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Chi-Square Tests For Multivariate Normality
With Application To Common Stock Prices

David S. Moore and John B. Stubblebine*

The theory of chi-square tests with data-dependent cells is applied
to provide tests of fit to the family of p-variate normal distribu-
tions. The cells are bounded by hyperellipses (x—i)'S-l(x-Y) = c;
centered at the sample mean X and having shape determined by the sample
covariance matrix S. The Pearson statistic with these cells is affine-
invariant, has a null distribution not depending on fhe true mean and

covariance, and has asymptotic critical points between those of XZ(M—I)
and XZ(M-Z) when M cells are employed. The test is insensitive to lack
of symmetry; but peakedness, broad shoulders and heavy tails are easily
discerned in the cell counts. Multivériate normality of logarithms of

relative prices of common stocks, a common assumption in financial markets

theory, is studied using the statistic described here and a large data base.

KEY WORDS: Chi-square tests, Goodness of fit, Multivariate normal dis-

tribution, Distribution of stock prices.



1. INTRODUCTION

Despite the frequency with which multivariate normality is assumed
in multivariate statistical models, the literature on tests of_fit for
the multivariate normal family is much smaller than that concerned with
univariate normality. Andrews, Gnanadesikan and Warner (1973j provide
a summary of proposed methods and also offer comments on the process of
assessing multivafiate normality. They note that because of the variety
of possible departures from joint normality it is desirable to have
methods sensitive to different types of departure rather than seeking a
single best method. Aside from application of univariate techniques to
marginal data, the techniques discussed by. these authors are categorized
as (1) transformation-related methods; (2) tests based on distributional
densities; (3) tests based on unidimensional views of multivariate data.
This paper studies a chi-square test for multivariate normality, using
data-dependent cells bounded by hyperellipses which are surfaces of
constant probability density function for the normal distribution with
pafameters estimated from the data. That is, the cell boundaries aré
concentric hyperellipses (x_i)'s_l(x—i) =cy centered at the sample
mean X and with shape determined by the sample covariance matrix S.

The figure illustrates these célls in £he bivariate case.

This test is a member of the second class of techniques in the
categorization of Andrews, et al. It has several advantages. First, it
is easy to choose cells having prespecified estimated cell probabilities,
and relatively easy to evaluate the test statistic. Second, the large
.sample theory of the test is nearly standard, and allows use of chi-square

critical points to assess the significance of the statistic. Third, the



nature of departures from normality is indicated by the observed cell
frequencies. This kind of data analysis is particularly simple when

the cells are equiprobable. Such.common departures from normality as
peakedness, broad shoulders, and heavy tails are directly apparent in

" the cell counts. The first and third classes of techniques discussed by
Andrews, et.al. rarely give so clear an indication of the type of de-
parture present. On the other hand, the cell counts and tests based on
them are not sensitive to lack of symmetry. Moreover, though assess-
ment of the power ofitests of fit is even more ambiguous here than in
the univariate case, tests of chi-square type are rarely characterized
by outstanding overall sensitivity. The proposed test must compete

for use, usually as one of several techniques applied in a data-analytic
setting, on the basis of the ease of interpretation provided by the cell
counts and the simp}e large-sample distribution theory.

Section 2 discusses the necessary background in the theory of general
chi-square statistics, then describes the proposed test and its large-
sample theory. Some lengthy calculatiqns required by this work are de-
ferred to an appendix. This section discusses separately chi-square
tests for bivariate circular normality. This case is of special interest
because of its prominence in targeting problems and because algebraically
simple results can be obtained from our general approach. Section 3
applies the techniques of Section 1 to assess multivariate norﬁality of
logarithms of qﬁotients of common stock prices in a large data base. This
example is chosen because of its importance in the théofy of financial
markets, and because previous discussion (mainly univariate) has defended
the symmetry of these distributions but hinted at broad shouldersvand
heavy tails, for which our test is particularly effective. Such important

considerations as the choice of cells, checking for lack of symmetry, and



assessing the magnitude (as opposed to fhe significance) of the observed
departure from normality are discussed in the context of this application.
In this paper standard notation is used for convergence in law and in
probability. The p-variate normal distributions are denoted by Np(u,z)
and the (central) chi-square distributions by xz(k). All vectors are
column vectors, with prime denoting transposition. The rank of a matrix

A is r(A), and the determinant is |Al.

