x € IRk ie §a(§) (g£_§8(§)) iff

X, > Fgg - @eme v AL (on Ag(),

and A, A, are given by (A.8-11) and (A.17-18).

Proof: The assertion follows from (3.14), where ql/2 d is to be replaced

by e, and by the fact that for all o,B and X € IRk we have

- - 1 - ~
X * A <B( max (% + (7 lq(erm) 2V <Ry A,

(k] j=1,...,k

which is proved in the appendix.

Let us explicitly point out the following special case of (3.18) if

we take Rl and 61: Then with probability one we have

(3.19) sd1(>_<) c S*(X) € sd2(>_(),

-1/2 -1/2

where d, = g /2 r7 (q#mde, 4 = q r e - e ey,

and ay is given by (A.2).
Here we can expect that for moderate n in many cases of X = X Sd and
|
S, coincide, so that the experimenter finds the Bayes rule with the help

dz

of two means procedures, which are very easy to compute. This idea of
course analogously applies to the other approximations, which, however,

are no longer means procedures of type (3.12). Finally it should be pointed
out that it is always possible to use the exact Bayes procedure (3.14) (with
ql/2 d possibly replaced by €) if one is willing to evaluate either (A.4)

or (A.5) with the help of a computer program.
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Appendix: Expectation of the Largest of k Independently Distributed Normal

Random Variables.

We derive now lower and upper bounds for

E( max (u. + oV.)) = E (u,p), say, where
j=1,...,k I ] k™=

p, =%x,, j=1,...,k and pz " q(q+r) are fixed known and

Vo= (V.- V)" v N, 1),

)
Remark 4. Let us mention briefly that

r(q+r)'1 E( max (p. + p V.))

j=1,...,k J I
turns out to be Bayes estimate for the largest mean (i.e. e[k]) under model
(3.6) w.r.t. squared error loss. Thus our bounds (to be derived in the sequel)
multiplied with r(q+r)~1 can bé utilized also as bounds for these Bayes estimates.
Let ¢ and ¢ denote the deﬂsity aﬁd distribution function of the one-

dimensional standard normal distribution, and let T be the following auxiliary
fuhgtion which previously was used also by Goel and Rubin (1977):

£
(A.1)  T(E) = [ o(n)dn = (&) + £4(&), € € R.

T is strictly increasing, strictly con?ex and satisfies
. . -1/2 .
(A.2)  1lim T(g) =0, T(0) = (2m) , lim (T(g)-g) = 0.
£ > - : £
Moreover let
(A.3) a, = E( max V.), k =1,2,...
j=1,...,k 3

- For further study and especially tables of the ak's see David (1970).
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Lemma 2.

k-1 J -1 -1
(A.4) Ek(B’p) = P[k] + jZl é i£1¢(p (E-u[k_i+l]))[1-¢(p (g_“[k-j]))]dg
(A.5) Ek(E’p) = U[k] +

k-1 |

f@(p (Bupg I -1 oo HGITASNILE

Proof: By Chernoff and Yahav (1977) we have the following recursive

relations for j = 1,...,k-1:

E( max (p +p V, )) - E( max (p, + p V.))
. . i i
i>k-j i>k-j+1

] -1, -1
= H{ i£1¢(p (&‘Ulk_i+1]))[1'¢(p (E-u[k-j]))]dg’

which clearly imply (A.4). And (A.5) follows by the telescopic property
of the sum in (A.4).
For k = 2 this reduces to
Lemma 3.
. N /2 .. -1/2 -1 -
(A-G)‘ bz(E:P) = u[2] + 2 p T(2 p (u[l] U[z]))'
Proof:
EZ(E’Q) = E(U[Z] +p V2 + max(O,u[l] +p Vl - U[z] ' vz))

E(u

21 P Ve * mxOyy - gy 20 )

= .o +1/2> +
= u[z] + L((H[l] - u[z] 2 P vl) ).

Applying Lemma 7 of Goel and Rubin (1977) the proof is completed. Besides
we remark that (A.6) in another context (cf. Remark 4) was also derived by

Blumenthal and Cohen (1968).



