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CHAPTER I
INTRODUCTION

1.1 General Background

Suppose that n is a response which depends on X, & set of
q predictor or independent variables, and o6, a set of unknown

parameters, through an unknown response function
n = g(x,8) = g(x) (1.1.1)

where x = (x1,x2,...,xq)e Z a compact set. Usually the set o of
parameters 1is unknown and must be estimated from the experimental
data. Typically such data will consist of n measured values of
corresponding to n specified combinations of the Jevels of x.

The response relationship is usually interpreted
geometrically as representing a surface whose coordinates are the
g*+1 variables x],xz,,..,xq, and n. The n experimental combvnat10ﬁs
of the levels of x are represented by points in the space of the
independent var1ab1es.

In observing the response n we assume that an additive

experimental error, denoted by €, exists so that, for each

observation Y(Xi)’ T=1,2,...,n, we can write

y(x;) = ny te = 9(xiae) + ci. (1.1.2)



We assume that €. are uncorrelated and identically distributed with
mean zero and a common variance 02 independent of x which is unknown.
In many cases where the form of the true response function (1.1.1)

is unknown, it is approximated by a polynomial function of as Tow

an order as possible.

Now for further discussion we will assume that number of
independent variebles is one, i.e. g = 1. We can possibly extend our
one dimensional results to higher dimensions, though these extensions
will not be straight forward. We shall not discuss these here,

For further discussion in multivariate case (q > 1) we refer to
Sewell (1972).

Suppose one is willing to entertain the linear mode]

y(xi) = e’f(xi) e, (1.71.3)

as an approximation of the unknown model (1.1.2), where

i o= (f],..,gfm) denote an m-vector of continuous functions defined

on &= [0,1] and 6" = (04,...,8 ) is a m-vector of unknown parameters.
1 m

The functions f?”“"fm are called the regression functions and are

assumed known to the experimenter. If n experimental observations

are to be obtained, we can express (1.1.3) in matrix form as

y= X8+ e. (1.1.4)

The vector y is a nx1 vector of observations; X is a nxm matrix, with
row i containina f'(xi); e is an nx1 vector of uncorrelated random

. . 2
errors with mean zero and varilance o



One of the main problems in the above setup is the estimation
of the functions of the vector 6 by means of uncorrelated observations
{y(xi)}?z]. Given a specific function of 6 and a criterion of what
a good estimate is, the design problem is one of selecting the xj's
at which to experiment.

The design concept was generalized by Kiefer and Wolfowitz (1959)
to allow for spacifying a design as a probability measure u on the
Borel sets &of 2 where & includes all one point sets. Suppose we
have an n-point design with n, observations at X; (note that ;= nj.
The design u is such that i = ”(xi) = 0 if there are to be no
observations at the point X;s and such that My o= u(Xi) = ni/n if there
are to be ny > 0 observations at the point X For a discrete
n-point design, u takes on values which are multiples of 1/n, and
defines an exact design onZ. Removing the restriction that u be a

muitiple of 1/n, we can extend this idea to a design measure which

satisfies, in general:

u(x) > 0, xe&
(1.1.5)
j:qlu(dx) =]

With respect to the model (1.1.4), we can define a matrix analogous

to X'X for design u. Let

m..(u) = ézfi(x)fj(x)d”’ 15 = 1,2,...,m (1.1.6)



The matrix M(p) is called the information matrix of the design .
Note that, for an exact design, n M(u) = X'X.

Extensive analysis and design methddology have been developed
for the case where g(x,8) is being approximated by a polynomial, In

m—l) and 6 would be a mx1 vector of

this case f'(x) = (1,x,...,x
polynomial coefficients. These coefficients are estimated from data
by standard least squares methods. Various properties of the
resulting fitted polynomials have been investigated, especially

as the properties are influenced by the choice of experimental
design. Initially, criteria for Judging the goodness of designs
were largely concerned with variance - either of the individual
coefficients or of the fitted polynomial és a whole. The question
of bias due to the inadequacy of the approximating polynomial was
given somewhat secondary consideration. Box and Draper (1959,

1963) adopted mean square errorvintegrated over some region of
interest, R, as a basic criterion. This criterion 1hv07ves both
variance and bias.

A disadvantage of the polynemials in the context of curve
fitting is their analyticity. That is, the behavior of a polynomial
in an arbitrarily small region defines, through the concept of
analytic continuity, its behavior everywhere. On the other hand,
the spline functions possess the property of having Tocal behavior
that is less dependent on their behavior e1éewhere. Spline functions

are discussed in the next two sections (1.2 and 1.3).
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1.2 §pjjnenfuncﬁjpn§

The term spline usually refers to a "piecewise poliynomial'.
Here the space @ is an interval [0,1]. The interval [0,1] is divided
into k+1 segments by k "knots" gi,gzg...,gk where
g5 = 0 < E1 o< gy < 1 = €l A function s(x) on [0,1] is called
a spline if s{x) is equal to a polynomial on (gi”€i+?) (possibly
different on each interval) and satisfies certain differentiability
conditions at the points 51,...,gkg

The simplest case stipulates that s(x) is Tinear on each
interval (g19g1+1), i=0,1,...,k and is continuous at each Eis
1=1,2,...,k. We thus have a continuous polygonal line segment.

Generally a spline function of degree d with k prescribed
knots &y < £y <enus £l is a polynomial of degree at most d, in
each of the intervals (Ogg1)9 (g],gg)s...,(gk,1) and has d-1

continuous derivatives at gi. We can represent such a function

in the form
d 4 kK d o
s(x) = ?goaix + .2 By (x-£.), (1.2.1)
where
d
(X“gi) 5 X > E)]
d _ .
(X~€.")+ - 1= ]925 ﬁk
0 X < £

The coefficient B; represents the jump in the dth derivative at

the point i For d = 1, this is the change in the slope. Various



degrees of differentiability can be allowed at Ei by using the
terms (x~£i): for r < d, however, we shall not consider these here.
Because of their least oscillatory behavior spline functions
can be used as approximating or interpolating functions. They
can be used in approximating linear functionals, especially
definite integrals, and as approximations to solution of ordinary
differential equationsi There is now considerable evidence that
in many circumstances a spline function is a more adaptable
approximating function than a polynomial involving a comparable
number of parameters. This conclusion is based in part on actual
numerical experience, and in part on the mathematical demonstrations
that the solutions of a variety of problems of "best" approximation
actually turn out to be spline functions. For example suppose

we are given k data points

(65597)s (2509p)se e s (B o) (1.2.2)

with distinct abscissas. If 1 < d < k, the function s which
interpolates the k data points (i.e. s(gi) =y

and minimizes the integral
b (d) o2
é(s (x))“dx

is a spline function of degree 2d-1 with knots at Eqse-engy and s
such that in the two intervals (O,g1) and (gk,l) it is given by

some polynomial of degree d-1 (rather than‘Zd—T) or less. For

more applications of spline functions and their "best" approximating

properties see Greville (1969) and Schoenberg (7969),



1.3 Basis for the Spline Functions

In using the functions

d d

]gX,...,X :(X'ET)+5---:(X'Ek)d

+
as our basis in the spline problems, the linear systems arising
tend to be very 7171 conditioned, and this may cause difficulty

if the attempt is made to solve these systems directly in order to
obtain the required parameters. The numerical instabilities
encountered increases with the dimensions of the linear system
involved and are related to'the mathematical properties of the
truncated power functions. The difficulties can be overcome by
adopting a different basis for the classes of splines dealt with.
One of the popular basis is the Lagrange functions zi(x) defined

by the condition

; 3) = 6ij i, = 1,2,...,m
where m = d+k+1 and g? < g§ vo. < g% are m (= number of functions
in basis) points in [0,1]. For example when d = 1, the k+2 points

are 0 = &y < Ep <o..< Ep < a1 = 1, and zi(x) is the "roof functipn”

| 9 X <&
/X‘E-‘_'I)/(£1"g1_])s 51_] <X < g1
25(x) =
(Ei+]'x)/(gi+] €1)9 Ei <X f_gi+i
g X Z By



At the two end points i = 0,k+1,

(o , X > &y
2q(x) =
(81-x)/(g4-80)>  £p < x < g
and
(x-£, )/ (€ 4175, ) » X > g
Yy (%) =
gO R X f_gk

The graph of these functions are shown below:

(85

1)

y
i-1 i i+]

N R e i -—-

g

Graph of ﬁi(x), 1 <1<k

50 E] , Ek Ek+?
Graph of RO(X) Graph of 2k+1(x)




1.4 Statement of the Problem and Outline

Let g(x) be a function defined on the interval [0,1] such that

d+][0,1] i.e. g has d+1 continuous derivatives. The function

gec
g(x) will be approximated by a spline function s(x) of degree d with
k prescribed knots €1’52’“"’£k' From (1.2.1) s(x) has the represen-
tation

d K q

s(x) = 20 X+ 121 Bi(x"gi)+'

Note that in terms of the notation of section 1.1 here we have

m = k+d+1, the vector f(x) consists of the functions

d

d
19x,...,xd,(x~g])+9...,(x~gk)

+
and the vector 6 of unknown parameters consists of the elements

ao,a],...,ad,elg...ssk. Thus in terms of our previous notations

(section 1.1) we can write s(x) as
6.f.(x). (1.4.1)

Let yi denotes the average of ns = N observations taken at

i=1,2,...,r. We will use estimates which are linear in

y' = (y],...,yr>. Thus the vector of parameters g' = (elgn..,em)

will be estimated by

where C is a mxr matrix. Then
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where g; = (g(x])g,..,g(x )). As indicated before, we shall use
integrated mean square error (IMSE) as our criterion for the
goodness of our estimate, the integration being taken with respect
to Lebesque or uniform measure on [0,1]. The mean square error is

E(f'(x)é - g(x))2 = Variance + (Bias)z, where

Variance = E(F'(x)6 - E(f'(x)6))%
= E(f'(x)(6-E(6)))?
= E(F'(x)(C3-CE(7)))?
= EC(F ()C(y-E() ) (F (x)C(y-E(¥))) "}
= FH{X)CLE(Y-E(Y) ) (y-E(¥)) ' 3C F(x)
= F'{x)C VYar{y)C'f(x)
02 1o e .
= 5 T et (x) (1.4.3)
and
(Bias)® = (g(x) - E(f'(x)8))?
= (g(x) - £'(x)cg ). (1.4.4)
In (1.4.3), Du is a rxr diagonal matrix with diagonal elements
Hysoeeslls The integrated mean square error (IMSE) is then
! - 2
J = é E(f'(x)o-g(x))“dx
- e o7y + fla00-r (e, e 4.5)
- y 0 g(x)-f'(x)Cq ) dx | (1.4.5)
=Y + B, say.



—_—

In (1.4.5) Mg is the mxm matrix ff(x)ff(x)dx° Note that V and B
denote the integrated variance and the integrated squqred bias
respectively. |

We propose to adaptively or sequentially estimate the function
g(x) by é‘f(x)g attempting to minimize the IMSE using three “"variables"
(i) the design M, on x, or where observations are chosen (ii) the
estimator or choice of C and (iii) the choice of knots
gi < Epen. < gk‘ The approach used here will be to study the
asymptotic behavior of (1.4.5) for large n and k.

In investigating the asymptotic behavior of IMSE we have

assumed that the knots ¢,, i = 1,2,...,k are chosen so that
[

i/(k+1) =f p(x)dx, 1= 1,2,...,k

where p is some suitable chosen density. The design measure is
assumed tc have a smooth density h or will be converging to such
a design as k and n become Targe. We suspect, in most cases, as
kK » «, that

| 1 (d+1)/ 2
ak 2 ¢ p(x) b (g ()~ . "
IMSE~ == o | dx + [ dx (1.4.6)
n 0 h{(x) k2d+2 0 (p(x))2d+2

where a and b are some positive constants. In our thesis we have
considered the cases d = 0 and d = 1 in detail and have found the
exact value of constants a and b for these two cases.

In section 2.1 we minimize the IMSE (given in (1.4.5)) with
respect to the choice of the estimator C, and in section 2.3 we

minimize the asymptotic exrression for the IMSE (see (1.4.6))



with respect to (i) k, the number of knots (ii) p(x), the displacement
of knots and (iii) h(x), the distribution of observations. In

section 2.2 we have discussed the asymptotic behavior of the IMSE

when g(x) is being approximated by step functions.

The case, when g(x) is estimated by linear splines, is
considered in Chapter III. In sections 3.1 and 3.2 we have considered
the asymptotic behavior of integrated variance and integrated bias
respectively. We have used the least square estimators and different
choices of designs are considered. It is noticed that if the design
is discrete, we get slightly smaller values for the variance term
and slightly Targer values for the bias term. On the other hand,
the opposite happens if the design has a smooth density. Some other
choices of estimators are considered in section 3.3. The resuits of
these three sections (3.1, 3.2 and 3.3) indicate that in the asymp-
totic expression for the IMSE (see (7.4.6)), the constant a
ranges between 2/3 and 1 and the constant b ranges between 1 and 6.
In section 3.4, in Qrder to facilitate the presentation, we have
recalled the minimization results for linear spline case which were
already obtained for splines of any degree d in section 2.3. There
is a natural restriction on minimizing k (number of knots) that it
should be Tess than or equal to n (number of observations). When
this condition is violated, it is hard to characterize the exact
solution for minimization problem. We have suggested some
approximate soiutions in section 3.5. To compare these solutions

with exact solution some numerical examples are done.



In section 4.1, an algorithm is presented for fitting linear
splines to any arbitrary response function g(x) using three
different estimators. To illustrate the algorithm, two numerical
examples are done in section 4.3.

In the Appendices, we have reviewed some results on matrix
norm and Reproducing Kernel Hilbert Spaces. These are helpful in
proving some of the results in our thesis.

Finally, Tet us mention some of the related work. Note that
the second term in (1.4.5) is the square of L2~error of approximatién
of the function g(x) by a spline function of degree d with k
prescribed knots. The convergence rates of the Lp~error of best
approximation to g(x) by polynomial splines have been investigated
by many authors. Let SE denote the class of spline functions of

degree d with k prescribed (or fixed) knots 0 = Eg € Byeee< gy < foa=i

oo

S, = {s{x) € Cd"][O,T]Is(x) is a polynomial of degree at most

K

d in each of the intervals

(855850905 1= 0,1, k).

These spline functions were discussed in sections 1.2 and 1.3.

d+1

Burchard (1974) has shown that if g € ¢ '[0,1], then for large k

the distance in the Lp«norm (0 < p <o) of g from SS is bounded hy

d+1

M/ k , With a much smaller M than in similar estimates for other

processes of the approximation. Dodson (1972) has found the similar

&
. , , . +1 ‘ ,
results for class of functions g other than in Cd1 [0,1]. On the

basis of these asymptotic results he has presented an algorithm to
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produce sequentially a "good" knot-set. He means "good" in the

sense that the sequence of errors of best approximations behave
d+1)

A disadvantage with the class Sg is that it is not closed. A

asymptotically Tike 0(1/k

sequence of spline functions may have some knots coalescing in such

a way that the Timit function exists but does not have the required

continuity of derivatives at the knots. 1In general, the coalescense
of m knots reduces the number of continuous derivatives by m-1. We

are thereby led to a larger set which turns out to be closed, the

d

set §k of extended spline functions:

=d . ’ .
= {g ' - = = teqe;
Sk {s(x)|there exists 0 £y < SRR £t 1 and integers

"
Myseesm wWith 1 < m; < d+1 and m. = k such that
i=]
s(x) is a polynomial of degree at most d in each of

d-m.

the intervals (gi,gi+1) while se ¢ ' in an open

neighborhood of Ess i=1,...,r}

The point £ is said to be a mi—tup1e knot. The first unusual

result on the error of best approximation by extended splines

s due to Rice 11969). He considered the function g(x) = x%

on [0,1] for any value of o such that x* is in Lp(O,l), T <p <o,
and showed that

distp(g,§§) def Inf{j]g—s]fp: s e:§g} = O(1/kd+1)9 as k » o,

In proving this result Rice has used a specific set of d-tuple

knots which are selected according to a rule depending on a.



 CHAPTER 1II
THEORETICAL RESULTS FOR STEP FUNCTION AND GENERAL CASE

2.1 General Case: Minimization of IMSE

In this section we shall consider the minimization of the
IMSE for different choices of the estimator. In the classical
problem of regression theory, the analytic form of the functicn
g(x) is supposed to be known. In our case g would be assumed to
be of the form g(x) = E eifi(x) where m = k+d+1. The estimator

. i=]
6 = Cy {(see 1.4.2) 1is vrestricted to be unbiased. The unbiasedness

-~

where F is the mxr matrix F = (f(x1),,a.,T(xr)) and I is mxm identity
i i
matrix. Note that f(xj) for each j = 1,2,...,r is & column vector
(xj). The quantity V in

(1.4.5) is then minimized by the usual least square estimator

consisting of m elements fq(xj),,gs,fm

(LSE) g
¢ = Muj(u)FDU, (2.1.2)

Here u represents the design measure placing mass u. oOn X.,

i=1,2,...,r, M(p) is the mxm matrix [F(x)f' {x)du{x), and D(u) is
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the diagonal matrix with diagonal elements Hyseeestps The estimator

5 is then
6 = Cy u) [F(x), du(x) (2.1.3)

where &x is tha average of observations at point x.

Some authors including Box and Draper (1959) and Karson,
Manson and Hader (1969) have proposed attaching more importance
to the bias part B. For other discussions see Kiefer (1973).

If we minimize B in (1.4.5) separately with respect to Cg,.

the minimizing value is easily seen to be

Cg,. = Mg's (2.1.4)
where

s = {f(x)g(x)dx and Mg = [F(x)F' (x)dx. (2.1.5)
Now we will try to minimize the expression (1.4.5) as a whole.

Theorem 2.71.7: The matrix C, which minimizes the IMSE, differs from

the bias minimizing estimator given in (2.1.4) by a factor of t,

where t is a constant defined by

= = !
t = - q = g.Dug,..

Remark: We shall note that the expression for minimizing C (see
(2.1.8)) involves the unknown g. We will obtain an estimator close
to the "optimal one" given in (2.1.8) by estimating g (e.g. using
the LSE from (2.1.2)) and replugging into the expression for C in
(2.1.8). |



Proof:

In (1.4.5), we have
B = fgz(x)dx - 2fg(x)f'(x)Cgrdx + ff‘(x)Cgrg;C’f(x)dx

= fgz(x)dx - 2$‘Cgr + Tr Cgrg;ff(x)f'(x)dx.

