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SUMMARY

This paper deals with the classical Gupta (1956,65) - approach ("Minimize
the expected subset size under the P*—condition") in the case of three normal
populations with a common known variance and equal sample sizes n.

By the method of Lagrangian (undetermined) multipliers a function .
(jnvo]ving ¢- and ¢-terms only) is derived which is a conQenient tool to
find optimal procedures within Seal's (1955,57) class. Nuherica] work together
with asymptotical results lead to the concldsion that for every fixed P* and

mean vector p,Gupta's (1956) means procedure is optimal within Seal's class

~for sufficiently large sample size n.




‘Typographical Corrections

“"Optimality of subset selection procedures for ranking means of three normal

populations" by‘S. S. Gupta and K. J. Miescke, Mimeo Series #78-19.

38: "... where {i,j,k} = {1,2,3} and h is appropriately ..."

3 . insert between 3..and 3 "For a symmetric ‘h this type of

7 6"
monotonicity can, equivalently, be described by"f

67: "... of a standard normal ..."

7,:. replace'vy”_by ',

12,: replace "P*(b,c)" by "1 - P*(b,c)".






OPTIMALITY OF SUBSET SELECTION PROCEDURES FOR RANKING MEANS
OF THREE NORMAL POPULATIONS*

by

Shanti S. Gupta and Klaus J. Miescke
Purdue University University of Mainz

1. Introduction

Suppose there are k normal popu]ations-n],...,nk with unknown means
Hyoe el and a common known variance which for convehience we assume td
be unity. Further let X],...,Xk be the samp]e means of k 1ndependent samples
each of siie n from LEERESLIE If our goal is to select a (non-empty) subset
S of {ﬁ],...,nk} which contains the "best" bopu]ation - i.e. the population
associated with the largest mean - there are several reasonable requirements
which we could impose upon such a subset selection procedure S. A classical
approach due to Gupta (1956,1965) is the following:

"Minimize the expected subset'size'EE(ISI) under
(1.1) 1Hf PE{CSIS} = P*, where 0 < P* < 1 is a predetermined constant

and "CS" denotes a correct selection - i.e. the selection of any

subset which includes the best population.
Now Seal (1955) pkoposed the following natural class ¢ of procedures:

(1.2) Include ™ in the selected subset Sa i.e. T, € Sa iff

_ k-1 -1/2
X. > Y a.¥.-n c(asP*,k), i = 1,...,k, where
1 j=1 JJ -
Y] 5"'5-Yk-1 are the ordered values of {X]""’Xi—l’ Xi+]""’xk}

and Uyseens®y q aAre non-negative constants with ay *oot oy g F 1 and
c(o,P*,k) is determined by (1.1), the least favorable configuration (LFC)

beihg Bo= (My...5H), B € R.

*This research was supported by the Office of Naval Research contract
NO0O14-75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.



If we require S to be non-empty, then ¢ must be non-negative and therefore
a lower bound (greater than k—]) for P* (depending on a and k) has to be
observed. Let us denote this sub-class of procedures by C,. We shall
return to this point in the next section. In the sequel let us denote
S, by Sy» Sy and Sy if o equals to (1,0,...,0), ((k-1)7",...,(k-1)"1) and
(6,...,0,]), respectively. If we fix P* in (0,1) ((k-],1)) and p € Hlk, then
clearly there exist optimal procedures in ¢ (C,), since Eu(lsa[) is continuous
in o and the ranges of o are compact in RX. But how to_fina them? It is
conjectured by several authoré that S] (Gupta's means-procedure)'is optimal
over much of the parameter space {u|p € Bik}, but an explicit proof of this
conjecture has been missing up to now.

Seal (1957) heuristically reduced the problem in ¢ to a comparison of
SO’ S4 and S] only, and then he showed'for k = 3 that in special parameter
situations S0 is inferior to S, and S, is inferior to Sq- Furthefmore,
superiority of S, w.r.t. other members of C, was deduced by Berger (1977)
heuristically, who proved that there are P*-values for which 51 is the only
procedure within ¢, which is minimax w.r.t. the expécted subset size.