2. TESTING MULTIVARIATE NORMALITY
Independent and identically distributed p-variate random variables
Xl""’xn are observed. It is desired to test whether the distribution
of X. belongs to the family of p-variate normal distributions Np(u,z)
for some p and nonsingular . This i; a parametric family parametrized

by 6 consisting of the p means Hy and the p(p+1)/2 upper triangular

entries ¢.

ik of . The density function of Xj under the null hypothesis

is
£(x|0) = (2n)‘P/2|z|'%e’%(x‘“)'Z-l(x'“). (2.1)
The maximum likelihood estimators (MLE's) of u and I are the vector X
of sample means andAthe matrix S of'sample covariances (dividing by n
rather than n-1, though for large-sample_considerations this is irrelevant).
For a given 6 (that is, for given u and Z) and 0 =cy < ¢y < ..o <y 1,

define cells
i -1
E,(8) = {x in RP: ;1§ (x-W'IT(x-w) < el (2.2)

The surfaces bounding these cells are level surfaces of the density

function (2.1). Estimating © byithe MLE en, we obtain M dataadépendeﬁt



cells Ein = Ei(an), i=1,...,M. The use of data-dependent cells in
chi-square tests was first studied by Roy (1956) and Watson (1957,
1958, 1959); A general large-sample theory for such tests is given
by Moore and Spruill (1975). The tests proceed by treating the cells
Ein as though they were fixed. Thus the "cell probability' for Ein
under f(-|e) is

p; (8) = [ f(x]e)ax. | (2.3)

E.
in

If N. denotes the number of X.,...,X falling in E._, and p. _=D. (é )
in 1 n in in Yin* ' n

is the corresponding estimated cell probability, general chi-square

statistics are nonnegative definite quadratic forms in the standardized
1

. " Y-
cell frequencies [Nin—npin]/[npin] . If‘Vn denotes the M-vector of

standardized cell frequencies, the Pearson chi-square statistic is

X2(6) = V.V = bf —————[Ni“:npi“]z .

n R np.
in

This is not the classical Pearson-Fisher statistic, because 6 is esti-

mated by the raw-data MLE 8n' It is rather the data-dependent cell

version of the statistic investigated by Chernoff and Lehmann (1954)..

Although Xz(an) is the statistic of greatest interest, other quadratic

forms in Vn may be useful. One such is introduced at (2.9) below.

The present choice of cells, in addition to being natural for the
multivariate normal family, has some desirable properties. First, (2.2)
and (2.3) show that p,, is the same as the probability that ¥-% s Y-%
falls between €1 and cso where X, S are considered fixed and Y has
the NP(Y,S) distribution. This is the probability assigned to the interval
[ci_l,ci) by the Xz(p) distribution. So the estimated cell probabilities

A~

Py, are fixed once the ¢, are chosen. In particular, M cells equiprobable



under the estimated parameter value‘are obtained by choosing c; as the
i/M point of the xz(p) distribution. This choice is employed in Section
3. The elliptical shape of the level surfaces is not unique to the
normal family; Press (1972b) points out that all multivariate symmetric
stable deﬁsities of order 1 have such level surfaces. Just as with un-
jvariate chi-square tests, it is the ﬁin that primarily reflect the null
hypothesis.

The second desirable property of the proposed test statistics is
that they are unaffected by affine transformations of the Xj' The tie
between the cells and the data implies affine invariance of Vn and hence
of Xz(én). When quadratic forms in Vn other than the Pearson sum of
squares are émployed, affine invariance depends also on the matrix of
the quadratic form. All statistics in ‘this paper are affine-invariant.
It follows that the null distribution.of our statistics is the same for
all p and I, a property not shared by fixed cell chi-square statistics.

The large-sample theory of Xz(én) and other chi-square statistics
follows from that of Vn' Moore and Spruill (1975) show that Vn has the
same asymptotic distribution under f(-|60) as if the fixed cells Ei(eo)
to which the Ein converge had been used. To describe this distribution,
and an important difference between the present case and the usual
situation, additional notation is required.

Let J(8) be the Fisher information matrix for the Np(u,z) family.
If m=p+p(p+1)/2 is the dimension of 6, J(8) is the m x m matrix

g1 0

J(e) = (2.4)
0 Q'1




where Q is the p(p+1)/2 x p(p+1)/2 covariance matrix of the entries
of {H S. The entries of nQ in terms of the ij are given on p. 107
of Press (1972a). Whenever I is nonsingular, so also is J(8) for

the corresponding 6.