So, we can rewrite the expression (1.4.5) as

V+ 8= Tr CAC'My - 2s'Ca + fg(x)dx (2.1.6)
where A = (grg; + (oz/n)D;1). The first two terms in (2.1.6) can be
written as

"'] H "] I "1 t ‘] "] 1 '1 1
Tr(C—MO sgrA ) MO(C~MO sgrA JA-Tr A 9,8 MO 59..- (2.1.7)

If we choose

1 (2.1.8)

= - 1‘1
C = MO sgrA

then any such choice clearly minimizes the expression in (2.1.7) and
hence V+B. Now Cgr is given by

- "1 ] "-l
Cgr MO sgrA 9p.-

To compare this Cgr with (2.1.4) we can calculate A4 using a standard

lemma, e.g. see Federov (1972). The inverse of A is

-1 n D“grg}:
A = (;2‘)(1 - OT“—‘*—)DU
n ‘g;Dugr
and
Cg,, = tM5's (2.1.9)
since



. = q'
t 5 and q grDugr.

g
2 4
n G

Also the minimum value of V+B is given by

(V4B) i = Jo%(x)dx - (3—)( s'm7ls).

nin 5
S
n q

Now we can see that the quantity Cgr given in (2.1.9) 1is the
‘'same as that given for Cg‘n in (2.1.4) except for the factor t.
This factor compares the relative sizes of oz/n and the function
g measured by q = gY"DUgr = fgz(x)du(x). l —_—

2.2 Step Function: Asymptotic Value of IMSE

Here we shall consider the asymptotic behavior of the IMSE
when g(x) is anproximated by a step function s(x) having jumps
(knots) at £is 1= 1,...,k, i.e. s(x) is a spline function of
degree d = 0 (see Section 1.4). So in accordance with section 1.4,
here we shall assume that g(x) is continuously differentiable in the

interval [0,1] and the function s(x) has the representation

k
v 0 :
s(x) = ap + 121 By (x=£:), (2.2.1)
where (x—gi)g =1 9f x » £ and zero otherwise. As explained in
section 1.3, it is more convenient to use the Lagrange basis in

(2.2.1). The Lagrange basis 2(x) consists of the functions zi(x) s. L.

2i(65) = 6555 1,5 = 1,2,....k+1. The function 2. (x) Tooks Tike as
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boGig X2

2.(x) =

0, otherwise.

These functioris are left continuous everywhere. In this form
k+1

the coefficients 6 ins(x) = eizi(x) are simply the values
i=1

of s on £5.1 < X < &;. Note that the vector 6 is not the same
as that of section 1.4, it is changed according to the change of
basis.

In discussing the asymptotic behavior of‘the IMSE, we shall
assume that the knot structure and the design yp show some regularity
as k or n becomes large. In most cases the knots Eso i=1,...,k

will be chosen so that

£,

;
f p(x)dx = i/(k+1), i = 1,2,...,k (2.2.2)
0 .

where p is some suitable chosen density. The design measure p will
either have a smooth density h or will be converging to such a design
as k and n beccme large.

Let {T } be a sequence of partitions on [0,1]:

Tk: 0 = go < g] <ou.< €k+1 =1, . (2.2.3)

Set

8y = Ey = Eps v = Dol kH

and define the mesh of the partition to be

-

mesh Tk = § = max 51.
1< k]
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We shall be concerned with sequences-{Tk} for which mesh Tk + 0
as k » =,

Our first theorem deals with the asymptotic expression for the
integrated variance of LSE. From (1.4.5), the integrated variance
is

2

_ G -1
V*TtY‘CD“

C'M (2.2.4)

0
where now C is the (k+1)xr matrix and MO is the (k+1)x(k+1) matrix

1
Ja(x)2' (x)dx. If the least square estimator is used, then from
0

(2.1.2)

where L is the (k+1)xr matrix L = (ﬂ(x]),...,z(xr)) and M(u)'is the
(k+1)x(k+T) matrix [o(x)e'(x)du(x). Substituting this value of C

in (2.2.4), we get

"] 1 ’1 y
tr M (u)LDuL M (u)MO

LS
i
IQ
NSt

_ o -1
= St M (M, (2.2.5)

since LDLY =M.,
U i

Theorem 2.2.1: Let the design measure u have continuous density

h(x) such that h(x) > 0 for all x € [0,1]. Let the knots be chosen
using (2.2.2) where p(x) is continuous on [0,1]. If the least square

estimate (LSE) is used, then



Tr M) Mg~ k f ET_T dx

Proof:

matrix M(u) as

Since zj(x)zj(x)
are d1agona] matrices.
f z x)dx, i = 1,2,

i=1,2,...,k+1. Therefore

k+1 fz?(x)dx

=0 if i # j for all x, the matrices M(u) and M

1
,k+1 and that of M, are f 2

(2.2.6)

Since u has density h(x), we can express the information

0

The diagonal elements of M(u) are

x)dx,

Tr M—1(u)MO = 5
j=1 fﬁi(x)h(x)dx
ST
= ) (Si/f h(x)dx)
=g
where 8; = &;-&;_1- Now by the mean value theorem of integration
g

é. h(x)dx = h(”i)ai for some n; € (gi_1,gi).
i-1

Again using the

mean value theorem we have from (2.2.2), p(yi)si = (k+1)'] for some
vi € (£5_7,€;). Therefore,
-1 k+1 p(YT)
In the Timit as k + » in such a way that 6 = max 8, > 0, the
kg] by ) , 1<i<k+1
expression 6 tends to EY~7-dx
=1 h(n 5 Q.E.D.
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?
The following version of "mean value theorem for 1ntegrétion"
will be used very often in this and next chapter including the

proof of next theorem.

Lemma 2.2.1: If ¢ and y are continuous and ¢ is positive onz

[a,b], then there exists a point ¢ such that a < £ < b, and :
b b f
[ e(x)p(x)dx = w(e)[ ¢(x)dx. (2.2.7)
a a

Proof: See Mardy (1943, p. 321).

We shall discuss, now, the asymptotic value of the bias;

term. The integrated bias term is

1
! 2
B = J (g(x) - 2'(x)Cg )" dx. ,
0 &
Here in this section we are concerned with the LSE and if we éssume
that the design u has the density h{x), then v
1 2
B =] (g(x) - 2'(x)c, ) dx
0

1
where c, = M'1(u)é£(x)g(x)h(x)dx.

We can break the bias term into two factors as follows:

B =8y +B
] 5 1 ! 2
where By = é (g(x) - 2 (x)gg) dx and B, = é (2 (x)cg -2 (x)ch) dx,
Mo ls

where cg = M, Recall from section 2.1 that cg is the vectér which

minimizes B (see (2.1.4)).
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Theorem 2.2.2: Let the design u have continuous density h(x)

such that h(x) > 0 for all x € [0,1]. Let the knots satisfy
(2.2.2), where p(x) is continuous and positive on [0,1]. If

the LSE is used then the bias term has the asymptotic expression
g'(x))°

(
(

(())% dx. (2.2.8)
p(x

[ ) —

Bm...l_
k

Proof: The proof of this theorem can be divided into two parts.

In the first part we shall show that

1 2
ol = 1 ¢ (9'(x))
Tim k°B; = 55 f dx (2.2.9)
oo 112420y
and ih the second part we shall show that B, = o(knz) as k + e,
We have
- ' 42
By = J(g(x) - 2 (x)cg) dx
where Cq = M -1 = [a(x x)dx and s = [2(x)g(x)dx. Since MO
is a diagonal matrix, the vector cg looks 1ike
;o . Skl
o cg = (g Loy, 5— 1 gly)dy)" (2.2.10)
9 1k k+1 & _
0 k
and we can write
k+1
By = 1. [ (g(x) - 2" (x)c_)“dx
i=1 ¢



24

k+1 i , )
= 1 [ (g0 -5/ 9gly)dy)dx. (2.2.11)
=185 T &
From the mean value theorem,
9(y) = gleg_q) + g'(ny 5)y-¢;_4) (2.2.12)

where ny,i IS (51-]’Y)' The subscript y in “y,i shows that point
y,i depends on y. Now

&5 £; ,

éin]g(y)dy = g(g;_q)e; + é1-1g (ny ;) (y-g;_1)dy

g
= g(g-l_'l)(s.l + 91(01){; (y—gi"] )dy,
i-1

using Lemma 2.2.7, where p; € (gi_],gi). Therefore
.i

g(y)dy = g(g;_1)6; + a'(p;)
i-1

(2.2.13)

WY Sy Y
O
N =1 N

Now using this and substituting for g(x) from (2.2.12) in (2.2.11),

we get

£
ktl 9" (0,6,
-2 b L 9t by k.
i= g i

Now using Lemma 2.2.1 twice, we get
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SN S NI Fartops, 2024
B, = g'(v. — * - g'(p.)s
1 =1 i 3 557 4 = 1779 2
5 (6 (x;)°6] ki1 (g'(0,))%63
i=1 3 i=1 4 ’
where vy, € (Ei-l’gi)' From (2.2.2), pn;)e; = (k+1)"™! for some
nT- (S (€1_]9EI) So now
. 2 . 2
B - 1 . lk'i'] (g (Y‘i)) s 1 . lkg] (g (p"i))
? . i .
Dot i) T gen? T an )

Therefore

[
l.—x
S
o
=]
Zam N
xX (X
N
g
(s R
>

This proves the first part.

Now we shall prove that B, = o(k_z) as k » =, Here

B, = f(z'(x)cg—z'(x)ch

where cg ; and Ch ; denote the ith element of the vector cg and ¢

h



respectively. From (2.2.10),

g(x)dx.
i-1

¥ S UMY

C :1__
g,1 61

Also since ¢, = M (w)fL(x)g(x)h(x)dx and M(u) is a (k#1)x(k+)

diagonal matrix with diagonal elements as fgi(x)h(x)dx,

s ., using (2.2.12)

i)(x'gi_'l )dX

3
/ h(x)dx
£4-1

Now from (2.2.13) and the above equality, we get



£,
5 ng ]h(x)g'(nx ;) (x=g5_q)dx
! 1 1- ’
Cga1-ch31 -9 (p'l) —2 - E'l'
fE h(x)dx
i-1
g'(p.)s, 5 £
. 21 ] fgi_h(x)dx B fii_]h(x)g'(nx,1)(x'€i_]> X
- -
f; h(x)dx

where Qi (S (51_1551)'

Now the numerator of the above expression is equal to

27
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Since h and g' are continuous on [0,1], the above expression in

absolute value is less than -

8

K] —2 w(h, 5)5 + K.Iw(h s)

O
DN = PO
O
N e IO

sz(glsé)
2

= Kiw(h,8)6% + K ('a)fi

U e/0) T Rl el

where w(h,s) and w(g',8) are respectively the modulus of continuity
of h and g¢', and K] and K2 are positive constants such that
lg'(x)] <K

and h(x) < K, for all x €[0,1]. From the mean value

1 2
b
theorem, [, h(x)dx = h(a;)s. for some a, € (£ -,£.) and therefore
€51 i’ i i=1°>4

%

+ ',8) —

e -c 1. K]w(h,G)(S1 sz(g ,8) >

g, = "h,i h(a;) '

j
Given that h(x) > 0, we shall have ﬁ%§7 < K3 for some positive
constant K3. Therefore we have

K+1

B, = 1. (c

2
i=] g,1 Chai)

64

K3K2w(g',6))2 k+1 3

< (K3K1 w(h,s) + 5 Z 85
i=1
KK w(g',8) o k1 s,
= (KgKqulh,s) + "3—22“‘“_)2 N i
i=1 p (ni) (k+1)
applying the mean value theorem to (2.2.2), where n; € (£1—1’€i)’
Now letting k - « in such a way that § -~ 0, we shall have
;im (k+])282 = 0 since w(h,s) and w(g',8) tends to zero as & goes to
00

zero. This proves the seccid part and hence the theorem. Q.E.D
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Thus here we have shown that if LSE is used then

21 1 2
IMSE ~ k O [ RAX) 1 (g'(x))" 4 (2.2.14)
n é h(x) " 122 ffJ (p(x))? "

which shows that a = 1 and b = 1/12 in (1.4.6) for the case d = 0.
Note the asymptotics found here are with the number of knots k going
to infinity. The number of observations n should be at least k+1 and

will usually be increasing much faster than k.

2.3. Genera] Case: Minimization of Asymptotic Value of IMSE

As conjectured in section 1.4, the asymptotic value of the IMSE,

when the function g{x) is estimated by splines of degree d, is

1 1 (d+1) 2 ‘
- k 2 1 p{x) b ( (x))
J=1IMSE~a o é T 4+ 7497 | (S(x))Zdiz dx. (2.3.1)

In the Tast section we actually proved our conjecture for the case

d = 0 and found the value of the constants a and b for this case.
Here we shall minimize the asymptotic value of the IMSE with respect
to the three "variables" (i) k, the number of knots, (ii) p(x),

the displacement of knots and (iii) h(x), the allocatijon of observa-
tions. Instead of doing this minimization for the particular case .
d = 0, we shall do it for the general case i.e. we shall minimize J
given in (2.3.1). In the expression for J, only the first term
contains the factor h(x). Using the Schwarz's inequality and

the fact that h(x) is a density, we can show that the first term

in (2.3.1) is minimized by
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1
h(x) = p]/z(x)/é o'/ 2(y)ay. (2.3.2)
Substituting this value of h(x) in (2.3.1) yields

| 2 1 1 (d+1), 12
g = ako 172 yax)2 b (g (x))
“"ﬁ“'(é P (x)dx)” + 2452 é (5001 272

- dx. (2.3.3)

Now the problem is reduced to minimize J with respect to p and k. It

will be shown in the following theorem that the minimizing p and k are

given by
: 4
d+1 (4d+5)
p(x) = ig I 4 (2.3.4)
}gg(d+1)(y)§(4d135dy
0
and
1 (d+1 4 nb(2d+2) 1 (d+1) 42 15 2; 3
k + + 2.3.5
(s H———/gg s s

Theorem 2.3.1: The functional J given in (2.3.1) 1is absolutely

minimized by h,p, and k given (2.3.2), (2.3.4), and (2.3.5) respectively

provided k given in (2.3.5) is less than or equal to n.

Proof: Well, we have already shown the minimization of J with
respect to h. Now differentiating the expression (2.3.3) with respect

to k and equating it to zero, we get

(/52 - baaa) ; (gl))2

- :O
k2d+3 p2d+2

which yields
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(d+1):2 s
b(2d+2) {95l (2d+3)
P } ) (2.3.6)

2
o} 2
" (/)

N

We can verify that this k minimizes J for each p. Substituting this

value of k in (2.3.3), we get

1 4d+4
: (d+1)2 2d+3 2d+3
J = pgf _i?a:?—_s {f /5} (2.3.7)
2d+2 1
2 2d+3 2d+3
where p = (gg:g)(§%~) ((2d+2)b) . Finally, we have to

minimize J given in (2.3.7) with respect to p(x). This can be done

by using Holder's inequality

fus < (f w88, (2.3.8)
(d+1)42
In (2.3.8), let us take y" = 13?312 , ¢B = p1/2. Now we want to
p

choose o and g in such a way that y¢ is independent of p and

1/o + 1/8 = 1. This can be done by choosing o = 4d+5, g = (4d+5)/(4d+4),

L (d+1)2/4d+5
o Ez)(2d+%/4d+5)’ ond ¢ = (p) 20T/,
~in (2.3.8) gives

Substituting these values

1 adn
(@) E%?E' ( (d+1) 2 4d+b5 4d+5
f(g ) h gf“iﬁa}z' ‘§ gf V5-§

4
(d+])(x))4d+5

2

In the above, 2quality holds if and only if p(x) = c(g
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where ¢ is a constant. This shows that J in (2.3.7) is minimized by
4 4
(g(d+1))4d+5’ where ¢ = ]/f(g(d+1))4d+5

since p is a density.

Now putting this value of p in (2.3.6) we get the desired resu]t.Q -
In the above, we have assumed that all the three variables,

name]y k, p and h, are unknown. We might confront the situations

when one or two of these variables are known, e.g. we might be given

the number of knots or the distribution of observations or both,

and so on. To cope with these situations we shall now consider the

following six other possible cases of the minimization of J:

(i) with respect to 'k' only
(i1) with respect to 'h(x)' only
(ii1) with respect to 'k and h(x)'
(iv) with respect to 'k and p(x)'

(v) with respect to 'p(x)' only

(vi) with respect to 'p(x) and h(x)'.

This is not a natural ordering, but we are considering these cases in
order of difficulty. In order to show the dependence of J on the
variable (or variables) with respect to which it is being minimized,
we shall express J as a function of that (or those) variable (or
variables). For example in case (i) J will be denoted by J(k) while
in case (iv) it will be denoted by J(k,p), and so on.

In the first four cases we have the exact solution for the
minimization problem. 1In fifth case, J can be minimized under certain

condition on h(x) and g(x) (see Theorem 2.3.2). For the last case,
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it is not possible to find the exact solution; only in a special case

(02 = 0), can we characterize the solution.

Case (i):

Differentiating J(k), given in (2.3.1), with respect to k and

equating it to zero, we get

o o biawz) (U2

n  20+3 p2d+2
which yields )
(d+1),2
b(2d+2) [ 1ﬂ—§81§l~
K2d+3 . . (2.3.9)
a_ r p
n h

Since k has to be less than or equal to n (number of observations),

and J(k) is a strictly convex function of k, the minimizing k is

given by
2
( (d+])) 1
b(2d+2) [ st T2d%3)
K = min g e ; ,nl . (2.3.10)
ég_.f P
n n
Case (ii):

We notice that in (2.3.1), the design factor h enters only in the
variance term, i.e. the first term on right. Minimization of this
term can be done using Schwarz's inequality. It is easily seen

that the h(x) which minimizes J(h) is given by

1
h(x) = p]/z(x)/é 0 2(y)dy. (2.3.11)
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This shows that h just depends upon p.

