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Summary.

S
Set —% be the sample mean of i.i.d. random k-dimensional vectors

and A . an open k-dimensional set. Among the questions concerning whether
s 1

the expression (P(—%;E A))T has a limit and what is this limit, the lower

estimation is completely solved, while the upper one is partly open.

Our aim is to give a view on the solved cases of the upper estimation and

to show the methods used here.

1. Introduction. One-dimensional case.

1.1. 1In connection with any limit theorem stating that Gn(x)-+ G(x),
where Gn and G are distribution functions, one can formulate a large
deviation problem as we;i. If Gn(x) -+ G(x) and X, >t then obviously
Gn(xn) > 1 and Gn(—xn) -+ 0, but the next question in fhis direction is what
is the rate of this convergence. The large de;iation problem is to find
the asymptotic behavior of the expressions 1—Gn(xn) and Gn(—xn) if n > «,
These expressions, ih most cases, are symmetricai and therefore, usually,
only the first one is investigated.

The large deviation problem arising connected with the central limit
theorem is the one most frequently discussed (for other types see eLg. [4],
[14]). Here we deal only with the i.i.d. case, when the r.v.'s Xl,X

gyt
are independent and identically distributed r.v.'s Sn = X1+X2+...Xn,

Fn(x) = P(Sn < x) and Gn(x) = Fn(Vﬁk) (E(Xl) = 0 is assumed for the time.
being). General results for the non-i.i.d. case are in Sievers [17],

“Steinebach [19].



1.2. There exists a natural classification of the large deviation
problems according to the order of magnitude of X,

The case x = o(vn) was solved by Cramér [8]. If the moment

tXl

generating function R(t) = E(e )} < » for some t » O, E(Xl) = 0, D(Xl) =1,

x >0 then
n

2

X

n

2 n.*% - iy
(1.1) 1 -F (/ix) = (1-2(x)e” p (=1 +0(—)) (@=&),

n n n /]’T -

where
(1.2) o(x) = inf e t¥R(t).

t

The behavior of the other tail is similar assuming théﬁ R(t) < « for some
t < 0. As a refinement of Cramér's theorem there are results when R(t)
is replaced by some moment condition (Nagaev [11]). In this case
- log p is replaced by a partial sum of its power series.with a remainder
term.

If the deviation is not large, to be exact if its order of magnitude
is less than CVTEEH, then the existence of the kth moment guarantees the
validity of (1.1) which has the form now 1 - Fn(/ﬁkn) v L= ¢(xn), where
k depends on c, (Rubin-Sethuraman [16]). Deviations of this type are called
moderate deviations. Osipov [12] gave the exact condition of the validity
(1.1)4!if the order of magnitude of X, is known and less than D(ng.

The cases mentioned above have the important property that the statement
(1.1) uses only the values of p in a neighborhood of the exPectation
(which is now the origin). If the deviation is somewhat larger, X ~ ¢vn or

X .
n e — . : . .
— = +» ; then this no longer remains true. Therefore if we deal with large

%



deviationé of the sample mean, when x = x/n, and x takes different values,
we have to use the complete function p(x). This argument explains why the
methods of this so-called Chernoff case differ from those of the earlier
Cramér case.

Fbr ""'very large' deviations (;% -+ ) there are only a few and very
special results (see Linnik [10]). "

1.2, .The large deviations of the sample mean represent a boundary case
in the above sense, énd'it is not necessary to emphasize their importance.
The investigations are mostly done differently from the Cramer case.

Let us assume that E(Xl) = m (not necessarily m = 0), then the
Chernoff theorem [7] states that |

s 1
(1.3) | P > >0 (x > m),
and if R(t) < « for some t > 0, then the convergence uniform in [m1,+m)ﬁ
Complete this result by a very often used inequality which takes the role
of the classical Bernstein inequality and therefore it is called by the same
name:

S

(1.4) PR > ) < () (x> m).

There exists a sharpened version of the Bernstein inequality, namely
n
P( sup Sk > x} < p (%)
1<k<n
(see Steiger [18]) and the statement (1.3) can be similarly modified.
The function p(x) defined by (1.2) is called the Chernoff function.