For specified eo, define

p,(8,80) = ] ~f(x[e)dx, (2.5)
E; (8,)
a notation which makes explicit the dependence of the cell probabilities
on both the cells and the parameter value. Define B(e,eo) as the Mx m
matrix with (i,j)th entry
ap. 8
(6,0 )_% p; (6, o)
P; %% 36

J
Under regularity conditions which hold in the present case, it follows

(Moore and Spruill 1975, Theorem 4.2) that under f(-leo)

£{v_} NM(O,I-qq'-BJ-lB') | (2.6)

1
where J=J(eo), B=B(BO,60) and q is the M-vector with entries pi(eo,eo)z.

If s is the i/M point of the xz(p) distribution, then pi(eo,eo)zl/M,
thus simplifying both q and B. Because of (2.6), the asymptotic null
distribution of xz(an) is determined by the characteristic roots of
I—qq'-BJ_lB'. The entries of B for any 90 (corresponding to M, and ZO)
are determined from the following lemma. The proof appears in the
Appendix.

Lemma 1: When pi(e,eo) is given by (2.1), (2.2), and (2.5),

then for any choice of the ¢y and any 60,



3Pi(9,90)

=0 1<igM 1<j<p
Buj 6—90
"9p. (8,6,) .
i 0 = d.ch 1<is<M 1<jsksp
a0 . 6=0 i
jk 0
where 03X are the entries of 261 and
-c. /2 -c./2
_ (.P/2 i-17°_ p/2 i
di (ci_1 e c;' e )bp/2
-1 ’
bp = [p(p-2)...(4)(2)] . p even .
1
2 -1
= (2/m*[p(p-2)...(5) (3)] p odd.

In the usual situation (Chernoff and Lehmann 1954, Watson 1959,
Moore and Spruill 1975) the matrix B, and hence also.BJ-lB', has rank
m. Lemma 1 shows that in the present case all columns of B are scalar
multiples of the vector (dl,...,dM)' so that r(B)=1. When r(B)=m, the
characteristic roots of I—qq'-BJ-lB' are M-m-1 1's, one 0 and l-Gi where
Gi are the m nonzero roots of BJ_lB' and satisfy 0 < Gi < 1 provided that
J is nonsingular. (See e.g. Watson 1958, pp. 51-54.) Inspection shows
that the same arguments apply when r(B)=k <m and k replaces m throughout.
That is, the rank of B rather than the number of unknown parameters 1is
the essential inferpretation of m in thg\usual case. In the present case
k=1. When equiprobable cells are employed, the nonzero characteristic
root of BJ—lB' is shown in the Appendix to be 5=2Mp2¥d§. We have now
established the following result;

Theorem 1: Under the null hypofhesis of normality the limiting
distribution of the Pearson statistic xzcén) for cells Ein with parameters
estimated by the MLE's X and S is the distribution of

xz(M—Z) + A Xz(l) (2.7)



where xz(M—Z) and xz(l) are independent chi-square random variables
with the indicated degrees of freedom and 0 < A £ 1. When pinzl/M,
then

x = 1-2Mp § d°. (2.8)
1

Theorem i implies tha; the asymptotic critical points of Xz(én)
fall between those of the xz(M-Z) and xz(M-l) distributions. Unless
M is very small, these bounds are sufficient for use in practice. This
consequence of the symmetry of the cells chosen contrasts markedly
. with the r(B)=m case. Then, as Chernoff and Lehmann first noted, asym-
ptotic critical points of the Pearson statistic with raw-data MLE's
fall between those of xz(M-m—l) and xz(M—l). Since here m=p+p(p+1)/2,
these bounds can be quite far apart. |

There are available two methods of obtaining tests with completely
known asymptotic critical points in the common case of equiprobable cells,
neither of which will be pursued in detail here owing to the satiéfactory
result in Theorem 1. First, the methods of Dahiya and Gurland (1972)
or Moore (1971) can be used to compute the exact critical points of the
distribution (2.7) with A given by (2.8). Second, the Pearsbn sum of

‘'squares can be replaced by the Rao-Robson statistic

R = V'V + V' B_[J-B' B ] lBV (2.9)
n nn n n-n nn nn

~

where Jn=J(en) and Bn=B(6n,en). Rao and Robson (1974) state that the
statistic (2.9) has the xz(M-l) asymptotic null distribution. The
general proof of this assertion in Moore (1977) requires only that

r(I—qq'—BJ-lB')=M-1 and so covers the present case. The statistic R.n



is affine invariant, and in the univariate cases simulated by Rao and
Robson has higher power than either Xz(én) or the Pearson-Fisher statis-
tic.

