D'ALEMBERT'S FUNCTIONAL EQUATION ON GROUPS

by:

R. C. Penney* and A. L. Rukhin**

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #78-21

AMS (MOS) subject classifications (1970) Primary 39A40; Secondary 22D12

^{*}This research has been supported by NSF Grant 0037-50-13955

^{**}This research has been supported by NSF Grant #MCS 77-19640

		•
		•
		,

THE D'ALEMBERT'S FUNCTIONAL EQUATION ON GROUPS

I. Reduction to a representation theory problem. We consider a functional equation of the form

$$\phi_1(gh) + \phi_2(g^{-1}h) = \sum_{i=1}^n \kappa_i(g)\lambda_i(h)$$
 (*)

where ϕ_1 , ϕ_2 , κ_i , λ_i , i = 1,...,n are some (measurable) complex functions given on a locally compact group G. We can and shall assume that functions κ_i and λ_i , i = 1,...,n are linearly independent. The equation (*) can be viewed as a generalization of the known D'Alembert's functional equation

$$\phi(gh) + \phi(g^{-1}h) = 2\phi(g)\phi(h),$$

which was studied by many authors (cf 4-6). A particular case of (*) when $\phi_1 = -\phi_2$ arises in some statistical applications and was studied by one of the authors in the situation when G is a compact Lie group [6]. The solution of (*) in the case $G = R^1$ can be found in the Aczel's book [1] (pp. 171-176, 199).

In this paper we present the solution of (*) in the case when $\int \left|\phi_{i}(g)\right|^{2} dv(g) < \infty \quad i=1,\ 2, \text{ where } v \text{ is the left Haar measure on G. Henceforth we denote the space of such functions as } L_{2}(G). \text{ We also consider the case when } \phi_{i}, \ i=1,\ 2 \text{ can be represented as a finite combination of positive definite functions.}$

Note that if
$$\varphi(g) = \phi_1(g) + \phi_2(g)$$
, $\xi(g) = \phi_1(g) - \phi_2(g)$ then
$$\varphi(gh) + \varphi(g^{-1}h) = \sum_{i=1}^{n} [\kappa_i(g) + \kappa_i(g^{-1})] \lambda_i(h) = \sum_{i=1}^{m} \alpha_i(g) \varphi_i(h) \quad (**)$$

and

$$\xi(gh) - \xi(g^{-1}h) = \sum_{j=1}^{n} [\kappa_{j}(g) - \kappa_{j}(g^{-1})] \lambda_{j}(h) = \sum_{j=1}^{r} \beta_{j}(g) \xi_{j}(h)$$
 (***)

with linearly independent functions α_i , ϕ_i , $i=1,\ldots,m$ and β_j , ξ_j , $j=1,\ldots,r$. Therefore we restrict our attention to the case $\phi_1=\phi_2$ or $\phi_1=-\phi_2$ in (*).

We reduce the solution of (*) to a certain problem in representation theory in the following way. Let us begin with the equation (**). If denotes the closure in $L_2(G)$ of the linear space spanned by the left shifts $\varphi(g\cdot)$, $g\in G$, of the function φ then the left regular representation U acts in H: $U(g)\eta(\cdot)=\eta(g^{-1}\cdot)$, $\eta\in H$ and U(g) is a unitary operator. The relation (**) implies that

$$[U(g) + U(g^{-1})]\varphi = \sum_{i=1}^{m} \alpha_{i}(g)\varphi_{i}$$

where φ denotes the vector of L corresponding to the function $\varphi(\cdot)$, and $\varphi_1, \dots, \varphi_m$ are vectors from H. Because of the definition of H, U is a cyclic representation with a cyclic vector φ (i.e. the space spanned by vectors $U(g)\varphi$, $g\in G$ os dense in H). The following results is a corollary of these considerations and the theorem 2.1.

THEOREM 1.1. Let G be a locally compact group of type one such that the elements of the form g^4 , $g \in G$, generate a dense subgroup of G. Every solution $\phi \in L_2(G)$ of the equation (**) has the form

$$\varphi(g) = \langle U(g^{-1}) \varphi, \eta \rangle$$

where U is a finite dimensional, unitary, cyclic (with a cyclic vector φ) representation of G such that the space spanned by vectors $[U(g) + U(g^{-1})]\varphi$, $g \in G$ has dimension m, and η is some vector of the representation space U.

