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CHAPTER I
ON THE EXACT NON-NULL DISTRIBUTION
OF WILKS' LVC CRITERION

1. INTRODUCTION AND SUMMARY

Let SXN be a random sample of size N from a p-variate

XysXpse o
normal population with unknown mean vector y and covariance matrix %,

x: ~ N,Z), I is symmetric and positive definite. Let

i.e., X5

N
£=N" g:] %; and § = Z] (x5-%) (%5-%)" (1.1)
i= i=

Then X has a normal distribution N(H,N']/%g) and S has an independ-
ent Wishart distribution W(Z,p,n) with n = N-1. Wilks [25] 1ikeli-

~

hood ratio criterion L . for testing H: % = 62[(1-p)l +pee'l, o0

unknown, against the alternative A # H can be expressed as
Lye = |8 [tr(ES)/p]/[trp1-E)S/pP 7P (1.2)

where E =ee' and e' = (1,1,...,1) and y is unknown. Wilks [25]
derived the exact null distribution of ch for the special cases p=2
and p=3. Varma [24] obtained the exact null distribution in a series

form using Mellin integral transform (see [19]) and factorial series ex-



pansion [16], and computed some percentage points for specific values
of p. Nagarsenker [17] derived the null distribution employing Box's
chisquare series approximation and tabulated percentage points for
p=4(1)10. Khatri and Srivastava [13] obtained the exact non-null dis-
tribution of ch in a series form involving Meijer's G-function

[14] and certain ad(j) coefficients which are not easy to compute. In
this paper, we derive the distribution of LVC in three series forms
and compute powers for p=2 and 3 for 5% critical points for various
values of N and the parameters. In Section 2, we present some defini-
tions and lemmas which are needed in the sequel. We derive in Section
3, the non-null density of LVC as a series involving Meijer's G-
functions using Mellin integral transform. Some special cases have also
been discussed which are used to compute powers for the case p=2. In
Section 4, we obtain the non-null density in an aiternative series form
through the method of contour integration (as in [18]) and in Section

5, the non-null moments of the criterion are used to obtain the distri-



bution as a chisquare series employing methods similar to those of
Box [2]. Section 6 is devoted to power computations. The densities
derived in Sections 4 and 5 have been used for power computation for

various alternatives for the case p=3 and various values of N.

2. SOME DEFINITIONS AND RESULTS

In this section we give a few definitions and some lemmas which
will be useda in the sequel.

Definitions. Let k be aron-negative integer and Tet K~(k],k2, coak)

p
be a portion of k such that k]ZkZ* _kpzo, 2: k =k and Tlet
p
= -(1- = {
(a)K z (a- (i ])/Z)ki Pp(a,K)/Fp;a), (2.1)
where
a%{ Y(a+1)...(a+k-1) (2.2)
and i
- p
r (a) = PPN/A T ra-(i-1)/2) (2.3)

P :
i=1

Now Meijer's G-function [14] may be defined by



m n
e n P(uj—s) ng(]-aj+s)
G ”[ |b}, g bP] - (2m)']/3q’ 3= 5 xS ds
C
it 1-b.+s) 1m r(a.-s
j=m+] rt J )j=n+1( J ) (2.4)

where an empty product is interpreted as unity and C 1is a curve sepa-
m n

rating the singularities of 1 (bj-s) from those of 1 (1-aj+s),
Jj=1 Jj=1

qz1, Osnsp<q, Osm<q; x#0 and |x[<1 if q=p; x#0 if g>p. The

definition above is an application of lemma 2.4 below. Also we need

the following special case

b] 'a]+a2-b]—b2—1
- x_(1-x) Fo(a,-b,,a;-b,,a+a,-b-b,;1-x)
pLxIby b3] = T{a;%a,-b;-b,) 2 q\8y=D5,81=07,81785=Dy =Dy 5 1-X
(2.5)
where
oF(asbsesx) = X (a), (b), x¥/(c), k! (2.6)

o (a ) ....(a )
) ) _ 1% p’k C (S)
qu (a]sazso'-saps b]:b2‘3'°'9b ] §) —Z Z K=

(2.7)

where CK(A) denotes to zonal polynomial of the symmetric matrix A of

~

degree k corresponding to the partition k. In particular we have

oFo(S) = exp(trs) and F (a3 S) = [I-5]7° (2.8)

~ ~

Lemmas: We now state a few lemmas without proof which will be used in



the following sections.
Lemma 2.1. Let 3z be the matrix having the form z=¢cI+pee' where

e'=(1,1,...,1). £ can be represented in the form z=H'DH where H

—1/2el

is any pxp orthogonal matrix having first row p and
P=diag((c-+pp), Ty TOs...0).

Thus using lemma 2.1, we note that the test of hypothesis
H: §=02[n-p)£+p??'] is equivalent to that of §=diag(c], 02,...,02),
01502>O and unknown (see [7]).

Lemma 2.2. If R s a positive definite mxm matrix then

I

< T (t,«)r

f (ders) M2 (et (1)) M2 ¢ (hs)as = W)Cw
0

Proof. See Constantine [4].
Lemma 2.3. Let R be a complex symmetric matrix whose real part is
positive definite and let T be an arbitrary complex symmetric matrix.

Then

/exp(-trgg)(det§)t'(m”)/ZCK(§I)d§= r(t.x)(detR) ™" ¢ (TR7T)
)

the integration being over the space of positive definite real mxm -
matrices, and valid for all complex numbers t satisfying R(t)>(m-1)/2.

Proof. See Constantine [4].

Finally, we give a lemma defining the Mellin integral transform
(see [19]).
Lemma 2.4. If s s any complex variate and f(x) is a function of

a real variate x, such that



O

F(s) =/ 1 £(x)dx
0

exists, then under certain regularity conditions
C+ieo

£(x) = (2ni)'][ xS F(s)ds
C-ije

F(s) is called the Mellin transform of f(x) and f(x) is the inverse

Mellin transform of F(s).

3.  EXACT NON-NULL DISTRIBUTION OF L“C.
In this section, we derive the non-null density of LVc as a series
of Meijer's G-functions [14] using Mellin-integral transform (lemma 2.4).

Using Lemma 2.1, the test of H: E=02[(]-p)l+p§§'] reduces to that of
2

g; O
. .
H: Z= . 02 I R °]’°2>O and unknown, and Po=p 1. The LVC can be
2 Py
expressed as
. P2
Lye = 1817577 (trSy,/p5) £1 (3.1)
11 2121
where S=iS., S , n=N-1, N being the size of a sample from
~ "'12 =22 p2 X /0
N(u,Z), £>0. Now, we can make a transformation [8;] > [g;/ci}; .
2

Under this transformation the problem reduces to that of testing

1 L.,/0,04
1 0 ~12 2l
H:z= versus A,#H; where ZI=|ZL] » 0, and
[é Ip;] 171 12/0102 )322/02 Py 1

s unknown. From now on we assume that this has k=en done and we are

testing H] versus A]fH]. Let us define

{}/2 S S-] Sa S"]/2

T=s 212 222 212 51



Then, the LVC can be written as

p
Lye = 15551 (1-T)/(tr S,p/p,) (3.3)

We now need the following lemma in order to compute the non-null moments

of L

ve'
Lemma 3.1. The joint p.d.f. of T S]] and 522 is given by
(n-py-1)/2 (n-p,-1)/2

-1 -1 (n'p]'pz'])/z
exp(- 1/2tr21 2511) exp(- 1/2tr22 1522) |1-T] |T

~ o~ ~

(pp-py-1)/2

S '1/2 vpo1 1/2¢ >
éZ%Z; C, 27! 881,8'E] 511 T/A)/[K! (p,/2)% 1,041, $1758,,%0

where
% = To.=2 2'12'
21.2 = E117E1080080
- [} ".I
Lo1 % Ep7Eoiniy
. -1
8 = Iypko
;51 Bz
~ 121, Zoolp
212 E22 P2
and _ .
S LY LY
T P12 24 P2

and Py +Po=P> p22p121 without Toss of generality.

K™ (pyspysn,2) = zn(pﬁpz)/zrp]<p2/2>rp1<<n-p2>/2> (n/2) 1z, ,1"21z,,1"?

(3.5)



]}/2 12 552 5{2 (5{}/2) (See Khatri and Srivastava [13]). Now

before finding E[LVC], we will prove the following theorem.

T=3 )

Theorem 3.1.

Elexp(-t tr322/2)]§221h (1-T)h] = k3(p2,n,§,h)-j§: 2 ii

j=0 J k=0 ( )
3.6
-(Pg(h+n/2)+k+j) -1 -1 -]
T (#41) An) (n2)) € (15 )C,(1-25 1+ e e)/k 3
where
o (pyamszsh) = 22 1 ((ne1)/2eh) /e (ne1)/Diz,, 1M 2]
3(P5snsE5h) = b, n- Pé n— Zoo
(3.7)

h . Using lemma (3.1)

h
Proof. Let W = exp(-t tr§22/2) |§221 (1-T)
with p1=1 we obtain
f : n/2+h=(p,+1)/2

E[W] = k(],pz,n,g) / j (S]])n/z ]ISZZI
57170 25570 "I:0 (3.8)

-] -] (pz'P]-])/Z
exp(-triy ,sqq).exp(-tr(Z, (+t1)3,,/2) ITI .