Finally Deely and Gupta (1968) showed that in the special slippage
' 12

configuration y = (u,...,u*s), & > 0, EE(|S]|) < Eu(]S*l) if n s
greater than a constaht depehding on P* and k on]y? But as they pointed out;
"Because of the difficult distribution problems involved, the general
comparison of the rule R (S]_here) in the class ¢, is hard to make".

In this papef we extend the results of Deely and Gupta (1968) in the
case 6f k = 3 to the fo]Towing: Let € e(O,]); ey > 0 be fixed. Then there
exists a lower bound N(e],ez) for n, above which S] is optimal within both

c, and ¢ for all P* ¢ [eys1-¢7] and all y € R with ful = /u$+...+uﬁ > ey



Especially, we can prove that S, within C can never be optimal, a resuit

which is to some extent contradictory to the results of Seal (1957).

2. A general class of procedures for k = 3.

From now on we restrict ourselves to the case of k = 3. Thus we start
with independent variables Xi ~ N(ui, n']), i =1,2,3. Since we restrict
our considerations to procedures which are invariant under permutafions as
well as under common location shifts of the observables X],XZ,X3, we henceforth
assume without loss of generality that p = (u],uz,u3) = (0,8,0+8), A8 > 0,
holds.

By the 1mpo$ed location invariance we arrive at the maximal invariant

2,)'(]—X3,X2-)'( ) as -a suitable statistic, where of course one of the
2

three differences is redundant. Let h: IR™ > IR be a continuous symmetric

(X-l_x

function with the properties that h(O;O) = 0 and h(s],sz) 5_h(t],t2) for all
54 f_t], and S, 5_t2.' Because of the permutation invariance, the only natural

procedures that are appropriate are of the form:

" (2.1) Include m, in the selected subset Sh(X],Xz,X3) iff h(n]/2

(X'I-XJ ) s
n]/z(ii-ik)) > 0 where {i,j,k} = {1,2,3} where h is an appropriately

chosen so that (1.1) is satisfied.

(2.2) a) h(t],tz) < h(t]+u,t2), 0 <ucx tz-t],
b) h(t],tz) j_h(t],t2+u), ty <ty U > 0,
c) h(t],tz)'f_h(t]+u,t2+u), t; <ty u>0.

Let H be an auxiliary function defined by
H(t,v) = h(t,t+v), t € R, v > 0.

Then (2.2) rewritten in terms of the function H reads as follows:



(2.3) a) H(t,v) < H(t+u,v-u), 0 <u < v, t € R,
b) H(t,v) < H(t,vtu) , 0 <wu, v, t € IR,
c) H(t,v) < H(ttu,v) , 0 <u, v, t € IR.

By c) we get the function r(v) = inf{t|H(t,v) > 0}, v > 0, with r(0) <O

which by b) is non-increasing and obviously has the following property:
(2.4) H(t,v) >0 iff t > r(v), t € IR, v > 0.

Finally from a) and (2.4) we conclude that

(2.5) r{v-u) < r(v)+u, 0 < u < v, holds.

Putting ¢ = -r(0) and q(v) = r(v) + c we arrive at the following representation
of the general class of procedures given by (2.1):

-]/2 1/2 -1/2

q\ 1272273 IX X 1)-n"""c(q,P*)

where {i,j,k} = {1,2,3}, q is a continuous non-increasing function with

(2.6)  wy €S (Ry.%,0%;) iFf Xp > max(R;,K ) +n

q(0) = 0 and q(v-u) < q(v) + u, 0 <u < v and c(q,P*) is a constant
“determined by (1.1).

There are of course many possible choices for q. The simplest, however, is a
- function q being Tinear, more explicitly q(v) .= av, v > 0, with a el-1,01.
Besides we note that no other choice within the c]aés of polynomia]s is possible, -
since there are no other polynomials satisfying -1 5_%§-q(x) < 0 for all x Z_O; :
In this way we arrive at Seal's class of procedures, since by letting b = atl,
(2.6) reduces to c or C,: |

-1/2

(2.7)  w; € S,(R2%p%g) FF Xy 2 b max(%,.%,) + (1-b) min(X; R, )-n c(b,P*),

1272273
where {i,j,k} = {1,2,3}, b € [0,1] and c(b,P*) is a constant

determined by (T.]).

