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1. INTRODUCTION

Suppose we have an f-out-of-m system, where m units are to be placed
and at least & of them should function to make the system work, and the
units are statistically independent (see Barlow and Proschan (1975)). In
many situations several brands of units are available, from which we have to
choose at most m brands and draw m units of the system from them. Note
that it is permissible to draw units from a population more than once. We

will find 'optimal' solutions for the series system (i.e. £ = ™) and the

l-out-o0f-2 system when each unit has an‘éxponentially distributed lifelength.

Let = >y (k > 2) denote the available brands and assume that cach

10
unit from the i-th brand has an exponentially distributed lifelengths with

mean lifelength Ail (1 =1,...,k). Based on kn independent observations
n

{Xij }j=l)

1 <1<k, from ﬂl,...,ﬂk, we want to find an 'optimal' solution.

Because of sufficiency, the problem can be reduced to the one based on
n
x, = ] X;3: 1 < i <k}, with X; having Gamma distribution with mean
o J=t -
nkil and variance nAiz.

For the series system the expected lifelength of the system, when we use

brands me yeees Ty (1 5_11 < ... 21 < k) for the m units, is easily seen
m} m m
to be ( Z Aij)_l, and for the l-out-of-2 system it is given by A;I + Agl -

j=1
(A, + A.)_l when we use brands w. and 7. (1 <i < j < k). We will consider
i’ i ] )

a loss function which is inversely proportional to the expected lifelength

corresponding to an action.

*This work was supported by the Office of Naval Research contract NOOO14-75-
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In section 2, we will give the results for the series system. It is

< ... 21 <Kk)

assumed that the loss incurred by using brands Mo seeesTy (1<i o <

1

1 m 1

for the series system is given by

(1-1) L(z\"(il,...’im)) = ;

A -
L

He~13

Then it is shown that for the series system, the natural rule, which draws all

the units from the population associated with the largest sample mean life

time, or equivalently with max x., is uniformly best among the permutation
1<i<k

invariant rules and, therefore, it is admissible and minimax among all the

rules.

In section 3, the Bayes rule for the l-out-of-2 system is given. Here,

it is assumed that the loss function is given by

(1.2) L, (530) = O3+ 5T -0y e TH

where (i,j) (1 < i < j < k) denotes the action of drawing units from T and
m.. Furthermore, the prior distribution of A 1s assumed to be the
independent natural conjugate Gamma-2 distribution (see p. 54 Raiffa and
Schlaifer (1961)).

The 1-out-of-2 system with k = 2 has been considered by Brostrgm (1977).
He constructed a loss function which depends on (Al,kz) only'fhrough AI/XZ to
obtain the invariance under the scale change. However, it should be pointed
out that the construction bf such a loss function can not be done for k > 2,
for the obvious reason; in fact, he used the loss function L given by (1.2)
divided by L(A, (1,2)), but for k > 2 there are no 'intermediate' actions
by which we can standardize the loss function without losing comparability of

the different actions.



Finall let us introduce some notations. Let x < X < L...< -
Vs - @ = *@ = Fao

.,xk), and T and A denote

(1) (1)

denote the ordered observations (xl, Xos e

the m and the X associated with X(i)’ i=1,...,k.

2. OPTIMAL SOLUTION FOR THE SERIES SYSTEM

In this section, it is assumed that the loss function is given by (1.1).

The action space is denoted by, L = {(il,...,i J: 1 <i

< ... <1 < k} where
m — — "m —

1

(il""’im) is interpreted as drawing the j-th unit from the brand wi_(j =1,
. : _ j
.,m). Given x = (xl,...,xk), the posterior risk of a decision rule d,

which selects an action (il,...,im)‘e;u with probability 1, is denoted by

(2.1) r(d,x) = E[

1 o~18
>
b
T
-

when the prior distribution of A is given.

In this section, when considering only Bayes rules, attention can be
restricted to non-randomized decision rules (see Fergusoﬁ (1967}, §1.8).