Note that a formula for the dimension of the representation U can be obtained from the theorem 2.1.

It is immediately seen that the functional equation (***) is equivalent to the finite dimensionality of the space spanned by vectors $[U(g) - U(g^{-1})]\xi$, $g \in G$ where again U is a unitary representation with a cyclic vector ξ .

THEOREM 1.2. Let G be a locally compact group of type one such that the elements of the form g^2 , $g \in G$ generate a dense subgroup of G. Every solution $\xi \in L_2(G)$ has the same form as indicated in theorem 1.1. with ξ instead of φ , $[U(g) - U(g^{-1})]\xi$ instead of $[U(g) + U(g^{-1})]\varphi$ and \mathbf{r} instead of \mathbf{m} .

The solution of the general equation (*) now follows easily from Theorems 1.1 and 1.2.

The content of these theorems is that if G is noncompact then D'Alembert's functional equation has few solutions, as non-compact groups, usually, have few finite dimensional unitary representations.

THEOREM 1.3. Under assumtions of the theorem 1.1. if there exists a non-zero solution of (**) then G is compact.

Proof. It follows from the theorem 1.1. that every solution of (**) has the form

$$\varphi(g) = \langle U(g^{-1}) \varphi, \eta \rangle$$

with a finite dimensional representation U. However, such a matrix element cannot be square integrable unless G is compact. Indeed let K be the kernel of U. Clearly K is closed, normal subgroup of G and φ is constant on cosets of K in G. In order for φ to be square integrable K must have finite volume under Haar measure which implies compactness of K.

To prove that G is compact it suffices to show that G/K is compact. To this end we may assume that $K = \{e\}$ so that U is injective. But then G is compactly injectible, and hence C is the product of a compact group and R^p for

some p (cf. [2] s. 16.4.2). But R^p has no injective, finite dimensional unitary representations unless p=0. Thus G is compact.

We give another version of theorem 1.1.

THEOREM 1.4. Theorem 1.1 holds if one assumes that ϕ is a linear combination of positive definite functions instead of $\phi \in L_2(G)$.

Proof. It follows from Godement [3] that there exists a unitary representation U and vectors ϕ and η such that

$$\varphi(g) = \langle U(g^{-1}) \varphi, \eta \rangle.$$

These vectors φ and η can be assumed to be cyclic for U (the latter since $\varphi(g) = \langle \varphi, U(g) \eta \rangle$). Moreover we can replace η by its projection onto the closed subspace spanned by the vectors $U(g^{-1})\varphi$. Because of (**) the space of functions $\langle [U(g) + U(g^{-1})]\varphi, U(\cdot)\eta \rangle$, $g \in G$ if finite dimensional. The cyclicity of η implies that the space spanned by the vectors $[U(g) + U(g^{-1})]\varphi$ is finite dimensional and the cyclicity of φ and theorem 2.1 imply that U is finite dimensional.

2. Symmetric and anit-symmetric interwining operators. Let U be a unitary representation of the topological group G in a Hilbert space H. Let H* be the continuous dual of H and let U* be the contragradient representation to U, i.e.

$$<\xi, U^*(g)\eta> = < U(g^{-1})\xi, \eta>$$

Clearly H^* is a Hilbert space which is conjugate isomorphic with H and U^* is a unitary operator.

Let $I\left(U,U^{*}\right)$ denote the set of all continuous operators A mapping H into U^{*} such that

$$U^*(g)A = A U(g)$$
.

If A^* is the dual operator, A^* : $H^{**} = H \rightarrow H^*$, then A is said to be symmetric if $A^* = A$ and anti-symmetric if $A^* = -A$. The space of symmetric elements of $I(U,U^*)$ is denoted $I_S(U,U^*)$ and the space of anti-symmetric elements is denoted $I(U,U^*)$. Clearly

$$I(U,U^*) = I_s(U,U^*) + I_a(U,U^*).$$

Note that A* is not the same as the Hilbert space adjoint of A which is a mapping of H* to II.

We prove the following.