Obviously 0 < p(x) < 1. The Chernoff function has always the following

shape (assuming now that R(t) < « for [tl < §): ithere exists an open



(finite or infinite) interval around the expectation point in which p(x) is
an analytic function, it will be called the domain of analyticity, and
outside of its closure p(x) = 0 or p(x) is an exponential function. In the
first case the endpoint of the interval is not necessarily a point of
continuity of p(x). The proof of the Chernoff theorem in the domain of
analyticity can be carried out in a manner similar to Cramér's while the
extension always uses an approximation (or truncation). As to the compiete
proof we refer to Bahadur [1], for the approximations the general theorem
of Bartfai [4] (Theorem 10-11) is very useful.

In the domain of analyticity Bahadur and Rao [2] gave a very often
used sharper asymptotic formula.

Sn —%' n

Pl 2 %) » (2m) “b_(xe" ()
where |log bn(x)l is a bounded expression for a fixed x and in the case when
the distribution is not of lattice typefbh(x) is independent of n (see
also Petrov [13]).

1.3. The only method of the theory of large deviations is (excepting
only one case: Sievers.[17j) the method of conjugate distributions (or
exponential families). To any distribution function F(x) and to any t ,

for which R(t) < «, we can assign another distribution function

X
Loy | eYargy).

-0

(1.5) F(x) = R

This transformation has a very important property, namely (?g) = (F)n, where

the lower index n denotes the nth convolution power. From the from of the

R(t+5s)
R(t)

we can see that this transformation shifts the coordinate system of the function

moment generating function of F, which is equal to (t is fixed now), .



R(t) and then renorms it to be again a moment generating function.

The transformation (1.5) has a fery simple inversion formula:
(1.6) | 1 - F(x) = R(t)_? e Wak(y)

X

and the t value here must be the same as in (1.5), in this case (1.6) is
an (almost trivial) identity.

Apply (1.6) to Fn’ then
(1.7) 1-F (nx) = fz“(t) / e_tydf?n(y) = (RN [ e‘“‘t(y‘x)dﬁn(ny)

. nx X

and by choosing t in an appropriate manner the factor before the integration
is equal (or neariy equal) to pn(x). in evaiuating the integral the faqt
is often used that Fn(VE&) is nearly normal. This is the basic formula of
the theory of large deviations;

The‘Bernstein inequality can be read directly from (1.7) because for
t > 0 the integrand is less than 1, and X >m implies that

(1.8) .sup e-th(t) = sup,e_th(t) = p(x),
t>0 t

namely ¢t R(t) > 1 for all t and for t < 0 e_th(t) = e_tmR(t)et(m_x) > 1.

2. Introduction. Multi-dimensional case,

2.1. The techniques used in the one-dimensional case works in this €
case, too. We can define the basic notions in a similaf way.
Let Xl’XZ""

space Rk. Let the distribution function and the moment generating function

be i.i.d. random vectors from the k-dimensional Euclidean

of X1 be F(x) and R(t) = E(e<t’X>), resp. (X”E Rk, t <€ Rk and <t,x> denotes

their inner product). The function R(t) = += in the case when the expectation

does not exist.



Define the Chernoff function of Xl (or F) by

-<t,x>
e

(2.1) p(x) = inf R(t) (x € Rk).

tERk

The conjugate distributions can be defined in a similar way and the
inversion formula as well as the basic formula also hold in multi-dimensional
spaces.

2.2, 1In order to investigate the properties of the Chernoff function
there is a very useful aid, the theory of convex analysis. For this
we refer to the book of Rockafellar [15].

A function f(x) (x_e Rk) is said to be convex if the set {(x,y):

y > f(x), x € Rk, y € Rl}ﬁis convex and f(x) is closed if this set is

closed. There is a duality (Fenchel-duality) among the closed convex

functions:
_ £(x) =‘sup (<t,x> - £(t))
and t
F(x) = £(x)

in words f is the convex conjugate of f.

