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THE D'ALEMBERT'S FUNCTIONAL EQUATION ON GROUPS

I. Reduction to a representation theory problem. We consider a functional

equation of the form
-1 n
- *
¢, (gh) + ¢,(g "h) = izl <; (@)1 (h) ™

where ¢l,.¢2, Ki,‘Ai, i=1,...,n are some (measurable) complex functions
given on a locally compact group G. We can and shall assume that
functions Ky and Ai’ i= l,L..,n are linearly independent. The equation

(*) can be viewed as a generalization of the known D'Alembert's functional

equation

o(gh) + o2 Th) = 26(g)¢(h),

which was studied by many authors (cf 4-6). A particular case of (*) when
$; = -9, arises in some statistical applications-and was studied by one of
the authors in the situation when G is a compact Lie‘group [6]. The solution
of (*) in the case G = Rl can be found in the Aczel's book [1] (pp. 171-176,
199). | |

In this paper we present the solution of (*) in the case when
f|¢i(g)|2dv(g) <o i=1, 2, where v is the left Haar measure on G. Hence-
forth we denote the space of such functions as LZ(G){’ We also consider the
case when $5> i =1, 2 can be represented as a finite combination of positive

definite functions.

Note that if «(g) = ¢;(g) + ¢,(8), £(g8) = ¢;(8) - ¢,(g) then

q(gh) + ¢g7'h) =
1

e~

m
RCCE < (g () = Le@gm o

and



=

T
E(gh) - £(g M) = ] [k;(8) -« (g )]A (h) = } B; (8 () ()
j=1 j=11

with linearly independent funccions ais o i=1,...,mand Bj, Ej, j=1,...,r.
Therefore we restrict our attention to the case ¢1 = ¢2 or ¢1 = -¢2 in (.

We reduce the solution of (*) to a certain problem in representation
theory in the following way. Let us begin with the equation (**). If
denotcs the closurc in LZ(G) of the linear spacé spanned by the left shifts
q(g-), g € G, of the function ¢ then the left regular representation U acts
in H: U(g)n(-) = n(g-;-), n € H and U(g) is a unitary operator. The relation

(**) implies that
. -1 m. _
[U(g) + U(g D]l¢= ] o, (8) ¢,
i=1

where ¢ denotes the vector of L correspondlng to the function ¢(-), and
%p»--+» %, are vectors from H. Because of the definition of H Uis a cyclic
representation with a cyclic vector ¢ (i.e. the space spanned by vectors
U(g)¢, g € G os dense in H). The following results is a corollary of these
considerations and the theorem 2.1.

THEOREM'I.I, Let G be a locally compact group of type one scch that
the elements of the form g4, g € G, generate a dense subgroup of G. Every

solution ¢ € L2(G) of the equation (**) has the form

wg) = <Ug™ Mg n>

where U is a finite dimensional, unitary, cyclic (with a cyclic vector: ¢)

representation of G such that the space spanned by vectors [U(g) +,U(g~1)]¢,'

g € G has dimension m, and n is some vector of the representation space U.
Note that a formula for the dimension of the representation U can be

obtained from the theorem 2.1.



It is immediately seen that the functional equation (***) is equivalent
to the finite dimensionality of the space spanﬁed by vectors [U(g) - U(g_l)]g,
g € G where again U is a unitary represéntation with a cyclic vector .

THEOREM 1.2. Let G be a locally cbmpact group of type one such
that the elements of the form gz, g € G generate a dense subgroup of G. Every
solution & € LZ(G) has the same form as indicated in theorem 1.1. with £ instead
of ¢, [U(g) - U(g_l)]g instead of [U(g) + U(g_l)]¢ and r instead of m.

The solution of the general equation (*)} now follows easily from Theorems
1.1 and 1.2.

The content of these theorems is that if G is noncompact then D'Alembert's
functional equation has few solutions, as non-compact groups, usually, have
few finite dimensional unitary representations. .

THEOREM 1.3. Under assumtions of the theorem 1.1. if there exists a
non-zero solution of (**) then G is cémpact.

Proof. It follows from the theorem 1.1. that every solution of. (**)

has the form

¢(g) = <Ulg g n>

with a finite dimensional representation U. However, such a matrix element
cannot be square integrable unless G is compact. Indeed let K be the kernel
of U. Clearly K is closed, normal subgroup of G and ¢ is constant on cosets
of K in G. 1In order for ¢ to be square integrable K must have finite volume
under Haar measure which implies compactness of K.

To prove that G is compact it suffices to show that G/K is compact. To
this end we may assume that K = {e} so that U is injective. But then G is com-

pactly injectible, and hence C is the product of a compact group and RP for



some p (cf. [2] s. 16.4.2). But RP has no injective, finite dimensipnal
unitary representations unless p = 0. Thus G is compact.

We give another version of theorem 1.1.

THEOREM 1.4. Theorem 1.1 holds if one assumes that ¢ is a linear com-
bination of positive definite functions instead of ¢ € LZ(G).

Proof. It follows from Godement tS] that there exists a unita;y rep-

resentation U and vectors ¢ and n such that

¢(g) = <U(g_1)¢,n>.