= 1/2 1/2 k']
DIDIRRCI My 255225 21 2817 D/ [py/2) K

+ds41dS,0dT

Now using monotone convergence theorem, the interchange of the integral
and summation signs is valid and using lemma (2.2) in order to integrate

with respect to T, one obtains



Elw] = k

2

1

2

- - n/2+h-(p,+1)/2
A 1871 exp(-trayl5s;0/2) _/.‘522I ’
= <.
220

(3.9)
exp(~tr(tl+zy|1)555/2) € (518" 61 58,,/4)/ (k! (o) )9 11%522

>0

where

ky = k(1,Pz,n,é)T(pz/Z)P(("-Pz)/2+h)/P(n/2+h) (3.10)
Now using Temma (2.3) to integrate with respect to S5, and then in
turn using monotone convergence theorem and the relation OFO(§) = exp(trs),

we get

Elul=ky (1507217 (0/2H0) j{ sPMET exp(-(27 177,
1 (3.11)

(tl+2511)'1§')s1]/2) dsq;

where k4 = k2 rp (n/2+h). Now integrating with respect to Sy1> We get
2
flwl=ky 10y ) /217 V2 e (/) (277 -g272, (e1eg; ) T e ) 72) 2
(3.12)

Rewriting (3.12), one obtains

1 -n/2

ELW] = ky(py,n, h)ltI+2 .k hItI+z

Now adding and subtracting I dinside each of the two determinants and
using (2.8) we have

-p,(h+n/2)
ELW] = ky(p,on,2,h) (t+1) 2 JFolhs (e41) 7 (1-2511)

Fo(n/2s (t+1) 7 (1-25" 1 #57 pg))
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which can be expressed as (3.6) after using (2.7).

Theorem 3.2. For any finite p; the p.d.f. of LVC is given by

-(py/2+1) = od ~(k+j)
2 J
(L C,(p,,n3z) (L >p A(J 5k 3D, 15T)
p(Lyc) = Cilpmsz)(L,,) k}:oz j§ 2P 2

(3.15)

2p, O CqisChsenns
p25 ]s 2’”..’ p2
where
(p,-1)/2  (1-np,)/2 P2

Cylpyemsz) = (2n) 27 p, 2 /(n n1)/2)lz5, M)

(3.16)

: -1 LI R
A(dskspyan,z) = (n/2) v (npp/2+k+3)C (1-57 )C4(I-27 1 +1] ,8'8)/31k!

a.

i (p2'1+])/2+ki: b, = (n{pz‘i)/z; i=]’23‘--3pz

3
(3.17)

(¢}
!

= (py-it1)/2, d; = (p2+n)/2+(k+j+i-1)/p2; i=1,2,...,p,

Proof. First we evaluate the h-th moment of Lyc @s the method of
derivation of the density of LVC depends on lemma (2.4) concerning the
Mellin-transform. Integrating both sides of (3.6) with respect to t,
pzh times under the integral sign and putting t=0 in the final re-
sult we get

poh e -
£ T = alppnazah) (py/2) © 30 B 5% Tn/2) (0,8, (1485 )
W30 (3.18)

LI EURR -
CylI-z5 127 58 B)/(J-k-(nP2/2+k+J)hp2)

Now let



11

P2
C(pysnsz) = 1/];11 r((n—i)/Z)lgzzln/%I , (3.19)
1

then
Prh

h o0 o0
ELL, 1" = C(pysnsz Z_: > 2% ;A(J,K,pz,n,g)pzz
k=0 & j=
b, b, (3.20)
.n1r(n/2+h-1'/2) n (h-(i-1)/2), /v (p,(h+n/2)+k+])
i= i= i
where A(J,K,pz,n,g) is defined by (3.16). Now using lemma (2.4), take
the Mellin integral transform on both sides of (3.20), we get the density

of L in the form

Ve _
- - Ctieo
h+1
p(ch) = C(pZ’n L 2; > 2: DAQ J 5k sPysN, »2)(2ni)” }[ VC) -(h+1)
k=0 « j=0 J
(3.21)
P2
r(n/2+h-i/2
th Py - 1'H=] (n/ i/2)
P2 iE] (h'(1'])/2)ki r(pz(h+n/2)+k+j) dh
We now need Gauss-lLegendre's multiplication formula given by
n 34 -
r(z#r-1)/n) = 2w(n'])/2 nt/2-nz T'(nz) (3.22)
r=1

Applying the transformation h »> h+p2/2 and using (3.22) in
P(pz(h+n/2)k+j), (3.21) can be written as

, -(p,/2+1) °° 0 e .
P(L,.) =Cy(ppumE)(L,.) 2 PNIPIPNL @syomet) p; () U (5,10

where U(j,k) 1is the following integral (3.23)
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Py P2
CyHies I r(h+(p2-1+1,/2+k ) 11 (h#fi+p,-1)/2)
-1 -h i=1 i=]
(271) / (LVC)

dh
p2 pZ

r(h+(p-i+1)/2) 1 r(h+(p,y+n)/2+(k+j+i-1)/p,)
i=1 i=1 2

where C1=C+p2/2 and C](pz,h,g) is given by (3.16). Now, (3.23) can

also be written as

-(p,/241) e o .
2 - (k+
p(Lyc) = C(ppansz)(Ly,) 2T X 05K A(3,0,p,.0.5)
=0 « j=0 J
P, P, (3.24)
Cq+ioo 1 r(h+a;) n r(h+b,)
(Zﬂi)-] ]<L )_h i=] 1 1 1 dh
Ve P2 P2
97 norey) nr(hed,)
i=1 i=1

where ass b c; and d, 1=1,2,...,p2 are defined in (3.17).
Noticing that the integrals in (3.24) are in the form of Meijer's
G-functions, we can write the density of LVC in the form given
in (3.15).

We now discuss special cases for p2=1 and 2.
po=1. Putting po=1 in (3.15), we get

T (L )-3/2 "
2: r n/2+k) 22/(1- 2))kG§ g[}vc

p<ch) r((n 1)/2)

n/2, k+1/2
(3.25)

(n+1)/2+k, 1/2:1
k=0

3. Now using (2.5), (3.25) can be written as
_ vC ‘
p(LVC) = Mn-1)/21(172) k;()r(n/z"'k)("p /{1-0")) ZF](H/Z,
‘ ' (3.26)

where 3= []

-k, 1/2, 1-LVC) s D“LVC<T
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In particular, under the null hypothesis H]: p=0, the null density is

given by
- ) (n-1)/2-1 1/2-1
py(L,.) = r(n/2)/(r((n-1)/2r(1/2)) (L, ) (1-L,.) (3.27)
0<L, <1
p2=2. In this case,
T e O3
L =P 1 Cop3l s € =03/0
CPy3 CPp3 €
Putting py=2 in (3.15), we get
- p1-n r(n/2) -2 = k+J
p(L,.) =~ (L, )™ 23 2 227 (2
Y (v 2)r(n-2)/Dg,, M2 TV k0T 50 T ’
‘ (3.28)
. "‘] "'] '] I [N |
r(ntk+j) C (I-2, 1)C5(1-2, 1%Ly ,8'8)/k!]!

T+(n+k+3)/2,  T+(n+k+i+1)/2,  1/2, 1 ']
1

A0,
a4 |Yveln/2, (n+1)/2,  kyH1/2. kp*

In particular, under the null hypothesis H]: p]2=p]3=p23=0 and c=1,

the null density is given by

py(Lye) =n2'"r(n/2)/r y(n/2)r(n-2)/20(L, ) "?r(n)
20
Gy 2 [}vc

Now using Legendre's duplication formula, namely

r(2s) = r(s)r(s+1/2)2257 1/, 1/2

(3.29)

1+n/2, (3+n)/2
n/2, (n+1)/%}

and -the well-known result
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C+ieo
(2wi)'1/. x"Sr(s)/r(s+v)ds = (1-x)V"1/r(v) 0<x<1, C=0  (3.30)
C-joo

(see Titchmarsh [22]), we can write (3.29) in th2 form

py(Lye) = T(m)/(2r(n-2) (L, ) "3V 20- 1 VR L Ve (3.
O<LVC<]
as was derived by Wilks [B5].

4.  THE EXACT NON-NULL DISTRIBUTION OF LVC THROUGH CONTOUR INTEGRATION.

From (3.21) of section 3, we have the distribution of LVC in the

form
L Cieo
Pllye) = Clpganag) 23 5 z:AcJ,K,pz,n,g)<zwi>'1j( (L) (M)
k=0 « 320 J C-ies
) (4.1)
poh P2 2 . |
P ]( -(-n/2) o n r(h+(n-1)/2 ) (p,(h+n/2)+k+j)

For simplification, make use of the transformation h+n/2 > h. Then (4.1)

can be written as

p(Ly) = Clopensn) D02 TAIakoppom) (L)Y e, 2 (4.2)
ve 2 K0 = 550 3 2 P2
p p
: . n Poh T2 2 -
M, 0,2 n (h-(n+i=1)72), 1 r(h=i/2)/T (pyhtkes)ah
(2mi) v I B i =1
C+n/2-ies
where
p
¢ p,unup) = n%“((n 1)/2)1z,,1™?
pz’ B 22 (4.3)

A(‘J,K,pz,n,g) = (n/Z)J (np2/2+k+J)C (I 22 ])C (I Z +Z] 2@ @)/k
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Let

] = ch/pz (4.4)

Then (4.2) can be written as

p(Ly.) = ClpyansE) ZO 3D A wappamen) (L, )YETT (4.5)
=0 x j=0
—NPZ/Z
Py fj,k vc)
C] Joo
fi (L) = (2ni)7! J[ 6; () dh, €y = Cn/2 (4.6)
C,- e
pz p2
6 (h) = (L) 1 (he(n+i-1)72), 1 r(h=-i/2)/0(poh+k+i)  (4.7)
Ik L Ki i=1 2

Throughout the rest of this paper, functions f(-) and G(-) will be
Jsk N

written as f and G respectively. We now start with a special case

p2=2. We have from (4.7)

2
6(h) = (L))" (e (04-1)72), rlhe1/2)r (1) /2 2ok} (4.8)
= i

Using the dunlication formula for gamma function in (4.8), we obtain

2 .
)N D 1 (h-(n+i-/2),  r(2h-2)/r(2h+ks]) (4.9)
§=1 i

1/2

where D=8(w) The integral in (4.6) will be evaluated by contour in-

tegration. The poles of the integrand (4.9) are at the points

h =-2/2, 2=-2,-1,0,1,2,3,.... .. (4.10)
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The residue at these poles can be found by putting h=t-2/2 in the inte-
grand (4.9) and taking the residue of the integrand at t=0. Substituting
h=t-2/2 in (4.9), we obtain

2
G(t-2/2) = (L )-HW2 D m (t-(2+n+i—l)/Z)k.P(Zt-Q—Z)/P(Zt-2+k+j) (4.11)
i

ve i=1
To evaluate the integral (4.6), we need to consider separately the cases
(A) 220 and (B) & < 0.
Case A: Let c=k+j-%. We consider two subcases (A1) c<0 and (A2) c¢>0.