The Rao-Robson statistic is the sum of the Pearson statistic
Xz(én) and a correctionbferm, the second term in (2.9). The correction

A

term can be obtained as follows when pinEI/M in the present case. From

M .
Zi=13pi/86j—0 it follows that

i M Nin api M Nin api
V!B =n (L = 55 b s I — 55} ) (2.10)
i=1 p. 1108 i=1 p. m
in n in n
and therefore when pinEI/M Lemma 1 implies that
1 M
V' B =Mn® )N, d.(O,...,0,5(1),...s(p(p+1)/2))
n n . in"i
i=1
(k) . -1, .
. where s are the entries of S indexed in some order. Next,
% 2 0 | 0
B'B. =M ) d. .
S I | [s (s 0D

where [s(k)s(j)] is the p(p+1)/2 x p(p+1)/2 matrix with the indicated
products as entries. If s=(s(l),...,s(P(p+1)/2))' and C=Q—1‘ Mde[S(k)S(j)]:
the second term in (2.9) is Mzn-l(ZNindi)zs'C—ls. The Rao-Robson sta-
tistic is computationally complex and therefore is not employed in analy-
zing the large data set of Section 3.

In the special case of testing bivariate circulér normality,
however, Rn can be easily evaluated with a programmable calculator and
is worth considering for its potential additional power. The hypothesized
family of‘density functions is now 1 2 2
-~z {x-u )"+ (-1 }

£(x,y|0) = @mo?y e 2° (2.11)
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_parametrized by 0 = (Ul,uz,Oz)- The MLE's from a random sample
(Xl,Yl),...,(Xn,Yn) are X, Y and

n

2 1,% = 2 o 2
s = 5 { Z (Xj—X) + 'El(Yj-Y) }.

j=1 j=
1/2

The cells are concentric annuli centered at (Y,Y) with radii s s,
where pinEl/M if .

c; = -2.1og(1-ﬂﬂ i=1,...,M-1
The derivatives of P required for Bn are not quite as given in Lemma

1 because of the reduced number of parameters. They are

3 3

Pin |- _ Pin |~ _ 0

= —5 =

Bul en u2 9n

op. .

in |~ _
30 8 Vi/s
n

Vi ® Z{Fl-iﬁ)log(l—§)-(1—1;—41—)10;;(1-1—;4—1)}.

Note that Vi=4di’ where di is as in Lemma 1 for p=2. Hence
0 0 O
B'B = — |0 O O
nn
0 0 Z

The Fisher information matrix for the family (2.11) is also diagonal,

3(0) = 072

o = O
A~ O ©

The form of the Rao-Robson statistic stated in the following theorem

is now immediate from (2.9) and (2.10).
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Theorem 2: When (Xi,Yi) have density function (2.11), the

statistic

has the XZ(M-I) asymptotic distribution.

3. APPLICATION TO COMMON STOCK PRICES‘

Suppose that Pt is the prico of a security at time t. We are
concerned with the variable Rt = log Pt—log Pt-l’ which we call the
return for period t. The Bachelier-Osborne model (Osborne 1959) of
security prioe chénges assumes that log Pt is a Brownian motion process,
so that Rt’ t=1,2,... are independent normal random variables. This
model has been exhaustively examined ano criticized. Many authors
have suggested nonnormal distributions, especially the t-distributions
and nonnormal symmetric stable distributions, as alternative models
which better reflect the broad shoulders and heavy tails observed in
empirical studies of returns on common stocks. See for example
Blattberg and Gonedes (1974), Praetz (1969, 1972) and Fama and Roll
(1968, 19715. It is common in developing theories of capital asset
pricing and portfolio performance to make the additional assumption of
joint normality of (th,...,Rkt) where Rit is the return during period
t of security i. The advantage in mathematical convenience enjoyed by
normal ove} nonnormal models is greater in multivariate settings. .
Multivariate normality is assumed in most presentations of models for
portfolio selection (even when not necessarily essential to the general

form of the model) and is essential for most distributional calculations.
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See for example Fama (1976), Fama and Miller (1972), Lintner (1965),
Sharpe (1970), and Tobin (1958).