If b equals to 0, 1/20r 1, Sb turns out to be SO’ S, or S], respectively.



If we restrict our considerations to procedures which never select
empty subsets (i.e. to c+), then c(b,P*) > 0 must be observed. In this
case for every b € [0,1] the possible P*-values for Sb are restricted from

below by

(2.8) P(O,O,O){X3 > b max(X],Xz) + (1-b)min(X],X2)}

= 270 are t9(37V2(2b-1)), b € [0,1].

(This result also follows from (3.1) with ¢ = 0, differentiation w.r.t. b,
transformation as in (3.5) and finally by (3.7).) Besides we remark that
for P* > 1/3 (i.e. c(1,P*) > Q) S] can be put in the following perhaps more

familiar form:

€ Sq(X)3%,5%3) iFF K. > max(X;.X,.%,) - 072 c(1,p%).

(2-9) s 1399

i
To prove that for any fixed P* and E,Sllis optimal within both C and c, for

sufficiently large n, it suffices to do the fo]]owing_two‘steps:

1) To show with the method of Lagrangian (undetermined) multipliers, that
for'sufficient]y large n no S, With 0 < b < 1 has an (not even local)

extremal EH(ISbl), a fact which clearly implies monotonicity of EE(ISbl) in b.

- 2) To show that for sufficiently large n, S]'is superior to SO.

3. Optimality within Seal's class for k = 3.
We will now simpTify the notation considerably by putting n equal to 1 in
the sequel. Thereby we do not really lose any generality, since we can always

]/ZE throughout the

transfer to cases n > 1 very quickly by only replacing u by n
following sections. Especially we point out that our results for "Targe
A(8)"- derived later on are to be interpreted as results for "large n and

fixed (or bounded from below) A(8)" in the general case.



Let ¢ and ¢ denote the density and the c.d.f. of a standard
distribution. Then we have for {i,j,k} = {1,2,3} and for 21,22,23 i.i.d.
N(0,1):

Pu{ﬂi € sb(x1,x2,x3)}

PE{Zi Z.b(zk + Uk) + (]-b)(zj + Uj) - C - His Zj+uj f_zk + Uk} +

P“{Zi z_b(Zj + uj) + (1—b)(Z. + uk) - C - “i’ Zk+pk f_Z. + uj}

f f [1-e(bn + (1-b)g - chu =) Jo(etn, - by )dg o(n)dn

-00 00

+ f f [1-2(bnt+(1-b)&- S ) Jo(e+u, -uk)dﬁm( n)dn

—-00 =00

and

(3.1) 2 f f [1-¢ bn+(1 b)e-c)lop(g)dep(n)dn = P*

=00 Q0

Thus for u = (0,4,A+8), A,$ 3_0; we have
(3:2) EIs]) -

2 3
-,Z] _Z f IU 2(br+(1-b)E+A, ;) Jo(£4B s )dgo(n)dn
J=1 121 - -

where the A 's and B ‘s are given by Table 1 below.

Table 1 i=1 i=2 i =3

A_”' -ct+A+ 8 -Cc+ 8 -C-96
B_,” S A+ S A

A. -c+ A - C - A -C~-A-36
i2 7

Bi_2 _ -4 - A-38 - A

Now if u = (0,4,0+8) and P* ¢ (0,1) are fixed, b varies over [0,1] and
c(b,P*) is determined by (3.1), then E“(ISbI) is a continuous function of

b € [0,1] and therefore assumes at least one minimal value at B, say,



which gives us an optimal'procedure 56 in ¢. At this point it Seems to be
natural to use the method of undetermined (Lagrangian) multipliers to find
such a b. (By Lebesgue's dominated convergence theorem itbis easy to convince

oneself that steps up to (3.4) are valid). The three equations are (3.1) and

2 o, 2

d K
(b) SE'EE(ISbI) X 3¢ P(0,0,0) (SIS}

where A is the undetermined multiplier.