Case (iii):

We have

d+1),2
_ak 2 ,p, b ({41
J(k,h) = n© / ht (24+2 / p2d+2

If we minimize first with respect to k, then we get (see equation

(2.3.9)),
( (d+1),2
" b(2d+2) [ 5y
k = P (2.3.12)
2
ac_rp
n f h
Also from case (ii), the minimizing h(x) is given by
h(x) = p"2(x)/f p'/2(y)dy. (2.3.13)
Substituting this value of h in (2.3.12), we get
(g(d+1))2 1/(2d+3)
b(2d+2) [ Lyt
k = P ) . (2.3.14)

2
20 (] B)?

As before, there is a restriction on k that it has to be less than

or equal to n.
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Case (iv):
We have
2 (d+1),2
- dke® ¢ p b (g )
R N 27 (2.3.15)
Minimizing first with respect to k, we get
)f ( (d+1))2
E(2d+2
2043 _ ,20%2
2
ac_r p
n f h
Substituting this value of k in (2.3.15) gives
1 2d+2 2d+2 1
oy -4 (d+1).2
_ ,2d+3 2d+3,a07\2d+3 2d+3 (g )7\ 2d+3
J(k,p) = (ga;g)(b(2d+2)) (*FTQ (f EJ ( TUTSqE .

P

Now the problem is to minimize the above functional with respect to

'p'. This can be done by using Holer's inequality, since

2 2d+2 ) 1
d+1),2d+3 2d+3 (d+1),2 2d+3
({41 ( )
g < (J %) (f 27
2d+3 P

h

In the above, the equality holds if

p(x) o 1(g 91 (x))2n(x)3 1/ (24¥3)

Thus the function J(k,p) is minimized by

(g(d+1)(x))2h x)}1/(2d+3)

(x) = 4 ( (2.3.16)
T e () 2y TR,

and
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1 1
k= 1fi(g{¥) ()2 h(y) 124 3dy ) tnb (2d+2) /ac?) (2073) (2.3.17)

Case (v):

We have

d+1),2

_ak 2rp, b, (g1

Ip) = 5o s 2d77 | R (2.3.18)
Since f %— is linear in p and / 1/p2d+2 is strictly convex in D,

J(p) s strictly convex in p on the convex set U ={ p(x): p(x) > 0
for all x € [0,1] and [p(x)dx = 1}. Here the minimization of J(p)
will be done by using a variational argument on P. Since we want

to minimize J subject to the constraint that [p(x)dx = 1, we shal]

consider the minimization of the quantity

(d+1),2
d{p) - Afp = ¢/ E—+ ¢,/ iﬂ~§a¥§l_._ Afp (2.3.19)
p

where A is the Lagrange muitiplier, c, = (aozk)/n, and c,, = (b/k2d+2).
1 2

Let p(x) denote the function that minimizes (2.3.19) and define
p(x) = p(x) + en(x)

wnere n(x) is an arbitrary continuous function for which
Jn(x)dx = 0 and ¢ is an arbitrary parameter. Substituting this

value of p in (2.3.19), we get

. 5 (d+1))2 _ |
J(e) = cyf BEE0 4 ¢,/ fgzgggﬁg;g-- A[p+en. (2.3.20)
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A necessary condition for a minimum is, the vanishing of the first

derivative of J with respect to ¢ at ¢ = 0; that is

So we get

¢ (2d+2)c2(g(d+”)2
{E~" 52d+3

- x}n = 0. (2.3.21)

Since n is an arbitrary function satisfying the condition that

/n(x)dx = 0, the equation (2.3.27) would imply that

¢ (2d+2)02(g(d+”)2
- 52473 -A=0

which yields

(2d+2)c,(g{H ) (x))2 | (203

p(x) = : .3.2
) = { [, /h(x))= } (2.3.22)
where X is to be found such that
'] _ .
[ p(x)dx = 1. (2.3.23)
0

Since J'(0) = 0 is only a necessary condition, p(x) given in
(2.3.22) is an extremum (maximum, minimum, or stationary value) of

J(e) at e = 0. In the following theorem we shall show that p(x)

is actually an absolute (global) minima for J(p).

Theorem 2.3.2: The functional J = J(p) is absolutely and uniquely

minimized by p given by (2.3.22) and (2.3.23) if
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c c
max Ehj(ﬂ - c2(2d+2)(g(d+])(x))2§ < m » where Cf(akoz)/m
x€[0,1] x€[0,1]

and ¢, = b/k24*2.

Proof: First of all we note that J"(0) > 0, where J(e) is defined

in (2.3.20). So p given in (2.3.22) is a local (relative) minima

for J(p). But the functional J is convex on the set U = {p: p(x) > 0
for all x € [0,1], and }p(x)dx = 1}, so a local minima will be also

a global minima for J. OTo complete the proof of the theorem it is

then sufficient to show that p given by (2.3.22) and (2.3.23) is an

unique element of U. Let us define

: 1
(2+2)c, (41 (x))2 | (24+9)

1
W()\) = ég (C-I/h(x)}—}\ dx.

It is trivial to check that w(x) is a strictly increasing function
of A. Therefore the equation y(x) = 1 will have an unique solution

in A. By mean value theorem of integration, for some o € [0,1],

1
(g(d+1)(p))2 (2d+3)

2 = =
§ (e, /n(s)) } )
which gives
C
S (26+2)c, ({41 ()2 (2.3.24)
We are given that
maxg 1 - ¢, (2d+2) (d+1) 2 1
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From (2.3.24) and (2.3.25), we have

c
1
A< max h(x)

c
which would imply that FT%T" A > 0 for all x and hence p(x) given

by (2.3.22) belongs to the class U. The uniqueness follows from

the fact that the equation y(A) = 1 has only one solution in i.

Q.E.D.
Case (vi):
d+1),2
_ak 2 b g(dt1)y
\J(psh) = n“'O' f%'f' "—‘—-k2d+2 f‘—l;z*dj_?— . (2.3.26)

For this case, in general we do not have an exact solution. However
if 02 = 0, then the first factor on right in (2.3.26) is zero and the
second factor is minimized if

2

p(x) o (g(d”)(x))?m.

Thus if the first factor is small compared to the second factor, then
we can find a lucal minimum for our problem. These will be discussed
in the section 3.5.

Here we have discussed the minimization problem for spline
functions of any degree d. For the case of step functions, we have
to just put d = 0 in the above solutions of the minimization problem.
In Theorem 2.3.1, we imposed a restriction that k < n. In the case
when minimizing « given by (2.3.5) becomes greater than n, we shall

find Tocal solutions (see section (3.5)).
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CHAPTER 111
THEORETICAL RESULTS FOR LINEAR SPLINE CASE

3.1. Asymptotic Value of Varijance for LSE

Now we shall discuss the approximation of g(x) by simple
Tinear spline functions s(x). Here we shall consider the asymptotic
value of the integrated variance using the least square estimator
for the different choices of design. Some other choices of the
estimators will be considered in section 3.3. The function s(x)
is a continuous function composed of the straight line segments
of the form

k

s{x) = ag +oagx + :Z

| Bilxegy), (3.1.1)
I_.

As we did in the case of the step function (section 2.2) we shall
use = Lagrange basis in (3.1.1) composed
of tinear spline functions zi(x), i=0,1,...,k+]

» 1,3 = 0,1,...,k#1. The graph of these 21'5

such that Zi(gj) = 6ij

are shown in section 1.3. In this form the coefficient ei in
k+1

s{x) = 120 eizi(x) are simply the values of s at Egr&qsen Byt

Here also we shall assume that the knots Ei’ i=1,2,...,k are chosen

so that
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&5
[ p(x)dx = i/(k+1), i = 1,2,...,k (3.1.2)
0

where p(x) is some smooth density.

The theorems of this section indicates that, as k - E

n -1
Z V=T %de

for some suitable value of a.

Note that n appears in IMSE in (1.4.5) only in the denominator
of the variance term. The asymptotics here and in the next sections
are with the number of knots k going to infinity. In practice the
number of observations n must, of course, be at Teast k+2 and will
usually be increasing much faster than k.

Here also we shall be concerned with the sequences {Tk} for
which the mesh Tk ~ 0 as k > =, Under certain circumstances, here
we shall also require the additional restriction on the partition Tk

that

19
o ST B s i=1,2,...,k (3.1.3)

i+1

where o and 8 are the positive constants. This restriction says
that the ratio of the lengths of two neighboring intervals in the
partition Tk should neither be too small nor be too large. In
particular, we require this restriction in Theorem 3.1.2 and Lemma
3.1.1.

Our first theorem of this section deals with the asymptotic

expression for the integrated variance of the LSE when we are
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using the design u whose spectrum consists of the knot set
g],gz,...,gk and the end points &g = 0 and el = 1. The weights
at these points are given by,

1
uo= [ 2 (Oh(x)dx, v o= 0,1,... k] (3.1.4)

for some density h(x). Unless otherwise mentioned we shall assume
in most of the theorems of this and the next section that p and h
are continuous on [0,1].

From (1.4.5), the integrated variance is

2

V=9 ¢ ]
{] u

C’MO (3.1.5)

where now C is a (k+2)xr matrix and MO is the (k+2)x(k+2) matrix
Je(x)e' (x)dx. If the least square estimator is used, then as shown
in (2.2.5), we have

2

V= e M () (3.1.6)

0

where M{u) is the (k+2)x(k+2) matrix Ja(x)e' (x)du(x).

Theorzm 3.1.1: If the design u and the knots are chosen using

(3.1.4) and (3.1.2) respectively, where h(x) > 0 for all x, then

for the LSE estimator, the asymptotic expression for Tr MfT(u)MO is

1

1
e W (g ~ (2k/3)] ﬁ—&‘% dx. (3.1.7)

Proof: Since the design is concentrated at the knots, the matrix

M) dis diagonal with diagonal elements M, Therefore
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Z [,2 = = £ -
where m = fzv(x)dx = (6V+6v+])/3, 6, = £,-E,_1- Also,

1
= 2 (x)h(x)dx
Vv O Vv
E\) E\)'*"i
=[ o, (x)h(x)dx + [ 2 (x)h(x)dx
g\)-] E\)
gv €v+1
= h(Ev)(5V+6v+1)/2 + lv(x)(h(x)—h(av))dx+f zv(x)
\)"1 E\)
(h(x)-n(g ))dx
So, we have
" (8,%6049)/3
Il-\j ) g\) <C;\)‘5‘7
[h(e )8 40 )/24 ) 2 () (h(x)-h(e )dxe] 2 (x) (h(x) -
\)"‘] E\)
(e, ))dx]
= (1/3)
h(év)(1+av)/2
where
3 Eur .
%7 h(Ev)(6i+5v+]j‘[£ IQV(X)(h(X)-h(gv))+é e (x)(h(x)-h(g ))dx].
Since év =E,8 7 <6 6V+] = gv+1-gv < &, we have [h(x)_h(gv)] <

w(h,8) for x € [gv_],gv] and for x € [gv,gv+]]. Letting

(1/h(x)) < K for some constant K, we get
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£, £+
[avl < (2K/(6v+dv+]))w(h,6)[f zv(x)dx + f 2 (x)dx]
‘ v-1 Ev

= K w(h,s8).

Since w(h,8) ~ 0 as § + 0, l“v, can be made Tess than 1 for

sufficiently small 5. Now we can write

(2/30(g ) (T+a )]

(2/3n(g ) (1-a 4o -....... )

m
\)/U\)

it

1

(2/30(£,)) - (a,/(1+a,))(2/3n()).

Using the mean value theorem we have from (3.1.2), p(nv)sv =

1/(k+1) for n, € (EV_],gv). Now we have

1 kt1 p(n ) k1 p(n )

{(1/k+1)Tr M (u ) = (2/3) Z ~T——7-6 (2/ Z —T-v-6 o 1+o\)),
Since

k+1 D\n ) k+1 n )

(2/3) Z ~(——T $ u 1+av)) < (2/3)K w(h,s) X ~Tg—7 J

and the quantity on right tends to zero as § »~ 0, we have

Tim (1/k+1) Tr W7 (u)M = (2/3)/ p—(—ydx

koo

Q.E.D.

It is a "well known" fact that given an arbitrary design yu,
the value of Tr M_](u)MO can be decreased if we replace u by a
design concentrated at the knots 50’51""’€k+] with weight
= fzv(x)du(x), v = 0,1,...,k+1. For this result see Studden

and Van Arman (1969). If u has a given density h(x), we expect the
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asymptotic value of V to be larger as we will show in Theorem 3.1.2.
Discretizing u appropriately decreases the variance term by a factor

of 2/3 as shown in Theorem 3.1.1.

Theorem 3.1.2: Let u has continuous density h(x) such that

h(x) > 0 for all x € [0,1]. If the knots are chosen using (3.1.2)
and the LSE is used, then

Tr M“](U)M0 ~ K/ E%%%-dx. (3.1.8)

Proof: Since the design measure has the density h(x), we can express

the information matrix M(u) as

Mu) = fa(x)e' (x)h(x)dx.

To show its dependence on h, we shall denote the above matrix as M(h)
instead of M(u) in the rest of the proof of this theoren.

The elements of the tridiagonal matrix M(h) can be written as

=3
O
O
——
oo g
~—
!

= h(gg)8;/3 = byo(h)

Vo= -
Mtk (0= e )8078 = by ()

=]
—~
=
R
i

h(gv)(av+5v+])/3 - bv,v(h), v=1,2,...,k
mv’v+](h) = h(gv+7)6v+]/6 - bv,v+](h)’ v =0,1,...,k
mv+]’v(h) = h(gv)av+]/6 - bv+1,v(h)’ v =0,1,...,k

- &5_1s 1= 1,2,0..,k+1 and

= h(zg)ey/3 = [22(x)h(x)dx

o
]
[ew)

—

=

S
I
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Puest 1 () = 010844373 = Jagyg (On(x)dx

b (h) = h(gv)(6v+6v+])/3 - fzv(x)h(x)dx, v=1,2,...,k

by v (N) = 0 13061076 - f2 (X)e 5 (0Oh(x)dx, v=0,1,

b h(e )s ,4/6 - f£v+1(x)2v(x)h(x)dx, v=0,1,...,k.

v+1,v(h)
With the above representation of the elements of M(h), we can write

down
M(h) = MD(h) - B(h)
where My = [a(x)2'(x)dx, D(h) = diag(h(ey), h(gy),...,h(g, ;)

and B(h) = [bij(h)]' Now

=
H
—
—
s
~——
H

[(1-B(n)D™" ()= "M D(h) "]

. D“](h)Ma](I-B(h)D“1(h)M6’)“]. (3.1.9)
Before going any further, we shall prove the following lemma which will
enable us to complete the proof of the theorem.

Lemma 3.7.1: Let F = B(h)D _](h)MO1, where B(h), D(h) and M. are as

0
definad above and let the set of knots 51 By <.l < gk satisfy
(3.1.3). Then ||F]|| = max{z[fij[} < Kw(h,8), where K is a positive
i

constant and w(h,8) is the modulus of continuity of h with respect

to §, where § = max(gi~g1‘]).
i

Proof: We want to find the bounds on the elements of matrix MO which
will be done by using the Lemma A? of the Appendix. For this

purpose let us introduce the (k+2)x(k+2) tridiagonal matrix A
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2 1 0 0
81%85 ) §1%65
2
0 - 2
62+63
A = :
S+
2 §,,8
K+ k41

0 0 1 2

and rewrite MO in the form

MO = A'DO
where D0 = diag(é]/G,(61+62)/6,...,(6k+6k+1)/6,6k+]/6). Let
A= [aij] and A'] = [aij], We notice that the elements of matrix

A satisfy the conditions of Lemma A2 of the Appendix. Taking n = k+2
and Bi =2, 1=1,2,...,k+2 in that Temma, we get the bounds on the

elements of matrix A7) as below.

172 < a% < 273 (3.1.10)
1/2 <a't < 2/3, i=1,....k (3.1.11)
172 < a**RT (g3, (3.1.12)

(Note that we do not have strict i@equality on Tower bounds of

aOO and ak+]’k+] since oy = 1 and !n = 1 here. See the note after

Lemma A2). Also for the off~diagoéa1 elements,

}
%

i 4

i
i

i
3

|
i .
K )



48

0 < (-2l < a3y 12l Iy G s s 0ot ke (3.1.13)

Since we are interested in lower bounds only, we can replace for our

purposes the inequalities (3.1.10) - (3.1.13) by one inequality:
0 < (-0 a1 < a2l Tl 5 s 0L e, (3.1.14)

Now we can write,

F = B(n)™ () (D)
= B(n)0”" (n)n3"(a)"!
= 8o~ (n)og!(a7T)
= ¢(h)(a1): (3.1.15)
where C(h) = B(h)D"](h)Déz. The elements of the tridiagonal matrix

C(h) are as follows:

cgolh) = 2-(6/6]h(go))fzg(x)h(x)dx

k_%."i;sk,;q(h) = (6/6k+'} Ek'ﬂ f»Q,k+-'(X ( )dX
Ci,i(h) = 2—(6/(6i+6 h(g fz (x)h{x)dx, i=1,2,...,k
C1o(h) = 1-(6/81h(z4)) f25(x)2q (x)h(x)dx

Ck9k+]<h) = (6/6k+] Ek"'? //Q, (X k+~!(X)h(X)dX
Ci,i01 () = (6540/(850%65,0))-(6/h (e, ) (64,146, 1) f2i

2247 (OR(x)dx, 1=0,1,... k-1
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Ci+1,i(h) = (61+1/(61+ i+7))-(6/h(g DICPLL PN DTE 2547(x)
h(x)dx, i = 1,2,...,k.
Now we shall find the bounds on the elements of matrix C(h). We
have for i = 1,2,...,k,
S+
i,40) = 2-(67(85485,1)0(e;)) f 2500 (h(x)-(£) Dt (6/ (5,5, 1))

5i-1

(@]
——
pron g
~—

fi

i+,
zi(x)h(x)dx

I ey

i-1
&

~(6/(6 46, ()] 150 (h(x)-h(e, ))dx

i-1

i

Si4]
{6/ (8%, (e )] (3 (h(x)-h(e, ) )d
i
But ]h(x)—h(gi)] < w(h,8) in the intervals (Ei—1’gi) and (£ 5141)
therefore
les 50 < (6/(85%65,)0(e;)) (wlh, 8)6,/34u(h, 6)s, . /3)
= 2w(h,6)/h(gi) 1=1,2,...,k.