Subcase Al: 220 and ¢<0. In this case, the integrand (4.11), after ex-

panding the gamma functions can be written as

-t+9/2 2 ~C 2+2
G(t-2/2) = (L ) D I (t-(a+n+i-1)/2) I (2t-8)/ 1 (2t-1), (4.12)
Ve . ks o .
i=] i é=] i=]
22k+j

The integrand (4.12) does not have any pole at t=0. Therefore integral

(4.6) will be 0 for Lxk+j.

Subcase A2: 220 and c¢>0. In this case after expanding the gamma functions

(4.11) can be written as

) .
(6-4/2) = (L, )R I (i), TE DY
1= 1
242
(t T(2tec) I (i-2t)) ,  2=0,1,2,...,k+j-1
i=1

The integrand in (4.13) has a simple pole of first order at t=0 and

the residue at this point is given by
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G, k(t-,Q,/Z) (4.14)

z 22 . .
Ry = (-DHO/2)(L M2 1 (-(aan4i-1)/2), /(r(kej-2) (242)1)
=1 i
2=O,],2,...’k+j—] .

Case B. _#<0. Here 2=-2,-1 and the integrands are

2

6(t+1) = (L, )" (1/8) (0/2) I_(t41-(n+1-1)/2), T(2641)/7 (2t+ksj42)

ve i=] i
(4.15)

and

2
6(6+1/2) = (L, )7 21/ (0/2) T (t41-(n+)/2), 1 (2641 ) (2t )

. (1-2%)71 (4.16)

Thus for ¢=-1 and £=-2, we have a simple pole of first order at t=0,

and the residue at these poles are given by

2
R_p = (L) (0/2) I ((en-1)/2), /r(zeks9) (47
and
\-1/2 2 : . :
Ry = (L) 2(0/2) 1 (1-(n+i)/2), /r(1+ks3) (4.18)
i=1 i

Hence finally from (4.14), (4.17) and (4.18)and using Cauchy's residue

theorem the integral (4.6) for this case is given by
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2 -
faaltye) = 4 LT T (aneid/2)y /e (st )T A
{ (4.19)
2 S N Y2
1 (1=(n+)/2), /r(skei)+ 2 (DAL OYE T (-(emnei1)/2),
i=1 i = i

/((e+2) i1 (k+j-2)) ]

Hence from (4.5) and using (4.]9); the non-null density of L, for p2=2

is given by
) . n/2-1_"F2/
0(Lye) = CloganZ (L, )™ Ty “ 20 35 30 37 Aldukppna2)fy (L)
j=0 J k=0«
(4.20)
where fj,k(ch) is as in (4.19).

This form of the density is useful for power computations and power
computed from (4.20) are given in Tab]é {1.2). The rull density of LVC
from (4.20) reduces to that given in (3.31).

Now for finding the density of LVC for p223, we still use the
method of contour integration but the density will involve psi functions
and their derivatives. We will make use of the following lemma due to
Nair [15] in this connection.

Lemma 4.1. Let (ai) be a sequence of numbers, finite or infinite and

F(X3t3a:29a "") exp(Xt-*'a:Zt /2'+a t /3'+“‘ ) (4‘2I)

Then the n-th derivative of F(x;t,az,a3,...) at t=0 s
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X -1 0 0 0 0
a, -1 0 0 0
a 2a X -1 0 0
Dn(x,a) = 3 2
a, 3a3 3a2 X -1 L0 L] (4.22)
n-1 n-1
a, 1 Jap_q (a5 von oin il X

Now we proceed to derive the densities of LVC for the following two
cases separately, namely (i)p2 = even aid (i1) Py = odd. We specify here
that all the empty products in the following derivation will be inter-
preted as unity and all empty sums will be regarded as 0.

Case (i): p2=2r, rx1. Now starting with (4.7) with p2=2r, we have

the integrand given by

r 2r

(h-(n+i-])/2)k I r(h-i/2)/r(2rh+k+j) (4.23)
1 i i=1

=N

Using duplication formula of gamma function, (4.23) can be written as

-h -2rh . 2F . r . .
G(h) = (L]) 2 D 1 (h—(n+1-—])/2)k It P(2h~21)/r(p2h+k+3) (4.24)
i=] i 4=
-p
where D=r"/2 oP{r+2) op o p20e  p2r, 72
1= “ve 2
-h 2r r )
G(h) =L " D 1 (h—(n+i-])/2)k H]F(Zh-21)/T(p2h+k+J) (4.25)
i=] id=

The poles of the integrand G(h) are at the points

h=-2/2, £=-2r,=2r+1,...,-2,-1,0,1,2,...,r] (4.26)
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and the residue at these points is equal to the residue of G(t-2/2)

at t=0. Now (4.25) can be written as

Py
G6(t-2/2) = L¥2 p 1 (t-(rn+i=1)/2), L"Yep(t), (4.27)
i=1 i
where
r
GP(t) = M r(2t-2-21)/T(p,t+C), 8=-2r,-2r+1,.. 0,1,2,...  (4.28)

i=1
and C=k+j-r2. Three cases arise: (A) 220, (B) 2<0, %=even, and (C)

2<0, 2=o0dd.

Case A: 220. Two subcases: (A1) C<0 and (A2) C>0 .

Subcase Al: 220 and C<0 i.e., k+jsre.

Expanding the gamma functions in (4.28), we have

ro+2i
(p,t-)t™ " Vo (2(p,t4) T (2602 (4.29)
i=] 8=

-C
GP(t) = (r(2t+1))"
i=1

Thus for 220, and k+j<re, the pole of G(t-%2/2) 1is of order r-1.

Rewriting (4.29), we have

: -C
GP(t) = <-1)k+3p2t'(”'1)(r(2r+1))"(-c):_n] (1-p,t/1)/ (7 (pt+1)
1=

(4.30)
r 2+2i ,
(g+2i)'m 1 (1-2t/5)2")
1 i=1 §=1

n ==

i

Hence from (4.27), we have

-

6(t-0/2) =LY% 0 (-1 (-) 1 (- (remei-1)/2), /(2" n(0420))
1 : 1 1=

gyt y (4.31)

= o
N

where
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Py ki-1 -C
M= 1 1 (14t/(a-(2+n+i-1)/2)) (r(2t+1)) 1 (1-p,t/)/
i=] o=0 i=]
r 2+2i
(r(p2t+1) I 1o (1-2t/¢8))
i=1 6=

This can be written as

6(t-2/2) =LY% D p,ay 27" £ (") exp(log A(t)) (4.32)

where
Kt p2 r
ag = (-1) U (-(4n+i-1)/2),  (-C)!/ 1 (+2i) (4.33)
=1 i i=]
| p2 ki"]
ARy =Lt 1 1 (14t (a-(a4n+i=1)/2) ) (T (2t+1))7 (4.34)
i=1 a=0
-C : rooa42i
I (1—p2t/i)/(r(p2t+]) I n (1-2t/¢8))
i=] i=1 6=1

- Now the residue at the pole t=0 of order r-1 s given by

R, = L2 0 p, ag/(2T(r-1))($0)025 exp(log A(t))  (4.35)

Using the formulae (see Erdelyi, [5])
log r(x+a) = Tog r(a) + xy(a) + xzwl(a)/Zl + x3¢2(a)/3£ +... (4.36)

where

pa) = e log r(0) e, and ya) = (§9 w0)ly, (4.37)

and

log(142) = 3 (-1)" 2"V (n+1) for 1z]-1 . (4.38)
n:
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Tog A(t) can be written as
Tog A(t) = ayt +ayt?/2! +a /3t + ... (4.39)

where

-TogL + (2r- p2 p(1) + 2_2 i_ (1+n+1-1)/2) (4.40)

r. 4+2i
- 2: (p,/1) + 2, QZ% (2/6)

= ":

and for s=2, we have

Py
(r2%-p3) wg_1(1) + sn'[z_: i )"/ (a- (i4n40-1)/2)

Qo
1l

-C S ro 4+2i
- Yﬁ (p,/1)° + Z Z (2/8)°
']:

Using (4.39) in (4.35) and lemma (4.1), we get

= LM% 0 p, ag/(2"T(r-1))D_, (Lsa), (4.41)
where
a2 a] -1 0
Dr—Z(L;a) = a5 .k.2a2 ay cen 0 (4.42)
ces . 0
r-3 r-4 ‘
qp.2 ( 1 )ar-3 ( 2 )ar—4 v a;

where a's are defined in (4.40).

Subcase A2: 2:0 and C-0 i.e., k+j-re.




