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I. [INTRODUCTION
Supposc w functional relationship

n = g(x)

exlists between a response n and an independent (or c:

variable x, where x lies in the interval [0,1]. The problem toc he

considered is ©o estimate g using n measurements of n. At

i=1,...,r, n;:nui measurements are taken. The provability me
L
2s$1gning mass Hy to the point X, (Zuizl) is referred o as the

design. In observing the response n we assume that an additive cx-

perimental ervor, dencted by e, exists so that,

Yij’ jzl,.a.,ni, i=1,...,r; we can write

Yioo=nlxg) + 55 7 glxg) + iy

lie assume that e.. are uncorrelated and identically distribut Wit
15
. . . A
mean zero and an unknown common variance o independent of »

1f it is known that the true functional relationship n =

fias a certain form depending on a few parameters, then the

usually to estimate these parameters. If the form of the oo iy
tional relationship is unknown, the problem is to approximate the

function g(x) by some graduating function.  In this

rested in the latter problem. In the absence of ths knowledge oi thz
true functicnal relationship, it has been a common practice 2o uss a

polynomial as an approximating function. But when the degree of poly-

1
1

nomials is high, a number of unplieasant features begin to appear, ono



of which is the high oscillatory behavior of the approximating puafy-
nomial.  Spline functions (for definition etc. sec Grevillice 1909) arc
considerably less oscillatory. As an example see Jupp {1978) where he
has fitted a polynomial of degree 9 as well as a cubic spline to the

1

o~

data of world sugar prices over a 31 year period (Guest 19

Ty )
y p e r S

wn

The improvement in the fit to the data achieved by cubic spliines i
somewhat obvious since it shows less oscillation compared to noly-
nomial fit. Furthermore, the behavior of a polynomial in an arbi-

trarily small region defines, through the concept of analytic continuity,

4]
w
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its behavior everywhere. On the other hand, the spline functions posses
the property of having local behavior that is less dependent on their
bchavior elsewhere. Because of these properties spline functions are
more and more being used in tﬁe exploration of response curves for phy-
sical processes. Low crder splines are commonly used in geophysics in

the form of layered earth models (for example, see Vozoft and Jupp 1975

and its list of references or Jupp and Stewart 1974). in

Holt (1974) has used piecewise linear splines to wodel the
profile of the sun's atmosphere. Wold (1971,1974) has used the splinc
functions in the analysis of response curves in pharmacokinetics.

Here the function g(x) will be approximated by a spline function

s(x) of degree d. The function s(x) has the repressntation

d 1 d
s(x) = z eix + 8d+i(x—gi)+ (1.1
i=0 =

I o~1=

i=1



where (x - g:)+ = (x - Ei) if x > Ei and zero otherwise. The points £
A .
are called knots and we assume that gO = 0 < 51 < ...l < gk < g, ., = 1.
i K

The function s(x) has generally d-1 continuous derivatives at each gi;
Lower order differentiability can be assumed by introducing terms of
the form (x -~ Ei)z, j=d-1,d-2,...,0.

Let';i denote the average of n. observations taken at X Esti~
mates, wnich are linear inliﬁ = (;i,..g,;;), will be used to estimate
ihe vector of parameterslg' = (60,91,...,6k+d).4 As our criterion for
the goodness of estimate we shall use an integrated mean sguare eT¥YoF
(IMSE}; the integration being taken with respect to Lehesgue measure on

G,1}. Our estimate of the response is

5

g

g(x) = 8'£(x),

d

. .d d i -
where £'(x) = (1,x,...,x ,(x~§1) ,...,(x—ik)+); and ths IMSE is

+

1 N 5
. ,
J= [ E(QEGO-200) Tdx

G

is easy to show that

e
=%

J=V+B
- 1 A
= Tr M, Var(§) + [ (g(x)-£'(x)E(8))“dx (i.2)
MO e Y AR
0
where M, is the (k+d+1) x (k+d+1) matrix fg(x)ﬁ‘(x)dxo Note that V

A M
8 denote the integrated variance and integrated squared bias respectively.
Using the different choices of estimator, we study in Section 2 the