Simiiar1y,_we can show that

A

%Cﬂg(h)l Zw(h,d)/h(go)

!Ck+],k+](h)l < 2w(h,6)/h(€k+])

O
—
o
—
=
~—
A

o(h,8)/h(g,)

O
o
=~
+
—
-
po
Nt
A

w(h,5)/h(€k+])_
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Also using (3.1.3), we can show that

e, 541 (M < (8/841)(w(h,6)/h(e, 1)) < (w(h,8)/h(E, 1)),
i=0,1,...,k-T
and

lc1+]’1(h)l < (a/a+1)(m(h,6)/h(£1)) < (w<h36)/h(€1))9 iz]s-"'sk»

Now since h(x) is continuous on [0,1] and h(x) > 0 for all x € [0,1],
“we shall have (1/h(x)) < K] for all x, where K] is a positive con-

stant. Now we can rewrite the bounds on elements of C(h) as

follows:

lc..(h)] < 2K.w(h,8), i =0,1,...,k+

ii 1

lc ()] < Ko(h,8) , i =0,T,....k (3.1.16)

1,7+

Cieq, 1 (M < Kjulhus) 5 0= 0,1,... k.

i

Let matrix F = [fij]” then from (3.1.15)

a\)‘]

.= ) Cl
| i Ly | |
where [a”J 1= (A"])’. Now since a¥¥ = ad¥ and Ciy = 0 for

li-vl > 1, we have for i = 1,2,...,k,

i} j,i-1 ji R
Fi5 = %4410 TR L
and
. i,i-1 i i, i+]
]'1jl < lcisi_]llaj |+ ’Cii!'aJ | + IC1,1+1llaJ ,
< Kyw(h,e)[[ad> 2107 + [a3 717, using (3.1.15).
1
Therefore
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k+1

TIFi5l < Kl h«stmaJ”wzzla“u zw’”u (3.1.17)
j=0 j=0 j=0
Now using the inequalities (3.1.14), we have
kK+1 . .. .. .. . .
T jadei- 1| - (-1)d-0-1)3,1-1 ) (_])J~(1-1)a391~7
j=0 j>1-1 j<i-1
k+1 . . i-1 . .
< T (230172501 4 ay3y (1201109
=i =0
k+1-1 . -1 j
=(1/3) T (1729) + (2/3) z (1/27)
j=0 j=0

If

2-(2/3){(1/2)K*%"1 + (1/2)1-14

Similarly,

k+1 .. \ .
,Zoiaj‘l < 2-(2/3)£(172)K* 11 4 (1/2)1)
J:

and

K+] . .
1l T < eerms)RT (1)
J

Thus from (3.1.17) and above inequalities, we get

- . -
LIl < Kuth,8)[8-(3/2)((172) T + (172) 713, 1= 1,2,k

But (1/2)% 7+ (172)"1 5 1 for 1 < 4 < k. Hence

k+1
max { J If f} < (13/2)K]w(h,6).
I<i<k j=0 J

Also for i = 0 and k+1, we can show that
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k+1
11451 < (03/3)Ku(h,6).
Thus
k+1
[FI] = max () lfi'l}
O<i<k+1 j=o W
< (13/2)K1m(h,6)

[

Kw(h,8), say.

This proves the lemma.
Now since w(h,8) +~ 0 as 6 >~ 0, we can make w(h,8) < 1/K
and hence |[F|| < 1. We can then invert (I-F) using power series

expansion,

(1+7), say

where T = ) F'. Therefore from (3.1.9) and above expansion,
m=1

(1/k+2)Tr M'](U)MO

(1/7k+2)Tr(0 (M1 (147) )M

0 0

5
=i

0

it

((1/ke2)Tr 07 (m)M M0y + €(1/k+2)Te D71 ()

TMOL

((1/k2)Tr D71 (R)} + £(1/k42) Tr 0’7(h)M57

TMO},

Now since D-](h) is diagonal matrix with diagonal elements T/h(ai),

we have for second term in above equality,

(1/k+2)Tr D“](h)M61TMO < (1/k+2) (max 1/h(gi))Tr Ma] ™
‘ i

= (K?/(k+2))Tr T

0
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| (1/k+2)Tr 0‘1(h)M5]TMO| < (Ky/(ke2)) [IT]].

From (A5) of the Appendix A, and above Lemma 3.3.1, we get
[T < Ko(h,8)/(1-Ke(h,8)). Thus

1/(k#2) [Te 071 ()M 1w | < (K;Ka(h,6))/(1-Ku(h,o)).

But w(h,8) ~ 0 as 6§ ~ 0 since h is uniformly continuous on [0,1].

This shows that

(1/k+2)Tr M'](U)MO = (1/k+2)Tr D71 (h) + o(1)

as § > 0. From (3.1.2), p(n)s, = (k+1)"! for some

n_ e (g S )s v =1,2,...,k+1. Therefore

v v-1
-1 k+1 p(ﬂ )
(1/k+2)Te M7 (u)M g={{k+1)/ (k+2)) Z 7?? s + o(1)

or

k+1 p(n )
(7)Te M (Mg =( (k1) k) I 7-75 + o(1).

Letting k » « in such a way that § ~ 0, the right hand side
1

approac [ dx and the theorem is proved. 0.E.D
0 .E.D.

3.2. Asymptotic Value of Bias for LSE

The results of this section indicates that the asymptotic value

of bias, when the least square estimator is used, is

as k >~ =, where b is a positive constant. Let us recall that the

bias term is (see (1.4.5)),
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dx.

B = )2

(g(x) - 2'(x)Cq,

CO Y —t

If we use the least square estimator, then

1
Cg,. = M‘1<u>£z<x>g<x>du<x>.

If the design measure has the density h{x), then

¢y = Cg, = W (h)[2(x)g(x)h(x)dx (3.2.1)

where M(h) is the (k+2)x(k+2) matrix [2(x)&'(x)h(x)dx. The bias
term is then

1
B = é(g(x) - 2’(x)ch) dx. (3.2.2)

Recall that the minimum value of B with respect to ¢ = Cgr for a
fixed set of the knots cccurs for Cq = Ma]s, where s = [2(x)g(x)dx

(see (2.7.4)). Now the expression in (3.2.2) can be split as

B = B1 + B2 (3.2.3)
wnere
1
B, = [(g(x) - 2'(x)c.)2dx (3.2.4)
1
B, = é(z'(x)cg-z'(x)ch)gdx. (3.2.5)

The first theorem of this section concerns the asymptotic

behavior of the factor B] as k » o,

Theorem 3.2.1: let g € C2[0,1] and B1 be as defined in (3.2.4)
and let the knots be chosen using (3.1.2), where p(x) is continuous

and positive on [0,1]. Then
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1

.4 (g"(x))
Tim kB, =

klﬂ 17~ 720 é p4<x)

2

dx. (3.2.6)

In the next theorem we have found the asymptotic expression for
the bias term when the least square estimator is used and the design

has a smooth density h(x).

Theorem 3.2.2: Let the design u has a continuous density h(x) such

that h(x) > 0 for all x. Let the knots satisfy (3.1.2), where p(x)
is continuous and positive for all x. If the least square estimator

is used, then the bias term has the asymptotic expression

1 2
1 (g"(x))
B ~ dx. 3.2.7
720Kt é ) (3.2.7)

It turns out as Theorems 3.2.2 and 3.2.3 indicate that the
choice of cg or ¢, for suitable smooth h gives the same asymptotic
expression for the bias term.

Note that the (v+1)th coordinate of ¢ gives the value of the
approximation &'(x)c of g(x) at x = £, The {v+1)th coordinate

of cg is approximately

9le,) - (g"(g )62)/12. (3.2.8)

Y
IT we use a design p with the weights W, on €, the value for ¢
is 9, and 2'(x)gr simply interpolates g at the gv's and ignores the

additional term involving g" in (3.2.8).

Theorem 3.2.3: If the design u has the weights u, on the knots £,

and the LSE is used, the asymptotic expression for the bias is six

times as large as that given in (3.2.7), i.e.
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1 (g"(x))

B ~ . dx. (3.2.9)
120k é Ty

Generally a smooth density for the design will keep the bias

term small and give slightly larger values for the variance term.

The opposite happens for an appropriate discrete design.

Now we shall prove the above three Theorems.

Proof of Theorem 3.2.1:

Let us denote by

S, =

and

U

Note tha

Class of spline functions of degree one with k prescribed
knots O = EO < g] <uevnn< Ek < gk+] =1,
Class of the continuous polygonal Tine segments with vertices

at thz points o i=0,1,...,k+1,

Class of the functions u(x) defined on [0,1] such that

u{x) represents a line on each interval (gi

sg-‘l’,{_’i))
1=0,1,...,k.

t u{x) € Uk need not be continuous at the knots.

Now we see that

1

1
min [(g(x) - Q'(X)C)de = f{g(x)-2"(x)c )de
c O 0 9
1
= min [ (g(x)—s(x))zdx
SESk 0
1
>min [ (9(x)-u(x))%dx (3.2.10)
u€Uk 0
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since Sk CﬁUk. Now let us find an expression for

1 ) 1 ) K Eutl )
min [ (g(x)-u(x))%dx. Since [(g(x)-u(x))%dx = Y[ (g(x)-u(x))%dx
uGUk 0 0 v=0 Ev

and u(x) is a line on each interval (gv,gv+]), the quantity

)2

OOy 2

min
uEUk
approximation of g(x) by the straight line on every interval

-u(x))“dx is the sum of the (best) Lz—errors of

(£ ’€v+]) v=20,1,...,k. Let for v = 0,1,...,k,
ulx) =a +b (x-£), x €(¢ ¢ )

then the (unique) solution of the problem of minimizing

f (g(x)—av-bv(x-gv))zdx with respect to the constants a, and

b” is
Y
4] ' 2 S0+
a¥ = (4/6 1)) g(x)dx - (6/6,47))  (x-g )a(x)dx  (3.2.11)
g\) E;\)
and 3 St 5 ot
b = (12/5V+1)£ (x—&v)g(x)dx~(6/6v+])£ g(x)dx,  (3.2.12)
Y \Y

wnere 5\)+1 = E\yﬂ - EV.

Since g(x) is a function possessing the second derivative, we can
express, using Taylor's theorem, g(x) in terms of the values of g
and its first and second derivatives at x = £, Here we shall use
Taylor's theorem in a form given in the section 151 of Hardy (1943).

We can write
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oy
—

x
~—

i

9E,) + (e )g'(e)) + (x-c %" (2 )0 )2 (3.2.13)

v

where n, > 0as x » €, We can also write (3.2.13) as

= 1 2 it ‘ . 2
g(x) = Q(Ev) + (X-Ev)g (iv) + ((X-EV) g (EV)/Z) + o(x EV) .
. (3.2.]4)
Using (3.2.74) we want to find the quadrature formula for
4T Sot+1
[ g(x)dx and f (x-gv)g(x). Since this involves the integration
£ £
v \Y)

of "Order relations”, let us prove the following result:
Lemma 3.2.1: Let ¢ = o(x—&;v)q as x > & where g > 0, then

g\)+1

_ g+l, N
é ¢(x)dx = 0(6V+]) as & ., > 0.

Y

Proof: Since ¢ = o(x-av)q as x - gv, given e > 0 there exists an n

so that [¢] < (x~gv)q for all x such that Ix-gvl < n, and hence

é;\)"‘.] g\)"']
Je0)dx] < [ o(x) dx
3 3

\Y) Y

S+ q .
e [ (Xmgv) dx if 8,47 <M

£
v

A

g+l
(e 6\)H

)/(q+1).
This proves the lemma.

Using the above Temma with q = 2 and q = 3 respectively, we

can show that

St 2 3 3
[ g{x)dx = g(av)dv+7+(g'(iv)6v+]/2) t(g"(g )67 ,,/6) + (s ,)
a:d (3.2.15)



(95,06 ,1/2)+(a" (2 )62, /3)+(g" (€ )o? ./

)

0(6V+1 .

59

8) +

(3.2.16)

The value of the integrals obtained in (3.2.15) and (3.2.16) are

substituted in (3.2.11) and (3.2.12) respectively, to get

_ " 2
ay = 9(e) - (g"(g))s,4/12) + v,
and
by = g' (€ )) + (g"(g )8 ,1/2) + vy,
_ 2 -
where Yy = o(6v+]) and Vo = o(6v+]) as & .4~ 0. Now from (
(3.2.17) and (3.2.18), we get
Ev+1 ’
(v Yoak k&l yv.
£ (g{x)-a*-b*(x-£ ))“dx
Y
£v+] 5 2
- (1716 {6(x-c,)%" (£ )-6(x-2 )g" (2 ), +a" (£ )62, +

A

(9% )8, ,/720) +

+

g"(

€v+1

£, )/12)]

g

v

6(X-£V)2nx-1Z(X-iv)¢2-12w1§2dx

4 2 2 22
(1/4 é f(x-ze))

ne *Auy + Ax-g )0,

4 3 2 2
{602 ) 0 -6(x- ) Pnys 1+ (et )on s
2
]Z(X'Ev) w]

2
F120x08 g8 20062, -12(x-€ )%,

2 2
+ 12(x—gv) ¢26v+]—2(x-£v)w26v+]§dx.

(3.2.17)

(3.2.18)

3.2.13),

de

x“vtl
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Since g" is bounded on [0,1], we can show, using Lemma 3.2.7, that
in the above expression on right all the terms except the first

one are at least of order o(cs5 +~ 0. Therefore

v+]) as 8

+1
B+l 2

min [ (g(x)-a_-b (x-£ ))"dx

av,bv £

St 2
= ~a¥*oh®x{ vy~
(g(x)-a*-b*(x-g )) dx

v

- (gl 5 5
= (9" (g )6 ,4/720) + o8 1) as & .4~ O.

From (3.1.2) and mean value theorem p(nv)6v+] = (k+1)“] for some

n, € (&va£v+1), hence we can write,

v+

Uha S VA ¢

(g(x)-ax-b*(x-¢ ))%dx

= (g"2(c,)/720(k+1) % (n )6 _,q + 0(K™)

as k » », therefors

1 A k
win [o(0)-u(x)? = (177200ke0)%) T (@*2(e )/ (n )16yt
uely 0 v=0 (3.2.19)

Let u4s now consider the L2-approximation of g(x) by the specific
member s*(x) of the class Sk' This s*(x) is a continuous line
segment whith has ordinates g(gv)_(gu(gv)ﬁi/TZ) at the points

£, v=0,1,...,k+1. We set 6, = 0. For x € (av,a )s

v 0 v+

S*(x) = (9(E,,1)-(9" (5,418 51/12) 3 (x-€ ) /8 1}

+{9(EV)'(9"(gv)éi/]z)}{(5v+1‘X)/5v+1}* (3.2.20)



Again since g(x) € C2[0,1], the Lagrange's formula of interpolation

(e.g. see p. 32, Whittaker and Robinson (1967)) gives

g(x) = (178 ) 1ale 1) (x-g )+ 9(£ ) (g 4q-x)1-g"(n )(x-g )

v vt+1, X

(gv+1~x)/2 (3.2.21)

for x € (gv,gv+]), where No+1,x € (gv,gv+]), The subscript x in

Nyt . x shows its dependence on x. Now from (3.2.20) and (3.2.21),

9(x)-s*(x) = (1/12) (x-¢ )g" (€ ;)6 ;1 * (17125 1) (g 11-x)g" (¢ )6°

v Vv
- (172)(x-g (e 13-x)9"(n 4q ).
Therefore

v Y. .2 5 183000 (e Y
(g{x)-s*(x))7dx = (1/432)9"“(_,q)s_,+(1/432)g (g,)9" (g 47)

v
2.3
6\)6\)'*‘1

P S Y

£
vt
“2(

0l 4
(50,0 (V]

+ (1/432)g

Vv
2
(x-£) (av+]~X)2dx
EU+]
2
V
2 R
- (g (av)6v/126v+])£ 9"(n 47 ) (x5 Mg, q-x
v
Now using Lemma 2.2.1 for the last three terms on right, we get

vt
(g(x)-s*(x))%dx 243

||2 5 t Hj
(17432)9" (g ,q)8_4+(1/432)g" (£ )9 (€178 86 41

1

YTY Sy Y
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4 i 5
£,)8.8 4y * (1/120)g CREPLINE

\Y

+ (1/432)g"%(

1 i 5
- (1/148)g" (€ ,1)9" (B 1q)8 4

i 1 2 3
-(1/148)9" (£ )9" (v, 47) 8,841

where o 410 Bl and Y47 @re points in (gv,gv+]). Again using

(3.1.2) and the mean value theorem, we get

] 2
é(g(X)-S*(X)) dx
— 4’ k “2 4 k 1} i 2
= (1/432(k+1) ){vz (9" (£ 41/ (pv+]))sv+1+vzo(g (e )g"(g 11)/p" (o )
oo 1 ))6 1}
PurT? 700+
5, K 2 4 K, w2
+ (1/432(k+1) ){vzo(g" (g,)/p (pv))5v+1+(37/10)v20(9" (o 1)/
P o )06 )
4, K 4 K
- (17144 (k+1) >{v§o(g“(gv+1)g“(8v+1)/p (pv+1))6v+1+vzo(g”(€v}q”(YvTT)/
Pz(pv+7)P2(oV))6v+}}a
(3.2.22)
where o € (Ev—l’gv) and p . € (Evaév+1).
We have
! 2 ! 2
é(g(x)»s*(x)) dx > min [ (g(x)-s(x))"dx. (3.2.23)

s€Sk 0

Now from (3.2.10) and (3.2.23), we get
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)2

d
g/ 9%

1
(g(x)-s*(x))dx z_k4 é(g(X)—Z‘(x)c

=
£
O —

> kK min [(g(x)-u(x))%dx. (3.2.24)
uGUk 0

Letting k > « in such a way that § = max Sv + 0 and using (3.2.19)

and (3.2.22), we get from (3.2.24),

1 1 2
.4 . 2. _ 1 (g"(x))
llz k é(g(x)-z (x)cg) dx = 7575 é 34(§) dx. Q.E.D.