Using this notion we can establish that the functions 102 R(t) and
-log p(x) are convex conjugate each to other. 1In fact, it is well—kﬁown
that log R(t) is a convex function and it is easy to prove that R(t) is .closed,
because—- by truncation- it can be approximated from below by continuous
functions. Consequently - log p(x) is a closed convex function, too and
from the duality we can deduce the inversion formula:

(2.2) R(t) = sup e o X75(x).

xERk

2.3. Define the effective domain of p(x) by domp= {x: p(x) > 0}.



Theorem 1. The closure of dom p is equal to the convex hull of the

support of the distribution of X1'

(The support of the distribution of X1 is the smallest closed set S
such that P(X1 €5S) =1.)
Proof. Define the recession function of a convex function f by
9%y = lim%f(x + Ay)
Ao '
where x is an arbitrary point for which |f(x)] < o, The limit is independent
of the choice of x.
Let X be a random variable with moment generating function Rl(t),
then by a simple calculation
.1
lim — log R (t) = ess sup X.
t 1
t-so
Consider for any fixed y € Rk the function Rl(k) = R(Xy), then Rl(A)

is the moment generating function of»-<x1 y>' By denoting f(t) = log R(t)

f0+(y) = 1lim %—1og R(Ay) = ess sup<X,,y> = sup <x,y>.
1
A0 XES

For any closed set S we can define a support function

SS(t) = sup{<x,t>: x € S}.
X

The support function of S is equal to that of conv S = C (conv S is

the convex hull of S). Therefore f0+(yj = Sc(y).

According to Theorem 13.3 of [15] f0+(y) = Sdom 7 =.6C1 dom o

and, since

SC and the indicator funciton of C,

1 x € C,
8~(x) =
C +oo x € C,



are convex conjugate (Theorem 13.2 of [15]), the equality GC =96 c1-dom p
implies that C = cl dom?p.
2.4. It is easy to verify that applying a non-singular linear trans-

formation to X, say X' = Ax + b (det A # 0) the transformed Chernoff

function is
-1
oyt (X) = py (A7 (x-b)).

In particular, if we represent X and x in the same space, the Chernoff
function p(x) of X is independent of the choice of the coordinate system.

| The.situation is not so simple if det A = 0. Let us consider for
example a projection to the subspace determined by the first k' (k' < k)
coordinates. The moment generating function of the projected distribution

is R(tl,...,tk,,O,...,O). According to (2.2),

t1X1+. . .+1:kXk

R(tl,...,tk) = i sup i} e : p(xl,...,xk),
1277727k
hence
t.x, +...4+t. X
: _ . 171 k"K'
R(tl,...,tkpo,...,O) = _ sup e T - sup vp(xl,...,xk).
Xpsenes Xy xk#l?i"’xk
The function -log sup p(xl,...,xk) is a convex function again, but
X ey X
B+1° >k

not necessarily closed, therefore we can state only that the Chernoff function

of the projection is

(2.3) _ p(xl,...,xka =cl sup p(xl,...,xk).
. Xupq2 et o X :



(If £ is a closed convex function cl f denotes the greatest closed convex
function which is not greater than f. Here the closure operatioh is
defined as exp{-cl(-log p)}). We note that the closure operation can
modify the function only on the boundary of its effective domain.

Example 5.1 of Bahadur - Zabell [3] shows that the closure operation,
in general, cannot be omitted in (2.3). If we suppose that R(t) < « in a
neighborhood of the origin, then sup p is closed; therefore - in this case -

the Chernoff function of the projection is sup p(xl,...,xk).
Xpappoe o %
2.5. Let H be a supporting hyperplane of dom p. By some heuristic
arguments we can hope that p(x) for x € H is equal to the Chernoff function
of the conditional distribution of X1 under the condition that X

similar difficulties arise in this case, too. This statement is valid in

176 H. But
the one-dimensional case, but if k > 2 we have to assume that R(t) < o
everywhere.

2.6. Introduce the notation

p(A) = sup p(x)
X€A
where A is an arbitrary set in Rk. The main, partly open problem concerning
large deviations of the sample mean is whether tﬁe relation
. ) 1

(2.4) (P € AN » o (A)
holds. If A is a closed Set, even if the interior of A is not empty, then
this relation is not valid: Example of [5] shows that we can find a closed
set A for which P(S—E €A) =0 (n=1,2,...) and p(A) > O.