Expanding the gamma function in (4.28). we get
v oop roL+2i
GP(t) = (r(2t+1)) (2t) /(r(p2t+C)J1] n] (2t-s)) (4.43)
1=l §=
Thus for C>0, we have a pole of order r at t=0 and from (4.27)

and (4.43), we have

6(t-2/2) =LY% D b 27" t™" exp(log F(t)) (4.44)
where
P2 r
bt o= («1) 1 (=(pn¥i-1)/2), /1 (+21)! (4.45)
0 I K/
i=] i =]
and
P ki-1
F(t) = L% 1 @ (14t/ (e (R#n+i-1)/2)) (£ (2641)) /[T (p,t+C)
i=1 0=0
r ziZi (4.46)
n m (1-2t/s)]
i=1 g=1

The residue at the pole t=0 1is given by
_ o &/2 e d \r-1
R, = [L D by 2 /F(r)]<3f)t=0 exp(log F(t)) (4.47)
Using (4.36), (4.37) and (4.38), log F(t) can be written as
Tog F(t) = b" + byt + b,t%/2! + bt3/30 + ...  (4.48)
0 F P 2 3t/
Using (4.48) in (4.47) and lemma (4.1), we obtain

R = Y2t bg/T(r) D_;(Lsb) for 220 s.t. re<k+] (4.49)

r-1

where

o
i

0 bé ba , b6 = -log r(C) and bé is given in (4.45) (4.50)
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by = -log L + 1/(a=(i+n+2-1)/2) + 2rp(1)-p,u(C)

r
+ Z] (2/s)

and for s=2, we have

+21

(2/6)°

P

r
LN

S !

1=

Py k-1
+[§3 25 (-1)3*‘(s-1>:/<a-(i-1+n+z>/2){]

i=1 a=0

[ec]
1t
—t

by = r 2%y, (1) - 3 ¥g_1(C) + (s-1)! [;

and the determinant Dr_](L;b) is equal to the determinant on the right

hand side of (4.22) with x replaced by b], n by r-1 and a;s

by
IS' = —
bS ; s=1,2,...,r-1.

Case B: 2<0 and %=-2u, u=1,2,...,r, with p,=2r. For this case we can

write (4.28) as
GP(t) =~r(2t+2u-21)/r(p2t+C), u=1,2,...,r and C=k+j-re>0 (4.51)

expanding the gamma function in (4.51), we obtain

] U-] -
n r(2t+2u-21)(2t)
i=1 .

(r-u+l)

6P(t) = (r(2t+1))" /Tr (p,t+C)

(4.52)
r 2i-2u
i 1 (2t-s)]
i=ut+l ¢=1
(A11 empty pkoducts are treated as 1 and empty sums as 0.) It is clear
from (4.52) that we have a pole of order r-u+l at t=0, u=1,2,...,r.

It is easy to check that G(t-%/2) can be written as
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G(t+u) = LY D o (2¢)"(r-u+1) exp(iog H(t)) (4.53)
where after using (4.36), (4.37) and (4.38), 1log H(t) can be written as

Tog H(t) = C§ + C;t + C2t2/2! + c3t3/3: .. (4.54)

Now using (4.54) in (4.53) and appealing to the lemma (4.1), we get the

residue as

_ U =(r-ut1), :
R, =L DCy2 /r{r-u+1) D __ (L5C), (4.55)

u=1,2,...,r; rzl

where the determinant Dr—u(L;C) can be obtained from the right hand

side of (4.22) with x replaced by C,, n by r-u and aés by c;s,

s=1,2,...,r-u. The coefficients C;s are given by

P2 r
Cé = 1 (u-(n+1’—1)/2)k / I (2i-2u)!
i=1 i i=u+]
(4.56)
u-1

Co = I r(2u=2i)/r(C), Cy=CyCy
i=1

=1 r 2i-2u
C; = -log L+2 r-u+])\p(1)—p21p(c)+2t plau-2i)+ 30 > (2/8)
2, kicl i1 e
2

> 2 1/ (a-(i-14n)/2+u)
i=1 a=0

and for sx2

(]
1

y-1 :
(r-us1)2” y_1(1)-p; ws'_1(C)+§] 2% yg_y(2u-21)+(s-1)!

r 2i-2u

Py
2 Zl (2/5) Z i: (-1)%1/ (a- (i-14n) /24u)®
i=0+1 67 i=1 =0
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Case C: 2<0 and g=-2v+1, v=1,2,....r. Now (4.28) can be written as

CP(t) = .
i

[T 1

P(2t+2v-1-21)/r(p2t+C), V=1,25...,0 (4.57)
1

After the expansion of gamma functions, one obtains

-1
GP(t) = (P(2t+]))r'V+](2t)'(r'V+])YH r(2t+2u-2i-1)/ (T (p,t+C)
i=]
ro142i-2v (4.58)
I I (2t-6))
i=v §=1]

Thus, here we have a pole of order r-v+1 at t=0, v=1,2,...,r. Pro-

ceeding as before, we have G(t-2/2) in the form
6(tv-1/2) = (LY 20y (26) (M Nexp(ing 1(1)) L (4.59)
where

log I(t) = dprd trdyt?/214d 837314 (4.60)

0

Using (4.60) in (4.59) and applying Temma (4.1), we have the residue Rv

given by

_ gy VL2 -(r-v+l1) . y
R, = (L) D dj 2 D,_(L3d)/r(r-v+1),
v=1,2,...,r (4.61)

where Dr-v(L;d) is equal to the determinant on the right hand side of

(4.22) with x vreplaced by dys n by r-v and ajs by dés,

g=1,2,...,r-v. The coefficients dés are given by
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Po r
dg = (—1)r'V+] I (v-(n+1‘)/2)k /1 (1+2i-2v)!
i=1 i i=v
v-1 '
dO = 1_Ii]l“(2v-21-1)/1“(c) and d0 = dOdO

-1

7 v-1
dy = -log L+:E% z: 1/ (a-(24n+i-1)/2)42 3 v(2v-2i-1)-p,u(C)
1=1 a=0 i=1

r 1+2i-2v
+ 2(r-v+1)y +z: 2; (2/8)

i=v 8=]
and for s=22, we have
= Eif 2%y L (2v=2i-1)-p3 w__ (C)+(r-v+1)2%y_ (1)
A s-1 P2 ¥s-1 s-1

21-2v

r 1+ P2 1 +]
DY 521 (2/8)° 2% 2 )>" '/ (atv-(n+i)/2)
i=y 8= =] =0

Hence, for the case p,=even, we have from (4.5) end Cauchy's residue

theorem, the non-null density of LVC in the form

2 > L1 -T2
p(Lyo) = Clppumod) 2 2 200 0 AW Hcpyanuz) (L, )™ Tp,
j=0 J e

k=0 2
(4.62)
Y‘ .
L R+ ‘i‘ pILY
220 2>O = v=1
razk+j r2<k+3

where RQ, R,» R, are given in (4.41), (4.49), (4.55) and (4.61) re-

spectively. In particular, if we put p,=2 in (4.62), we get (4.20).

Case (ii): Po=2s+1, $20 (s=0, covers the case p2=1). Once again in

the following discussion, all empty products will be interpreted as unity
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and empty sums as 0. The functions fj,k’ Gj,k’ GP\].,k and Rj,k will
be written as f, G, GP and R respectively. Now starting with (4.7)

and using the duplication formula for gamma functions, we have

) s .
Gh) =L " b = (h-(n+i-1)/2), T 1(2h-21)7 (h=5-1/2)/7 (p,hk+])
i=] ii=1
(4.63)
where
s/2 ,s(s+2) 25, Pl
D= 2 and L=L_,_ 2%7/p (4.64)
ve °© 2
The poles of the integrand G(h) are at the points
h=-2/2, & =-25-1,-25,...,0,1,2,... (4.65)

and the residue of G(h) at these points can be obtained by finding the
residue of G(t-2/2) at t=0. Now
P2

6(t-2/2)= L2 p 1 (e (maaei1)/2), L tep(t), (4.66)
1= i :

where

—

1r(2t-(2+21)r(t—s—(2+1)/2)ﬁ1(pztfk+j-p22/2)' (4.67)
1 v

GP(t) = _
i

We have to ccnsider separately the cases (A) 220, %=even, (B) 220,
2=odd, (C) #<0, 2=e9en and (D) 2<0, %=o0dd. Let d=k+j-p2£/2. Now

(4.66) can be written as
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Py Py ki~
6(t-2/2) = Y20 1 (<(nta#i-1)/2) © 1 (14t/(a-(nt24i-1)72) )8R (1)
i=1 1=1 a=0
(4.68)
Case A: Two subcases arise (A1) d<0 and (A2) d>0.
Subcase Al: 220, 2=2u2, u2=0,1,2,...,d50.
After expanding the gamma functions in (4.67), we have
S -s ,-(s-1) -d
GP(t) = (r(2t+1))° r(t+1/2) p, 27 t n (pot-5)/(r(p,t+1)
6:
uyts (4.69)
1 (t-5-1/2))
6=0

So we have a pole of order (s-1) at t=0. Proceeding as before, we

have

G(t-uz) = Lu2 D p, 273 t"(s'1) fé exp(log P(t)) (4.70)

and the residue Ru is given by

2
us -3 .
Ru2 =L “D Py 2 fO DS_Z(L;f)/P(s-1), p2u22k+3, (4.71)

u2=0,1,2,...

where the determinant DS_Z(L;f) is same as the one in (4.22) with.
n replaced by s-2, x by f] and aés by fés, g=1,2,...,5-2 and
the coefficients fés are given by

P2 S s+u2
| (e=1)/2), /(n (1420):
i

£ = (1)K )
i=] s=1

(5+1/2))
(4.72)

n =

.i

and
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—h
I

0 - fé r(1/2)

ki

p2 -
= -Tog L+y(1/2)+2, (1/(a-(itn+2-1)72,)-9(1)-
i=1 a=0 5=1

-+
!