Y

asymptotic behavior of IMSE for large n and k. The asymprotic

tor IMSE depsnds on three variables:
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observations; (b) the distribution of the knots El < gz,.,,, < ”
and (c) the number of knots. We propose to adaptively estimate
the response function g(x) by}é’fxx), attempting to minimize the
IMSE with respect.to the variables (a), (b) & (c¢). The minimi-
zation of the asymptotic expression for the IMSE is presented in
Section 3.
To take full advantage of the benefits of the spline approach,
the choice of the number and position of the knots is an important
and difficult problem. In an attempt to resolve this problem as well
as the problem of choice of design, we present in Section 4 an algo-
rithm for positioning the knots and the allocation of the observation
points. The algorithm which is based on the results of the minimi-
zation of the asymptotic value of IMSE, is defined in such a way that
explicit knowledge of the response function g(x) is not reguired.
Finally in Section 5 an example is presented which shows the ba-
havior of the algorithm.
The main idea for the approach used here is from (Dodson 187Z;
Rice 1969; and Burchard 1974) where non-statistical approaches were
used. Further discussion of the results can be found in (Agarwal 1978;
and Agarwal and Studden 1978). Proofs of theorems in Sections 2 and
3 for general splines will be provided elsewhere. The emphasis in the
present paper is on the details of the algorithm in Section 4. Only

the case d=1 is considered here. Computational and programming aspects

of the algorithm will be written in a separate report.
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2. ASYMPTOTIC VALUE FOR IMSE
In considering the asymptotic behavior for the IMSE, we will

o ™ i & = £ e 1 £ ror S
be concerned with the sequences Tk {’O’ Eqsrrs 5o €k+1} of knot

defined by

§

E .
folp(dex = i/ (k+1), 1i=0,1,...,k+1 (2.1

N

where X) is a positive continuocus density on i0,11. HNote that
J J 3 3

=0, ¢

Y

1. Sacks and Ylvisaker (1970) call the sequence {Ty,k > 1)

0 K+l

so defined as a Regular Sequence generated by p (RS(pj). We will also
assume that the design u shows some regularity as k on n become large.
2.1 ¥Yariance Minimizing Estimate

The classical type regression theory assumes that the approximating
spline function s(x) provides a perfect representation of the responsc
g{x) and the fitted value ;(x) is supposed to be an unbiased estimate
of g(x), the true value. Under this assumption B=0 in (1.2) and J, the
IMSE consists of only the integrated variance tevm. If this is the cuase

QN

then J is minimized by the usual least squares estimate {LSE).

-~ -1 o~ A IR e
Bise = M ODJEY,du(x). (2.2)

tlere y represents the design measure placing mass Hyoon X, 1=1,2,..1;
L

=

iy = ff(x)fj(x)du(x) is the (k+d+1) x (k+d+1) information matrix; and

Pl

Yo is the average of the observations at x.

OQur first theorem concerns the asymptotic value for IMSE when g(x)

1s being approximated by spline functions of degree d=0.



Theorem 2.1:  Let the response function g(x) be continuously diff-
crentiable on [0,1} and the approximating spline function have
degree zero. If the design measure p has a continuous strictly

positive density h(x), the LSE is used and {Tk} is RS(p}, then

2 1 \ r :
ko p(x) dx + 1 f (g'(x)) " (2.3)
—————— 2 © -

J =
noy h(0) 12k o (p(x))

The first term on the right corresponds to asymptotic value
for integrated variance and the second term corresponds to asym-
ptotic value for integrated squared bias. Note the asymptotics
found here are with respect to the number of knots k going to in-
finity. The number of observations n should be at least (k+1)
and will usually be increasing much faster than k.

In the next theorem we find the asymptotic expression for the
IMSE when function g (x) is being approximated by spline function of
degree one.

Theorem 2.2: Let the response function g(x) be twice continuously
differentiable on [0,1] and the approximating spline function be of
degrec one. If the design ﬁeasure u has a continuous strictly positive

density h(x), the LSE is used and {Tk} is RS(p), then

2 1 1., .2
gRK POL ax v Ly L2100 g, (2.4)
g X 720k 0 (p(x))

For a proof of these twc theorems see Agarwal (1978).



2.2 Bias Minimizing Estimator

Manson and ifader (1969) have proposed attaching more importance to thc
bias part B.

The integrated squared bias B is minimized if

E() = M3 [E00g(x)ax.