The following result considerably reduces the number of decision rules
to be compared for the Bayes rule w.r.t. a symmetric prior of A.
Lemma 1. If the prior distribution of A is permutation symmetric on (O,w)k,

then the Bayes rule d* is given by

r(d*,x) = Min Min r(dﬁ ,X),
1<s<kAm ESENS = .
= - . - ' :
where NS = {Es = (nl""’?s)' ny > ... ;:ns > 1, jzl nj m, n.'s are integers},

kAm = Min (k,m) and dn draws nj'units from 7 for j =1,...,s,

n_ (k-3+1)

Proof. For s = 1,...,kAm let us define.(.:.S to bé

'US = {Gl,-..,l D My,...,n ): n &N_, 1 <1

. .
s S nEN, < k, 1j# 1y,for j#i'l,



.,is; nl,...,ns) is interpreted as drawing nj units from

. (j = 1,2,...,s). Note that we are partitioning the action space.

into kAm components,us(s = 1,...,kAm), where we should use s different

brands. Again,‘uS can be written as

ius = U 'Uh_’ where,u_h = {(11,...,15):(11,...,1S;Es)>ﬁus}.
ESGNS ] —s

Note that the loss function given by (2.1) can be written as
s ] b
L(A,a) = Z n.Ai for a e,uh - Now consider a decision problem with
j=1 11y —
the action space,(.qh » the above loss function and the observation vector
-5

Xx. Clearly, this problem is equivalent to partitioning k brands = ™

170
into s+1 subsets (Yl""’ys’ys+l) where Yj is of size 1 for j = 1,...,s,

Yor1 is of size k - s and the action (il,...,is) corresponds to the action

1 D).

({ni beoooy{m, ), {m.: 1 <i<k, if# il,;.. S

1 1
1It is eas; to see that this componeﬁt decision problem is invariant
under the permutation group, and that the loss function satisfies the mono-
tonicity and the invariance properties of Eaton (1967) with parameters
6, of his paper being Ail (i =1,...,k). Since the density f(x,ei) of
Xi has monotone likelihood property in x and ei = A;I, it follows from

Eaton's results that the rule which assigns ﬂ(k_j+1) to Yj for j =1,..,s

and T

.,ﬂ(l) to Yorl is Bayes w.r.t. a permutation symmetric prior

(k-s+1) 7"
distribution of 6 = (61,...,9k). This completes the proof.
The following lemma has a result which is of interest in itself.

Lemma 2. Assume that X "’Xk’ given @ = (61,...,6k) < @F C.(—m,w)k, are

1’
independently distributed random variables with Xi having p.d.f. f(x,Oi).
It f(x,0) has the monotone likelihood ratio (MLR) property in x and 0, and

if the prior distribution, ©(0), of 8 = (91,...,Ok) is permutation symmetric



on & , then
E[e(i)lﬁj?z_E[e(j)|§j fo? i>j,

where E[e(i)l§J denotes the posterior expectation of 6 associated with X(i)'

- k.,
Proof. Let 2, = {8 € &: 81) 3_e(j)}.

Then

[ 18405y EC00dT(®) = [ [85y-051£(x,0)dt(8)+ [ [05y-05,1£(x,8)dT(8)

k Q c
) 0 | QO

é (05978 5y 1 [E(x,0)-£(x,8")1dx(8),
0
k

where f(x,8) = T f(xi,ei) and 9' is obtained from § by interchanging
i=1

0 and e(j), keeping other components fixed. Thus

(1)
E(8,.\-6. = 8, -0 .11 [£(x,8)-F(x,8"

0(1y0 5y 18 =m0 gf 105)-05) ] E(X.0)-£(x,81)]dr(0) , where

n{x) 1s a normalizing factor. The result follows from the MLR property of

f(x,8) and the fact that e(i)-e(j) >0 for 6 € Q

0
REMARK 1. The MLR property of f(xi,ei) in Lemma 2 can be replaced either
by the M property of f(x,6) in Eaton (1967), or by the DT property of f(x,8)

in Hollander, Proschan and Sethuraman (1977).

REMARK 2. If 91,..,6 are, a priori, positivé random variables, then it is

k
easy to see that E[eEiwlx] < E[GE;)IX] for i > j. Therefore in our
) - - - .
problem E[A(i,lx] < E[A(j)lx] for i > j, if the prior distribution of
Xl < X il

A= (xl,...,xk) is permutation symmetric on (O,W)k.

The next result follows from Lemma 1 and Lemma 2.