This can be put in the following form:

[+]

2 3 |
(3.4) (a) .2] .Z] i f (n-€)e(bn + (1-b)g + A, )cp(£+B 5)dEq(n)dn
j=1 i=

-00 =00

- 2n [ [ (n-€)elbn + (1-b)e-c)e(E)dep(n)dn,

2 3

(b) _2] _Z] [ [ olbn + (1-b)g + A;5)e(54B 5 )dzg(n)dn
j=1 1=l -= - :

- 2n [ olbn + (1-b)g +c)ol)dee(n)dn.

=-g0 =00

By change of variables u = £ and v = n-g, we arrive at

2

(3.5) (a) ) Z [/ v@(y+bv+A )m(u+B )w(u+v)d(u,v)
J =1 i=1 {v>0} .

=2x [f v¢(u+bv-c)¢(U)¢(u+v)d<u,v)
{v>0}
3

2 .
() Y Y [f ¢(u+bv+A )m(u+B )m(u+v)d(u,v)
j=1 i=1 {v>0}

=22 [ m(u+bv cepl(u)p(utv)d(u,v).
{v>0} _
Clearly the next step is to eliminate A by dividing equation (3.5) (a) by

equation (3.5) (b).  Moreover, we shall see that it is possible to reduce



the double-integrals to relative simple terms. But we clearly point out
_.that this is possible only in case of k = 3, since otherwise higher integrals

are involved. We proceed now to carry out this reduction: -

Lemma 1. For all u,v,b,A,B € IR

@(utbv+A)p(u+B)p(u+v)

31/2

= o uta)p(Bvty)p(e),  where

(3.6) o= 3 VZ2(ptB+(14b)v)

g = (2/3) 2 (b%-b+1)1/?

6" 1/2((2b-1)A-(1+b)B) (b2-b+1)~1/2

e = 272 (A+(b-1)B) (b-p+1)"1/2

The proof is straightforward ahd therefore omitted here.

Lemma 2. For all b,A,B € IR

(3.7) J] ve(utbv+A)p(u+B)e(utv)d(u,v)
{v>0}

= 3712672 () loly)-y(1-0(v))]

where 8,y and ¢ are given by (3.6).

Proof: By lemma 1 the 1.h.s. of (3.7) equals to

{ fé}v¢(31/2“+a)w(BV+Y)¢(6)d(u,V)
V>

o0

= ole)] (3" 2uta)du [ velviy)av
- 3']/2¢(a)£ vo(avy )dv.

Substituting w = gv+y this equals



oo

3_]/2cp(€)ﬁ-2 J(w-v)p(w)dw
Y

- which in turn equals the r.h.s. of (3.7).

Since the proof of the next result proceeds analogously, we omit

it for brevity.

Lemma 3. For all b,A,B ¢ IR

(3.8) [ olu+tbv+A)p(u+B)plu+v)d(u,v)
{v>0}

37271 () [1-0(v) ]

where B8,y and ¢ are given by (3.6).

To simplify the forthcoming formulas we introduce the fo]Towing auxiliary

function f:

£(x) = olx) - x(1-8(x)), x € IR,

which is positive, strictly decreasing and convex, since d/dx f(x)
x € IR, is negative and strictly increasing in x.

Now we are in a position to state our main result:

Theorem 1. Let y = (0,4,4+8), 4,86 > 0, and 0 < P* < 1 be fixed. [

= @(x)—],

f

S» b € (0,1), minimizes the expected subset size subject to the P*-condition

(3.1), then necessarily b and ¢ = c(b,P*) must satisfy the equation

i3 flye)

=]"¢—(Y*)
ole;5)[1-2(v;5)]

]
where the €43 s and Yi;

61/ 2(p2.b+1) 1 2(1 2p)e.