THEOREM 2.1. Let G be a locally compact group and U a type one unitary representation of G which possesses a cyclic vector φ . Let L_+ and L_- be the subspaces of H defined as

$$L_{+} = span\{[U(g) \pm U(g^{-1})] \varphi, g \in G\}.$$

Then

(a) If L_ is finite dimensional and the elements of the form g^2 , $g \in G$, generate a dense subgroup of G, then U is finite dimensional and

$$\dim U = \dim L_+ \dim I_s(U,U^*).$$

(b) If L_+ is finite dimensional and the elements of the form g^4 , $g \in G$, generate a dense subgroup of G then U is finite dimensional and

$$\dim U = \dim L_+ + \dim I_a(U,U^*).$$

Proof. Since the proofs of (a) and (b) are similar we prove only (b). Let L' be the annihilator of L_+ in H*. We shall establish a one to one correspondence between L' and $I_a(U,U^*)$. Specifically, the correspondence will be obtained as follows. Let $\lambda \in L'$. For each vector of the form

$$\xi = \sum_{i} c_{i} U(g_{i}) \varphi$$
 define $B_{\lambda}(\xi) = \sum_{i} c_{i} U^{*}(g_{i}) \lambda$.

We shall show that this correspondence is well defined. Granting this B_{λ} becomes a densely defined interwining operator from H to H*. The main problem in proving our theorem is to demonstarte that B_{λ} is in fact a bounded operator. This will be achieved by expanding the domain of B as much as possible.

Now, let $V = U \oplus U^*$, and let u be the von-Neumann algebra on $H \oplus H^*$ generated by the set of operators $\{V(g), g \in G\}$. Each element of u is an operator of the form $A \oplus A^*$ where

$$A = \lim_{\alpha} \sum_{g \in G} c^{\alpha}(g)U(g), \quad A' = \lim_{\alpha} \sum_{g \in G} c^{\alpha}(g)U^{*}(g),$$

and c^{α} is a net of functions on G which are supported on finite sets on G. The limits are taken in the strong operator topology.

Lemma 2.1. Suppose $A \oplus A' \in L'$. Then $A\phi = 0$ implies that $A'\lambda = 0$.

Proof. Let A and A' be represented as described above and consider the function

$$f(h) = \langle U(h) \varphi, A' \lambda \rangle$$
.

By definition

$$f(h) = \lim_{\alpha \to \infty} \sum_{g \in G} \langle U(h) \varphi, c^{\alpha}(g) U^{*}(g) \lambda \rangle =$$

$$\lim_{\alpha} \sum_{g \in G} \langle U(g^{-1}h) \varphi, \lambda \rangle c^{\alpha}(g)$$

Since $\lambda \in L'$

$$\langle U(g) \varphi, \lambda \rangle = -\langle U(g^{-1}) \varphi, \lambda \rangle.$$

Thus

$$f(h) = \lim_{\alpha} \sum_{g \in G} \langle U(h^{-1}) c_{\alpha}(g) U(g) \varphi, \lambda = \langle U(h^{-1}) A \varphi, \lambda \rangle = 0$$

and A' λ = 0 because of the cyclicity of φ . The lemma is proven.

Let C be the subspace of H defined by

$$C = \{A\varphi, A \mid A' \in G \text{ for some } A'\}.$$

For each $\lambda \in L'$ let B be the mapping of C into H* defined as $B_{\lambda}(A\phi) = A'\lambda$ where $A \oplus A' \in G$. By the Lemma 2.1 this definition makes sense.

Lemma 2.2. For all $v, w \in C$

(i)
$$\langle v, B_{\lambda} w \rangle = -\langle B_{\lambda} v, w \rangle$$

(ii)
$$B_{\lambda}U(g)v = U^{*}(g)B_{\lambda}v$$

Conversely, any linear operator B: $C \to H^*$ which satisfies (i) and (ii) has the form B = B $_{\lambda}$ where λ = B φ \in L'.