THEOREM 1. For any permutation symmetric prior distribution of A on (O,w]K,

the Bayes rule is d1 = dn » as defined in Lemma 1; namely the Bayes rule

-1
draws all m units from W(k)'
Proof. It follows from (2.1) that r(dn »X) can be written as
n .
s
r(dﬂs,ﬁ) = E[jz1 njA(k—j+1),5J for n €N,

Therefore

S
I‘(dn ’ﬁ) - E[(m—s+1))\(k) + J-_ZZ A(k_j_'_l) l)_(_]

.'_..S
s ] S
= - A . s - E[(m- .
Bl 1) o* L omihgegeny [0 - BLOmsv e L gy 1]
J J =
s
= E[jg2 (nj-l)(A(k_j+l)—A(k))|§J > 0 as pointed out in Remark 2.
Thus MIN r(dn ,X) = r(ds,x) where dS = dn* with Eg = (m—s+1,l,...,1)‘€ Ns’
n_€N ] =
-5 s s
i.e.
(2.2) ds draws (m-s+1) units from ﬂ(k) and one unit from each

ﬂ(k-j+l) (3 = 2,...,s).
And for any s: 2 < s < kAm,

S
r(d_,x) - r(d,,x) = E[ ] (A
s = 1°= .
j=2

(k-j+1) )T 2 0

Therefore the result follows from Lemma 1.

Cor. 1. The 'natural' rule d1 is uniformly best among the permutation invar-
iant rules.

Proof. This follows from considering a permutation symmetric prior T which

gives mass E%— at each permutation of components of a fixed vector A€ (O,m)k.



Cor. 2. The natural rule d1 is admissible and minimax within the class of
all decision rules.
Proof. Since the permutation group is finite, the result follows from theorems

in Ferguson (1967), §4-3.

REMARK 3. Altefnative proof of Theorem 1 has been suggested by Panchapakesan
(1978) after this paper was partially prepared. His idea is to treat the
above decision problem as a product of m decision problems; namely
L U =,Uix ce xum, where ij e.uj means to draw the j-th unit from the i-th
brand. This can be done since the loss function L(A,a) for a € G can be
written as

L(x,a) =

. i
J
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m
A, = L.{(},a. for a = (i,,...,1 ) € L and a.={i } € (..
jzl j2o8y) ! m). 7Y

Then using Lemma 2, a simpler proof of Theorem 1 can be done. We have chosen
to retain our method of proof for other independent interest since this

alternative appfoach can not be done if the loss function is not additive.

REMARK 4. If we consider a loss function Ll(A’(il""’im)) = (m Min ki)-l—

m 1<i<k
() Ay )_l, it is easy to verify the monotonicity and invariance properties
=1 7]

of Eaton (1967). Therefore Lemma 1 holds for the loss function Ll' Assuming

. A, are

an exchangeable prior of X on (O,w)k, namely, given B = B, A K

1’
positive iid random variables with p.d.f. g(-,8) and the distribution of
B is known, we can prove that the Bayes rule d* for the loss function Ll
satisfies

(2.3) r(d*,x) = Min  r1(d_,X),
1<s<kAm



where the rule dS is defined in (2.2). Note that this can not be achieved
by the alternative method in Remark 3. Even though (2.3) is a considerable
reduction in a number of candidates for the Bayes rule, specification of the
Bayes rule seems very difficult except when m = 2. One interesting

exchangeable prior is assuming an iﬁverted Dirichlet prior distribution

%t
v T (ok+a) i=1 %
with p.d.f. t(}) = " - X
: I'(a) T(a) ak+a
(2 A;+D)

1

where o > 0, a > 0 are known

constants, which is equivalent to assuming that Al,...,xk, given B = B,
are iid Gamma random variables with mean o/f and a/Bz, and B has Gamma dis-
tribution with mean a and variance a (see Johnson and Kotz, 1972, Page
239). Another simplest way of assuming an exchangeable prior is specifying
that A

.,\, are, a priori, positive iid random variables. Some numerical

1’ k

results in this direction for m > 2 would be interesting.

3. BAYES SOLUTION FOR THE 1-OUT-OF-2 SYSTEM

In this section it is assumed that the loss function is given by (1.2).
The action space is denoted by G = {(i,j): 1 <i <] < k}, where (i,]) is
interpreted as drawing one unit each from the brands wi and ﬂj, respectively.
Furthermore, the prior distribution of X is assumed to be independent natural
conjugate Gamma-2 distribution. Then the joint a priori p.d.f. of A is

k o -BA.