's are given by Table 2 below, and y, = 6

2 3
D)

J=1 i=1

Ys

iJ
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Table 2 i=1 i=2 i=3
31/2pyi]+(2b—1)c (2b-1)a-(2-b)§  -(b+1)a-(2-b)s  -(b+1)a-(2b-1)s

pesqte : ‘Atbs =(1-b)a+tbs  ~  =(1-b)a-s

3120y #(2b-1)c  (2b-1)a+(b+1)s  (2-b)as(b+1)s  (2-b)a-(2b-1)s

pes e A+(1-b)s  -ba+(1-b)s -ba-§

In the above table, o = 2//2 (b2 - b + 1)1/2

Corollary 1. S, is not optimal in C except when u = (0,0,0).

Proof: Since b = 1/2, we have vy, = 0 and Vi1 T TYi00 €41 T €42 i=1,2,3.

Therefore the 1.h.s. of (3.9) reduces to

3
3
121@(81])[]’®(Y1])+]‘¢(Y12)]
3 _ - 3

By the convexity of f this last expression is strictly greater than
3 | |

3
- _Z]@(511)2f(0)/‘21¢(€1]) = 2£(0) if u # (0,0,0).
i= i=
But the r.h.s. of (3.9) equals 2f(0) since ygx = 0. Thus (3.9)'hb]ds on]y'in
the case y = (0,0,0), where, of course, all procedures in C are optimal
(since E(O,O,O)(lsbl) = 3p*), |

Though we cannot get explicit solutions by using (3.9), some more
analysis is possible. |

In our asymptotic considerations in Section 5 we reétriCt ourseives‘

to the three types of parametric-configurations:
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(I) a=0 i.e. p=(0,0,8), & >0,
(II) a=¢8 i.e. u=(0,8,28), 6§ >0 and
(III) 6 =0 d.e. p=(0,A,4), A >0,

It should be noted that our numerical studies in the next section are

performed without the above restrictions.

4. Numerical results.

Let us denote the difference of the 1.h.s. and the r.h.s. of (3.9)

by G(b,c,A,8). We computed somelinteresting G-values as follows:

(i) b

(ii) ¢

0.1 (0.1) 0.9.

0 (0.5) 4.

In fact, we cover all values of c = -4 (0.5) 4, since there is a symmetry

in our problem. More precisely, we have for all u, i, b, ¢, A and §

(8:.1) Pylmy €Sy ch = 1P {mj € Spp )

“which_ implies
(4.2)  P*(b,c) = 1 - P*(1-b,-c)
and
(4:3) E(0,0,00)Sp,cl) = 3F(0,6,60a) IS1-b,-cl)-

It is easy to see (cf. Table 2) that

(4.4) G(b,c,A,6) = G(1-b,-c,6,a) for all b,c,A,s.

Remark: with our choice of c-values we cover for every b at 1éast a
P*-interval .of [0.005, 0.995], since P*(1,4) > 0.995. As to the configuration
of the means, we studied the cases p = (0,0,8) (i.e. A = 0) and y = (0,a,a+ta)

(i.e. s = ta) for
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0 (0.1) 0.5 (0.5) 2 and

(ii1) t

(iv) & = 0.25 (0.25) 2 (1) 9.

It suffices to study the above configurations, since we are in fact interested
in the general case, where p is fixed (or bounded away from 0) and n > 1
varies.

Our numerical findings are as follows: In most situations including A = 0

we have positive G-values. Negative values occur only when b > 0.5; c>2

and t < 0.5. But, and this should be emphaéized, we a]soffaund that for every
such (b,c,t) - point there is a lower bound for A.(increasing in c), béyohd
which we merely have positive G-values.

Morever, the (large A resp. &) ends of our tables c]éaY]y indicate the
beginning of fhe asymptotic behavior of G, which.we shall study in the next
section. Thus there seems to be no gap between our numerical and our asymptotical
results. And therefore we believe that our assertion stated toward the end Qf
Section 1 is sufficiently well confirmed. | | |

Finally we remark that the interesting question that remains open is
what really happens in cases where G = 0 occurs. Because of (4.2) and (4.3)
we know that if at a certain y = (0,4,A+6), Sb,c is optimal for P*(b,c),
then at u = (0,8,6+A) S1.p,-c s worst for P*(b,c). But we do not know whether
there is any extreme at all. Some fjrst attempts to find an answer with the

help of Monte-Carlo-experiments did not lead to a definitive conclusion, but

it seems worthwhile to study this point in more detail at another occasion.