(pz/a)

2421 uprs
+ fi > (2/6)+é28 1/(6+1/2)

i=1 &=1

and for =2, we have

p, k:-
f 172+ (1) s2%-p31+(q-1) }E? NI (o= (14n42-1)72)9
q i=] a=C
if | s 2421 Ef
- 2, (py/8)% + 2 ;;, (2/8)7 + (1/(s+1/2))9
6= i=] ¢= =0
Subcase A2: 220, z=2u2, d>0, u2=0,1,2
Expanding the gamma product in (4.67), we have
s 421
GP(t) = (T(2t41))° T(£41/2)(28)7°/(r(pytsd) T T (2t-5)
i=1 6=
s+, (4.73)
m (t-8-1/2))
§=0

In this case, we have a pole of order s at t=0. Following the same

procedure as earlier, we have

G(t-uz) = Lu2 D gé exp(log Q(t))/(2t)° (4.78)

where Tlog Q(t)=ga+g1t+92t2/2!+.... and the residue R

is given by
42

-S
D2 99 Dg_1(Lig), uy=0,1,2,..., s.t. Pouy<k+j  (4.75)
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where the determinant DS_](L;g) is cimilar to the determinant on the
right hand side of (4.22) having (s-1) rows and the elements a; re-

placed by gqS and x by 97> where gq's are
u2+s+1 P2 S Up*s
96 = (-1) I (-(n+£+1-1)/2)k /L m(a+2i) 1 (s+1/2)]
‘i:] 'i (S:-'] (S=O
(4.76)
99 = 1(1/2)/7(d) and g, = gpq,
Py ki']
gy = -log L+st(1)+w(1/2)-p2w(d)+. . 1/(%-(i+n+2-1)/2)
i=] o=
& R il q
DY O}; (2/8)+ ; (8+1/2)
1=] &= =

and for g22, we have

ZE? 25 191/ (a- (i4n+2-1)/2)9 15; §§§1 (2/5)8

u,+s
2

ypo (6+1/2)‘q] (172) = pF vy (@) + 2%y (1)

Case B: 220, 2=2v2+1, vzzO. The gamma product in (4.67) can be written

as
S
GP(t) = ‘H]F(Zt-(2+21)) r(t-vy-s-1)/r(p,t~d-1/2), (4.77)
1= . y

where

d = k+j-s—p2v2 . (4.78)
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Two subcases arise (B1) d<0, and (B2) 4>0.

Subcase B1:. 220, 2=2V2+1, VZZO s.t. P2V22k+j‘5 .

Now (4.77) can be written as

-d
GP(t) = (r(2t+1))° r(t+1)2'5t‘(3+1) m(p,t-6-1/2)/ (r(p,t+1/2)
§=0
4.79
Votstl s 42 (4.79)
I (t-8) m 1m (2t-8))
8=1 i=1 6=]

So we have a pole of order s+1 at t=0. As before, we have

VZH/2 -S s+]
G(t-v2-1/2) =L D my 2 exp(log R(t))/t (4.80)
and using lemma (4.1), the residue RV is given by
2
v2+1/2 _s ‘
R =D(L) My 2 DS(L;m)/P(s+1), V)20 (4.81)

s.t. p2v22k+j-s

with DS(L;m) being the determinant of order s and can be obtained

from (4.22) by replacing x by my and aés by més » Wwhere més

are given by

cis T2 d s
my = (<1575 T ((en-2-141)/2) W (a#1/2)[(vprsH1)! T (2421))
i=] i a=0 i=1
my = m/T(1/2) - (4.82)
Py Ky-1
my = -Tog L+p2w( )- pzw(]/Z )+, > 1/(a-(i-1+n+8)/2)- ES p2/ a+1/2)
V2+S+] S 21 =1 a0
+Z1 (1/5) Z Z% (2/6)
6= =1 8=
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and for =2, we have

p
Mg = Vg (D01#s29] - pF v, 1(1/2) + (a-1)! |2

=1 &=]

. -d 2421 2+S+]
(a-(i+n+2-1)/2)9 - }% (pz/(a+]/2))q 4-152 }:1(2/5)q + éz; (1/6)57
o= 1= =

Subcase B2: 10, 2=2v2+1, v2_0 P,V 2<k+3 S.

Now (4.77) can be written as

s 2421 votstl
GP(t) = T(t+1)(r(2t+1))5 2'5/[r(p2t+d-1/2) I 1 (2t-6)
. i=1 §=] =1
(4.83)
(t‘d) ts+]]

Here also we have a pole of order s+] at t=0, and as earlier using
Temma (4.1), we have
V,+1/2 e .
6(t-v,-1/2) =L 2 " D ng 275 ¢ (s*1) exp(Tog s(t)) (4.84)
and
v2+1/2 s
R. =DL ng Dg(Lsn)/ (27 1(s+1)), v,20 s.t. P,V <k+j-s (4.85)

where the determinant DS(L;n) is defined similarly as in (4.81) with

m's replaced by n's and the coefficients n's are defined as
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-V, ] Py s
ng = (-1) i (—(n+2+i-1)/2)k /[ 1 (2+21)!(v2+s+1)!] ,
i=] i i=]
ng = ny/T(d-1/2) (4.86)
and
Py k -1
Ny = =Tog L+p,y(1)-p,y(d- 1/2-+2; 2: 1/ (a-(i-1+n+2)/2)
i: 2421 V2+S+]
(2/8)+ (1/5)
and for q =2
v g ’s L+21 q
Ng = vgo1(N145271-p3 yo_1(d-1/2)+(q-1): ?;% gg% (2)"
+s+1 Py k1 -1
+1, . q
2: (176)9+ 3 3 (-1)9"/ (a-(i-14n+2)/2)
§=1 i=1 o=0

Case C. <0, #2=-2u, u=1,2,3,...,5. For this case the gamma product in

(4.67) can be expanded as

u-1

1 r(2t42u-21) (r(26+1))S U p (24172
e
GP(t) = sout] s-u s 2u-21
(26)5 U (ptaputked) T (t-a<1/2) W T (2t-8) -
a=0 i=y+] &§=1

(4.87)
We have a pole of order s-u+l, u=1,2,...,s. Proceeding as before, we

have
6(ttu) = L7 Dy exp(log V(t))/(2t)5 ™" | (4.88)

and the residue Ru is given by
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R, = L™ Dy Dy, (Lay)/ (254 n(s-u1)) Lus,2,....s (4.89)

S-u

where the determinant Ds_u(L;y) is equal to the R.H.S. of (4.22) with

s-u rows and x vreplaced by 2 and a's by y's, g=1,2,...,5-u, and

q 9
the coefficients yés are given by
) _ s-y+l,,S™U S
Yo = .n (-(n+2+1-1)/2)k (-1) /( (at1/2) p(2u-2i)1) (4.90)
i=] i o= 0 i=u+l
u-1
Yo =¥y 1 T(2u-21)r(1/2)/r(p,yutk+j)
07 Y0 1L 2
y-1
yq = -log L+2§;]w(2u—21)+2(5-u+1)w(1)fw(1/2)-p2w(pZU+k+j)
s-u S e 2 ki1
20 (a¥1/2)7 0 30 30 (2/8)+2, 2, 1/ (a-(i+n+e-1)/2)
a=0 i=u+l §= 1=1 =0

and for q22, we have

u-1
= q _03 - q ' _ q .
yq = 2 wq_](zu 21)+(s utl) 2 wq_1(])f¢q_](]/2) p2 wq-](pZU+k+J)
k.-
S-u s 2u-2i P
Ho ) B @2 e 3 5 ) 4 5 10
=0 izu+l §=

i=1 a=0
/(a—(n+£+i-])/2)€]

Case D: <0, #=-2v+1, v=1,2,...,5, s+1. The gamme product in (4.67) can

be written as

- v-1
20(t+1) (p(2t+1))SV I ete2v-2i-)

(4.97)
Gp(t) = +2 s+1-v s 1+2i-2v
' (2¢)5 V1 (p pottk+itp,(v-1/2)) 1 (t-8) T T (2t-6)
&1 i=v §6=1
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So here we have a pole of order s-v+2 at t=0, v=1,2,...,s+], and as

earlier, we have
6(trv-172) = 2 VY2 D 25 exp(log W(t))/(26)57V (4.92)
and using lemma (4.1), the residue Rv is given by

R, = 0LV E z 00 (152)/ (25 I (sevs2)), ve1,2,. 54 (4.93)

where the determinant D (L;z) can be obtained from (4.22) by re-

s-v+]

placing n by s-v+1, x by Z4 and aés by zés » where the zqs

are given by
P2

S
zg = T (=(en+i-1)72), /((s-v+1)! T (142i-2v)!)
i=1 i i=v
(4.94)
v-1
zq = zé i=¥ P(2v-21-1)/r(k+j—p22/2)
zy = -log L+(2(s-v+1) )+2 }: (2v-2i-1)-p,¥(k+j-p,2/2)
P k1 s+v— s 1+2i-2v
+ ﬁ 1/ (a-(i-14n+2)/2) + 1/8 + Z (2/8)
i=] =0 6=] 1=v &=]
and for =2, we have
2, = [1+2%(s-v+1)] 1)+29 f: Vg 2v—21—])~pg¢q_](k+j-p22/2)
Py ki"1 s+y-]
+{g-1)! (-1)9/ (o= (i4n42-1)72)0 + 3 (176)°
i=1 o=0 &1
§: T42i-2v (2 90
+ 2/ 5)
i=v &
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Hence, when p s odd, the density of LVC is given by

o 1 -np,/2
p(Lyc) = C(py.n,2) Z o T 22 A sppn. ) (L& p, 2
(4.95)
AR 3 DRSS
R+ R + + R R,
=0 Y2 i5=0 2 Vo7 2 V=0 Y2 U v=1 v

Pou 2_k+g p2u2<k+j p2v22k+3—s p2v2<k+3—s
where Ri» R, » R s R are given in (4.71), (4.75), (4.81), (4.85),
5 o7 Uy .
(4.89) and (4.93) respectively.