Our "bias minimizing" estimator (BME) will then be of the form

R I
8 = My JERIg(x)dx.

where g{x} is some estimate of g(x). In Section 4 and © {where the

)

algorithm and example are discussed) we take g(x) to be the first

degree spline which interpolates X} at x,, i=1,...,v. Recsli ¢
o ks i 5 F
the x.'s are pnints where observations are taken., Let Li{x) =
1 &

(LG, L (1)), where L, (X7, i=1,...,r are the linear spline func-

it r i
tions such that L.(x.) = 8 1,51 r. We can rvepresent the iuter-
LU 5 W ¥ -~ L il ]-_‘~ j ij:) 5J . B NN v i j_»- = iw ol

e

polating function g(x} in terms of the 'wvoof or triangle--shaped funciion®

@

L.'s as
i

"

0
>~
~—
i

- g(x.)L. (x}.
i’ i’ti

i
A requiring property about g is that if g is continuous, then g
converges tc g pointwise as max {xi— X, }) goes to zero (e.g. ses

2gizr
Prenter 1975). Therefore our BME will look like

PN

.
1 _ o
Sme = My fof,.-.‘x)i;.’ (x)ydx, )

= i\yl""")yr)”
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In the next theorem, we find the asymptotic expression for

[MSE when g(x) is being approximated by spline function of degree

one and the estimator used is © This theorem concerns choosing

BME®

the design u to have weights By on X, such that

u, = JL GOh(X)dx, i=1,...,r (2.6)

for some continuous and positive density h(x).
Theorem 2.3: Let the response function g(x) be twice continuously

differentiable and the approximating spline functions have degree onc.

~

If the design is chosen using (2.6) and the estimator G%ME’ given in
A~V
(2.5), is used and {Tk} is RS(p), then
2 1 1 2
LkaT 7 p(x) 11 (gr)” -
J =~ 0 f h(x) dx + 50 A f - T 9. (2.7;
0 k 0 (p{x))
In the above we have suggested one choice for BME, but we can
suggest some other choices, too, which would involve estimating g in
-1 b
MO f f(x)g{x)dx.
A

For a proof of theorem 2.3 see Agarwal (1978).

Note that (2.7) and (2.4) are the same. In a more practical sit-
vation the design measure p will be discrete on a finite number of
points. With some regularity conditions the IMSE is still of the form
(2.7), however the constants appearing in front of the two terms will
be different. Generally a smoother design (resembling the uniform)
will keep the bias term small and give slightly larger values for

the variance term. An appropriate discrete design will give smaller



values for the variance term but will increase the bias {Bgarwal

and Studden 1978).

3. MINIMIZATION OF IMSE
In the last section we indicated that the asymptotic valus of
the IMSE, when g(x) is estimated by spline function of degree cne,

is

1 12
§PVR. A g 165 R P Y Y CLAI€S (3.1)
h(x) . 4

720k 0 {p(x))

llere we shall minimize the asymptotic value of the IMSE with veospect
to the three "variables” (i) k, the number of knots, (11} p{x), the
displacement of knots and (iii) h(x), the allocation of ohservaticns.

The case when g(x) is being approximatsd by spline function of &

zero can be dealt in a similar manner.

In the expression (3.1) for J, only the fivst term contains the

factor h{x). Using the Schwarz's inequality and the fact that nix) s
a density, we can show that the first term in (3.1} is mwinimized by
1
h(x) = GO/ [ /ply) dy 3.2)
0
Substituting this value of h(x) in (3.1} yields
2 1 ] 1 2
o'k 2 1 - T {X) P
J = —E-(f vp(x) dx)}° + 7 f AR )% dx (3.3
0 720k 0 (p(x))
Now the problem is reduced to minimize J with respect to v oand k. it

will be shown in the following theorem that the minimiziag p and k ace
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given by

1 C
P = (g (VO g (1 Oy (3.4)
0

and
1
k= f (@0 %(m/1800%) (/g ¥ 5 (s
0

o
[¥al
~

Substituting from (3.2), (3.4) and (3.5) the values of q, p and k
in (3.1) we see that the second factor on right {squared bias B)
is equal to

.25(180) 3 (o?myH 3 (g1 1y /09 (3.6)

and the first factor (variance V) is four times B. Therafore the
minimum value for IMSE is