Alternative Proof of Theorem 3.2.1:

We can prove Theorem 3.2.1 using the results of Appendix B and a
theorem by Sacks and Ylvisaker (1970).
So far we were using the Lagrange basis 2(x) for the class Sk'

Instead we can use the following basis:

]9 (E]'X)+’ (€2'X)+5 ----- (gk'x)+s (gk+]'x)+-
Then

1
(J(t-x) 9" (t)dt - | ¢;(2;-x),)%dx
1

"

2
!lf'g CiR(.’gi),lH(R) ’

the last equality being obtained using the equation (B7) of the

Appendix B, where now
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1
f(s) = [ R(s,t)g"(t)dt
0

and R(s,t) is as defined in (B3) of the Appendix B. Thus we have

O — —
T~
w0
—~
>
S

t
P
_

x
-
(@
g
no
[al
x
i

. , 2
q m;ﬁllf-g c.R( ’Ei)l!H(R)
;

[Py Pl lyce)

where PT is the projection operator defined on Hilbert space
k
H(R) to the subspace spanned by R(',t), t €T,. Now by a result

given in section 3.3 of Sacks and Ylvisaker (1970) we have

2
) dx.
X

1
.4 2
Tim k* [P )12 = 1 [ L )

(x
o ) b o Q.E.D.

We shall use Theorem 3.2.1 in proving the next theorem. In
proving Theorem 3.2.2, we also require a lower bound on the norm
of the matrix Mg = fa(x)e' (x)dx (see Appendix A for the definition
and other results on matrix norm) which we will now find. We need
the following restriction on the sequence {Tk} of the partitions:

max  (8/8.) < B < w, (3.2.25)
1< <k+1 L

This is in addition to the assumption that the mesh Tk +~ 0 as
k > . Now since the main diagonal of M, is dominant (i.e.

'miil > ; [mjj})we have from Lemma A1 of the Appendix,
J#i

-1 . -1
[Mg [T <0 min (m - F m.)]
0 0<i<k+l 11 §Ei 1
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. -1
= [ min (6,+5.,,)/6]
1<i<k i i+

< 38/8, (3.2.26)

using (3.2.25).

Proof of Theovem 3.2.2:

We have

= B +
B B] 82

where B1 and B2 are given by (3.2.4) and (3.2.5) respectively.

Also from Theorem 3.2.1,

To complete the proof of the theorem, it is sufficient, then, to

show that B, = 0(64) as § - 0. Let us define a (k+2)x1 vector c*

2
whose elements are given by

— i1 2 . -
c¥ = g(g;) - (g"(g;)65,,/12) 1 =0,1,....k
and

=t — n 2

C’;_ﬂ - g(gk‘*']) - (g (€k+])6k+]/12)

We have

5, = [e(x)g(x)h(x)dx = M(h)ch; s = fa(x)g(x)dx = M.c .

Also define

* = * = *
sy M(h)c*, s MOc )

We shall now evaluate the elements of the vector s using the interpo-

lation formula,



o
[s))

9(x)= (178, )(G(E 1) (x-8 J#9(£ ) (£ g x))=g" (n g ) (x-E )

\Y
(g 4q-x)/2  (3.2.27)

for x € (gv,£v+]), where Nt1,x € (Ev,€v+]). Using (3.2.27) and the

g
vt
Lemma 2.2.1 to find the integrals of the type [ g"(nv+] X)(x—é:v)
E E
v
(€,4q-%)dx, we get

sg = (9(£g)8,/3)+(a(2;)5,/6)-(9" (07)57/24)

it

(g(t

v v=-1

113 3 H 3 — .
- (g (pv)év/24)-(9 (pv+])6v+1/24)9 v=1,2,...,k

s )5 /6)+(a(E ) (8 +6_,1)/3)+(a(E,1)6 ,1/6)

and

Spar = (90847)84773) + (9(£)6,,1/6)-(3" (0, ,1)60,1/24),

for some o, e (¢ ,gv), v =1,2,...,k+t1. Now we can write

v-1 ,
down the elemants of the difference vector s-s*. For v = 1,2,...,k,

s -s* = A+ B, where
AV vV vV
- 1l 1 1 1 2
A, = (1/72)(9" (8 4q)-0"(6,))62 + (1/36)(g" (£ )-" (0 ))6 62,
+ (1/36)g" (o, )6 (62,1~ 62)
and :
- { 1t 3\ " 3 [ " 2
Bv = (1/36) (g (EV)“Q (pv+1))6v+1+<1/72)(g (Ev+1)_g (pv+1))6v+76v+2
1} 2
+ (1/72)9 (61308, (500 = G-

1

Again from the equation (3.1.2), p(av)év = (k+1)"', for some

o, € (6 158 )s v = 1,...ktT. Now
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54178, = (kD) L(1/p(a 41 ))-(1/p(a )]
= (8,/p(a 1)) (pla )-pla 4 4))
= (8 /pla,,1){(pla )-p(e N*(p(E )-pla g )3
Therefore
|6, 4178,1 <28 w(p,8)/pla ) (3.2.28)

where w(p,8) is the modulus of continuity of p(x) with respect to
§ = max ;. Now let [g"(x)]| < K, and (1/p(x)) < K, for all

.i
x € [0,1], where K] and K2 are positive constants, then using

(3.2.28),

2
K]w(p,a)sv(sv+av+])
36 v ovtl 18K

2

where w(g",8) is the modulus of continuity of g"(x). Since

w(p,8) and w(g",8) goes to zero uniformly in &, we have

3) as & - 0.
%)

Similarly, we can show that Bv = 0(6”), therefore for v = 1,2,...,kK,

3
ok =
5,-s% o(67).

It is easy to check that (s]—s?) = 0(63) and (sk+]—s§+]) = 0(63)°

Therefore

1]

[ IMgleg=c)]| = |[s-s*]]

m?xlsi-sﬁl
o(s%).
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But in (3.2.26) we showed that IIMB][I < (38/68), hence

[lege*l < 1M ] [1s-s*1] = o(s®) (3.2.29)

as § -~ 0.

Now we shall try to find a lower bound for the norm of the
vector ch—c*. First, let us write down the elements of
tridiagonal matrix M(h).

(}/S)h(go)s]"boo(h)

=
~——
it

Meet, k1 (M) = (/300300440 7Dysq eag ()

=
—~
o>
p—
l

(1/3)h(g ) (8 *#8 1) = b (h)s v =1,....k

VeV

-b

=
~—
{

(1/6)nh(e_ )8 (h), v = 0,1,...,k

m =
v9v+1( v vl v, v

Moy o) = (176)0(E 47)6 4q = bq [(h), v = 0.1k,
whevre

51

bg(h) = - | (h(x)-h(gg))eq(x)dx
&y
Skt )

biey a1 () = - gk (n(x)-h(E,1)) 20, (X)dx

&y S0+

o, y(h) = = [ 2200 (h(0)-hle Nx-f 2L (x)(h(x)-h(z,))dx
-1 2
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g
by ,(h) = - é 2 (x)e 1 () (h{x)-h(g ,q))dx.

Using the above relations, we can evaluate the elements of the
vector sﬁ = M(h)c*. The interpolation formula (3.2.27) can be used

to evaluate the elements of the vector Sy, These are as follows:

Sh.o (1/6)9(&1)h(go)6]+(1/3)g(ao)h(50)61-(1/24)9"(T])h(io)S?

*9(g))]  25(x)2q(x)(h(x)-h(g,))dx

- (1/24)9"(x h(z )s>-(1/24)g" (x_, (e )e>

v

g 3

Y

+g(e))] 2200 (h(x)-h(g )dx + g(e, )] 2 (x)

\Y

£

v-1

S+ o+ 2
e 2 (XD () (h(x)-h(g ))dx+g(e )/
2

v
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and

St ™ (/380 008 1) 8+ (1/8)a(5 Dz, )60 -(1/28)" (1, 1)

3
M8 )0k
Ek+1 2
*0(gq)] aey (0(h(x)-h(z,,;))dx
&k
S+

+

g(gk)f Zk+1(X)Qk(X)(h(X)-h(€k+]))dX
*k

2 2 |
- (5k+]/2)£ g“ (nk+1,x)2k+1(X)Zk(x)(h(x)—h(gk+1))dx°
k

where T, € (av_],gv), v = 1,2,...,k+1. Therefore the elements of

the difference vector sh—sﬁ are as follows:

S = (V7208 )63(a" (&, 1)-0"(x ))+(1/36)h(e )5 (62, -2)q" (e )

v AAREVAREVE ¥ IRV Y

= (1/36)h(e, )8 3(g" (2 )-g" () (1/36)h(c ) &%, (g"(e.) -

\Y)
g" (7 41))
F /720G )6 (60,060 109" (6 g )+ (1/720(e )62,

(9"(g 47)-9"(x 4q))
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AY

12(x) (h(x)-h(z_))dx

\Y

+(g" (g >53+1/12>£

v-1

2 o,
orte a2

\%

x) (h(x)-h(g_))dx

v

gv+1
+(g"<gv+1)a§+2/1z>£ L (%0247 (x) (h(x)-h(E_))dx

AV
Now let h(x) < K3, then using (3.2.28) and a similar inequality

for |6v+2—5 ][, and the bounds on p, g" and h, we get

vt

Kow(g",s) KK w(p,s)
3 R

72 v 18K2
\ Kyu(g",s) 3, Kqa(g",6) 3
36 v 36 vt

% I <

| 2
Ish,v - Sh,v Gv(6v+6v+])

K3K]w(P,6) 2 sz(glad) 3

* 36K, 8,41 8,41¥840) ¥ =5 S +1

Kiw(h,s) 3 K]w(h,d) 3

1
+ +
8 6\)”

24 v 24

. K]w(ngd) 53 ) K]w(h,ﬁ) . 62
72 v 36 v vt]




3

Kiw(h,8)s Kiw(h,s)
+] v+1+] 2

36 77,410,422

where w(h,8) is the modulus of continuity of h(x) with respect

to § = max 8, on [0,1]. Now since w(h,s), w(g",s) and w(p,8) -~ 0
i

as & ~ 0, we have for v = 1,2,...,k

3) as § - 0.
It is easy to show that for v = 0 and k+1 also the above order
relations hold. Therefore
- 3
]lsh-sh*[l = 0(s”). (3.2.30)

During the proof of the Theorem 3.1.2, we showed that

M7 (h) = 07T (g (14T

where D(h) = diag(h(go),h(g]),...,h(gk+])) and T is a (k+2)x(k+2)
matrix such that |[T|| < Kw(h,8)/(1-Kw(h,8)). Hence using the

equations (A3) and (A4) of the Appendix,

T < N T 1T ] T

< (38Ky/8) + 38K Ku(h,8)/8(1-Ku(h,6))} (3.2.31)

where (1/h(x)) < K,. Therefore from (3.2.30) and (3.2.31),

4

It

el = 1M (s, =501

= 0(62) (3.2.32)

as 8 »~ 0. Now (3.2.29) and (3.2.32) gives
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[Tegmepll < Tleg=e* 1+ [fep-c*[|

= ¥y say (3.2.33)
where ¥y = 0(62) as & -~ 0.
Now
- ' | 2
B, = [(2'(x)c, - 2'(x)c, ) dx

(cg—ch)'MO(cg—ch).

Thus from (3.2.33),
8, < (k2)[eg-ey || [1Mylegcy)] |

< (k2) | egmcy | 1% Mg |

< (ki2)s oF,

since [IMOII < §. Note that (k+2) is the number of elements in

1

the vector cg—ch. From (3.1.2) write (k+1)7' = D(nv)év and then

use (3.2.25) to get that

since w? = 0(64). Q.E.D.

Proof of Theorem 3.2.3:

Since we are using the LSE, the bias term is

B = [(a(x)-2' ()M (1) e (x)g(x)du(x))%dx.

e S E—

But here the design u is concentrated at the knots, therefore the matrix

M(u) s diagonal with the diagonal elements u, and
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i
I ~1 4

£
[ (9(x)-g(g;_1)2s_q(x)-g(£:)2, () Pdx (3.2.34)
£,

since in interval (Ei-1’€i) only 21_1(x) and zi(x) are non-zero.
Using the interpolation formula (3.2.27), we can evaluate each

integral in (3.2.34) and get

k1 (g"(n)?

= 57— O..
51 120 i

From (3.1.2), p(yi)éi = (k+1)"} for v; € (Ei~1’€i)' Hence

Loy k(g (n)°
B = 1% 7 T -
= 3 k+1 g”(n.i)
If k > = in such a way that & = max §; > 0, then .Z — 6, >
n( 2 1 'l—] p (Y?)
S Lg“z%l;—-dx and therefore we have
Doix)

2
dx.

1
1 (g"(x)) :
B i é Q.E.D.

1206 0 pt(x)
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3.3 Asymptotic Value of IMSE for Estimates other Than LSE

Reasonabie choices for C other than the LSE can be obtained
by trying to find C so that the expected value of Cy is equal to
(1) Mé]s or (ii) tM61s (see (2.1.9)) or (iii) the (vt1)st coordinate
of the expected value of Cy is approximately equal to the expression
in (3.2.8).

As a suggestion for an estimator in case (iii) Tet us take the
observations on the knots and choose the (v+1)st coordinate of Cy to

be

. - - 2y, 2
Yy = (¥eq-2Y Y,V 85 (85/12) (3.3.1)

to approximate g(gv) - g“(gv)(ég/TZ). If we choose C in this way,

we see that the bias term is asymptotically minimized and therefore
the asymptotic expression for the bias will be given by (3.2.7). The
asymptotic expression for the variance of this estimator is found in
the following Theorem 3.3.1. Note that here the weights at the

knots are given by (3.1.4).

Theorem 3.3.71: Let the estimate C be chosen 50 that the (v+1)st

coordinate of Cy is given by (3.3.1) and Tet the observations be
taken at the knots with weights given by (3.1.4). Then the asymptot{c

expression for the variance is

2
23 ¢k X)
V~“"*7—n— X dx. (332)

h

Ny

Proof: The vth element of the estimate Cy is given by

y\)"(.]/-lz)(y\)+'l"2..‘r"\)+\yv_])s v = O,],...,k+].



To make sense for v = 0 and v = k+1, we set &_] = 0 and 9k+2 = Q.
Now the matrix C is a tridiagonal matrix with the diagonal elements
equal to (14/12),and off-diagonal elements equal to (-1/12). Thus
we have

-1,
Tr CDu C MO

k
k+1
+ (]/]44)1;]{(18961/3ui)-(261/u1_])+(6i+]/3ui_1)}-
Note that in the above equality we have assumed g = 0, 6k+2 = 0.
Again we can write

1

CTr CD 'C'My = (23/27)§(5i/”1)
= (23/21)](1/n(c,)),
T
since u, = h(gi)di' Using (3.1.2), we have p(”i)si = (k+1)"1.
Therefore
(k+1)"T7p CD;}C‘MO = (23/21)](p(n;) /()5 (3.3.3)

:
As k = = in such a way that ¢ = max 61 tends to zero, the right hand

i
side of (3.3.3) goes to (23/27)[(p(x)/h(x))dx. Therefore we have

- 2 ']:
V= (¢"/n)Tr CDu C MO

2 1
23 o°n X
~~ 57-—2—-5 Eé;}-dx. Q.E.D.

In the following we consider an estimate for the case (i) i.e.

an estimate for which the bias term is minimized. For further
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discussion we shall refer to such estimates as KMH estimates. The
initials stand for Karson, Manson and Hader (1969) who used the
approach of minimizing the bias. Recall that we have ny = hu,
observations at each Xgo 1= 1,2,..0,r Let L'(x) = (L](x), L2(x),...,
L _(x)), where Li(x), i=1,...,r are the linear spline functions such

r
that Li(xj) = 6ij’ i,j = 1,...,r. Note that the functions L(x)

defined here are different from the functions ¢(x) used before (section
3.1 and 3.2). L(x) consits of r elements and its ith element Li(x) has

support on the interval (xi_],x ), while 2(x) contains (k+2) elements

i+]
and its ith element 2.(x) has support on the interval (€5 7985470
Given any function f(x) defined on [0,1], let %(x) denotes the first
degree spline which interpolates f(x) at Xs i=1,2,...,r. We can
then represent the interpolating function %(x) in terms of the'roofbor

triangle-shaped functions (see section 1.3) Li's as
r
f(x) = ) fx,)L.(x). (3.3.4)

It is a well known results (e.g. see Prenter (1975)) that if f is
continuous, then f converges to f pointwise as n = max(xi-xi_]) goes

;
to zevs and if f is in C2[0,1] then

[1F-F]]_ = max _|f(x)-F(x)]
x€[0,1]

< const. | [£"]] n? . (3.3.5)

These properties of £ will be kept in mind in finding KMH estimates.

Recall that we started with 6 = Cy. Here we want a C such that



/8

1
E(Cy) = M51 éz(x)g(x)dx. (3.3.5)

It is hard to find a C for which (3.3.6) holds, so instead we try to

find a C such that

1
E(Cy) = oy [ 2x)g(0ax. (3.3.7)
The asymptotic is in the sense that ||E(Cy)- [2 (x)dx|| tends to
zero as r > =, where the vector norm || || is the sup norm (see
r

Appendix A). Let é(x) = ‘Z g(xi)Li(x)‘ Since g € C2[0,1], using

the inequalities (3.2.26) and (3.3.5) we can easily see that
1 -1 .
fIM fz (x)dx-M, fz (x)dx]|

1 .
15T [ 203 (9(x)-g(x) ) dx] |
0

"

A

HM 1 fﬁ )-9(x))dx/|

< Const. |]g"] | _n’.

Tne expression on right of the above inequality goes to zero as
o= max(xg-xs_4) > 0. We notice that,
4 |

B[00 (e = o] fz x)dx)g,

1 -
MBT [o(x)g(x)dx
0

f
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Therefore, in order that (3.3.7) holds, we should choose C as:
C =M [ a(x)L' (x)dx. (3.3.8)
0

We shall use this as one possible estimator in Chapter 4 while
discussing an algorithm and some numerical examples. In the following
theorem we shall find the asymptotic expression for the variance term
using the estimator (3.3.8). This theorem concerns choosing the design
u to have weight Wy on X, such that

W o= fLi(x)h(x)dx, i=1,2,...,r (3.3.9)

for some contintous density h(x) which is positive for all x.

Theorem 3.3.2: If the estimator C, given in (3.3.8), is chosen, the

design and the knots are chosen using (3.3.9) and (3.1.2) respectively,
where h(x) > 0 for all x, then

2 1 (x)

. é " dx. (3.3.10)

Proof: We have from (1.4.5) and (3.3.8),

(o%/n)Tr CD'1C'M

<<
t

0

1
(o2 /n)Te g fz(x L ()dxdT! [ Ly)2' (y)dy
0

Li(x)Li(Y) -1
————— dxdy MO .