Previous empirical studies of the distribution of common stock
prices have been essentially univariate in nature. Fama (1976,
pp. 21-35) reviews some of this work and concludes that normality is
a "good working approximation' for monthly (but not daily) returns.
The statistic xz(én) of Section 2 can contribute to a multivariate
analysis, as it is designed to detect multivariate versions of the
types of departures from normality observed in uﬁivariate studies of
stock prices. The analysis here is of course not exhaustive, both .
because only a single statistical procedure is applied and because there
are many alternative forms of Rt which may differ in degree of nonnor-
mality. We have made the.following choices. (1) Weekly returns are
used. This period is.intermediate befween those studied by Fama, whose
data show better fit to (univariate) normality for monthly than for
daily returns. Others (Praetz 1972) have suggested periods of equal
market volume»rather than equal duration. (2) Normality of returns Rt
is tested, rather than of the relative prices (Pt-Pt_l)/Pt_1 discuésed
by Fama. Experience suggests that Rt is somewhat more-symmétric, but
that the two variables do not differ markedly in normality. Some
empirical evidence for this asseftion is presented at the end of this
paper. (3) The pfice Pt is.adjusted for stock splits, but not for divi-
dends. Financial theory includes dividends in the return, but this ad-
justment appears to have little impact on normality. Different choices

in these three areas might lead to somewhat different conclusions.
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We are grateful to.Dunn and Hargitt, Inc., a Lafayette, Indiana
investment advisory firm, for access to a large proprietary data base
of common stock price histories. Our_analysis utilizes the 560 New
York Stock Exchange listings for which this data base contained adjusted
midweek closing prices Pt for the 501 weeks ending April 19, 1978. With
few exceptions, these are the stocks contained in the Standard & Poor
500 and in the Dow-Jones market indiceé. We thus have 500 observations
on the 560-dimensional distribution of returns on these stocks. To
assess multivariate normality, the stocks were divided at random into
140 disjoint groups of four stocks each. The test based on Xz(gn) was
applied within each of these groups to the quadrivariate, the.four
trivariate, and the six bivariate joint distributions.

These tests were condﬁcted for both M=50 and M=25 cells, chosen to
be equiprobable under the null hypothesis with estimated parameter values.
These values of M are approximately the Mann-Wald (1942) recommehdation for
n=500 and o¢=0.05, and half that value. Such a choicg of cells can be
clearly justified in the case of testing fit to a completely specified
distribution, with the smaller number of cells having generally greater
power. Since data-dependent cells can be chosen equiprobable under the
estimated parameter values, following the same regommendations avoids
arbitrariness in cell selection. A fuller discussion of the problem of
choosing cells appears in Moore (1979). Note that the use of a=0.05 in
the Mann-Wald recipe is not an endorsement of that significance level
for testing fit. Since the Mann-Wald recommendation decreases with.a, but
-overstafes the optimuﬁ M, the value for a=0.05 is an approximate guide for

larger o as well.
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For comparison, the tests for M=50 were also applied to a set of
data having the Same configuration as the data base, but consisting of
normal deviates generated by the IMSL subroutine GGNOR. Finally, thé
60 monthly returns for Xerox and IBM appearing on pp. 102 and 120 of
Fama (1976) were tested for bivariate normality using M=12. These data
and the cells computed from them appear in the figure. Here XZ(Bn)=13.2,
for which the P-value falls between 0.21 (from x2(10)) and 0.28 (from xz(ll)).

For the large sample size (n=500) available for weekly returns, even
distributions quite close to normal will attain a small P—valﬁe. A
measure of the size of the departure from normality is therefore needed.
Suppose that the true distribution of the observations Xj is F*, with
mean p* and covariance matrix I*. If 8* corresponds to (u*,I*), then
under F* the limiting fixed cells are Ei(e*) (recall (2.2)), with cell

probabilities
*

Pj

= [ dF*,
E; (6%)

It is easy to see that under F*

2
~ M [p*‘P'(e*’e*)]
X*(6 )/n > ] —— (P) (3.1)
i=1 p; (6%,8%)

where pi(e*,e*) is the normal cell probability computed from (2.5).
(See e.g. Bishop, Fienberg and Holland 1975, p. 330 for similar state-
ments.) Under the null hypothesis, Xz(an)/n + 0(P). The right side of
(3.1) is a measure of the closeness of F* to the normal family. It
depends on the choice pf cells, but approaches an integral measure of
closeness as the‘cells are refined. Hence Xz(én)/n is an empirical

measure of the magnitude of the type of departure from normality detected
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by the cells Ein' We wiil call Xz(an)/n the shape effect since the
cells are sensitive to shape, not asymmetry. The shapé effect can be
restated in terms of the sample size required to declare the effect
significant at a stated level, and is therefore easy to interpret.