Proof. The proof of (i) is analogous to that of the lemma 2.1 and (ii) follows from the definition of B $_{\lambda}$. The last statement of lemma 2.2 is true since

$$\langle U(g) \varphi, B \varphi \rangle = -\langle \varphi B U(g) \varphi \rangle = -\langle \varphi, U^*(g) B \varphi \rangle =$$

 $\langle -U(g^{-1}) \varphi, B \varphi \rangle$

Now let $\pi\colon H\to H$ be a central projection for U, i.e. π commutes with U and with the commuting algebra of U. We call π balanced if π π^* is a central projection for V. More specifically, the general "matrix" form of an interwining operator for V is

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

where $\alpha \in I(U,U)$, $\delta \in I(U^*,U^*)$, $\beta \in I(U^*,U)$ and $\gamma \in I(U,U^*)$. Hence π is balanced if π is central for U and $\delta \pi = \pi^* \gamma$ for all $\gamma \in I(U,U^*)$. (The β -identity follows from γ -identity by transposition). Intuitively, "balanced central projection" means that if an irreducible representation U_0 "occurs" in π , then U_0^* also "occurs" in π given that U_0^* "occurs" in U. Of course, U might have no discrete spectrum, so this is only formal.

Lemma 2.3. If π is balanced, then $\pi L_+ \subset L_+$. If there is a non-zero balanced projection π such that $\pi L_+ = 0$ then the image of π is one-dimensional and U is trivial on the image of π .

Proof. It suffices to show that π^* maps L' into L'. Let $\lambda \in L'$. Then $\lambda = B_{\lambda} \varphi$ and $\pi^* \lambda = \pi^* B_{\lambda} \varphi$. But then

$$< U(g) \varphi, \pi * \lambda > = < U(g) \varphi, \pi * B_{\lambda} \varphi > = - < \varphi, B_{\lambda} \pi U(g) \varphi > =$$

$$- < \varphi, \pi * U * (g) \lambda > = - < U(g^{-1}) \varphi, \pi * >$$

since $\pi U(g) \oplus \pi^* U^*(g) \in \mathcal{U}$. Thus, as claimed, $\pi^* \lambda \in L^*$.

Now, if $\pi(U(g) + U(g^{-1})) \varphi = 0$ then $U(g)\pi\varphi = -U(g^{-1})\pi\varphi$, so that $U(g^4)\pi\varphi = \pi\varphi$. Since the elements g^4 generate a dense subgroup, U is trivial on the image of π . Since a cyclic representation can contain the identity representation at most once, our lemma follows.

Corollary. There are only a finite number of disjoint balanced projections for U. Also $\sum_{i=1}^{q} \pi_{i} = 1$ if π_{1}, \ldots, π_{q} is a maximal family of disjoint balanced projections.

Proof. Let π_1 be the unique balanced projection such that $\pi_1 L_+ = 0$ (it is possible that $\pi_1 = 0$). If $\{\pi_i\}$ is any family of disjoint balanced projections, then $\Re \pi_i L_+ \subset L_+$. By finite dimensionality there can be at most a finite number of such π_i . The equality $\sum_1^q \pi_i = I$ for a maximal family follows from the fact that π is balanced iff $I - \pi$ is balanced.

This corollary allows us to assume that in the proof of finite dimensionality of U, the identity is the only non-zero balanced projection. In this case U is "almost" a primary representation as the next lemma shows.

Lemma 2.4. U has at most two disjoint central projections.

Proof. Let π be a central projection for U. Let H_{π} be the image of π in H and let $H_{\widetilde{\pi}}$ be the closure of the image of H_{π} under $I(U,U^*)$. Let $\widetilde{\pi}$ be the projection in H* onto $H_{\widetilde{\pi}}$. It is clear that $H_{\widetilde{\pi}}$ is invariant under U* so that $\pi \oplus \widetilde{\pi} \in G$. We claim also that $\pi \oplus \widetilde{\pi} \in G$. To see this it is sufficient to prove that $\pi \oplus \widetilde{\pi}$ commutes with G. It is obvious that $H_{\widetilde{\pi}}$ is invariant under any operator which commutes with U*, so it suffices to show that $\widetilde{\pi}A = A\pi$ for all $A \in I(U,U^*)$ and $\pi A' = A'\widetilde{\pi}$ for all $A' \in I(U^*,U)$. The first identity is proven as follows

$$\pi A = \pi A \pi + \pi A (I - \pi) = A \pi + \pi A (I - \pi)$$

Now, since π is central $U|\pi$ is disjoint from $U|(I-\pi)$ (i.e. they contain no equivalent sub-representations) and $\pi A(I-\pi) = 0$.