These vectors ¢ and n can be assumed to be cyclic for U (the latter since
«(g) = <¢,U(g)n>). Moreover we can replace n by its projection onto the
ciosed subspace spanned by the vectors U(g—1)¢. Because of (**) the space

of functions <[U(g) + U(g-l)]¢, U(-)n>,_g € G:if finite dimensional. The
cyclicity of‘n implies that the space spanned by the vectors [U(g) + U(g-l)]¢
is finite dimensionalvand the cyclicity of ¢ and theorem.Z,l imply that U

is finite dimenéional.

2. Symmetric and anit-symmetric interwining operators. Let U be a unitary

representation of the topological group G in a Hilbert space H. Let H* be the
continuous dual of H and let U* be the contragradient representation to U,

i.e.
<€,U*(g)n> = <U(g L)g,n>

Clearly H* is a Hilbert space which is conjugate isomorphic with H and U* is
a unitary operator.
Let I(U,U*) denote the set of all continuous operators A mapping H into

U* such that

U*(g)A = A U(g).



If A* is the dual operator, A*: H** = H > H*, then A is said to be symmetric
if A* = A and anti-symmetric if A* = -A. The space of symmetric elements of
I(U,U*) is denoted IS(U,U*) and the spaée of anti-symmetric elements is

denoted I(U,U*). Clearly

I(U,U%) = I_(U,U%) + I (U,U%).

Note that A* is not the same as the Hilbert space adjoint of A which is a
mapping of H* to II.

We prove the following.

THEOREM 2.1. Let G be a locally compact group and U a type one unitary
representation bf G.which possesses a cyclic vector g. Let L, and L_ be the

subspaces of H defined as

L, = span{{U(g) + U(g )]¢ g € GJ.

Then
(a) If L 1is finite dimensional and the elements of the form g2, g €6,

generate a dense subgroup of G, then U is finite dimensional and

dim U = dim L+ dim IS(U,U*).

(b) 1If L+ is finite dimensional and the elements of the form g4,
g € G, generate a dénse subgroup of G then U is finite dimensional

and

dim U = dim L, + dim Ia(U,U*).

Proof. Since the proofs of (a) and (b) are similar we prove only (b).
Let L' be the annihilator of L, in H*, We shall establish a one to one cor-
respondence between L' and Ia(U,U*). Specifically, the correspondence will

be -obtained as follows. Let » € L'. For each vector of the form



g = g c; Ulg;)g  define B, (€) = ; c; U*(g;)A.

We shall showvthat.this corréspondence!is well defined. . Granting this ?A
“becomes a densely defined interwining dperator from H to H*. The main problem
in proving our theorem is to demonstarte that BA is in fact a bounded bperator.
This will be achieved by expanding the domain of B as much as possibie.

Now, let V = Ué U*, and let, G be the von-Neumann algebra on H @ H*
generated by the set of operators {V(g), g € G}. Each élement of G is an
operator of the form A @ A' where |

A=1lim § c(@U(g), A' =1lim J c*(g)U*(g),
% g6 % g6

-and c” is a net of functions on G which are supported on finite sets on G.
The limits are taken in the strong operator topology. |

Lemma 2.1. Suppose A @ A' ¢ tand ) € L'. Then Ag¢ = 0 implies that
A'yA = 0.

Proof. Let A and A' be represented as described above and consider the

~function
f(h) = <UCh)¢,A'A>,
By definition

£(h) = 1im ] <U(h)g,c%(g)U*(g)A>=
. €

g€G

lim ) <U(g'1h)q,x> <*(g)
: a .
g€G

Since A € L'

U gr> = -<U(g Hgns.



Thus

£(h) = 1im § <UD ()U(g)¢ A = UG Hag > = 0
g€t ‘

and A'X = 0 because of the cyclicity of ¢. The lemma is proven.
Let C be the subspace of H defined by

C={Ag, A A" € G for some A'}.

For each A € L' let B be the mapping of C into H* defined as BA(A¢) = A'A
A
where A @ A' € (. By the Lemma 2.1 this definition makes sense.

Lemma 2.2. For all v, w € ¢

(1) «<v, BAW> = '<BAV’W>

‘(ii) B,U(g)v = U*(g)B,v

Conversely, any linear operator B: ( - H* which satisfies (i) and (ii) has
the form B = B, where A = Bg € L'.
Proof. The proof of (i) is analogous to that of the lemma 2,1 and

(ii) follows from the definition of BA' The last statement of lemma 2.2 is

true since

<U(g) ¢, B> = -<qBU(g) ¢> = -<¢,U*(g)Bep> =

<u(g HgBe

Now let w: H - H be a central projection for U, i.e. 7 commutes with
U and with ‘the commuting algebra of U. We call w balanced if # 7* is a central
projection for V. More specifically, the general '"matrix'" form of an interwining

operator for V is



where o € I(U,U), & € I(U*,U*), g € I(U*,U) and y € I(U,U*). Hence
m is balanced ifn is central for U and 7= rn*y for all y € I(U,U*). (The
B-identity follows from y-identity by t}ansposition). Intuitively, '‘balanced

"occurs'

central projection' means that if an irreducible répresentation U0
in w, then Ua also "occurs'" in 7 given that Ua "occurs" in U. Of course, U

might have no discrete spectrum, so this is oniy formal.