5. Asymptotic results in cases (I) - (III).

Theorem 2. Let P* and b in (0,1) and therefore c(b,P*) be fixed.
Then in all caseé (I) - (III) the 1.h.s. of (3.9) tends to infinit

if 8§ or A tends to infinity.
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Proof: Since all terms m(eij), f(Yij)’ 1-¢(yij), i=1,2,3,3=1,2,
are positive, it suffices to show that

.. 1- .
(P(E-l\]) [ (I)(Y'IJ)] -+ 0 for all (isJ)°

(5-1) A5y SorEs=

Now this evidently holds for (i,j) = (2,1), since in all cases (I)-(III).

Y51 tends to -« and therefore f(y2]) tends to . The remaining five terms
are studied separately for cases (I) - (III) in the sequel.

Case (I) A =0, p = (0,0,58).

i yij).reduce to three distinct pairs (cf.

Table 2). Thus we have to prove (5.1) for (i,j) = (3,1), (1.2) only.
By o(e37)/0len) = o((-c=6)/0)/o((-c+bs)/p)

Here the six pairs (Ei

= exp{(-1/20%)[(1-b?)s7+2c(1+b)s]} 5=+ 0 and
0 < [1-0(v5))V/Flyp) < Flyyy) ™' 5= O we see that (5 .1) holds for
(i,3) = (3.1). -

For (i,j) = (1,2) we make use of the following inequalities (cf.

Feller (1968): "Large Deviations")
(5.2) 1-9(x) < (x)/x for all x > 0.
(5.3) f(x) = o(x) - x(1-¢(x)) > -x for all x < 0.

Now if 6 is sufficiently large we have Y10 > 0 and yé] < 0 and therefore

by (5.2) and (5.3)
0 = ‘P(Elz)[]"p(Y]z)]/(P(Ez-l )f('Yz'l)
< (=1/v79v97)eleqn)olv o) /oley) .

Clearly we have -1/y]2y2] R 0. And the asymptotic behavior of

m(eiz)m(ylz)/w(eZ]) can be found by Tooking at the corresponding term

associated with 62:
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exp(- (b-2)26%/60%} ~—— 0.
Thus (5.1) also holds for (i,j) = (1,2).

Case (II) a =6, p = (0,8,28).

Here we have 3]/2p y2]:+ (2b-1)c = 3(b-1)s and for i = 1,2,3
pe e (b41)s, (2b-1)s, (b-2)6 | -
pesotC: (2-b)s, (1-2b)s, -(b+1)s

By |2b-1| < |b+1], |2-b| we have for all (i,j) # (2,1)

w(eij)/@(eZ])-gf;j;+ 0. Thus the proof is completed by noting that

0 < [1-8(y;1)1/flvy) < Flyp)) ™ 55 0 holds.

Case (III) 6 = 0, u = (0,4,4).

As in case (I) we have to prove (5.1) only for two pairs: this time
for (i,3) = (1,1) and (2,2). By |

ey aley) = ol (~c+8)/0) /gl (-c-(1-b)4) /o)

= exp{(-1/20°)[b(2-b)a% - 2(2-b)cal} 7> 0 and

0 < [1-0(y; )1/ Flrpy) < Flay)) ™ 555 O

we see that (5.1) holds for (i,j) = (1,1).
For (i,j) = (2,2) we proceed as in case (I): For sufficiently large 4,

we have Yoo > 0 and Yp1 < 0 and therefore

0 < glegp)[1-2(v55) Vwleyq ) flyyy)
< (Vvppvp)eleny)olvyp)/oley).-
Clearly -1/v,,v,7 75 = 0- And since the term of ¢(522)¢(y22)/¢(52])
associated with A% turns out tb be ekp{(;1/6§2)(b+1)ZAZ}Z;;—;+ 0, (5.1)
also holds for (1,3) = (2,2). |

This comp]etés the proof of Theorem 2.
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Remark. By similar arguments one can prove, that in the general case of
p = (0,48,A+8) the 1.h.s. of (3.9) tends to infinity if A is bounded and

§ » = or if § is bounded and A » =.