The second identity follows similarly using the inclusion $A'H_{\widetilde{\pi}} \subset H_{\pi}$, which holds since A'A maps H_{π} into H_{π} for all A \in I(U,U*).

Therefore $\pi \oplus \tilde{\pi}$ and $(\tilde{\pi})^* \oplus \tilde{\pi}^*$ are central projections. Hence their product $\pi(\tilde{\pi})^* \oplus \pi^*\tilde{\pi}$ is central, so $\pi(\tilde{\pi})^*$ is balanced. Thus $\pi(\tilde{\pi})^* = I$ or 0. If $\pi(\tilde{\pi})^* = I$, then $\pi = I$. If $\pi(\tilde{\pi})^* = 0$, then $\pi + (\tilde{\pi})^*$ is a balanced projection and $\pi + (\tilde{\pi})^* = I$. But if $\sigma \leq \pi$ (i.e. $\sigma\pi = \sigma$), then $(\tilde{\sigma})^* \leq (\tilde{\pi})^*$, so that $\sigma + (\tilde{\sigma})^* = I$. The latter is impossible unless $\sigma = \pi$. Thus if $\pi \neq I$, then π has no smaller central projections. Since π was arbitrary this shows that π and $I - \pi$ are the only central projections for U. Q.E.D.

Now, let π be a minimal central projection for U. By the above lemma I - π is also such a projection. By restricting U to the image of π we may

assume that the only central projection for U is I. Hence U is a primary representation so U must be of the form nU_0 where U_0 is an irreducible representation and $n \in \{1,2,\ldots,\infty\}$. If one shows that U_0 is finite dimensional then it will follow that U is finite dimensional since a cyclic representation cannot contain any finite dimensional representation with infinite multiplicity (see [2]s, 15.5.3). Thus can take $U = U_0$.

We prove that in the irreducible case the set C (the domain of B_{λ}) equals H. To see this we use the fact that a topologically irreducible representation of a C*algebra is algebraically irreducible (cf [2], 2.8.4). Let C*(G) be the group C*algebra of G. Let U (resp. U*) denote the representation of C*(G) corresponding to U (resp. U*). If $f \in C*(G)$, then $\tilde{U}(f) \oplus \tilde{U}^*(f) \in G$. It follows that $\tilde{U}(f) \oplus G$ c for all $f \in C*(G)$. But the set of $\tilde{U}(f) \oplus G$ is invariant under U, and U is irreducible. Hence C = H as claimed. Since B_{λ} has an adjoint operator, it follows from the closed graph theorem that B_{λ} is continuous. As U is irreducible the space $I(U,U^*)$ is at most one dimensional. The mapping $\lambda \to B_{\lambda}$ is injective from L' to $I(U,U^*)$, so L' is at most one dimensional. This shows that L_{+} has finite co-dimension in H, what implies finite dimensionality of H. Thus the proof of the finite dimensionality of U in general is finished.

Since U is finite dimensional B_{λ} is a continuous operator from H* to H*. The mapping $\lambda \to B_{\lambda}$ is injective. It is also surjective for if $B \in I(U,U^*)$ then $\lambda = B\varphi \in L'$. It is easily seen that $B = B_{\lambda}$. Thus

 $\dim U = \dim L_+ + \dim L' = \dim L_+ + \dim I_a(U,U^*)$

and the theorem 2.1 is proven.

References

- 1. J. Aczel, Lectures on functional equations and their applications. Academic Press, New York, 1966.
- 2. J. Dixmier, Les C*-algebres et leurs representations, Deuxieme edition, Pairis, Gauthier-Villars Editeur, 1969.
- 3. R. Godement, Les fonctions de type positif et la theorie des groups, Trans. Amer. Math. Soc. 63 (1948), 1-84.
- 4. M. Hosszu, Some remarks on the cosine functional equation, Publ. Math. Debrecen 16 (1969), 93-98.
- 5. Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69-74.
- 6. T. A. O'Connor, A solution of D'Alembert's functional equation on a locally compact Abelian group, Aequationes Math. 15 (1977) 235-238.
- 7. A. L. Rukhin, The families with a universal Bayesian estimator of the transformation parameter, Symposia Math., 27 (1977), 19-26.

	•
	•
	·
•	
	•