Lemma 2.3, If w is balanced, then wL+ C:L+. If there is a non-zero
balanced projection 7 such that nL+ =0 then.the image of 7 is qne—dimensional
and U is trivial on the image of w.

Proof. It suffices to show that 7* maps L' into L'. Let A € L'. Then

A = B g and T = m*B, ¢. But then

<U(g) ¢, m*A>= <U(g) ¢T*B, ¢ = -<¢,B,1U(g) > =

- <@ A= < <U(g V)¢,

since wU(g) @ w*U*(g) €. u; Thus, as claimed, T*A € L',

Now, if w(U(g) + U(g_l))¢ = 0 then U(g)w¢ ='-U(g'1)n¢, so that
U(g4)n¢ =>n¢.' Since the elements g4 generate a dense subgroup, U is trivial
on the image of n.- Since a cyclic'representation can contain the identity
representation at most once, our lemma follows.

Corollary. There are only.a finite number of disjoint balanced projections
for U. Also g m,o= 1 if nl;.;.,nq is a maximal family of disjoint balanced
projections.

Proof. Let ™ be the unique balanced projection such that w L =0

1

(it is possible that w, = 0). If {ni} is any family of disjoint balanced pro-

1

jections, then XBWiL+ < L,. By finite dimensionality there can be at most a

finite number of such LI The equality E T, = I for a maximal family follows
o9 .

from the fact that 7 is balanced iff I -m is balanced.



This corollary alloWé us to assume that in the proof of finite dimen-
sionality of U, the identity is the only non-zero balanced projection. In
‘this case U is "almost' a primary representation as the next lemma shows.

Lemma 2.4. U has at most two disjoint central projections.

Proof. Let m be a central projection for U. Let HTr be the image of
m in H and let H% be the closure of the image of H% under I(U,U*). Let ;
be.the projection in H* onto H%. It is ;lear that H; is invariant-under U*
so»that T P ; < G'. We claim also that = &); € L. To see this it ié
~sufficient to prove that n(§ ; commutes with, 4'. It is obvious that H%
is invariant under any operator which commutes with U*, so it suffices
to show that mA = Ar for all A € I(U,U*) and mA' = A'n for all A' € I(U*,U).

The first identity is proven as follows

mA = wAm + 1A(I-w) = Am + 7A(I-m)

Now, since w is central Uln is disjoint from Ul(I-n) (i.e. they contain no
equiQalent sub-representations) and ;A(I—w) = 0.

The second identity follows similarly using the inclusion A'H% C:H%,
which holds since A'A maps HTT into HTr for all A € I(U,U%).

Therefofe T % and (¥)* @ F* are central projections. Hence their product
n(#)* @ rv*% is central, so w(#)* is balanced. Thus w(#)* = I or 0. If w(M)* =
I, then m = I. If w(%)* = 0, then m + (#)* is a balanced projection and
m+ (f)* = I. But if o <w (i.e. on= o), then (§)}* < (%)*, so that o + (8)* = I.
The latter is impossible unless o = m. Thus if m # I, then m has no smaller
central projections. Since w was arbitrary this shows that w and I - w are
the only central projections for U. Q.E.D.

Now, let w be a minimal central projection for U, By the above lemma

I - = is also such a projection. By restricting U to the image of w we may
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assume that the only central projection for U is I. Hence U is a primary
representation so U must be of the form nU0 where U0 is an irreducible
representation and n € {1,2,...,}. If one shows that Uy is finite dimen-
sional then it will follow that U is finite dimensional since a cyclic
representation cannot contain any finite dimensional representation with
infinite multiplicity (see [2]s, 15.5.3). Thug can take U = Uo.
We prove that in the irreducible case the set C (the domain of BA)
equals H. To see this we use the fact that a topologically irreducible
representation of a C*algebra is algebraically irreducible (cf [2]; 2.8.4).
_Let C*(G) be the group.c*algebra of G. Let‘U (résp. U*) denoteithe repre-
sentation of C*(G) corresponding to U (resp. U*). If f E-C*(G), then
U(£) @ U(£) € 6. It follows that U(f)g € C for all £ € C*(G). But the set
of ﬁ(f)¢ is invariant under U, and U is iffediucible. Hence C = H as ciaimed.
Since BA has an adjoint operator, it f@llows from the closed graph theorem
that B, is continuous. As U is irreduéible the space I(U,U*) is at most one

A

dimensional. The mapping A + B, is injective from L' to I(U,U*), so L' is at

A

most one dimensional. This shows that L+ has finite co-dimension in H, what
implies finite dimensionality of H. Thus the proof of the finite dimensionality
of U in general is finished.

Since U is finite dimensional B, is a continuous operator from H* to H*.

A

The mapping A -+ B, is injective. It is also surjective for if B € I(U,U*) then

A
A =Bg€L'. It is easily seen that B = B> Thus

dim U = dim L, + dim L' = dim L, + dim Ia(U,U*)

and the theorem 2.1 is proven.
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