T

1

2(x)e' (y) (3.3.11)

[ L S—
It~

1
(o /n)Tr f
0 i

We will use the following Temma to complete the proof of this theorem.
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Lemma 3.3.1: Let u(x) and v(x) be continuous functions defined on

[0,1]. If n = max (x;-X;_1) > 0 as r > =, we have
i

f~13
—t

]
dydx = [ LD 4 (33 9y
i 0

T1 '
Tim [ [ u(x)v(y)
00

The proof of thé Temma will be deferred till the end of this
section.

Using the above Temma, we can write from (3.3.11),

V o~ (62/n)Tr M(h'])M6]

where M(h_l) is the (k+2)x(k+2) matrix / &15%%%§51-dx. As we did

in Theorem 3.1.2, we can show that

M~y = mp(h) - B(nT)

where D(h']) is a diagonal matrix with diagonal elements (h~](go),
(5105207 (,1)) and B(h™1) is a tridiagonal matrix with iis

elements as follows:

3
bgoh ") = (/nte))f (h(x)=h(£)) (2 (x)/h(x))dx
0
1 "k 2
Pyt k(M) = (/h(g ) é (h{x)=h(gy 1)) (24q (x)/n(x))dx
k
-1 S0+ 2
by W) = (1/n(e )] (h(X)—h(sv))(zv(X)/h<x))dxs vEl, ..k
5o
-1 ot
b, w1 (h 1) = (/n(e ))f (h()-h( D), (x)2 4 (x)/h(x))dx,
E;\)
v =0,1,...,k

and
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Sot]
bv+1,v(h"]> = (1/h(£v)>£ (h(x)-h(g )) (& (x)2 .4 (x)/h(x))dx,
’ v =0,1,...,k.

Let min  h(x) = K. The constant K will be positive since
x€[0,1]

h(x) > 0 on [0,1]. Now we get the inequalities

[, ("] < wlh,6) (6 +e ) /3K

V,V

b, e (7] < w(h,6)s /662

v,vt]

-1 2
ey, (W) < w(h,8)8 /6K,

where w(h,8) is the modulus of continuity of h. Now since B(h'])

is a tridiagonal matrix, the above bounds on the elements of B(h'1)

will yields

18| = max(J[b, (7))

v o]
< wlh,8)s/K2, (3.3.13)

where § = max év. Therefore
Vv

1 (k+2) e w2 oD (v Y-B(h™ 1))

-1
U 00

(r2) ' Tr

(k+2)]

]

Tr D(h—1)-(k+2)-]TrM6]B(h"]).

Now using the bounds on the norm of the matrices M61 (see (3.2.26))

and B(h']) (see (3.3.13)), we have for the second term in the above

equality,



| (k+2)"Trr B (hT) | < (k+2) " (ke2) [ M5 TB (AT ||

-1 -1
< 1My 1T 11B(h™ )
2

< 3Bw(h,s)/K".

But w(h,8) ~ 0 as ¢ >~ 0 since h is uniformly continuous on [0,1]. Thus
-1 -1 ~Ty _ -1 -1
(k+2) 'Tr My M(h™") = (k+2)"'Tr D(h™") + o(1)
B -1

as 8§ ~ 0. From (3.1.2), p(nv)av = (k+1)" ' for some n, € (&v_]sav).
Therefore

(kr2) ™1 r M M(hT) = (k1/k2) (0 ) /()6 + o(1).

Letting k » « in such a way that & - 0, the right hand side approaches

f E%%%—dx. Q.E.D.

As above, we can suggest some other choices for Cy which would
involve approximating g in MB]S where s = [9(x)g(x)dx (e.g. see the

remark following Theorem 2.7.1).

Proof of Lemma 3.3.1:

Let us denote by I, the double integral on left of (3.3.12).
Since Lj(x) (2 < j < r-1) has support on the interval <Xj-1’xj+1)”
11(x) and Lr(x) has support on (XT’XZ) and (Xr~1’xr) respectively,

we can express the integral I as

r
1= 7§ 1, (3.3.14)

where



83

171
X, X,
o= 0/u) £ { u(x)v(y)L (x)L (y)dydx
r-1 “r-1
and
: 3+1 %541
Ij = (T/uj)[ / u(x)v(y)Lj(x)Lj(y)dydx, J= 2. .,r-1.
X . X .
j-1 73-1
Writing u(x) = u(xj) + (u(x)~u(xj)) for x € (Xj-1’xj+1) and
v(y) = v(xj) + (v(y)—v(xj)) for y € (Xj-1’xj+1)’ we get for
Jg=2,...,r=1,
Ij = I§]) + I§2) + I§3) + I§4), where
11 = (/U0 () ()P
X
(2) _ (V/2u.)vx.)(n.+ )fJ+](u(x)—u(x YL (x)dx
' Ty it
.
1(3) = (1/2u )u(x ) (n.+ )fJ+](V( )-v(x;))L.(y)d
i RN KNI 1 VITVXG IR
j-
X. X
f J+1 j+1
Y= 0l e mad{ vt ey,
J-1 j-1 :
From (3.3.9), for 2 < j < r-1,
uy = ij(x)h(x)dx
= (]/Z)h(x‘])(n‘]+n\]+1)(.x'*'OLJ)a (3.3]5)

where
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= {2/h(xj)(nj+ j+])}£. ](h(x)-h(x.))L.(x)dx.
j-
(1)

Substituting this value of My in the expression for Ij yields

({1 = (/200 Dl g ngin ) (1)

Since  min _ h(x) = K > 0, we get the following bound on a.,
x€[0,1] J

laj, < w(h,n)/K. (3.3.16)

Since w(h,n) ~ 0 as n -~ 0, it follows that

(1/2) )j —Jﬂ.ﬂ._ #nsyq) *+oo(1).

Let m(d,n) and w(v,n) be the modulus of continuity of u(x) and v(x)

respectively on [0,1]. Using (3.3.15) for u;, it is easy to check

that
r-1 (2) r 1 v(x ) -1
ljZZ L7 < (1/2)w Z ‘7“7‘ (n; +nJ+])\7+a )
r-1 (3) r 1 u(x ) 1
, Z} 13 l < (]/2 9“ z T_—)_ . +])(]+GJ) (33.]7)

) -1
I_Zz Ij | < (1/2)w(usn)o(v,n) Z —(——y P +n3+1)(]+a ).
J:

Since w(v,n) and w(u,n) tends to zero as n >0, it follows from
(3.3.16) that each of the. terms in (3.3.17) is of the order o(1)

as n -+ U, and therefore
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r-1 r-1 (
I,= 7 1!

- -1 =1
J ML @, e
j=2 j=2 j=2 j=

=2 4 =2

r-1 u(x.

v(x.)
(1/2)j§2 —*~%T§371~'(nj+nj+1) +0(1). (3.3.18)

Since functions u and v are bounded above and h is bounded below,

it

it is easy tc verify that

II]] < Const. ny, and lIrl < Const. n . (3.3.19)

Combining the results in (3.3.18) and (3.3.19), we finally get

il
—~
—
~
~nNo
"
Cte A
L]
~no
——
g
e
> —
—
3
[N
+
=
+
—t
N
+
(e}
———
—d
~——
a3}
wn
=3
+
(]

This proves our Temma. Q.E.D.

3.4. Minimization of Asymptotic Value of IMSE

As shown in the Tast three sections, the asymptotic expression

for the IMSE for the case d = 1 is

1 1 .2
3= (ao%k/n) [ 20 4 (p700K%) 1 910) 3.4.1)
] né%m< )gml)x (3.4.1)

where a ranges between 2/3 and 1 and b ranges from 1 to 6. The
Teast square estimator with design measure concentrated on the knots
gave values of a = 2/3 and b = 6, while the LSE for a smooth density
h gave values a = 1 and b = 1. We have already considered the
minimization problem in Section 2.3. So for our purposes here we

have to just put d = 1 in ail the solutions we got there for seven
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different mnimimzation problems. In particular, when J is minimized
with respect to h, k and p simultaneously, the minimizing h, k and

p are as follows:

h(x) = b/ 2(x)/1p 2 (y)dy (3.4.2)
k = fa"*" (nb/180ac? g2/ 9175 (3.4.3)
p(x) = (a" (Y% 1 (g" ()Y %4y, (3.4.4)

Some restriction must be imposed on k given in (3.4.3) since we want
at least k < n. Thus we see that J as a function of k, p and h is
minimized by k, p and h given in (3.4.3), (3.4.4), and (3.4.2)
respectively. The function p in (3.4.4) indicates that knot should
be placed where g" is Targe. The relation h o /p indicates that h
should move away from p becoming more unifoym. Finally k is
generally increasing in g", decreasing in ¢ and of the order n}/5°
This last order relation tells to take many more observations than
knots. This is due to the fact that V increases lineariy in k while

the bias B decreases with k'4.

3.5 Local Solutions for Minimization Problems

Let us recall Theorem 2.3.1. There, we imposed the restriction '
that the minimizing k should be less than or equal to n. Here we
shall discuss the case when k given by (2.3.5) becomes greater than
n. For simplicity, we shall consider here the Tinear spline case
but the results can be extended to the spline functions of any

degree d. For the linear spline case (d = 1) this minimizing k
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is given in (3.4.3). The restriction k < n means, then, that

[3"*% tnb/180a0% g%/ %11 /5 <

or
2 2 ’
0% >0l o (3.5.1)
where Ogrft = {b(fg“4/9)5/180an4fg“2/9}.

In the following we shall find some approximate solutions for
the minimization problem when the condition (3.5.1) is not satisfied.
We note that J given in (3.4.1) is convex as a function of k, so
when (3.5.1) is not satisfied, we take the minimizing k to be equal

to n. Replacing k by n in (3.4.1), we get

_ .21 px) 4y (9" ()
J = actf 22 dx + (p/720n7) [ AAXIL gy, (3.5.2)
i) (p(x))*

As a function of h, J is minimized by h{(x) = p]/z(x)/fp'/z(y)dy.

Substituting this value of h in (3.5,2), we get

1
3= ad?(] )2 + (b/720n%)[(g"%/p%) . (3.5.3)
0
We have to minimize this J with respect to p. Now when 02 = 0, the ‘
function J is minimized by p(x)a(g”(x))2/5 and when o2 3-O§rit’
4/9

the function is minimized by p(x)a(g"(x)) Therefore when

2 2

0 <o < Ocpit? Ve suggest that the minimizing p = p* should be

given by

p*(x) = (1-y)p{ P (x) + vV (x), (3.5.4)
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0000 = (@518, s k) = (g9%%f(gm)Y0

_ 2,2
and vy = ¢ /ccr1t’

p* is one of the approximate solution which will be investigated

where

in examples 3.5.1 and 3.5.2.
Let f] and f2 be two functions defined on [0,1] and both have a
second derivative at Xg € [0,1]. Also Tet f has a minimum at Xgo

then for some arbitrary but small e, the quadratic
Q(x) = Fy (xg)ref, (xg)# (x=xg)eFp (xg 1+(1/2) (x-x) 2 (£ (xg J+eFy ()

is a good approximation to f,(x)+ef,(x) for x near x,. The function
1 2 0

Q(x) is minimized at
b= x - efh(x) (FU(x,)+efh(x ))—]
0 0 270 170 270 )

We shall say that xé is a local minimum for f1(x)+ef2(x)o

We shall use the above idea to find an approximate minimum for

J when 0 < 02 < USrit' In the expression for J, the integrals will
be replaced by Riemann sums. Let 0 = ZO < Z] < Z < Zm 1 be

an equally spaced partition of [0,1] and Tet Z§ = (Z j-1* )/?

j=1,2,...,m. Also let p; = p(Z*), g. = g(Z§), 95 = ¢' (23)9 etc.

J J
for j = 1,2,...,m. Now for large m, J in (3.5.3) can be replaced

by
HZ
2,1 ™ ( m9;
= Jpyseeeapy) = a0 (= ) /5;) Hb/7200") (2 T <) (3.5.5)
Now we shall find the local minimum of J when (1) 02 is closer to
. 2 2 .. 2 . 2 ;
0 (i.e. 0 < o° < Gcrit/2> and (i1) o“ is closer to Orrit
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2

o 2 6t )
crit ’

<o .
crit

(i.e. ( /2) < o

Case 1: Local minimum for J(p) when 0 < 02 <Ot

/2.

The problem of minimizing J given in (3.5.5) subject to the

condition that 0 < pj and (1/m)2pj = 1 is equivalent to minimize

J(p) = dpysee-sppsr)
g 02
2,1 2 b 195 1
- — + + _— .-
ol Ly et Z pj4 SRR
2
= g J1(E) + JZ(?)’ (3.5.6)
where
B 2 o 2
J(p) = (a/m™)(] /py)
and
- 4 w2, 4
Jo(p) = (b/720mn )Z(gj /ps) (A/m) (Y py-m).
Note that X is Lagrange's multiplier. The function Jz(p) is
minimized at point p(O) = (pgo),...,péo), A(O))', where
0 w2 Wl .
AR (mg’ 27590%), 5 =1,
: J } (3.5.7)
)\( =

0) *'(b/]80n4m5)(2932/5)5

Let us assume that function J(p) is twice continuously differentiable.

(0)

Using Taylor expansion of J(p) about the point p , we get
06 = Tl r T (peep®) 2 ana®) 237620 ()eg (500
DT ik TT A PTPT pg ax 1P 2\P '

(3.5.8)
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Now using the fact that

0)) ES___._+ (A-)\(O)) %]JZ(?(O)) = 0,
J

m

i o~1=
—~
o
i

o
—~

the expression (3.5.8) is simplified to

3p) = 620,y + 0, (p(0) 4 F(pp®yrc

+ (1/2) (p-p{®)y (a1 a2a(2)) (55 (0)) (3.5.9)

~— LT

p_
g} 1 and al2) . [agg)]

are (m+1)x(m+1) matrices with their elements defined as follows:

where ¢ = (Ci) is a (m+1)x1 vector, A(]) = [a

s = 5o 9 (6! = @md) (@ /4,0, 1,

iooapy 10
= 9 (0)y _
i1 = 5y dp(P7) =0,
2
(1) . _o () N
%i T 2p42P; Jz(? ) =0, 1#J, 1,J=1,...,m .
L O S (O I S T
m1,3 T TgmT apsan 2 P RN L P
2
3\
agél - _8_2_\]2“3(0)) - (b/36mn4){g%‘2/(p50))6}’ i - .]"‘a.,m
3p3 ~
m+1,m+1 2 Y2\P
A
) ,
2 J 3 - a o
1% -
L2) @) L 8t B0y 2o o1
m+1] 9j Jsm+| Bpja)\ 1 E) s J 3 5
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ald) = 20,600 < (a/anp (O (15 T0T , STO, Toooom
ii apf 1'E i J 1
(2) 8%, (0), _
m+l,m+l gzﬁ'J?(? ) =0

We can rewrite J(p) given in (3.5.9) as

2 (0)

W) = o067+ 3,6(%) - (oh2) (e

+ (1/2;[u + czA']c]'A[g+ozA-]c],

where u = p—p(o), A = A(1) + oZA(Z). This expression shows that J is

minimized when

u + 02 A—1

) L
So the Tocal minimum p ], when 02 is close to zero, is given by,

]

= 0.

L
p 1. p(o) - 02 A_1c. (3.5.10)
2

Case 2: Local minimum for J(p) when (02 /2) < of < Oepit:

" crit

3
if o = Ogrit’ the function J(p) is minimized at the point

%1),...,pé]),x(1))' where ;(1) = 0 and

J=1,....m. (3.5.11)

Here we shall expand J(p) in Taylor series about the point p(i).

Proceeding in a similar way as in Case 1, we get the local minimum

L
p 2 as
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p 2=l 1y (3.5.12)

where C = [Cij] is a (m+1)x(m+1) matrix and a = (ai) is a (m+1)x]

vector defined as follows:

a; = 52 961" = (o) (1 AT )+ 6 m)

i opy U0
- (b/180mn4){9¥2/(P§1))5}, i=1,...,m
=3 4p(T)y 2
A1 T B J(? ) =0,
2
=8 () = (0o AT TNy ey os
€1 3P0 J(p*'7) = (ac™/2m “éi p; ')s A3, 1.3 = T,....m
2
- 9 (1)y _ .
C5.m+1 T “me1,5 T axapj J(? ) = (I/m), J=1,...,m

2 .
cj5 = 2 961 = taorznfotMy -7 AT 41T
P '

+ (b/36m ) 193/ (931163, 5 = 1,

and
2

=3 a0y < 0.
aAZ pr )

c
m+1 ,mt+]

It is to be noted that the approximate solutions suggested

. . 2
is not far away from zero. Since o

above works good if 02 crit

crit
4

is of order n ', hence for large n it will be close to zero. In

2
some cases even for small n, o

Lo 1 ro. examp]
crit 18 close to zero. For ple

if g(x) = xq, q > 2, we have

4

2 2(q-1)2(2+5)/20n"%a (4q+1

B} 5
oc iy = (729bq )7},
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If we take b = a =1, for p=3,4,5, 6, the respective values of

(n4 o
crit
2

-6, . . .
Ocpit © 5x10 ~ which is fairly close to zero.

) are .039, .048, .054 and .057. So here even for n = 10,

Now we shall consider two examples and see how do these
solutions compare to the correct solution obtained by directly

minimizing J(p).

Example 3.5.1.

Let g(x) = x4, n

7

b=1, o = 2.5¢10"/ <

it
—
(8]
»
al]

1]

cr1t

9.5x10" The problem is to minimize J given in (3.5.5) or

equivalently to minimize
gll2
j vy
Z ;—1) (m ij 1)

1y’ + —p &
m LPj 720n% M
with respect to pj‘s. The (m+1) equations (for getting (m+1)

unknown namely m pj's and one 1) are

(oz/m)(Z/Bg//E;) - (9;2/18On4p?) +x=0,1=1,...,m
and (3.5.13)
(T/m)ij -1=0.

Since glx) = xé} gg = g“(Z?) = 122?2, i=1,2,...,m. The (m+1)

equations in (3.5.13) can be solved to get a correct solution of
the problem of minimization of J(p) we shall denote this solution

by p#**,
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Form = 5 and m = 10, the (m+1) equations in (3.5.13) were
solved using an efficient routine for solving non-1inear equations.