For example, Fama's data in the figure have Xz(an)/n=13.2/60-0.22.
Using the lower bbund x2(10) for the critical points of Xz(gn), at
least 83 observations would be required to declare this effect signi-

ficant at the a=0.05 level.

Computations were carried out on a Control Data 6500. Routines in
the IMSL library were employed to computé (for p >>2).the i/M-points
s of the xz(p) distribution, and to obtain characteristic roots and
vectors of the éample covariance matrix S. From these the symmetric
positive definite version of S-% was computed and each p-variate data
point Xj was transformed to Zj=S-%(Xj;i). Then 252j was computed and
compared with the cs to obtain cell counts. The Pearson statistic
Xz(én) and the shape effect Xz(én)/n were obtained from the cell counts.
Another IMSL rountine gaVe the P-values for Xz(an) from both xz(M-Z)
and xz(M—l).

The computer program also included a check for the lack of symmetry
to which Xz(an) is insensitive. By checking the sign of each component,
the number of Zj's falling in each of the 2P p-dimensional quadrants
was determined. These quadrants are equiprobable under the estimated
parameter values, and the Pearson statistic divided by n for these 2P
cells is a measure of asymmetry. This choice of cells does not share the

property that narrow bounds on the limiting null distribution of the

Pearson statistic are available. (The orientation of the Zj relative to
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the coordinate axes, and thus the specific measure of asymmetry obtained,

is dependent on the specific choice of S—E.)

Summary statistics for 560 common stocks in 140 groups of four
appear in Table 1. Although the detailed printouts show wide variations
in statistical significance among the 140 groups, on the average Xz(én)
is highly significant. For M=50, thé x2(49) P-values of the mean values
of'Xz(an) reported in Table l‘are 0.10 x 10~ for p=2, 0.11 x 1078 for
p=3, and 0.03 x 10_9 for p=4. The P-values for M=25 are uniformly some-
what smaller in the individual tests, as well as for the mean Pearson
statistic. This conforms to the expectation that an M half that recommen-
ded by Mann and Wald somewhat improves the sensitivity of the test. In
contrast, the P-value of the mean of Xz(an) for the simulated data is
close to 0.5, and examination of the.iﬁdividual tests confirms that the
X2 distribution fits closely.

Low P-values do not imply large deviations from normality when n=500.
The mean size of the shape effect Xz(gn)/n for the common stocks aé a
multiple of that for the simulated data is 2 for p=2, 2.5 for p=3‘and 3
for p=4 in the M=$0 case. That is, whereas about 675 observations would
be needed to declare the mean effect for the simulated data significant
at a=0.05, the corresponding sample sizes for the stock data are at
least 345 for p=2, 275 for p=3, and 225 for p=4. This compares favorably
with the results for the smaller sample of monthly relative prices from Fama.
Indeed, if the degreé of asymmetry, is similarly measured by the ratio of

the mean of the asymmetry effect for the stock return data to that
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for the simulated data, the asymmetry effect for p=2 is-as great as
the shape effect. As p increases, the degree of asymmetry decreases,
while nonnormality in shape increases. We do not take this as an in-
dication of serious asymmetry, but as suggesting that the nonnormality
in tails and shoulders which has led to the suggestion that other
symmetric laws be adopted is no more serious than is violation of the
symmetry assumption common to the competiﬁg models. [Note that the
sizes of the shape‘and asymmetry effects cannot be directly compared,
as they refer to different configurations of cells. This fact
motivates the.procedﬁre_of comparing both to thé values they took in
the simulated data.] |

In summary, the multivariate analysis carried out here seems to
sustain Fama's conclusion that normality of returns on common stocks
is a good working approximation. (Of.course the null hypothesis of
exact normality can be rejected at all common significance levels for
most-but not all-of the groups of stocks examined.) The summary statistics
in Table 1 allow others to make further analyses. Two facts not apparent
from Table 1 should be mentioned. First, the cell counts confirm that
the nature of the deviation from normality is broad, rather flat,
shoulders and heavy tails. Cell counts other than for cells near the
sample mean énd the last cell in the tails generally show only random
deviations from the expected 10 (M=50) or 20 (M=25) observations per
cell. Second, while the mean shape effect increases with the dimension
of the joint distribution under study, radical nonnormality for p=4 can
almost always be attributed to radical nonnormality in a univariate or

bivariate marginal distribution. Thus extending our study to p > 4 did
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not seem justified. We investigated the relatively few stocks with
strikingly nonnormal returns, but found no common feature (such as
low dollar value‘of outstanding stock) which might account for lack
of normality.