Remark. Putting in (4.62) and (4.95), we can deduce

the results of Nagarsenker [17] and Wilks [25].
5. DISTRIBUTION OF LVC AS A CHI-SQUARE SERIES.

In this section we express the density of LVC as a chi-square
series using methods similar to those of Box [2].

Let »>\=(ch)n/2 and A*=-Z2plogx where p 1is chosen so that the
rate of convergence of the resulting series can be controlled, O<p<].

Let ¢(t) be the characteristic function of A*. Then

o(t) = E(L, )" (5.1)

In section 3, we obtained the non-null moments E[ch]h for integral
values of h. But the result (3.20) can be extended to any complex

- number h by analytic continuation. So we have for any complex number h
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00 o0 p h
E[ch]h pzsn 2 Z Z kzoz A(J ’K’pZ’n’E) p22 (52)
v j=0 J =0 k

P2 P2

n T((n-1)/2+h) I

_, . (h-(i-1 )/Z)k_/r(Pz(h+n/2)+k+j)
1 1

i 1

Now using (5.2) in (5.1), we obtain

o0 % —itpnp2 '
¢$(t) = C(p,,n,I) > A(J.ksp,,n,Z) p (5.3)
2 };—' B o grirst e
P2
n] r{(n(1-2itp)-8)/2) n1 ((1-8-2i%on)/2), /T(np,(1-2itp)/2+k+j)
8= . S= 8

- —- . ‘1 - '] '1 1
For t=0, we have ¢(t)=1 using Lop = Iy q - Z, , 8'8 and for t#0

(5.3) can be written as

$(t) = Clpyon,g) i 13:4 >, 22 A(d,x,ppn, Dexp(log G(t))  (5.4)

where Gj k(t) is denoted by G(t) and is given by

3

-1tpnp2 P2 P2
Py L r(n(1-2itp)-6)/2) 1 1((n(1-2itp)+1-5-n )/ 2+k )

G(t)= ] o &1 (5.5)
I(np,(1-2itp)/2+k+j) n r((n(1-2itp)+1-5- n)/2) '
)l

In the following derivation, functions G, W, w, R, all depend upon J
and k; for simplicity of notation the subscripts or the superscripts
J.k will not be explicitly given unless necessary. From (5.5) taking

Togarithm on both sides, we get



39

Tog G(t) = -itonp2 log Py + }Ef Tog T(n(1-2itp)-8)/2) (5.6)
6:
- Tog Tnp,(1-2itp)/2+k+j) Z Tog T((n{1-21tp)+1-6-n)/2+k )
2
- 2 log T(n(1-2itp)+1-6-n)/2)
=1

We now need the following expansion for gamma function (see Anderson

[11).

— ",
Tog T(x+h) = log /27 + (x+h-1/2)Tog x - X - ;Eﬁ(-])r8r+1(h)/(5.7)

(r(r+1)x") +Rp 41 (x)

Where R is the remainder such that IRm+1(x)lsA/lxm+]|, A is a

m+]
constant independent of x and Br(h) is the Bernoulli polynomial of

degree r and order unity defined by

ZEB
r=0

—1

where the polynomials are given by

h) =1, By(h) = h-1/2, B,(h) = h2-n+1/6, By(h) = h3-3h%/2+h,2

and in general we have
r\
- r r-2
Br(h) - 2%(2) B,Q, h ’

where Bz are the Bernoulli numbers and (;) = r!/((r—z)izl).
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Now using (5.7) in (5.6), we obtzin

log G(t)

H

(p-1)/2 log 27 - ((npz—l)/2+k+j)1og P,
((pp=1)724p,(p,*1)/443)10g(n(1-21t0)/2)  (5.8)

o+

m+1

m .
3. (n(1-2it0)/2) " w + RO, (n,t) .
Y‘ = .
where the coefficients w,. are given by

P2

W, = éé% [B.yq (1-6-n)/2) - B, 4(1-6-n)/2¢k )] + B, (k+3)/p}

f“ls?

L By (-8/2) (-1)7/ (r(r+1))

Therefore G(t) can be written as

(p,-1)/2 -y

6(t) = (2n) p2(1-np2)(24k+j)(n(T-Zitp)/Z)

o0 _ (5.9)
;g% W.((1-2itIn/2)™" + ! (n,t)
where W is the coefficient of ((1-21'1:;:)n/2)"r "in the expansion of

exp( }:] ((1-2it)n/2)""w,) and
r=

3

u=(p2-1)/2+p2(p2+1)/4+j. Then (5.9) can be put in the fbrm

“1)/2 (1-np,)/2-(k+j)
G(t) = (2ﬂ)(p2 / P, "P2) ) E%yrj(l—Zitp)n/Z
Y‘:

)-(r+U)

(5.10)

+ R!

m+](n,t)'

Hence the characteristic function of'_x* is given by



41

o(t) = Cy(pysn, ) Z }g kZO 3 A(J,K,pz,n,g)pé(k*j) (5.11)

f_j ((1-2ite )n/2)~ (") RY 1 (nst)

where

(p=1)/2 (1-np,)/2
01(P2,H,Z) = C(Pzan,Z)(ZW) p2

Since (1-igt)™® 1is the characteristic function of gamma density -

g,(8,x) whare
g, (8x) = [ p(a)]! X271 /8 (5.12)
The density of * can be derived from (5.11) in the form

PO = Cilpgomen) 2 2 20 3 AU ’K’pz’“’Z)pz(k+J)
j=0 J k=0 «
(5.13)
Z; (2/m) "™ r 9psy (205 2%) ¥ Ry (

Hence the probability that x* 1is larger than any value, say A is

[e o] [o%] _ \+.
PLax>2g] = 1(pyn52) Z > }_: 3 A(J’K’pZ’n’Ti)pz(k )
j=0 J k=0 « ’
(5.14)
}:“ (2/n) Wr GY"*'U +Rm+_'
where

Srsul2Ps 20 ‘[ Gppy(20>%) dx (5.15)

A

-0
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and

1]

R (1) = (20)71y (o 3) RAPIPY ALToopyan,2)p; K
= - K©

(5.16)

j( J[ -itax 2: Wy (2/n) r+u(] 2itp)” -(r+u) [exp( Rﬁ )-1]dt da*'
>\O =0

From (5.14), we obtain the distribution of A* as a series of gamma dis-
tributions. In particular taking =1, we see that the distribution of

A* may be expressed as a series of chi-square distributions. Now
. - n/2 - -
P[A*)AO] = P[-2p10g ch >A0] = P[ch<exp( Ao/np)] (5.17)

Therefore, once we know the distribution of A*, the distribution of

L can be obtained by using (5.17).

Ve
In particular, the null distribution of LVC is given by
- r+uO
P1(2*) = C;(py.n,z)r(np,/2) 2%3 (2/n) " g 9y (205 27)
r=
(5.18)
¥ RO,m+1 (n)
where
(pp-1)/2 (] p
_ -np,)/2 "2
C1(pponsz) = (2) /T t(n-1)/2) (5.19)

i=1

which is same as the one obtained by Nargarsenker [17].

WO r heing the coefficient of ((1-2itp)n/2) in the expansion of



43

exp[}j ((1-2itp)n/2)" wo’r], where u0=(p2-1)/2+p2(p2+1)/4 and

Wy p = [Byq (0)/p7 - Z By (-6/2)1(-1)"/ (r(r+1))
(5.20)

Ry me1(n) is defined similarly as in (5.16) with j=k=0.

6.  POWER COMPUTATIONS OF ch CRITERION.

The distributions obtained in sections 3, 4, 5 were used to study
the power behavior of the Wilks' ch criterion. Powers have been com-
puted for p=2 wusing (3.26) and for p=3 using (4.20) and (5.14) which
have been presented in tables (1.1) and (1.2) respectively. The computa-
tions involve zonal polynomials of degree 0 to 9 (see [9]). The lower 5
percent points of LVC criterion (see Wilks [25]) have been used for
our computations. A1l the computations were carried out on a CDC 6500
computer at the Purdue University Computing Center. Before computing
the power for specific values of the parameters, the total probability
for that case has been computed and the number of cecimals included in
the tables were determined depending upon the number of places of
accuracy obtained in the total probabilities. The accuracy of the re-
sults have been checked by cémparing the powers for specific values of
the parameters based on (4.20) and (5.14).

From Table (1.1), we observe that power increases with the sample

size N as well as the only parameter involved, p. For the case p=3,



we observe fromTable (1.2) the power increases with N, each

of the parameters c, P12 and Py3> but decreases with b23.