W

J e n~4/5

where C = 1.25(180)_1/5(02)4/5(f(g'')2’/9)9/5°
Theorem 3.1: The functional J given in {3.1) is absolutely mini-
mized by h, p and k given in (3.2), (3.4) and (3.5) respectively,
Proof: We have already shown the minimization of J with respect to

k. Now differentiating the expression (3.3) with respect to k and

equating it to zero, we get

which yields

P
i
ey
~
=
~
Q
[\S]
~
Sy
~
0q
N
\—
N
pmd
[
~~
x]
~~
(O]
oo
e



We can verify that this k minimizes J for each p. Substituting
this valuc of k in (3.3), we get
r g"Z 1/5 18/5 .
J = olf B 34 (3.9)
p
where p 1s a constant, independent of p. Finally we have to mini-
mize J given in (3.9) with respect to p(x). This can be deone by
using Holder's inequaty
e < (foiy1/a . 8.1/B ‘21
fop < (Jv™) (f4"3 . (3.10)

G 2, 4

In (3.10), let us take ¢ = {g"") /p+, ¢ = Vo

choose o and 8 in such a way that ¥¢ 1s independent of p and
/o + 1/f = 1. This can be done by choosing a = 9, [ = 9/8,

4/9 . . ; 3 - iy
and ¢ = p / . Substituting thesc valucs in {(3.107

f—

L 2/9 49
CI AV

. . L. PN A
In the above, equality hoids if and only if p(x) = (g {x)) / ,
wacre o is a constant. This shows that J in (3.7) is minimized by
L. 479 P 4/9 , . .. .
p = a(g'") / > where a = 1/]{g"")} / » Since p 1s a density. Now

putting this value of p in (3.8) we get the desired result. q.e.d.

These minimization results indicate that knots should be placed

where g'' is large. The relation h a /p indicates that h should A0V

away from p becoming more uniform. The relation (3.5) indicates tha

-there should be many more observations than knots,

e



Remark:  In theorem 3.1, we have assumed that all of the three var-

iables, namely k, p and h are unknown. We might confront situations
when.one or two of these variables are known, e.g. we might be given
the number of knots or the distribution of observations or both, and
so on. Also in the theorem minimizing k should be less-than or esqual
to n. When k given by (3.5) becomes greater than n, it is hard to

find solutions where k < n and we have to resort to approximate solu-
tions. For a discussion of these approximate soluticns and the far»

tial minimization problem see Agarwal (1978).

4. ALGORITHM
Here we shall discuss how the theoretical results indicated in the
previous sections can be exploited in adaptively estimating a more or
less arbitrary response function g. To make matters simple, in this

section, we shall again estimate g by simple linear spline functions.

We consider the following iterative procedure. We are given Nq

\

observations on g which are distributed among Ty poinis xg,,.,,xg
' 0
T
. 0 . 0 . 0 0
with n, observations at x., i=l,..,r., so that Z n, = ..
1 i 0 j=p * 0

Let yi: denote the jth observation (j=1,...,ng) at xg. We begin with
J
a knot-set

. o~ _ 20 0 o _,0 _
HO. 0 = EO < El < ... < gk < €k+1 = 1.

This partition HO is an initial guess perhaps based on scme informa-

tion about the function g being estimated. In the absense of
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information about g, a uniform knot spacing may be used. Lot us
now spell out the steps involved in this iterative procedure and then
explain the implementation of these steps.

I. Estimate g(x), g''(x).

IT. Estimate 02 and IMSE.

[IT. Find h, an estimate of best design h. Add, say, v,, points of

. 1 1 . .
observations xl,...,xr . Let nl more observations are taken. Dis-
1 .
ey .. . 0 1 1
tribute the nl observations among r0+r1 points x1>,,5,xﬂ P LH
¢ i

resembles h as closely as possible.
b

istimate g{x) and g'*(x).

) . 2
V. Estimate o,

~

VI. Find k,
VII. Estimate g(x), g''(x).
VI{l. Find estimate of IMSE.

Steps III through V111 are called a cycle. The cycle is repeated
unless a termination is encountered. We shall taik about the tevininu-
tion criterion later. Now we discuss the implementation of the above
algorithm,

(<]

step I: To estimate g we use two kinds of estimators: (a) wvariance

minimizing estimator (5 } and (b) bias minimizing estimator
J ~LSE’ &

The estimation of g''(x) can be done in many different wavs. We

cate three of them: (a) Find the LSE of g(x) by a cubic splins

€y

then take the second derivative of the fitted cubic spline to g




estimate of g''(x). There are some standard routines for estimating

g by a cubic spline, e.g. see de Boor and Rice (1968a and 1968b).