To what extent can the conclusion that multivariate normality is
a good working approximation for common stock returns be generalized?
Fama's discussion suggests that returns for longer periods will be no
leés normal than weekly returns. The effect of redefining Pt to include
dividends is not known. To gain insight into the effect of testing the
relative price (Pt—Pt_l)/Pt_1 rather than Rt’ we analyzed the relative
prices for the first 20 of the 140 randomly chosen groups of four stocks
each. Téble 2 presents summary statistics for both returns and relative
prices. The sharply greater asymmetry of the relative price data is
apparent,, especially for p=2. In shépe,.however, the two variables are

quite similar.

APPENDIX
Eiggf_gﬁ_gggmg_l: The differentiation of pi(e,eo) is most easily
carfied out in matrix form, making free use of the tables of formulae
given by Dwyer (1967) . Applying the transformation z=26%(x—uo) to (2.5),

1 4 1
|z I% —%(Egz+uo-u)'2 l(zgz+u0-u)
pi(8,00 = PP [ e o da

lzlé cj.1%2'2%¢4

By Dwyer's (11.1) applied ﬁnder the integral sign,
3Pi(6:60)

ou =0

' 2 1
- @m P2 5E e 2% % 4z
0
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and the integral (a p-vector) is 0 by symmetry.

To compute thé matrix of derivatives Bpi/BZ, again differentiate
under the integral sign. Writing u=x-u in (2.5), the required derivative
is

I s - -1 _-
%E'{IZI 2 gTRU'E Uy L Hp|TR e auEu gyl

by the product rule and (11.3), (11.8) of Dwyer (1967). Therefore

p. _ _ R N -1
R A (L I sl M
6=0,, E, (8,) 0
- - -3 RN -
=3 201{(2w) p/2|20| 2 f w' e =Y z udu}ZO1
-1
-2p; (94 8
1
Now setting u=Zgz in the first expression yields
op; 1.3 -p/2 -32'z -2
55 = 53,7 {(2m) [ zz' e dz}z,
. . c. ,Sz'z<c,
0=0 i-1 i
0
1 -1
“2P; (89,89 I

The p x p matrix within the brackets has the form ain for some number

ai. Therefore

= B(a;-p; (85,0025 (A-1)

and it remains only to evaluate a, . Introduce p-dimensional spherical

coordinates 0 < r < », 0 < 6 < an 0 < wl,...,mp_z < m. Then zp= T COS @p—z

and
p-2 .
p-1 wind
dz =1 (N sin’ ¢.)dr dé do,...d¢ .
5=1 j 1 p-2
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Therefore
_ ] 1,
e S JE R S S
* c. <z'z<c.P
: i-1 i
1
e ct ptl EUCA p-3
= 2(2m) {1 e dr}A m B. (A.2)
e P-2 i_q J
c j=0
i-1
where
T2 -2
A = fcos P sin? ¢ do
p-2 0 ’
) .
B. = fsinJ ¢ dep
J 0
2w
(and note that 2B0=f0 de). Now p—2=Bp—2/p and
p+l —%rz P —%rz -1 —%rz dr
f T e dr = -r* e +p frp e
and
2 =
P, (8,,60) = (2m p/2 'y 227 4z
c. ,Sz'z<c
i-1
1
3 -2
= 2(2m) p/Z{I% Pl e artn B..
c’ j=0 J
i-1
Substituting these relations into (A.2) gives
p-2 -c. /2 -c./2
- -p/2 -1 p/2  i-1""_p/2 i
a; 2(2m) p jzo Bj{ci_1 e cil e } o+ pi(eo,eo)
Finally, B0=ﬂ, B1=2 and Bj=(3—l)Bj_2/J imply that .
p-2 o (p-2)/2 -1
) Bj = (2m) w[(p-2) (p-4)...(4)(2)] p even
j=0

- on @ D20 p-)...5) (3] p odd.

Thus the number di=(ai—pi(eo,60))/2 in (A.1) has the value stated in

Lemma 1.
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Proof that the nonzero root of s lp ig_ZMpZ?di when c. are

the i/M points of xz(p): Because this root does not depend on Ho and

ZO’ we can assume that u0=0, ZO

Let us order the components of 6 as follows. First the p means

=Ip and cells are boﬁnded by x'x=ci.