Statement (2.4) can be divided into two parts, a lower and an upper part.,.

The lower part, namely that
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s 1

lim inf (P(—E e anN® >
holds for every open set without any restrictions. Many authors have
proved this statement. Lanford [9], Bahadur-Zabell [3], Bartfai [6].
The upper part seems to be more difficult, and , in its complete
generality it is an open pfoblem. There are three easily solvable cases,
the first one has special importance.

Theorem 2. (Bernstein inequality). If A is a convex open set

s
(2.5) . P(—% €A <p(A).

This statement is valid for closéd sets, too? but in this case the
inequality not necessarily sharp.
| Proof. First we prove (2.5)vfor a closed convex set B instead of A.
If p(B) = 0, (2.5) follows from Theorem 1, so we can assume that 0 < p(B) =
¢ < 1. The disjoint closed convex sets, B and C ; {x: p(x) > c+e} can
be separated by a hyperplane H and according to Sec. 2.4. we can assume that
H is orthogonal to the first coordinate axis: H = {(xl,xz,...,xk): Xy =a},

and p(x) < c+e for x;, > a (x = (xl,...,xn)). Applying the proof of the

1

one-dimensional Bernstein inequality (Sec. 1.3) we obtain

S
P(R€B) < P((S), >a) < (inf e TR (t))7,
t>0

where (Sn)l denotes the first coordinate of Sn and R, is the moment generating

1

function of the first coordinate of Xl'
Let p,(0) = infe TR (t). If p,(0) = inf e T°R (t), then we have for
1 , 1 1 o 1
o' <o and t <0 -
» _ » ) .
e TOR(t) > inf e *¥' R(t) > p. (a'),
z ] :
£<0
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i.e. pl(a) z_pl(a'), but because of the construction of H and of Sec. 2.4
the last inequality holds in the case o' > a too, therefore pl(a) =
sup pl(a0‘= 1. This is impossible, consequently

Sn n n

P(— € B) < p,(a) < (c+e)

n- -1 —

which proves the statement for closed convex sets.
Now construct a sequence Bl CB, © ... of closed convex sets such that

2
Bi = A, then for fixed n

i=1
s, s
P(—ﬁ-e Bk) > P(—H-e A) (k » +x),
and for every k
Sn n
P(—ng Bk) <p (A) (n=1,2,...).

These two relations prove Theorem 2.

Other cases when the upper estimation does not cause any trouble are

i
(o]

(follows from Theorem 1),

(1) o(A)

(i) p(A)

1l
=

(upper estimation is trivial).

3. Elimination of the singularities.

3.1. If we fix the value p(A) = ¢ (0 < c < 1), then-from the point of
view of the upper estimation-we can choose the set A as large as possible,
and further on we always assume that A = {x: p(x) < c}. This set is always
open and its.complement AS is convex.

If A® is bounded - which is true iff R(t) < « in a neighborhood of the

origin - and the condition

(3.1) o(A) = p(cl A)
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holds then the proof of (2.4) is very easy.

Let Ae = {x: p(x) < c+e}, then AZ and cl A are disjoint .closed sets,
AE is bounded, therefore they can be separated by a polyhedron. P such
that A c P© C:AE, and the statement (2.4) holds for P® because it can be
divided into finite many convex sets. Consequently

s 1 S 1

Lim sup (P(— € A" < lim sup (P(— € PN" < cee,
which proves (2.4) provided that A® is bounded and (3.1) holds.
3.2. By an example we can show that (3.1) is not always true. Let P

1

be the uniform distribution on the two-dimensional unit disc, and P2 be the

probability measure concentrated at (1,0), and form their mixture:

P = 1/2(P1 + Pz): The Chernoff function of P vanishes in the outside of the

disc and on the periphery but p(1,0) = 1/2, i.e. p(x) is not continuous at

this point. Let A = {x: p(x) < 1/3}, then A and A; cannot be separated

by any polygon with finitely many sides.
This example gives the idea of the next proofs: the distribution must

be.decomposable into two parts of this type.