(b) g'' can be estimated on intervals centered at the knots by a simple
sccond difference with estimated value of g at adjacent knots. (¢} Let

~

so(x) = g(x) be the linear spline approximation to g(x) which

<

obtained

[
wr

using one of the two estimators. We hope that the approximation 54

contains enough information about g so that a reasonabie approximation to

g'' may be obtained from it. We cannot use s as an approximation fo

0 I
- te - -
g?? for the obvious reason that Sy 1S zero except at the knots, where
1t does not exist. As suggested by Dodson (1972), we fivst find a bro-
ken line approximation of g'; its derivative may then be used as the de-

sired approximation to g''.

is used. Note that s! is

.
{

For this purpose s?, the derivative of 507

constant on the intervals (Eg_l,gg), i=1,...,k+1. W

[y

W

put a breakpoint v,

. . 0 0 . . . . .
at the center of each interval [£: £.1, 1=1,..,k+1; and defins a broken
1-1°71 '

. . . L
line function < on {Ti} so as to interpolate sj at each T+ In the first

and last intervals, [O,Tl] and [Tk+l,1}, the continuation of the broken

. . . . . . . - . v
line in the adjacent interior interval is used. Finally, with s so
. def
n

defined, we use the step function g'' = s' as an estimate to g''.

ak)

- \ . 2 . -
Step II: We can base the estimate of ¢ on the residual sum of squares

- 2

w
=
i
I~

i=1

if the model obtained is correct but not otherwise. If the prior esti-

. 2. .
mate of o 1s available we can see (or test by an F-test) whether or



not the residual
estimate. If it
of
2 . .
G~ i1s availlable,

same value of x,

2

mean square is significantly greateor than the »

is significantly greater we say that there is lack

£it and we would reconsider the model. If no priocr estimate of

but repeat measurements of y have been made at the

we can use the mean square

by i
T i _ I
MSp E. ~ .21 _Z (yij—yi) /(_ani—r;
1=1 J=1 i=i
as an estimate of ¢
The IMSE for the LSE is

[
1

where

Y =
ancd

R =

The oniy unknown
- 2.
we replace ¢ in
If g(x) is known
the form of g(x)

an estimate of B

[ E(R0O-£! COM T (0 [EX)Y dut) Fax
. .

V+ B
Y | - N
—— S\ [ H
o T M M, {1
i -
e il *-"1 7 1 ,‘-,\\Z S
[ @C-£0oM " G0 JE0) g ()i (x)) “dx
0 ;
. . 2 . . .,
parameter in V is o7, so to find ar estimate of ¥

PN r

; 2 . . 2 L
{4.1) by o7, the estimate of ¢~ obtained above.
we can evaluate the integral in {4.2) to get B. If

1s unknown, which is usuzlly the case, we can find

as follows. First using the trapezcidal rule we replace

the integral in (4.2) by a summation:

i)
2
TR

2

A
bR

1
7(x;

2 ) ,
_Xiul){(gtxi}"u(xi)} + (Sxxi«1)~u{xjm1)}‘}



where

ux) = £ N T [E00g AN, isL,. T,

Now we replace g(xi) by ;i, the mean of the observations at X

to get an estimate of B as

A

B =

_ — 2 — — AN
5 %(xl_xl'l){(yl_u(xl)) + (yl-l‘uixl-l)) I

II'MH

i
where

B0 = £ OO TG [E0OY, AU, 151, T

The above method gives a good estimate of B if we have many more

observations than the number of knots.

We can similarly find the estimate of the IMSE for the other

estimator QQBME)'

~

Step 1II: We have obtained g'' in step I. So from (3.2) and (3.4),
we get

R = (2 (020 (g (3% Yay.

{a) Find Tytry points ti’s according to the quantiles of h, i.e.

find ti's such that

t.
1 -~
f ; h(xydx = (i-1)/(ryrr,-1), i=l,..,z ¢r,.

{(b) Among the r0+r1 ti's find the ones which are close to x?;

j=l,..,r0, the remaining r ti's will be the points x;, j=1,“.,,r1

1

which are to be added at this stage. We arrange these r Ty points

0

in increasing crder and denote the ordered set as x X where

100



(¢} h is « continuous design, we have to discretize it. To do
X '
this, we find li(x) = ] h(t)dt and approximate it by a distribu-
- 0 N
tion function G(x) having jumps at xi, i=1,...,r. We take G to

be a uniform approximation of H, i.e. G is the solution of the
problem

min max |H(x)-G(x) |
X

where the minimum is taken over all step functions G having jumps

at xi; i=l,...,r. It is easy to show that
G{x) = 0 , X <D
= O JHHG)), X L £ x < x., 2.,
2 1-1 N e 1i-1 i
=1 , X > 1.