Lb
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Table 1.1
Power Computations For Wilks' ch Criterion
p =2
. o*1 071 .0%1 .0%5 .01 .05 .1
3 .0500005 .050005 .,05005 .05025 .05050. .05258 .05534
4 .050001 .050014 .05014 .05070 .05140 .05727 . 06523
5 .050002 .05002 .05024 .05123 05247 .06288 .07721
6 .050004 .05004 .05036 .05179 .05359 . 06883 .08999
7 .050005 .,05005 05047 .05235 05474 .07493 .1031
8 .050006 .05006 .05058 . 05293 .05580 .08111 .1165
9 |.050007 .05007 .05070  .05350 .05706  .08735  ,1299
10 .050008 .05008 .05081 .05408 .05822 .09362 L1434
15 .050014 .05014 .05138 .05698 . 06409 L1254 .2115
20 .050020 .05020 .05196 .05989 .06999 .1576 . 2789
25 .050025 .05025 .05253 .06281 .07593 .1899 . 3443
30 .050G31 .05031 .05311 .06573 .08190 L2223 4070
40 .05004 .05042 . 05426 .07161 .09392 .2864 .5217
60 [.05007  .05065 .05657  .08347  .1182 .4086 .7030
70 .05008 .05077 .05773 L0894y .1305 654 . 7704
80 .05009 .05088 .05889 .09544 L1429 .5188 . 8243
110 .05012 .05123 . 06237 .1136 .1802 .6566 . 9254
120 .05013 .05134 .06353 1197 .1926 .6951" . G448
140 .05016 .05157 . 06586 .1319 L2176 L7617  .9703
200 .05023 .05226 .07289 .1689 .2917 . 8926 . 9959



Table 1.1 (Continued)

L6

NN‘1.15 .2 .25 .3 .35 4 U5
3 |.05831 .06153 .06503 .06886  .07308  .07777  .0830
L |.0o7400 .08371  .09450  .1066 .1202 .1356 .1533
5 [.09320  .1111 1311 1537 1792 .2080 .2408
6 |.1137  .1404  .1702 .2037 L2411 .2829 . 3295
7 |.1389  .1704  .2100 .2539 3024 .3555 413
8 |.1562 .2006 . 2496 . 3034 . 3616 4240 . 4899
9 |.1777  .2307 .2887 . 3513 4179 L4875 .559
10 {.1992 . 2606 .3270 .3975 4709 5459 621
15  1.3052 4029 .5012 .5962 . 6846 .763
20 |.ho051 5283 L6417 . 7403 .821 .9
25 L4966  .6340 . 7489 .8383 .903
30 |.5782  .7203  .827 .902
4o |.7114 L8427  .923 .993
60 |[.8753 .9556 .99
720 1.9206 977
80 |.9502  .9889
110 {.9887 .99
120 [.993
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Table 1.2
Power Computations For Wilks' ch Criterion
p=3
c 1.0 1.0 1.0 .0 1.025 1.025
P, 05 .05 .3 A .005 .05
Py .05 .1 .3 .3 .005 .05
n Pas  -05 .2 .0 .0 .05 .05
3 .0502 .052 .057 .061 .05006  .,0502
L .0505 .057 .067 .076 .0502 .0506
5 .0509 .062 .079 .093 .0504 .0510
6 .0511 .067 .087 .109 .0506 .0513
7 .0516 .080 .103 134 .0508 .0518
8 .0519 .092 2117 .157 .0511 .052
10 .053 .125 L146 .207 .0516 .053
17 .055 .210 .207 .289 .053 .058
22 . 057 .292 .261 371 .056 . 061
c 1.025 1.025 1.025 .025 1.05 1.05
°1, .05 .1 .3 .3 .005 .05
Pig .1 .15 .3 .3 .005 .05
n P2z .2 .2 .05 .0 .05 .05
3 .0516 .0522 .057 .057 .0501 .0502
i .054 L0542 .067 .067 .0502 .0506
5 .057 .058 .078 .079 .0504 .0510
6 .059 . 061 .086 .087 .0507 L0514
7 .065 . 066 .102 .103 .0512 .0518
8 .069 .069 115 117 .0514 .052
10 .077 .079 L1142 145 .0517 .053
17 J14 153 .22 .24 .055 .059
22 .17 19 .29 .31 .059 067




Table 1.2 (Continued)

48

c 1.05 1.05 1.05 1.05 1.05 1.05
P, .05 .1 .1 .2 .25 .0
Pl .1 .15 1 .2 .25 .3
n Py 2 .2 .2 .25 .0
3 .051 .052 .051 . 054 .056 .054
i .052 054 .052 .050 . 065 .058
5 .056 .058 .053 .065 .075 . 063
6 .058 .060 .055 .068 .082 .066
7 . 061 . 066 .057 .077 .092 074
8 .06l .070 .059 084 .109 .079
10 .070 .078 .063 .098 .12 .091
17 14 .151 .077 .15 .20 .13
22 .17 .186 .097 .21 .25 .16
c 1.05 1.05 1.05 1.05 1.05
0, -3 .3 .0 y v
SO .3 A .3 N
n o P,y -0 .3 .0 .0 .0
3 .057 .058 .056 .0607 064
n .068 . 069 . 066 .076 .086
5 .079 .082 .076 .093 111
6 .087 .090 .083 .109 .134
7 .103 .102 . 097 1353 .170
8 .118 .113 .108 .155 .202
10 .15 L4 .13 .20 .27
17 .26 .22 .22 .37 .50
22 .3 .29 .28 .50 .60




Table 1.2 (Continued)

L9

c 1.2 1.2 1.2 1.2 .2
P, .005 .1 .05 .1 .2
Py 005 .1 .1 .15 .2
n 23 .05 .1 .2 .2 .2
3 .0507 .053 .053 .054 .058
b .055 .057 .059 .060 .069
5 .059 .063 .065 .067 .081
6 .061 .068 .070 .073 .091
7 .066 .078 .081 .084 .108
8 .081 .087 .090 .09k .12
10 .098 .105 .108 L1148 .15
17 .18 .20 .22 .23 25
22 .21 .22 .25 .25 .28
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CHAPTER TII
ON THE EXACT NON-NULL DISTRIBUTION OF WILKS' LVc

CRITERION IN THE COMPLEX CASE

1. INTRODLCTION AND SUMMARY

Let Z], ZZ’ ""ZN be independent complex normal random p-vectors
with mean vector & and covariance matrix L, i.e., Zi~vCN(§, g).

~

Let g==(Z], ZZ’ ""%N)' Then Z~CN(Z; U, Z), (see Goodman [6])

where the complex multivariate normal distribution is defined by

eN(Zs y, 2) = (M) 7PNz Nexp(-ter Nz - (77 ) (1.1)
and L1=(§, £s ...,g) is a pxN complex matrix. Let us define
L-T5)" . (1.2)

_1
Then N A(g -£)~CN(0, £) and S has an independent complex

Wishart distribution which is defined by

CH(S; p, N, Z) = [rp(n>J‘]|§|'"I§l"'pexp(-tr§']§) (1.3)
with n=N-1 and fp(n) is defined in the next section. § and §
are Hermitian positive definite matrices of order p. In this chapter,
in order to study the structure of the covariance matrices of the

complex multivariate normal populations, we derive the exact non-null

moments and distribution of the Wilks' [25] LVC criterion for testing
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H: §==02[(]— p)I+pee']l, -0 and p unknown against the alternative
A#H; u unknown and e'=(1, 1,...,1). We derive the distribution
of LVC in three series forms and compute powers for p=2 for
various values of N and the parameters involved four 5% significance
level based on the null distribution and the percentage points of

LVC obtained in Chapter III. In Section 2, we give some definitions
and lemmas which are needed in our derivation. In Section 3, we obtain
the non-null density of L, @s a series of Meijer's [14] G-functions
using Mellin [19] integral transform. Some special cases have also
been discussed which are used to compute powers for the case p=2.

In Section 4, we obtain the density in an alternative series form

using the method of contour integration (i.e., see [18]) and in

Section 5, the non-null moments of the criterion are used to obtain the
distribution as a chi-square series employing methods similar to those

of Box[2]. 1In Section 6, we tabulate the powers for various values of

N and p for the case p=2.

2.  SOME DEFINITIONS AND RESULTS

We now give some definitions and lemmas of interest for the
following derivation.

Definitionrs: Let k be a non-negative integer and let

k =(kys kps ...,k ) be a partition of k such that
k]zkzz...zkpzo, 1Z1k1=k and let
C f(a-ien =7 7 (2.1)
[a]|< = 1_]=T](at- i+1) i = Fp(a,K)/Fp(a) : .
(a), = (a)(a+1) --- (a+k-1) and : (2.2)
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H =

Pla-i+1) = j 1S127P exp(-trs)ds (2.3)

P i S'=$>0

1

Also the hypergeometric function of a matrix 'ariate is defined

by (see James [8]),

pF (a], 255 ...,ap; b], b2’ ,bq; Z) =
) 1 (2.4)
k=0 k [b]] .- [b ]
K q K

Where EK(;) denotes the zonal polynomial, a symmetric function in the
characteristic roots of the hermitian matrix Z (see James [8]) of

degree k corresponding to the partition «. In particular we have

~ ~

OFO(Z) = exp(trZ) and ]Fo(a; Z)

H

I1-2|™® (2.5)

~ ~

Lemmas: We now give some Temmas which will be used in the sequel.
Lemma 2.1. Let R be a complex symmetric matrix whose real part is
positive definite and let I be an arbitrary complex symmetric matrix.
Then

f exp(-trRs) || ME (ST)ds =T, (t, «)|R]™F € (TR™)
S=S'>0

~ o~

the integration being taken over the space of positive definite
Hermitian (p.d.h.) mxm matrices. (See James [8].)

We now define the Laplace transform of a function f(S) of the
p.d.h m><mﬁ matrix S

g(z) = J, exp(-trsz)f(s)dsS where Z=X+1iY, (2.6)
$=5'>0 ‘

~
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is a complex symmetric matrix; X and Y are real and it is assumed
that the integral éonverges in the "hair-plane"” R(Z) =X>X, for
some positive definite Xo- (See Constantine [4]). The following
theorem will also be needed.