Here sfnce 02 is closer to 0, the Tocal solution p 1 was obtained

using (3.5.10) and solution p* was obtained using (3.5.4). These
results are shown in the following table.
Table 1: Comparison of Local and Exact Solution - I
m m=10
L L
p* p** p ! p* p** p !
.27372 .27104 .26900 . 15527 .15175 . 14856
.67504 .67538 .67540 .38249 . 38068 .37941
1.02770  1.02920 1.02988 .58202 .58175 .58147
1.35581  1.35697 1.35775 .76756 .76834 . 76864
1.66772  1.66741 1.66796 .94389 .94526 .94590
1.11343 1.11499 1.11580
1.27764 1.27904 1.27991
1.43747 1.43842 1.43926
1.59362 1.59386 1.59459
1.74660 1.74588 1.74545
L L

Both p* and p 1

are close to the correct solution p**, but p 1

is a little bit better than p*. In the above we have considered

. 2 . . .
the case when ¢° is close to 0. Now we will consider the case

when o2 is closer to Ogrit' We take o2 = 6.4x10'7, every other

Guanti. is same. We calculated the correct solution p** and

approximate solution p* in a way similar to the above. But now
L
the local solution p 2 was obtained using (3.5.12). The results

are as follows:



Table 2: -Comparison of Local and Exact Solution - I

m=5 m = 10
p* pr* pLZ p* p** pLZ
.25692 .25424 .25298 14211 .13893 .13785
.65929 .65953 .65908 .36417 .36222 .36102
1.02258 1.02421 1.02472 .56449 .56406 .56331
1.36574 1.36705 1.36789 .75361 .75433 .75413
1.69545 1.69496 1.69532 .93526 .93670 .93698
1.11137 1.11307 1.11371
1.28308 1.28463 1.28545
1.45117 1.45220 1.45300
1.61619 1.61635 1.61692
1.77857 1.7775] 1.77763
L Ly
Both p* and p “ are close to p** but p © is closer to p** than p*

7

is to p**. We also tried 02 = 4.75x10"" which is midway between

L

0 and Ogrit' In this case solution p* and p 2 were a little bit
L
i

better than p .

Example 3.5.2.

In this example, we shall consider an exponential function.

Let a(x) =e*+ x> +x%, a=b=1,n=15, o2 = 2.5x10" < S
4.6x107°, The correct solution p** was obtained by solving (m+1)

roniinear equations, solution p* was obtained using (3.5.4) and

L
since 02 is close to zero, the local solution p 1 was obtained using-
(3.5.10). The resuits for m = 5 and 10 are shown in the following

L
table. As the table indicates the solution p** and p 1 are almost

same and pg's differs from pg*'s only in fifth decimal place.
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Table 3: Comparison of Local and Exact Solution - II
m = m= 10

L L

p* p** p ] p* p** P 1
0.79782 0.79788 0.79788 0.76651 0.76656 0.76654
0.91083 0.€1089 0.91089 0.82817 0.82823 0.82823
1.00943 1.00946 1.00946 0.88453 0.88459 0.88460
1.09905 1.099C1 1.09902 0.93689 0.93695 0.93695
1.18287 1.18275 1.18275 0.98613 0.98617 0.98617
1.03289 1.03291 1.03291
1.07767 1.07766 1.07766
1.12085 1.12080 1.12080
1.16274 1.16265 1.16265
1.20361 1.20347 1.20347

2 _ -6 . . 2
Now we took o” = 4.0x10 ° which is close to Ocpit: Here the

solutions p* and p** were obtained as before but here the local

Ly
solution p

the following table:

was obtained

using (3.5.12).

The results are shown in

Table 4: Comparison of Local and Exact Solution - II
m = m =10
L L
p* pr p ° p* p= p

0.78129 0.78143 0.78140 0.74792 0.74802 0.74798

0.90249 0.90266 0.90266 0.81365 0.81380 0.81378

1.00938 1.00944 1.00946 0.87412 0.87429 0.87429

1.16730 1.10723 1.10724 0.93060 0.93076 0.93077

1.19956 1.719925 1.19924 0.98397 0.98410 0.98411
1.03489 1.03495 1.03497 -
1.08384 1.08382 1.08383
1.13121 1.13109 1.13110
1.17733 1.17709 1.17709
1.22246 1.22209 1.22208

Here also we see that although p* is close to

L
solution p

p** but local

2 is much closer to correct solution p**.
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As these examples indicate the approximate solution p* and
L
the local solution p ! and p = are giving fairly good solution of

2
%erit
do relatively a little bit better than p*.

minimization of IMSE in the case 0 < 02 < However the local
L L
solutions p 1 and p 2
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CHAPTER IV
ALGORITHM AND NUMERICAL RESULTS

4.1. Algorithm for Estimating a Function

Now we shall discuss how the theoretical results obtained in
the previous chapters can be exploited in adaptively estimating
a more or less arbitrary response function g. To make the matters
simple, in this chapter, we shall estimate g by the simple
Tinear spline function. Let us recal] the results of the minimiza-
tion of the asymptotic value of IMSE (See section 3.4). The

minimizing h, p and k are given by

h(x) a (g"(X))2/9 (4.1.1)
p(x) o g"(x)4/9 (4.1.2)

and
R L et B (4.1.3)

1800° [g2/9
Firstly note that here we have taken a = b = 1 in the equation
(3.4.3), and secondly we have assumed that all the three variables,
namely, k, p and h are unknown in the asymptotic value of J, the
IMSE. We are discussing the algorithm for this general case, since

the cases in which one of the variables (k, p or h) is known or
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two of them are known, the same algorithm can be used in a much
more simplified form.

We consider the following iterative procedure. We are given

(0)

n observations on g which are distributed among r points
x(O),...,x(O) with n(O) observations at x{O), i= 1,2,...,r(0),
1 r(O) i i
(0)
so that ) ngo) -0 et Y43 denote the jth observation
i=1

(j = 1,2,...,ng0)) at xgo). We begin with a knot-set

0 0 0 0
S I )

(0)

This partition = is an initial guess perhaps based on some
information about the function g being estimated. In the absence
of information about g, a uniform knot spacing may be used. Let
us now spell out the steps involved in this iterative procedure

and then we shall explain the implementation of these steps.
I. Estimate g(x), g"(x).
IT. Estimate 02.

I11. Find 3, an estimate of IMSE.

IV. Find h, an estimate of the best design h, using (4.1.1).
V. Add, say, r(]) points of observation xg]),...,x(}%) Let
r
n(1) more observations are taken. Distribute n(O) + n(])
observations among r(o) + r(]) points xgo),...,x(?%),

x§]),...,x(}%) so that the displacement of the combined
r

set of observations resembles h (obtained in IV) as clearly

as possible.
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VI. Estimate g(x) and g"(x).
VII. Estimate o.
VIII. Find k, the estimate of k, using (4.1.3).
IX. Find 5, the estimate of knot displacement p, using (4.1.2).
X. The number Q (obtained in VIIi) of knots are chosen.
XI. Estimate g(x), g"(x).
XII. Find J, the estimate of IMSE.

The steps IV through XII is called a cycle. The cycle is
repeated unless a termination is encountered. We shall talk about
the termination criterion later. Now we discuss the implementation

of the above algorithm.

Step I:

To estimate g we have used three different kind of estimators.
These will be discussed in section 4.2. The estimation of g"(x)
can be done in many different ways. We indicate three of them:
(a) Find least square estimate of g(x) by a cubic splines and then
take the second derivative of the fitted cubic spline to get an
estimate of g"(x). There are some standard routines for approximating
g by a cubic spline , e.g. see de Boor and Rice (1968).
(b) g" can be estimated on intervals centered at the knots by a
simple second difference wfth estimated values of g at adjacent knots.
(c) Let sO(x) = é(x) be the Tinear spline approximation to g(x)
which is obtained previously using one of the three estimators.

We hope that the approximation So contains enough information about
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g so that a reasonable approximation to g" may be obtained from it.
We can not use 56 as an approximation to g" for the obvious reason

that 56 is zero except at the knots, where it does not exist. As

suggested by Dodson (1972) we first find a broken line approximation
of g'; its derivative may then be used as the desired approximation
to g".

For this purpose sé, the derivate of Sg> is used. Note that

%Sy 1s constant on the intervals (gggg,ggo)), T =T1,...,k+1. We put
(0)

a breakpoint T, at the center of each interval [g._],ggo)],

-
O

i =1,...,k+1; and define a broken line function s on {Ti} SO as
to interpolate sé at each T In the first and last intervals,
[O,T]] and [rk+1,]], the continuation of the broken line in the
adjacent interior interval is used. Finally, with s so defined,

we use the step function‘é” dif s' as an estimate to g".

Step II:

At any stage (or iteration) we are trying to fit the model
y = KB + ¢

tc the given data, where y is nx] vector of observations, X
s nxm design matrix, 8 is mx] vector of unknown parameters and e
is nx1 vector of random errors. From the least square regression

theory we know that:

"2
o
e

Residual sum of square

_ yty_ynx (X IX)-]X ly
n-m




is an estimate of 02 if the model is correct but not otherwise.
If a prior estimate of 02 is available we can see (or test by an
F-test) whether or not the residual mean square is significantly
greater than this prior estimate. If it is significantly greater
we say that there is Tack of fit and we would reconsider the
model. If no prior estimate of 02 is available, but repeat
measurements oV y (i.e. two or more measurements) have been made
at the same value of X, we can use the mean square for pure error
defined by |

| - ro Ny _ 2 r

o) ¢ = (igl 321 (v45-%4) )/(igln"_r)

as an estimate of 02.

Step II1:

This will be discussed in section 4.2.

Step 1V:

We have obtained é“ in Step I. So from (4.1.1), we get
- All 2 AH
h(x) = (g"(x))*%/[(g"(y)) %/ %y

Step V:

(a) Find r(O) + r(7) points ti’s according to the quantiles of

h, i.e. ti is such that

(0 (1),

102
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(b) Among the r(o) + r(]) ti’s find the ones which are close to
xjo), j= ],2,...,r(0), the remaining r(1) ti's will be the points
X

§]), J= 1,...,r(]) which are to be added at this stage. We
arrange these r(o) + r(]) points in increasing order and denote

the ordered set as X],..-,er where r = r(O) + r(]).

(c) h is a continuous design, we have to discretize it. To do
this, we find H(x) = Z ﬁ(t)dt and approximate it by a distribution
function u(x) having jumps at Xss i=1,...,r. We take u to be

an uniform approximation of H i.e. u is the solution of the problem

min NE?ST]]’H(X)-U<X)I (4.1.4)

where minimum is taken over all step functions having jumps at

Xis 1 =1,2,...,r. Thus u is given by
0 5 X <0
- /(1 _
u(x) = {3 (HOx _p)+H(x:)), Xip X <X, 122,000,
1 s X > 1
Note that Xy = Y and X, = 1. So now we have the discrete design u
as below:
g'x]’ Xy
u =
]J'Is 911},,3
where My = u(x]), My = u(xi) - u(x1_]), i=2,...,r
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(d) Now we have to allocate n(o) + n(]) = n observations according

to the design u. This can be done by a scheme given in section 3.1
of Federov (1972). We allocate [(n-r)ui]+ observations to point

X‘i’
satisfying the inequality [c]+ > c¢. It is trivial to check that

i=1,2,...,r, where [c]+ indicate the smallest integer

r .

) [(n—r)ui]+ <n. So the problem is "how to allocate the
i1

remaining unrealized observations n' = n - ) [(n—r)ui]+”.
Federov has suggested that these n' observations can be added

one-by-one up to the point where

(n-rduy 2 [(nr)u, 1" - 5. (4.1.5)

But we will show in an example below that this is not always
possible. We shall, therefore, distribute n' remaining observations
randomly among r points. The above scheme for the distribution

of observations works well if r is very small compared to n. Note

that we should make sure that we took at least n(O) observations

;
(0) (0)

at points X5 i=T1,...,r 77,

Exampie: Let r = 11, n = 75 and the weight distribution is

uy = .05, Hy = .]? Mg T g, Wy T LT ug = .05, Mg = 115, Wy ® . 085,

i

.085, ug = .13 .085, and = 1.- If we allocate [(n—r)ui]+

U8 = s UTO = U-H
observations to Xis the distribution of observations looks 1ike
ny = 4, n, = 7, n3 =7, N, = 7, ng = 4, ng = 8, n, = 6, ng = G,
ng = 9, Nyg = €, and nyy = 75 and these add up to 71, so we are

Teft with 4 observations. But we check that there is no point



satisfying (4.1.5), where these 4 remaining observations can be
allocated.
Steps VI and VII can be implemented in a way similar to

steps I and II respectively.

Step VIII:

Once we get the estimates of 02 and g", we can immediately

find k from (4.1.3),

. ~ud/9 n 1 1/5
k - fg g - - }
180° [gne/9

E obtained above need not be an integer, so we round it off to

make it an integer.

Step IX:

We have from (4.1.2),

Step i:

We obtain the partion w(1) consisting of the E knots

105

ggl)g...,aé]). The g(])‘s are obtained from the integral relationship

.i

oo
[ p(x)dx = =—, i =0,1,... k1.
0 k+1

(1)

£0 and Ex+] represent the end points.
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Steps XI and XII have been already discussed.

Let us make a few remarks concerning the algorithm. The
estimates B, 5 and ﬁ depend on the estimate of g" which is discussed
in Step I. We have indicated three methods of finding an approxima-
tion to g" and there are many other ways in which this can be done.
Because of its simplicity we shall usually adopt the method indicated
in (c) of Step I. There the estimate of g" is obtained from the
lTinear spline approximation Sg This 59 should therefore be a
good approximation to g, whatever that may mean. Thus, generally,
the starting partitioh W(O) must consist of a large number of knots
and they must be distributed through the interval in a reasonable
way. It is conceivable that a very bad choice of the partition
W(O) could result in a "misleading" spline approximation So and
that the resulting partition n(1) be still worse. We did not
confront such cases of instability during the testing of the
algorithm,

The estimates B, 5, and & obtained here are based on the
asymptotic results, so if Q obtained from (4.1.3) is small,
it right not be a very good estimate of the number of knots.

However it has been found useful to do the following. Instead
of finding a partition consisting of Q knots, we find five
different partitions consisting of @—2, Q—], ﬁ, §+], and §+2
knots respectively. In each partition the knots are chosen

according to the quantiles of same 5. We find the estimate of

g(x) and the corresponding integrated mean square error (IMSE)
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using the knot sets of each of the five partitions. Now select
the partition for which the IMSE is minimum. We call the points
of this partition to be "good" knot set. It has also been found
useful to iterate the algorithm a few times with a fixed number
of knots. This allows the algorithm to base its resulting "good"
set of knots on a "good" set of the same size. One or two

iterations has usually been satisfactory.

Termination Criteria: We use here two termination criteria for

the algorithm. The first is a simple bound on the number of
complete cycles, i.e. we shall perform no more than "m" cycles.
Usually m = 3 or 4 is found to be a reasonable number. The second
criteria is based on the test for the "lack of fit". This

test can be performed using ég and ;g.e (see Step II). If there
is no lack of fit in the model, we stop. Other than the above two
we can use some other termination criteria depending on our

problem, e.g. if the IMSE at any stage is not decreased much

compared to the IMSE at the'previous stage, then also we can stop.

4.2. tstimates and Their IMSE

We will use here three estimators, least square estimate (LSE)
and two "bias minimizing" (or KMH) estimators. The least square

estimate is (see (2.1.3)),

~

eLSE fSL y du(x (4.2.1)
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where M(u) = [a{x)e'(x)du(x), and 2(x) is the basis for linear
splines with k knots Eyseeesby. One of the bias minimizing estimator

is (see (3.3.8))

ok = T fL (L (x)7x (4.2.2)

where M, = Ja(x)e" (x)dx, y' = (&1 ,..,yr) is the vector of means
of observation, and L(x) is the basis for linear splines with knots
at X the point of observation. The other bias minimizing estimator,

we shall use here, is

A(z) - r - :
Oxmit = MO iZ1 Z(Xi)yi.”i’ (4.2.3)
where n; = (x;-x, ;). The reason for using 5&5& as a bias minimizing
1T

(2)) - M‘

estimator is as follows. Note that E(é 0

KM 1.Zlﬂl(xi)g(xi)ni, and
asymptotically it would look Tike M61fz(x)g(x)dx. This is the property
which we want the bias minimizing estimator to satisfy. For further
reference we shall call estimates given in (4.2.2) and (4.2.3) as
KMH(1) ana KMH(2) respectively.
For calculating the LSE, we should first check the nonsingularity

oF the information matrix M(u). This can be done by using a result
of KarTin and Ziegler (1966, Theorem 2). From this result we |
agerive that M(u) will be nonsingular if and only if

t] < 519

ty, < £5s

Eip < t]. < E., 1= 3,...,k,



k-1 < Y
and
Ee < tegpe
Where t] < t2 <o..< tk+2 corresponds to the observation points and
g] < gz <. < gk corresponds to the knots. The condition says that
there should be at least k+? distinct points of observation (i.e.
r > k+2) and they should be distributed in a manner such that there

s at least one observation between any two alternate knots. Let uys

consider an example to make this condition clear.

Example: £y = 0.17, £, = 0.22, Eq = .34, £y = .48, £g = .63,
56 = '729 €7 = -8], €8 = .9].

t) = 0.0, t) = 125, ¢t = .25, ty = .375, t; = .5, t, = .625,
ty = 75, tg = 875, ¢, 1,00.‘
£ £ £ £ £ £ £ £
1 2 3 6 7 fg
e LN L G R I
t t, ts ty ts tg 7ty g

Here we see that t] <& t2 < Eys Ei o < ti < & for i = 3,...,8.

We necd at Teast two observations in the interval (57, 1.0] to

make the matrix M(y) nonsingular, but there is only one observation

at tq which is in (57,].OJ, therefore the matrix will be singular.
We do not have to worry about any such verification in

calculating the estimates KMH(T) and KMH(2). Actually we do not

even need the restriction that r(> k+2). However, the calculations

for finding these two bias minimizing estimators are harder than for
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finding the least square estimator.