_ B ,a-1 i '
(3.1) T(A) = 121 To) i ], « > 0 and 8 > O.

Then it is easy to see that the posterior p.d.f. of ), given X=X, is
n+ao
k (xi+B)

(3.2) r(gjz) = 1
i:

n+o-1 ~(x BN
[t AT e
1 T'(n+o) i



. )\ }\ . - .
It follows from this that (1 are, a posteriori, independently

distributed Gamma random variables with mean (n+a)/(x(i)+8) and variance
(n+a)/(x(i)+8)2. Let r(d,x) denote the posterior risk of rule d, given x.

By considering,u1 = {(i,i1); i =1,...,k} and,-u2 = {(i,j); 1 <i<j <k}
and using similar arguments to the one in Lemma 1, we have the next result.
Lemma 3. For any permutation symmetric prior of A on (O,w)k, the Bayes rule

d* is given by
r(d*,x) = Min{r(d;,x), r(dy,x0 1,

where d1 chooses 2 units from W(k) and d2 chooses one unit from ﬂ(k) and

another from “(k—l)'

Now we state and prove a theorem which gives the Bayes solution.

THEOREM 2. The Bayes rule d* w.r.t. the prior given by (3.1) is given by
d1 if

d2 if

Xe1y) T =Ky T B

(3.3) d*

Xg-1) * 82 c(Xy *+ 8D

Wrey) g2

U2+c2V2+cUV 5

U, V are iid Gamma random variables with mean (n+a) and variance (n+a).

=yl -
where ¢ = Ha,n(O)_e (0,1), Ha,n(c) = E[ (n+a) for ¢ > 0 and

Proof: It follows form (1.2) and (3.2) that

n+o

(k)

2
r(dl’_)_(__) - EE D‘

X1 = %
(k) '= 3 X, . *B

and

2 2 -1
70 = El g A aen Qoo aen) Cao oot aen ) 1

UV(U+rk V)
= E[ 5 ~—] for r =
)™ Ur, DVer,

*k-) P

+h

v *(%)



where U and V are iid Gamma random variables with mean (n+q) and variance

v X(k_1)+8
(n+g). Thus r(d,,x) > r(d,,x) if and only if H _(——=2)<0, which is
1°= 2°= a,n x(k)+5
Xk-1)"F -1 |
equivalent to > H (0) since H (t) is a decreasing function
X(k)+ B o,n a,n" 7

of t > 0. Furthermore it is easy to see that

UV (U+V 2
By p () = Bl zn+a) <0
? - U +UV+V

which implies 0 < H&ln(O) < 1. Hence the result follows from Lemma 3.
? X X

1 k

X1+B .o Xk+8

random variables with mena n/(n+a). It follows from this that the Bayes

It is easy to see that

are marginally independent Beta

risk of the ruledi satisfies

1

(3.4) r(d,) = %{n+a)8_ E[Z

1]

<2 a
T3 B

where Z(l) is the smallest order statistic from a sample of size k from
Beta distributions with mean ¢/ (g+n). It follows from (3.4) that the Bayes
risk of the Bayes rule d* in (3.3) is finite. Furthermore, the distribution
function of X, given X € (O,w)k, is absolutely continuous with respect to the
marginal distribution function of X.

The next result follows from the above fact and a well known theorem

(see, for example, Brown (1974), Theorem 3.14).

Corollary 3. The Bayes rule d* in (3.3) is admissible.

Similarly, it is easy to see that the generalized Bayes rule w.r.t.
k
dA = I d log Ai which corresponds to the vague prior a =8-0, is given by
i=1
(3.3) with a = 8 = 0.



REMARK 5. If we consider a loss function Ly(2,(i,3)) = g—( Min Ai)_l -

1<i<k
[AT1+A71—(A.+A.)_1], it follows from the same method that the Bayes
1 J 1]

rule w.r.t. the prior specified in (3.1) is given by (3.3) with ¢ =

1 1 _ t
2 n+a-1 n+o-1

t
tU+

-1 _ : :
Ga,n(o) € (0,1) and Ga,n(t) = + E[ v] for t > 0, where U

and V are iid Gamma random variables with mean and variance equal to (n+a).

The remaining analogous results can also be obtained.

11
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