A

Note that x,=0 and x_=1. So now we have the discrete design
L

as below:

[
Kiseen.,X
3 1’ r
J
B
Lu1, B T
S B
where ulzG(xlj; ui=G(xi)~G(xi_l), i=2,...,7r.

(d} Now we have to allocate n.+n.=n observations according to the

: 01

=]

77

design u. This can be done by a scheme given in (Federov 1572,

- . ~ - . + . . -
Section 3.1). We alloccate [(n—r)ui] observations to point x.,
= 1

- : + o, . e
1=1,...,v, where [¢] indicate the smallest miteger satisfying

. i-
1=1
+
The remaining unrealized observations n' = - Z i{n-v)u.i can be
i=}

added one-by-one up to the peint where

B

(m-2)u, 2 [(n~r)ui]+ -



We can also distribute n' remaining observations randomly among r

points. This scheme for the distribution of obscrvations works well

if r is very small compared to n. Note that we should make sure

that we took at least ng observations at points xg, i=1,n.,,r0.
Steps 1V and V can be implemented in a way similar to steps

I and II respectively.

Step VI: Once we get the estimate of 02 and g'', we can immediately

find £ from (3.5),

£ - fé"4/9{ n . 1 } 1/5

18006%  [gr 13/

Also we have from (3.4)

pe) = 2" Y @ ) %y

~ 1
consisting of the k knots gl,,..,gi,

jon—

Now we obtain the partition Hl

The gi's are obtained from the integral relationship
i1

[ % p(x)dx = i/ (k+1), i=0,1,..,k+1.

0

gl and gl represent the end points

- A9 S yeyp TOPY P ’

Steps V11 and V111 have been already discussed.

Let us make a few remarks concerning the algorithm., The
estimates h, p and k depend on the estimates of g'' which is dis-
cussed in step I'. We have suggested three methods of finding an
estimate to g'' and there are many other ways in which this can be

done. Because of its simplicity we shall usually adopt the method

indicated in (c) of step I. There the estimate of g'' is obtained

[es)
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from the lincar spline approximation Sqy- This So should

be a good approximation to g, whatever that may mean. Thu
crally, the starting partition HO must consist of a laryge number of
knots and they must be distributed through the interval in a reason-
able way. It is conceivable that a very bad choice of ths pavtition

HO could result in a "misleading" spline approximation s, and that

the resulting partition Hl be still worse. e did not confront

such cases of instability during the testing of the algovithim.

The estimates h, p, and k obtained here are based or iy

totic results, so if ﬁ obtained from (3.5) is small, it
a very good estimate of the number of knots. However it kas heen
found useful to do the following. Instead of finding a pariition con-
sisting of i knots, we find five different partitions consisting of

~ ~ A

k-2, k-1, k, k+1, and k+2 knots respectively., In each partirion the

kaots are chosen according to the quantiies of same p. Y=

estimate of g(x) and the corresponding integrated mezn square

using the knot sets of each of the five partitions. Now

partition for which the IMSE is minimum. We call the points of fhis

partition to be "good" knot set. It has also been found
iterate the algorithm a few times with a fixed number of xnots.
This allows the algorithm to base its resulting ""good" set of knots

on a "good" set of the same size. One or two iterations has usually

been satisfactory.

Termination Criteria: We use here two termination crif

algorithm. The first is a simple bound on
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cycles, i.c. we shall perform no more than '"m" cycles. Usually
m=5 or 6 is found to be a reasonable number. The second criteria
is based on the test for the ''lack of fit'". This test is indica-

ted in step II. If there is no lack of fit in the model, the cycles

are terminated. Other than these two we can use some other termina-

tion criteria depending on our problem, e.g. if the IMSE at any stage
is not decreased much compared to the IMSE at the previnus stage,

then also we can stop.