3.3. 1If (3.1) does not hold then there exists a point x. € ¢l A such

0
that p(xo) > p(A) >'O. This point will be called an. outstanding singularities
of p with respect to A. Obviously xO_E bound dom p. The next lemma states

that the outstanding singularities can be covered by finite many supporting

hyperplanes of dom p.

Lemma 1. If the condition (3.1) is not fulfilled by an open set A, but

P(Xl'e int (An dom p)) > 0, then there exist finite many supporting

hyperplanes of dom p, such that the condition (3.1) is fulfilled by the

Chernoff function of the conditional distribution of X1 under the condition

that Xlrdoes not belong to these hyperplanes.
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- Proof. Let us fix an open convex set C C A with positive measure:
P(X1 €C) = Pg > 0. Then p{A) > py-
If (3.1) does not hold then there exists a point Xl»e bound A such
that p(xl) > p(A) > Py Since p(x) is not continuous at X xl'e bound dom p.
Consider a supporting hyperplane H

at the point x, and let Py = P(Xl_e Hl).

1 1

According to Sec. 2.4 p; > c. Introduce a new probability measure Plvby
P (B) = P(X; € B|X, £H).

If thé Chernoff function of P1 does not satisfy (3.1), then there

exists another supporting hyperplane H2 for which P, = PI(HZ) > Pl(C) =

Po.. , similarly to the first step.
1—p1 '

If the procedure could be continued without limit then

n-1

-1
P, > Pol T (1-p;)] (n=1,2,...).
: i=1
Hence
- <.l—npo \
Pn 1-(n-1)p
0
and thus the prdcedure must stop atr step %—-j_n < %~ + 1 at the latest.
0 0

Lemma 2. Let two probability measures P, and P2 be given with moment

1
generating functions Rl_and R2 and with Chernoff functions Py and Pys IESp.

Then for the Chernoff function p of the mixed distribution pP1 + qu

(p >0, g >0, p+q=1) the inequality

(3.2) () > sup ¢ (pp, (1) (ap, )T
Osasl ’
Ay+(1-2) z=x

holds where ¢, = A_A(l—k)_1+x.
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Proof. By definition

o™ (x) = inf e—<t’X>n(pR1(t)+qR2(t))n =
t ‘
n -<tx,> -<t,x,>
. k n-k -1k 72 -k
inf ] (Ipa (R(e IR e)e 2™,
‘'t k=0 :
hence
n, _k n-k k ‘n-k
(3.3) 00 2 IR ey (xR (x,)
provided that kxl + (n—k)x2 = nX.
If
A 1-» ~
sup 3 (e (M) (ap, () = 0 (x)
A
Ay+(1-2)z=x

then there exists AO’ Yo and Zg such that z, is a continuity point of Pys

AOYO + (1—>\)zO = x and

AO l—AO ~
(3.4) CAO(ppl(yo)) (ae,(z4)) >p(x) - ¢
kn
Let X =Y, and kn be a sequence §uch that - AO. If X, is equal to
the solution of knxl + (n—kn)x2 = nx, then Xy > Z4e If n - » and then ¢ -~ 0

(3.3) and (3.4) yield p(x) > p(x).
3.4. Now we are able to eliminate the condition (3.1). Our result
is the following

Theorem 3.. If R(t) < « in a neighborhood of the origin then (2.4) is

valid.

Proof. The elimination procedure of (3.1) is based upon an induction

by dimension. Since in the one-dimensional case there is no problem (there
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are no outstanding singularities at all) we may assume that (2.4) is
valid in the k-1 dimensional case and we prove it in Rk.