Finding the IMSE: The integrated mean square (IMSE) for the LSE

is

J = [E{g(x)-2"(x u)fe(x y du(x )de

= V4B,
where
2

V=L TrM Y My 4.2.4)
and

B = [(g(x)-2" (M () fa(x)g(x)du(x))2dx. 4.2.5)

The only unknown parameter in V is 02, so to find an estimate of V
we just replace o2 by 5% in (4.2.4). 1If g(x) is known we can evaluate
the integral in (4.2.5) to get B. If the form of g(x) is unknown,
which is usually the case, we can find an estimate of B as follows.
First using the trapezoidal rule we replace the integral in (4.2.5)

by a summation:

where

u(xy) = 2" )M () 2009 () du(x), i = 1,

Now we replace g(xi) by 91 » mean of observations at x, to get an

estimate of B as

ATy o ) ) i )
B = 22 7 (X'i-xi'-]){(‘yi_u(x‘i)) + (y.i_]—U(Xi_])) },
1:
where
T0x) = 2" ()T L) f2(x)7 du(x), 11,2500
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The above method gives a good estimate of B if we have many more
observations than the number of knots.
We can similarly find the estimate of IMSE for other two esti-

mates.

4.3. Numerical Results for Fitting a Curve

Here we shall illustrate the algorithm described in section 4.1
by two numerical examples.

A1l computations were carried out on a CDC 6500-systems
computer. Single precision arithmetic, good to approximately 10
decimal places, was used. We tried to use the double precision
arithmetic, but the gain due to the double precision arithmetic
over the single precision arithmetic was almost negligible for
our calculation purposes. The system of equations, involving the
positive definite matrix A, were solved with a routine which
uses the Cholesky decomposition of A into LL' where L is the lower
triangular matrix.

The digital data were plotted using a Model 936 Calcomp

Digita® Incremental Plotter.

Example 1:

The first example is a fit to the 'measurements' of a cubic

function

g(x) = x(3x-1)(3x-2) (4.3.1)
for x € [0,1].
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We simulated data errors by adding to g(xi) a number sampled from

the standard Normal Distribution with mean.zero and variance 1.

To begin we took three equally spaced knots and took five observations
at each knot and the end points for a total of 25 observations. We
performed four cycles with number of observations n = 75, 150, 250

and 375 respectiveiy. At the end of the fourth cycle, following
results were obtained for the three estimates:

knot-set: 0.0 0.146 0.617 0.832 1.000
LSE g N

8 sk 0.135 0.172 -.261 0.435 2.186

knot-set: 0.0 0.146 0.617 0.832 1.000

() {

8 M 0.24 0.089 -0.225 0.445 2.182

knot-set: 0.0 0.741 0.576 0.801 1.000

KMH(2) g ~(2)

B mt 0.263 0.120 -0.279 0.391 2.014

The function g(x), and the linear spline fits due to these
threc =stimates are shown in Figure 1. The breaks (joints) in the
grapn of the three estimates are the knots. The algorithm has chosen
the knots at the points where curve is taking turn, and it seems to
be reasonable.

At each stage a comparison is made with a fourth design and
estimate. This was done using a comparable number of knots and
observations. Equal number of observations were taken at the end

points and at a set of equzliy spaced knots. These results are
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Curves representation

8.650

Solid line (

Dotted 1ine (""" ) LSE
Small dashed line (----- ) KMH(1) estimate
Big dashed line (— — — =) KMH(2) estimate

113

1.650 -

1,700 <

3 480 -

1.800 -
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Figure 1

Function and three estimates at the end of fourth cycle
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shown in Table 5. In this table Estimate 1, 2 and 3 corresponds to
least square estimate, KMH(1) estimate and KMH(2) estimate, while
estimate 4 corresponds to uniform design with equally spaced knots.
For the first three estimates cycle zero represents the start of
the algorithm (e.g. here in each case we started with three equally
spaced knots ard 25 observations distributed equally among end
points and knots). We have Teft blank the column corresponding

to ‘cycle number' for fourth estimates since we did not use any
algorithm for this estimate, so there was no cycle involved in

this case.

As expected, the three estimates, namely LSE, KMH(1) and
KMH(2), did better in overall IMSE than the uniform design with
equally spaced knots. The LSE did a good job in reducing the
variance, while KMH(1) and KMH(2) estimates did a comparable
job in reducing the bias. Actually, we notice that LSE has done
fairly good job in reducing the bias also. Recall that (section
3.2) that for a continuous design h the LSE did a comparable
Job in asymptotically minimizing B. 1In the present example
the nuiber of knots was smal] and the design became dispersed over
the interval at the second, third and fourth cycle.

In the above, at each cycle, for each of the three estimates
(LSE, KMH(1), and KMH(2)), g"(x) was obtained as the second
derivative of the cubic spline approximation of g(x) using the
current knot set. This cubic spline approximation was found

using a program (deBoor and Rice, 1968). As indicated in



Table 5: Comparison of the Four Estimates
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Integrated Integrated Integrated
Cycle Variance Bias Mean Square Error
Number k n V B IMSE
Table 5(a): Estimate 1
0 3025 1.333x107L,  1.0076x1075  1.4341x107)
1 2 75 4.9680x]0_2 7.1080x]0_3 5.6788x10_2
2 3 150 2.4948x]0_2 6.2794x10_3 3.]227x10_2
3 3 250 1.9747x10_2 ].2596x]0_4 2.1007x10”2
4 3 375 1.1875x10 9.7437x10 1.2849x10
Table 5(b): Estimate 2
0 325 1.3333x100, 1.0076x1o:§ 1.4341x107)
1 2 75 4.6564x107,  7.3542x1073  5.3918x107
2 2 150 2.6265x10_2 5.6764x]0__3 3-]941X]0_2
3 3 250 2.0660x10_2 ].0242x10_4 2.1684x10_2
4 3 375 1.3049x10 9.5018x10 1.3999x10
Table 5(c): Estimate 3
0 325 8.9955x1075  3.7902¢1075  1.2786x107)
1 3 75 4.8775x70_2 4.8374x10_3 5.3012x10‘2
2 3150 3,0157x1075  2.4437x107;  3.2601x10 5
3 3 250 1.9056x10_2 ].9658x10_3 2.1022x10~2
4 3 375 1.4101x10 1.4477x10 1.5549x10
Table 5(d): Estimate 4
- 2 75 3.5088x1075  3.0688x1075  6.5776x10 2
- ¢ 150 1.7544x10_2 3.0688x10_2 4.8232x10_7
- 5 250 ].3333x10_3 ].0076x10_2 2.3409x10_§
- 3 375 8.8889x10 1.0076x10 1.8965x10
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Section 4.1 (Step I (c)), g"(x) can also be estimated by the use
of Tinear spline fitted at each stage. We used this later method of

estimation of g"(x) for the case of least square estimate, and

the following results were obtained.

Table 6: IMSE for Two Different Procedure of

Estimation of g"(x).

Cycle

Number k n v B IMSE
0 325 1.3333x1005  1.0076x1005  1.4341x107,
1 2 75 4.6118x1005  2.6721x1073  4.8790x10
2 2 150  2.4397x1075  2.4300x1073  2.6827x107;
3 2 250  1.5566x1075  2.3206x1073  1.7876x107
4 2375 9.9606x10">  2.0282x10 1.1988x10

Comparing the results in the above Table 6 with the corresponding
results given for LSE in Table 5(a), we see that there is not much

difference in two methods of estimating g"(x).

Exampie 2:

In tha previous example g"(x) was linear. Now we consider a
function for which g"{(x) varies by a large amount in the interyal
[0,17].

1 (4.3.2)

1

g(x) = [(0.1)%(2x-0.3)277" + [(0.12)%(2x-1.2)2717".

The data errors are simulated in the way similar to Example 1. Here
also we started with three equally spaced knots and took five observa-
tions at each knot and the end points. We call this as cycle zero.

We stopped after three cycles for each of the three estimates,
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namely LSE, KMH{1) and KMH(2). Here, as we11 as in the previous
example, a number of internal iteration within each cycle were done
to select the number and displacement of the knots. The linear
spline fits obtained at the end of cycle zero, cycle one, and
cycle two for each of the three estimates (LSE, KMH(1), and KMH(2))
are shown in Figure 2, Figure 3, and Figure 4 respectively. The
results of final i.e. third cycle are shown in Figure 5, Figure 6,
and Figure 7. We can see from these figures that the number of
knots is getting larger and linear spline fit is getting better at
each cycle for each of\the three estimates. For estimate KMH(1),
there is not much improvement in the result of the third cycle
(Figure 6) over the result of the second cycle (Figure 3), since
we already got & good fit at the end of second cycle, The
KMH(2) estimate shows some irregularity at the first

cycle, but the fit improyed in later cycles,

We calculated the integrated mean square error for all the
three estimates at the end of each cycle. These results are
shown in Table 7. For each of the three estimates (or procedures),
é”(x) was obtained by the use of linear spline fit corresponding
to that estimate (or procedure). So, here é“(x) depends upon the
particular estimate (or procedure) being used and hence at any
cycle, the number of knots (Q), the displacement of knots (5(x)),
and the allocation of observation (ﬂ(x)) will depend upon the

particular procedure. Therefore, even we are using the same number

of observations for each of the three procedures at any cycle, the
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Curves representation
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(1) Solid Tine (———) g(x)
(2) Big dashed line (— — — =) LSE at end of cycle zero
(3) Small dashed Tine (==---- ) LSE at end of cycle one
(4) Dotted Tirme (:----- ) LSE at end of cycle two.
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Figure 2

Function and LSE at thz end of cycle zero, one and two
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Curves representation

(1) Solid Tine (——) g(x)
(2) Big dashed line (————) KMH(1) Est. at end of cycle zero
(3) Small dashed Tine (----- ) KMH(1) Est. at end of cycle one
(4) Dotted Tine (-..... ) KMH(1) Est. at end of cycle two.
116.0-
103.5
a2.0
BU.6 ~
69.0 —
B7.8
45.0 -
3.8~
3.0~
1.5
G.o ¥ ¥ i 1 ¥ i) ] 1 i
0.000 . . . R . .
100 20D 300 Xﬂ)sg?s 600 700 800 800 1.000
Figure 3

Function and KMH(1) estimatz at the end of cycle zero, one and two
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Curves representation

(1)

Solid 1ine (

(2) Big dashed line (——— ——) KMH(2) Est. at the end of cycle zero

Small dashed 1ine (~------) KMH(2) Est. at the end of cycle one

3)
(4)

(

at the end of cycle two

.eooe) KMH(2) Est

Dotted line (.-

116.0

105.6

Q.Oj

80.6

83.0

Y6 .0

igure 4
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Curves representation
(1) Solid Tine (g(x))
(2) Dashed Tine (LSE)
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Figure 5
Function and LSE at the end of cycle three



YRXIS

122

Curve representation
(1) Solid Tine (g(x))
(2) Dashed 1ine (KMH(1) Est.)
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Figure 6
Function and KMH(1) estimate at the end of cycle three
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comparison of integrated variance, or integrated bias or integrated
mean square error of the three estimates does not seem reasonable.
For the same reason we did not compare these estimates with the
estimate (so-called fourth estimate in the previous example) which

was based on uniform design with equally spaced knots.

70y

Table 7: IMSE for three estimates
Cycle
Number k n v B IMSE
Least Square Estimate
0 3025 8.0173x1005  6.8436x107  6.8444x105
1 8 75 1.2075x107; 2.6718x10,  2.6839x10',
231 150 3.8867x107, 4.2081x100;  8.0948x10]
3 31 250 1.5688x10°  2.6611x107  4.2299x10
KMH(T) Estimate
0 3 25  8.0173x107, 6.8436x105  6.8444x105
TN 75 8.1564x10°7  3.5166x10',  3.5248x10],
230 150 1.6147x107)  6.1210x107,  7.7357x107
3 30 250 1.0558x10°'  6.6987x1072  1.7257x10
KMH(2) Estimate
0 3 25  5.4000x1075  6.8037x105  6.8042x103
110 75 6.0871x1075  1.1663x105  1.1669x105
210 150 7.6050x1075 6.4454x100  6.5215x100
3 10 250 4.2817x10°°  5.8441x10°  5.8869x10
Remarks

1, It is found that among the bias minimizing estimator,

KMH(1) is better *han KMH(2).

(2) The number of knots, displacement of knots, and allocation

of observation depends upon the approximation to g". As stated
earlier, there are many ways in which an approximation to g" may
be obtained from a spline approximation to g. We have chosen the

one which is simple to calcuiate and computationally inexpensive.
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In the future, efforts could profitably be expended in the investiga-
tion of more complicated approaches, yielding perhaps the better
estimate of p(x), h(x) and k. 1In addition, the stability of the
method could be studied with the hope of showing some condition on
the initial cycle which is sufficient to guarantee proper behavior

of the algorithm,.
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APPENDIX A: MATRIX NORM

To prove some asymptotic results in the section 3.1 for the
- linear spline case, we have used the matrix power series. For

this purpose we need the concept of the matrix norm. If A is a

mxm matrix and we take the norm on the space of n-tuples x

(x],...,xn) to be the sup norm,

x| = 1T?§n %515

then the induced norm on the matrix A [Taylor (1958, Chapter III)]

is the row-max norm,

3 |Ax]] _ .
AL = sup gy = max Tlags - o
If [|A]] < 1, we can write
(-0 = T AR < reann? o (A2)
k=0

For more detail see Waugh (1950). It is easy to check that the

matrix norm (A1) satisfies the two essential properties,

A

[1A+Df] < [A[l + [ID[} (A3)

and

| [AD] |

IA

[[AH TID1]. (A4)
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Ifc= ) Am exists, then using (A3) and (A4) it is easy to show
n=k
that

el < 1A 1/(-1 A1) for all k > 1. (5)
Lemma Al: Assume that the main diagonal of matrix A is dominant

(i.e. [aiil > J; ]a1Jj , then

1A < {m:nfla |- Zi!a |13

Proof: For a given x, choose k such that ||x||= X | Then
[yl = [Ax]] = max| Z |
i J=1 "5
i.ljz]aijjl

v

!'akkxk"[j;kaijj'}

|3y X 1= ]J; k%5 |
{iakkl-jgklakjl}llel

2 m}:”{[aﬁl“j;ilaij’}l!XH'

|v

v

Since a matrix with the main diagonal elements dominant is non-

singular, A™! exists and x = A_]ys we obtain the bound on IIA“TII:

AT = sup L2

WA
. -1
:-{m}”[laiii'j;ilaijl]} : Q.E.D.
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In the following lemma, which is due to Kershaw (1970),
the inequalities are obtained for the elements in the inverse

of a tridiagonal matrix with the positive off-diagonal elements.

Lemma A2: Let the>matrix is

8 1-0, 0 o 0 0

(12 82 ]"0.2 s e s O O

A = 0 G B 0 G
] "‘(Xn_']
. 0 0 0 o Bn‘J

where 0 < @, < I, r=1,2,...,n and Br8r+1 > 1, r=1,...,n-1.

Let A7) = [a"7. Then the following inequalities hold:

1 < BS aSS < YS/<YS'1)3 s = ]929='-3n_

t,

0 < (-1)"7%" 1 g <y /(y_-1),rys=1,2,. .00, ris
t=t, 5 S

%

wWhere ty = min(r,s), t2 = max(r,s), and

Y = m1n(8$-1BS’BSBS+})’ S = 23--°an"]s

S

WTER Yy = ByBas vy T BygBy-

Proof: See Kersnaw (1970).
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NOTE: The conditions on apsa, can be relaxed to 0 <ag < 1,

. . Ss -
0 < o <1, in which case 1 < a Be §_ys/(ys_]) for s = 1,n.
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APPENDIX B: SOME BACKGROUND RESULTS

In this section we present some results which have been
used in proving a theorem in section 3.2.
Consider a linear regression model in which one may observe

a stochastic process Y having the form
Y(t) = of(t) + Z(t), (81)

t € [0,1]. 6 is an unknown constant, f(t) is a known function

and 7 is assumed to have a representation-

1
Z(t) = [ %(u)(t-u)? du (B2)
0

where (t—u)O =1 1f t > u and zero otherwise, and {X(t), t € [0,1]}
+ —

is the Brownian motion process with the mean value function zero
and the covariance kernel K(s,t) = min(s,t). It follows that

Yy
ALOS X (in the quadratic mean) and
R(s,t) = E(Z(s)Z(t))

11
- g [ (s-u)? (£-v)2 K(u,v)dudv. (83)
0

1
é (s-u), (t-u) du.
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Let H(R) and H(K) denote the Reproducing Kernel Hilbert
spaces (see Aronszajn (1950) for details) with the kernels R
and K respectively. We denote the inner product in H(R) by the
symbol <”'>H;R) and similarly for H(K). Let _#denote the

L,- space generated by the random variables {Z(t), t € [0,1]}.

1

Since Z(T)(t) X(t) in the quadratic mean, . is also the

Lz—space generated by {X(t), t € [0,1]}. Since R(s,t) =

<R(-,s), R(-,t)> E(Z(s)Z(t)) = inner product defined on_#,

)s

n(r) = EC
there exists a congruence (a one-one inner product preserving

)

Tinear mapping) v from H(T) onto .#satisfying

P{R(-,t)) = Z(t). (B4)

For the details see Parzen (1960). Every random variable U in _&

may be written as

U= y(g)

for some function g in H(R). We note that D: H(R) - H(K) is an

isomorphi-m since E(UDZ(-)) = DE[UZ(.)]. Hence

ey = 1 g

for any function f in H(R), where l]»]lH(R) and [I'][H(K) denote

the norms in H{R) and H(K) respectively. Let us assume that

f(s) = [ R(s,t)o(t)dt (B5)

O —

where p is a continuous function. It is easy to check that

fEHR). Let T, = {tputyseeusty}y 0< ty <ouc t < 1 and
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9y (+) is a function in L(Tn)’ the Tinear space spanned by
n. n
{R(-,t),t € T }, then g, (.) has the representation ) c.R(-,t.).
n Tn 350 J J
. 2 B f 112 . . .
Since llf"ngllH(R) = II(f-ng) IIH(K)’ taking the derivative of

f in (B5) and R{-,t) in (B3), we get

d 2
|| f(s) - ZOCJR(s,t.)II

j= J7TTH(R)
1,2 (t—s)2 n t? (t.-s)2
115 - —He(t)dt - Lot - =51 - (86)

Since the covariance kernel K(s,t) = u(s)v(t), s < t where u(s)=s
and v(t) = 1, the norm in H(K) can be computed by a result given

in Sacks and Ylvisaker (1966, page 86). Using this result, we get

The rpove relation holds for any real constants cj's.
Note that the equality (B7) can also be obtained by using

a result given in Wahba (1971).