6. Comparison of SO with S].

Theorem 3. Let 0 < P* < 1 and y = (0,a,a+s) # (0,0,0) be fixed. Then the

following inequalities hold:

(6.1) (a) E (I5]) < <1>(2—]/2(c]-A—5))+<I>(2-]/2(c]-6))+<I>(2']/2(c]+6))

-1/2 -1/2 1/2

() E,(Isgl) > 327 Zegra)) + o2 Acpr) et cgrats)

where Co <1+ ©o and <y correspond to S0 and S] and ére determined by (3.1).

Proof: For Z, = X; - u;» i=1,2,3 being’standard normal we have

5 |
e, (15;1) iZ]PE{ﬂi !

PLZy+ey > Z,+8,25%0%8)

1 2
+ P{22+A+c] > 17

3

],ZB+A+6}
+ P{Zgtatrstey > Z;, I,%A)
+A+8}

< PiZ *c > 17

1
+ P{22+A+c

3

> L +A+8})

1
+ P{Z3+A+6+c
-1/2

3

1 3_22+A}

(cy-a-6))%0(2 /2 (c -6))a (27 P (c +6)).

3 .

iZ]PE{ni € SO}

= (2

e (15,1)

= 1-P{Zytcy < Iyta, Zgkats)

+

1-P{Zy*a+cy < 2, Z3+a+s}

]’
<1

0
]—P{Z3+A+6+C

3

-+

0 Ly*A}

5_22+A}

‘l’
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+ 1-P{Zytavcy < )

2 0

+ 1-P{Zgtatstey < Zq)

@(2-]/2(C0_A)) + ¢(2—1/2(C0+A))+¢(2‘1/2(CO+A+6));

Corollary 2. For P* fixed and A or & or both sufficiently large we have

e, (15;1) < E(Isg])-

Proof: For & bounded we have

Tim E (I5,]) = 827172 (c, 6))+¢(2—]/2(c]+6)) and
Ao B
tn 5,5 < 2

For A bounded we have

liz EE(IS]|) =1 and
tin £, (o) = (27 (e a))re(@ M (egra)).

Finally if A and & are unbounded we have

Tim E (IS]I) =1 and
A GG ¢
1im E (|S,]) = 2.

Corollary 3. Let P* be fixed. If u = (0,a,A+8) satisfies 4,6 > ¢y-C then

EH(IS]I)< EE(ISOI)"

Proof:

L -1/2 /2, e —c. impli
§ > ¢q=Cq implies o(2 (c ]—A-G)) < o(2 (cO-A)), A+ > Cq-C implies

o(271%(c,-8)) < o(27/4(c g+h)) and 4 > cq-c d implies o(2° V2(c+8)) <

@(2']/2(CO+A+6)) At this po1nt we should rem1nd ourselves that our results

1/2

derived for n = 1 properly modified (rep]ac1ng p by n u) also hold true
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forn > 1. Thus for example the last corollary in the genera] case reads
as follows: "Let P* and u = (0,4,4+43) with 4,8 >0 be fised. ‘If
n > ((c]-co)/min(A,a))2 then we have EE(IS]|) < EE(ISOI)".

Finally, we remark that we are aware of the fact, that we studied _
a problem (optimality within Seal's class for k = 3), which on the one hand
is well known and established in literature, but which on the other hand is
only part of the more generel problem searching for an optimal function q in
(2.6). As e matter of fact there are no results in this direction till now
(also none for distrfbutions other than normal distribution) except only in
Studden (1967) (cf. core]lary (2.1) there), where the k densities, however,
‘are assumed to be known in advance and P* .is fixed on the eorresponding
parameter space.' Admitted]y sd]utions‘of_prob1em (1.1) are hard to find.
It shou]d be pointed eut that recently some optimality prob]ems have been

studied in deeision—theoretic’and, especially, in Bayesian framework.
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