Let us suppose that
(3.5) P(Xl_e int(Aj]dom p)) >0

then the outstanding singularities of p with respect to A can be covered
- by finite many, say v, hyperplanes (Lemma 1). We apply another induction
by v. . If v = 0 we have no singularities. Let us suppose, therefore, that
(2.4) holds if the outstanding singularities can be covered by v - 1
hyperplanes and we have to prove it for v hyperplanes.

Consider one of the supporting hyperplanes H constructed in Lemma 1.
Let the set H N dom p be partitioned into sets Bj (j =1,2,...,m)
such that p(Bi) - inf p(x) < € (i = 1,2,...,m) and each Bi is in H N A

x€B., ’
. c J
or in H N A",
Sn
Now we estimate R(_ﬁﬂe A). Evidently
8

(3.6) p(% €A <
j

T oo en-g 1 % 1 R
Lo WraTrG X €8PGry T Xp €y ),

1 2=0 i

It ~8

1

Xl

Here X! IREE

1,

of which are equal to the conditional distributions of X1 under the conditions

and Xf, XJ,... are i.i.d sequences of r.v.'s, the distributions

Xl € H and Xl € H, resp., further

N 3 _ %
Bj,n,l = {x: = y+(1- n)xre A for some y € Bj}

and p = P(X1 € H), q = l¥p._ For 0 < A <1 define the set

B, , = {x: Ay+ (1-A)x € A for some y € Bj}, (j .1,2,...,m).

JsA
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Let the Chernoff function X' and X'" be denoted by Py and 0,5 Tesp. We
sl - . N .
denote Ty = {j: ij CH N A"} The functions gj(k) = pz(Bj,A) (€ Fl)
are monotone functions therefore we can choose a division 0 = AO < Al <...<>\N =1
of [0,1] such that Al's are continuity points of each gi(k) (g ¢ Fl). By

using the argument of Sec. 3.1

1 n-g2 1 n-4
" 1" .
(3.7) P(n—z .Z Xi ¢ Bj,n,k) f-P(n—z .Z Xi-e Bj,x ) <
i=1 : 0 i=1 r-1
n(l—kr)

< (oy(By 5 )+ e)

L .
provided that Ar j_ﬁ-f.xr and n is large enough (j € I',, r = 2,3,...,N}.

l,

= A then (3.7) is also valid because of the condition

-1

- If r = 1, then B,
j,0

of induction on the number of supporting hyperplanes.

if j € T, = {j: Bj CH N A}, then (3.7) is also true, because Bj A
>Tr-1

~ ~ c ) A~
can be enlarged to B, = {x: p,(x) < p,(B. )} € A” and for B,

Iohp 1 2 2750 Jfkr-l
the condition of induction (on the number of hyperplanes covering the
singularities) is satisfied. The case r = 1 is as same as earlier.

According to the condition of induction by dimension

ni

%
1 \ Ny r-1 L

P(g izl X} €B) < (py(By) + €)7 < (p)(B)) + ©) 1S5 28)

By substituting this and (3.7) into (3.6)

S N ni n(l-2) na

n . n r-1 T : r-1 n(i-x_)
PR €M) <msup ] (3P T4 [0y (By) + ¢l o (By Ap )+ 17

j r=1 T
where Ar—l j_k; f_xr. It follows from this by letting n tend to infinity

and then ¢ to zero that
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S L A 1I-A_ A 1-2

. -1 r -1 T .
lim sup (P(‘%‘E N S Sup €, P * q P1 (B.)p2 (B"Ar-l) d
Aear 177 A1 1-A,
_<_ Sup CA* p q. sup (pl(y)+€1) p2 (X)
T T v A (1-2_ _)x€A
r—ly r-1
m
y € U B.
j=1"

Now let € 0 together with max (Ar—Ar_l) - 0, then by Lemma 2
r

1

S —_
. A 1- A, 1-2
lin sup (P( € AN" < swp ep’a N swp ) (ne, () < p(A).