For later applications let us rewrite Lemma 3 in the following way:
A.7) [ e e ec-eteyde = 2Y% 127271y for all a € R.
R :

Then we state:

~

Lemma 4. bk(y,p) 5-u[k] + Aa, a = 1,2, where

(A.8) Al =P 3. and

4

k-1
1/2 -1/2 -1 )
, = 2% jgl T2 % g, Mxp))-

(A.9) A

Proof: (A.8) is immediate. In view of (A.4) we have

k-1

-1 -1

BeCsp) <uppq v 1 [ 007 (Emup D) oC-p " (E-n ))dE.
ks k] 521 w [k] [k-j1"

Application of (A.7) and reordering of indices thus leads to (A.9).

Lemma 5. Ek(E,p) 3—“[k] +réB, B = 1,2, where

(A.10) A, =0, and

~1 —

(A.11) A 1/2p T(z'l/zp'

Ay =2

1
(u[k'—ll - U[k])) .

Proof: (A.10) is immediate. In view of (A.5) we have

, -1 -1
Ek(l_J,D) ke U[k] + {R(D(p (E-u[k]))‘b(-p (E'U[k_ll))dg:

and thus application of (A.7) leads to (A.ll);
By the convexity of T we get two further bounds with the help of

Jensen's inequality. At first we state

Lemma 6.

Ve
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. ‘ * -1
A13) ) 2 0 TOTEC  mex Gy e o V)eupy D)

Proof: Integrating (A.5) by parts leads to
k-1

o -1 -1
(A.14)  E(wp) = upp *+ 0 £{ T(p (E-u[k]))d{iz 2o " (E-up39) %

1

which equals to (A.12). And by Jensen's inequality (A.13) follows.

Remark 5. Though it is not necessary for our purposes, we point out
that Lemma 6 can be generalized considgrably as follows:
If Yl,...,Yk are independent random variables with continuous distribution
fqnctions Fl,...,Fk, then under mi}d conditions on Fl,...,Fk we have
(A.15) E( maﬁ Y.| max Y. =€) = £ + ?[l—F (nj]dn, EER,
j=l,...,k I j=1,...,k-1 13 g K

where the r.h.s. is convex in & € IR. Thus Jensen's inequality implies

(A.16) E( max Y.} > E( max  Y.) + f [1-Fk(n)]dn.
j=l,...,k J j=1,...,k=1 3 E(  max. )
j=1,...,k-17

On the other extreme, for standard normal variables, we have

E( max V.| max V.) = T( max V.) and
j=1,...,k 7 j=1,...,k-1 j=1,...,k-1
E, (0,p) = E(T( max V.)) > T(E (0,p))... > T o...0 T(0).
k*- . ) - k-1"- - -——
j=1,...,k-1 ko1

Lemma 7. L, (q, +A, B = 3,4, where
k(}_-l p) ke U[k] 8 8

(A.17)

>
[}

p T(p‘l[ak_l—k(k-l)-l(u[k]- o
with y = k_l(ul+...+uk), and

) + 21/2T(2-1/2p-

>
1]

-1 1
(A.18) A, =p T{p (“[k-l] " MK (“[k-z]‘“[k-l]))}-
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Proof: By (A.5)
-1 k-1 -1
B (wap) = upy * £{¢(p E)[l-i£1¢(p (E*upy - wpgp))ldes
which by the log-concavity of ¢ is bounded from below by
. -1 -1 -1 k-1
Mgt £R¢(p £)[1-¢(p (Brupgg - (k-1) (“[1]+"'+“[k-1]))) 1de.

Integrating by parts this in turn equals to
me =1 -1 -1 - k-1
Mgt of T(p "g)d{e(p ~(g+k(k-1) (g - 0N
R
o1 -1 -
= U[k] + pE(T(p “{ max V.-k(k-1) (“[k]‘U) })):
j=1,...,k-17 .
and by Jensen's inequality this is bounded from below by (A.17). (A.18)

follows immediately by applying (A.11) (for k-1 instead of k) to (A.13).

Remark 6. One can get more lower boundé-of type (A.18) by iterating (A.13)
N times (N = 1,2,...,k-2) before applying (A.11) (for k-N instead of k).
Note that among 42, 53 and 44 (or among Alland AZ) none of the bounds
is uniformly better than the others. One reason is that for every fixed

n € R,u T(u-ln) is strictly increasing in u.
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