5. EXAMPLE

Here we shall illustrate the algorithm described in rthe iast
section by a numerical example. The algorithm is iilustrated on
the measurements of the function

g(x) = -125[(-1)%+ (2x--3)°1 1 + c125[C12)%+ (2x-1-23%77 (5.1)

For this function g''(x) varies by a large amount in the interval
[0,1]. We simulated the data errors by adding to g(xi] a number
sampled from the normal distribution with mean zero and variance one
hundred. We started with three equally spaced knots and took five
observations at each knot and the end points. We call this cycle

zero. We performed ten cycles and added one hundred observations

at each cycle. This was. done for both the estimates namelquLSE

and 6

BME* The linear spline fits obtained by the two estimates im-

proved at each cycle. The results of cycle zero, cycle six, and last

cycle for,@LSE and ﬁBME are shown in Figure A and Figure B respec-

1

tively. The breaks (joints) in the graph are the knots. The algorithm
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has chosen the knots at the points where curve is taking turn,

and it seems reasonable. Here we stopped after ten cycles. 1If

we would have let the algorithm run for a few more cycles, the
estimated response function would have been right on the top of the
actual function and would not be able to see the difference betwsen
actual function and the estimated function. For the same reason we
have shown in the figures only the result of three cycles.

We calculated the integrated mean square error for the two es-
timates at the end of each cycle. The results for LSE and BME ave
shown in Table a and Table b respectively. As expected the L[SE did
a good job in reducing the variance, while BME did a comparable job
in reducing the bias. Actually, we notice that BME has done fairiy
good job in reducing the variance also.

Here at cycle zero i.e. start of the algorithm the integrated
variance (V) was almosi equal to integrated squared bias (B). If
at the start of the algorithm B is larger than V then BME shows con-
siderable superiority over LSE in the sense that it reduces B much

faster than LSF does.

At the start of the aigorithm if V is larger than B then the
present set up does not show strong case for LSE minimizing V faster
than BME does. This is apparently due to the fact that after two or
three cycies and a few observations have been taken, these cobserva-
tions are dispersed, at least in this example, in a somewhat uniform

manneT so that LSE and BME operate on V in a similar manner.
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One can comparc the above procedures with a procedure, say,
equally spaced knots and an equal number of observations at the
knots. For a fixed number of observations this procedure is cou
parable to the above procedures when the number of knots used is
close to the optimal,-which is used by our procedures. In practice,
however, the experimenter does not know this number.

In the example discussed, we took 100 observations at gach
cycle for ten cycles and then terminated. Some criterian for
termination were discussed in Section 4. Other modifications arve
possible. For example we can aim at a fixed value for IMSE, say

IMSE

{l

I in the following manner. We note from (3.7) that

_-4/5
11 .

IMSE C

We can use this equation to estimate C at each

cycle. After four or five cycles or if C appears to stabilize we can
insert the estimated value of C and IMSE = 1 in equation (3.7) and

solve it for n. This gives an estimate of the number of observations
needed to reach the value of IMSE = 1. The estimated C, however, is
usually too large so that the estimated n is also usually too large.

For example here for the BME estimate with 525 observations the value of
IMSE is 2-376. To reach IMSE = 1 we estimate n = 1548. We notice

(Table b) that for n = 1025 we have already IMSE = 1,18,
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Comparison of Estimates

~

Integrated Mean Scusye
Cycle Integrated Variance Integrated Bias Erroy
Number k n Y B IMSE

a. LSE estimate

0 3 25 §.711 10.693

1 3 125 3.996 5.740

2 3 225 2.122 5.477

3 4 325 2.139 3.857

4 5 425 1.428 2.489

5 5 525 1.284 2.486

& 5 625 1.107 2.491

7 6 725 1.075 1.465

] 6 8§25 0.957 1.465

E 6 925 0.842 1.448

15 6 1025 0.725 1.450

b. BME estimate

8] 3 25 9.711 10.693 2
1 4 125 3.947 4.841 s,
2 6 225 2.946 1.050 3.
3 5 3Z5 2.170 0.816 Z.
4 6 425 1.815 0.828 2.
5 6 525 1.554 0.822 2.
5 7 525 1.366 0.539 1.
7 8 725 1.304 0.300 1.
S 9 825 1.245 0.184 i
9 i 925 1.131 0.181 NG
10 § 1025 1.039 0.141 1,139




FIGURE A: Function g(x) and LSE at end of cycles zero, six and ten.
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FIGURE B: Function g(x) and BME at end of cycles zero, six and ten.
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