N> A Ay+ (1-2)x€A
y¢<H

If the condition (3.5) does not hold then we modify the distribution

of Xl. Let the distribution of the i.i.d. r.v.'s Xl’ X2,... be the mixture

of the distribution of X1 with welght 1-¢ and of the probability measure
concentrated onthe point X € int (A N dom p) with weight €. Then
S

- 0
: X, €K) > P(— €A (1-e)"

P(

=

Il o~

i

and
| Sn %' 1
Lim sup (P(— € A)) i el SN GV

n->o

where o is the Chernoff function of the modified distribution. Obviously

<ty x-xp> —<t,x>
(3.8) pe(x) = inf{ee + (1-g)e >TTR(Y)),

t
-<t,x,> <t,x,>

0 0

but from the inequality 0 < p(xo) <e R(t) we can express e , by

substituting it into (3.8) we get
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€
OE(X) f_(gf;gj‘ + 1-g)p(x).

Therefore we have the upper estimate

1
S it
. n n €
~1lim sup (P(— € A))" < (1 + m——<) p(A)
. n .- , (1-€)e (x)
and after tending e to zero Theorem 3 is proved.

3.5. We note that under special circumstances it is possible to give
S .
an exact upper bound for P(—%;E A). We refer to [6], Theorem 5.

4. Non-bounded level sets.

4.1. 1In the last Section the case where A = {x: p(x) > c} is bounded
or, what is the same, R(t) < « in a neighborhood of the brigin,has been

completely solved. Now we give a result for the unbounded case.

Theorem 4. lf_E(logk(l+|X1|)) < « for every k > 0 and the second

derivative of the level curve of p is monotone for large values of x (see

more exactly in Sec. 4.4 ) then (2.4) holds in R2.

The second condition seems to be only a technical one and probably
it can be elimiﬁated by a refinement of the calculation, but in order to
eliminate the first condition new ideas are needed. - We have not yet
tried to extend the calculations to higher dimensions.

4.2. Before proving Theorem 4 we sketch the main idea of the proof.
At a large distance Yn from the origin we locate the set A® such that
P(|E§1 >Y ) < c”. The remaining part of A® can be approximated by a
polygon with number of sides Nn such that the values of p on this polygon

are between c and c+e. On estimating Nn we find that Nn < (1+6)n. Then

by the Bernstein inequality
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.S
P €A) < ¢+ (1+8) " (cve)”
which proves the statement (2.4).

4.3. Proof. Without restriction of generality we can suppose the
following (i) There exist no outstanding singularities. (If this is
not so after this proof we can apply the method of Sec. 3), (ii) Let the
explicit form of the curve p{(x) = ¢ be n = n{&) (x = (&,n)), then by an
appropriate choice of the coordinate system we can have n'(g) = += if
g-+;m. (1ii) n(g) » +o if £+ +e, (If this is not so then the complete
curve can be approximated by a polygon similarly to Sec. 3.1.)

4.4, To every point of A® we can assign a point t(x) = (t(x),0(x))
for which the expression e-th(t) takes its minimum (t(x) can be infinite

too).

T(x)
o(x)

Lemma 3. n'(§) = -

Proof., Taking thé derivative of the identity

log ¢ = ~t(£,n(£))£-0(£,n(E)In(E) + log R(t,0)

and using the equality grad log R(t) = x we obtain Lemma 3.

Lemma 4. lim sup <t(x), x> <K
gro0
p(x) = ¢

Proof of Lemma 4. Condition (iii) implies that the Chernoff function
of the first coordinate of X1 (see Sec. 2.4) tends to 1 if & » +», con-
sequently R(t) = +o for o > 0 and for ¢ = 0, T > 0. Consider a level curve
R(t) =T (T > 1, fixed), this is a convex curve going through the origin.
First we prove that <t,grad log R(t)> -+ +o if t - 0 on this level curve.

By a simple calculation

<t, grad log R(t)> = f<t,x>e<t’X>dF(x).