11°

off-diagonal elements of I in an arbitrary order. Then (2.4) and the

ul,...,up, then o ""Gpp and then the p(p-1)/2 upper triangular

reference cited there show that for u0=0, 20=Ip the matrix J_1 is
diagonal with the first p entries 1, the succeeding p entries 2, and
the remaining p(p-1)/2 entries again 1.  The matrix B has p zero
columns, then p columns each equal to M%(dl,...,dM)', then p(p-1)/2
zero columns. Therefore o

o
BJ 'B' = 2Mp[didj]MX M

The matrix of rank 1 [didj] has charactéristic equation (-l)MGM_l(G—a)=O.
That a=ZT di will be shown by induction. The result is immediate in the
2 x 2 case. Suppose it holds for (M-1) x (M-1). Ekpanding DM=|[didj]-GIl
in cofactors of the last column,

_ 2

where the linear combination of cofactors g(8) can be seen to be a
polynomial of degree M-2 in §. The characteristic equation is therefore

by induction,

M-1

@) D" e D g = 0
i=

Since this equation is known to have the form (-l)MéM-l(G—a)=0, all terms

of degree less than M-1 must cancel, and can be ignored. The terms of

M—lGM—le 2

degree M and M-1 are (-I)MGM + (-1) 1 di’ so that a=£¥ di follows.
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Simulated Stock returns Stock returns
Statistic M=50 M=50 M=25

p=2
Mean Pearson 48.070 94.524 63.730
St. Dev. Pearson ©9.911 27.862 24.136
Min Pearson 23.600 37.000 14.700
Max Pearson 86.000 258.200 240.500
Mean shape effect .096 .189 .127
St. Dev. shape effect .020 .056 .048
Mean asymmetry .003 .007 .007
St. Dev. asymmetry .002 .006 . 006
Min asymmetry .000 .000 .000
Max asymmetry .017 .039 .039
N of observations 840. 840. 840.

p=3
Mean Pearson 47.696 118.452 84.516
St. Dev. Pearson 9.680 33.807 © 29.150
Min Pearson 22.800 41.600 25.600
Max Pearson 81.200 245.400 209.600
Mean shape effect .095 .237 .169
St. Dev. shape effect .019 .068 .058
Mean asymmetry .008 .015 . 015
St. Dev. asymmetry . 004 .008 .008
Min asymmetry .001 .001 .001
Max asymmetry .031 .057 .057
N of observations 560. 560. 560.

p=t
Mean Pearson 48.671 145.286 106.645
St. Dev. Pearson 10.664 39.399 34.030
Min Pearson 28.400 72.600 43,800
Max Pearson 78.600 264.400 207.900
Mean shape effect _ .097 .291 .213
St. Dev. shape effect .021 .079 . 068
Mean asymmetry .020 .030 .030
St. Dev. asymmetry . 007 .011 .011
Min asymmetry . 008 .009 .009
Max asymmetry . 037 . 069 .069
N of observations 140. 140. 140.




2. Comparison of Returns and Relative Prices (M=50)

Statistic Returns Rt Relative Prices (Pt—Pt_l)/Pt_1
p=<
Mean Pearson 97.983 98.468
St. Dev. Pearson 28.816 30.729
Min Pearson 47.000 41.600
Max Pearson 220.400 242.200
Mean shape effect .196 .197
St. Dev. shape effect .058 .061
Mean asymmetry .006 .012
St. Dev. asymmetry . 005 .009
Min asymmetry .000 . 000
Max asymmetry .023 .040
N of observations 120. 120.
p=3 ‘
Mean Pearson 122.307 128.325
St. Dev. Pearson 32.237 32.855
Min Pearson 58.200 64.800
Max Pearson 219.200 254.000
Mean shape effect .245 .257
St. Dev. shape effect .064 . 066
Mean asymmetry .015 .022
St. Dev. asymmetry .008 .011
Min asymmetry .001 .003
Max asymmetry . 037 .056
N of observations 80. 80.
p=4
Mean Pearson 155.400 152.760
St. Dev. Pearson 30.202 32.678
Min Pearson 115.200 102.800
Max Pearson 220.600 218.600
Mean shape effect .311 .306
St. Dev. shape effect . 060 . 065
Mean asymmetry .031 . 041
St. Dev. asymmetry .010 .017
Min asymmetry .015 .015
Max asymmetry .053 .078
N of observations 20. 20.
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