-0

=



According to the bounded convergence criterion

f : <t,x>e<t’X>dF(x) -0 t > 0,
<t ,x><0 '

therefore this part is negligible. Let us choose a ¢ > 0 value

érbitrarily then

<t,grad log R(t)> > = [  <t,0¢ " gpig + o) »
<t,x>>c '
>%cT- [ TR + o).
o <t ,x><C :

If we choose now a function w = w(t) such that w> «but |t|w>0 (t

then

f <t,X> <t,X>
e e

dF(x) = f dF (x) + /

<t,x><C . <t,x><[t|w |t|w<<t,x><C

<t,X. >

< e|t|w + eCP( 1 >w) =1+ o(1).

— t

These inequalities yield
<t, grad log R(t}> > C(1 - %J + o(l),
(4.1) ~ <t, grad log R(t)> » +

if t -+ 0 such that R(t) = T.

20

—>O)'

<t,x>
e

dF(x) _

The set B = {t(x): x € A°} can not contain the points where R(t) =T

for small t values, since for the points of B

t

(4.2) -<t, grad log R(t)> + log R(t) > - log ¢
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and for the points R(t) = T, if they are in B as well,
<t,._grad log R(t) < logc + log T

and this coﬁtradicts (4;1).
On every half line starting from the.origiﬁ the function -<t, grad log R(t)> +
log R(t) is monotone decreasing, therefore the section of the half line with
B is always an interval (or empty). From this fact and from the statement
of the last paragraph it follows that the condition (ii) - using also Lemma
1 - can hold only if t(x) -~ 0 where x = (£,n(£)) and £ » +o . But for

small t values R(t) < T, therefore

<t, grad log R(t)> = log R(t) - log p(x) < log T - log c.

With this Lemma 4 is proved.

4.4, Proof of Theorem 4 (continued). From our point of view it is more

suitable to consider the inverse function &£(n) of n(€). The distance between

two level curve p(x) =c and p(x) = ¢ +e can be estimated by
-1
d < et

where p(x') = ¢ + . For the length h of a chord of £(n) we get by an

easy calculation that
2 ’ -1
h® > Ce[g"(n*) [t(n") ]

where n* is a point of the interval determined by the second coordinates of
the endpoints of the chord.
Now let us make a suitable polygon - approximation of the curve on the

interval A < n <Y and denote the second coordinates of its vertices by ny
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taking ng = A, ny = Y." In the following estimation we use the second

condition of Theorem 4: We assume that £'(n) is a monotone function of n

for n > A (A is large enough). The monotonicity of |t(n)| follows from

the statements of the last section.

Having these properties we can estimate the following integral:

(Ce}_% z/li”(n) [{t() | dy > (Ce) _% igl (”i_”i-l‘)‘/l E"(‘ni) [t |[>
1 .
> (Ce)? .122 (g _1ng D VIETy DTG D1 > izz ni_}ll:i_z >
> (N-1)(1-¢)

provided that A large enough and Y > A. Consequently the number of chords

Y
(4.3) N < C [ /TermTIe@ ] dn.
A

Let the intersection of a tangent drawn to a point (£(n),n) and the £-axis

be (0,z(n)) = z(n). Then for x = (£(n),n) the inner product

<K, t(x)> = <z(n),t(m)> ~ g(n) [t(n)] (n-> +=)

and because of Lemma 4

K
[t(n) ] 5—7;53'

Another simple calculation shows that

g = nlen(m)].

By substituting these relations into (4.3) we have
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Y Y Y 1
Il n K =
g'(m) 1 7' () n1...2
N <C { / oy dnsC I £ —try dn £ ~dn]” <

If Yn is large enough ;(Yn) f_g(Yn) E-Yn’ therefore
Nn §_C2 log Yn’
and, according to the requirement of Sec. 4.2, Nn f_(l+6)n if

log Y (1+8)".

<1
n —-C2

Denote the second coordinate of Sn by (Sn)z, then

. |
— \ k k
PA(S ¥, > Y b <0 POIX;| > Y ) = n P(log “(1+|X; ) < log (1+Y)) <

I A

n E(logk(1+|X1[))log_k(1+Yn)_i

n C(k)

< nC(k)c™
(1+8)™ ~

for large enough n provided that (T%gﬂk < c.

With this, Theorem 4 is proved.
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