Convolution Theorem. If g](z), gz(Z) are the Lanlace transforms of

f.(S) and f2(§), then g](g)gz(g) is the Laplace transform of

142

R
R = [T f(9f,R- 9,

the integration being over the space of all § for which 0<S<R

Lemma 2.2. If R and S are mxm p.d.h. matrices, then

I

2 t-m u-m x e 5 o ~

[ ISP 1M € (RS s = (£ (W) (R)/F, ()

5=5'>0

Proof: Let
1 t-m u-mx

FR) = [~ 18I s (ks)as (2.7)

S=§|>9 K

~

then F(R) is a symmetric function of R, i.e., F(R)=F(U'RU)

~ e

for all U s.t. UU'=1. Therefore, we have

~

F(R) = F(1)CT_(R)/C (1) | (2.8)

In order to complete the proof, we need to show that

FID/C (1) = Tp(ts T u)/T (t+u, «)

_1 _1 '
Make the transformation S-R ‘@IB % The Jacobian of the transforma-

tion is |R|™ . Under this transformation, we have from (2.7)
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R — - - ~
F(R)R| T = fN TPR-T)M € (T)dT (2.9)

T=T'>0

~

K

Taking the Laplace transform on both sides of (2.9) we have

f F(E)|8|t+u_mexp(-trRZ)dR =

R u-m

| IN 11" PIR-TIC (T)dT|exp(-trRZ)R  (2.70)

After using (2.8) and lemmas (2.1), L.H.S. of (2.10) is given by

- (t+u)

L.H.S. = F(1)/C, (I)r (t+u, «)|7] ¢ (2" (2.11)

ret f]

be the Laplace transforms of f](I) and fz(I) respectively, then

- lTlt mC (T) and f (T = IIIu-m and g](Z)S gz(g)

using (2.3), Temma (2.1) and the covolution theorem, we have R.H.S. of

(2.10) in the form

RH.S. = (g, (D) = T (x, OF (u)]2]7 Vg (7)) (2.12)
~which proves the Temma.

3. EXACT NON-NULL DISTRIBUTIUN OF ch

In this section we derive the non-null density of LVC as a
series of Miejer's G-functions [14] using Mellin-integral transform

[19]. As in Chapter I, using lemma (2.1) of Chapter I, the test of

H: % = 02[(1~ p)I+pee'] reduces to that of H: L= of 0 S
2
0 o,l
2~ .
L P2
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9y 02:>O and unknown, against the alternatives A#H ;p2=;a-].

The 1ikelihood ratio criterion is based on the statistic
P2
L c !§|/[5”(U‘§22/P2) ] - (3.1)
as given in Chapter I for the real case, where

1
with n=N-1,

212

2 222
P2

w

N
— - —
—

N being the size of the random sample from CN(g, g), =3 >0.

Furthermore, we make use of the transformation {'5{1 g]/c{ 1
X

L 2

Under this transformation the prob]em of testing h versus A reduces

52/02 p

to the problem of testing H]: L= 0 —1 versus A] #}1], where
~ng

oed

1
L12/919,

[{ng!
H

gys O, positive and unknown.

L12/919 Ipp b,

From now on we assume that this has been done and w2 are testing H}

Versus A]‘ We now define

-Y, - -5&
T =517 212 S°2 12 511 (3.2)

Then the statistic ch can be written as

p.
Lo = 18951 (1=T)/(£rS,5,/p,) (3.3)

We now need the following lemma.



Lemma 3.1. The jo

(T, S

217° 3

1
exp(-tri, 13200 111

where

int p.d.f. of T, S]],

-
Ulpys pps M5 2) I3y
1-T]

..'] _ __'I 1/
L1 .2852,8'(Zq )

ing]
—]
[aS]
n
[{ng]
—
vl
}
ing|
d
~N
ing]
N
~N
ting|
ol
™o

and

s

Ds-P n-p,-p -
2 P72 by (5

2
S

S

~

S

=

is given by

n-p, -1
exp(-trgl 2§11)

12 {P1

22 |P2

and P *Py=Ps Ppzpg= 1 without loss of generality.

T =

(p1, p

21> % And T

Proof. Let _§1.2

and (3125 377

S0 7 CHSy 55 Py

5,521z

S12500312 ™ CH(

=3

Y 1z
S17° S92 Spp S

s Ny L
2 )= pZ

are p.d.h.

-1

-S12 855 3

11

s n‘pz: 21.2)- Also

-1z

o/
12( ]]2

and 0<T<I.

are independently distributed and

)!

n n"‘b
(n)T ](n-p2)121_2| l§22l Fp](pZ)

1/2) )

(3.4)

312+ It is easy to prove that 91,2

$125205125 P1P2Zy o> BSppB') given S,), e,
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§]2§22§i2 has noncentral complex Wishart distribution with mean matrix

-1 . “1my -1 .
BF °, where F is s.t. FOo~(EY) =S ,0» given S,,» Where non-
central Wishart density is given by (see James [8])

“]"l . Uy '] nt
CH(S125903125 P1> Pps By s BSpoB') = exp(-trzy ,85,,8")

~
. b~

e . -1 Py -1 "]"l ’] ‘]'o
oF1(Pos 7 28S598'I7 581,82,8] pdexp(-trz] 8. ,55.51 )
-1z, P27Pq N~
,§]2§22§]gl /[lg].z, Tp](Pz)] (3.5)

.. s . -1=,
Now, the joint conditional distribution of §I.2 and §]2§22§]2

given Spo 1s given by

_ = . _] ] —] "'-l_l
1S90 = Uy (pys pps s Z)gF Py Z7 583508 5] 55185030 ,)

; PP -1 -1 =\ =1z, P27Py
22! eXPU-trEy 521 o) eXP=ErZ) 9BS,0B')1S1552,81

"‘] .']“| "]“| .
exp(-TrIy 581,55812)d(Sy 5)d(81,855815) (3.6)

-1 L . i}
UpApys Pos 3 2) = 2y LT (p,)T ) (n-p,) (3.7)

P Py

We now make the following transformation

_ —]—l
2117327 592500310

T = siles solsy (g0 y-Ye (3.8)
~ X1 =12=22=12' 711 ’
p
The Jacobian of the transformation is 15111 ' (see Kknatri [111).
Hence, the juint conditional density of T, and §]] given §22

is given by
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. -1 $r
h(S11> T1S,5) = Uy Py oy 1y B)gFy(pys (397) 227 255 B'zy LS{3T)
- n-p n-py=pp _ Pp~P -
expl-trzy 810151 =TT AT TexptetrB'ry ! es, )

Also §2,

then the joint density of $;;, S,5s and T is h(Syy, T[S,,) 9(S55)

~CU(n, p,» Zpo). If g(S 5p) denotes the density of Sons

which will be the same as (3.4) after using the identity

. -1
Lyp * B'Zq 2B Iy 1

Now we need the following theorem in order to derive E(ch)h.
Theorem 3.1.
E[exp(-t trS (1— ] = U (Pz, n, %, h) ? ) f
J=0 J k=0
'pz(h+n)+k+3) ~ ] -1-, -
(t+1) [h], L]y € (1-5p) Gyl-150 1+ (3, )7 B e) ks
(3.9)

where

-~ ~ . (N
Us(py> s L, h) = sz(n— ]+-h)/[rp2(n - D1E0["1 o (3.70)
)h

Proof. Let V = exp(-t trszz)lszzl Now using lemma (3.1)

with p]=1, we obtain

1 n-1 nh-p;
ELV] = U(1. pypea D) | | [ s syl
S117511°0 39,7890 T T'=T>0
-1 -1 Pp=Py f=p;-pyth
exp(=trz psyplexp(-trzy g+t DS ITHT TIL-

¢~

-1 ,
Z E (s o 2 BS,B' ] 5 s / T D/ (p,1 k!)dsy,dS,, (3.11)

Using the monotone convergence theorem, the interchange of the integral
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and summaticn signs is valid. Now using Temma (2.2) in order to

integrate with respect to T, we get “om (3.11)

L n-1 n+h-p, -1
(=0, 11 f ST sl Zexpl-tray!, s o)
=0« >0 "§!,.=S
1 2227222
exp(-tr(t l4-gé?])§22)EK(S1]§'§25?2§22)/(k![n-+h]K)ds]]d§22 (3.12)
where
Uy = U (1, pysns Z)T(py)T(n=p,y+h)/T(h+n) (3.13)

Now using lemma (Zl]) to integral with respect to -522 and then 1in

turn using monotone covergence theorem and the relation (2.5), we get

(n+h) n-1 1 y~1
E[V]= Uy It I*-ZZ ]] f 11 exp(- (Z] 5 g(tg-+§2 ])
S]]>O

Bas sy 13.10)

where U4==szp (n+h). Now integrating with respect to Sl] and
2
using relation (2.5), we get

- 1 _
E[V]-—U3(p2, n,Z, h)[tg-+§z |~ [t I+ 22 ! - B! Bz] 2] (3.15)

where Us(pys n, 2, h) is given by (3.10).

Now adding and substracting I inside each of the two determinants

and using (2.5), we have

-p (h+n) - i
E[VI =Ug(p,, n, 2, h)(241) 2 Folhs (t+1) ](5-52?.D

~

1Fo(ns (t+-1)"](§ ~2114-21]2 £'8)). (3.16)

which can be expressed as (3.9) after using (2.4).
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Theorem 3.2. For any finite p the p.d.f. of ch is given by

PLyc) = Dy(pys ns )(Ly ) _q(pzmz ! ogo In ——
sz 0 ) Cis Cosvens cpz; d], d2""’ dp2 '
B(J, k’pZ’ n’g)Gsz 2p ch 75 ps eves apz; b], b2’ ...,bp2 (3.17)
where |
D](pz,n,y=(2n)(p2_”/2p;/2_np2 /(,2_12 r(n-1)]2p,/"

B(3,kappons £) = Tnp, +k+ 3)E (L= 25 IEH(1- 251y + 27 B B /K1t (3.18)

ay=pytn-i, bo=p,-itltk, (3.19)

- . _ . -1, . i
Compptl-i, di—p2+n+(k+3+1 1)p2, i=1,2, ...,p,

Proof: First, we evaluate the h-th moment of Lvr as the method of
derivation of the density of LVC depends on lemma (2.4) of Chapter
I, concerning the Mellin transform. Integrating both sides of (3.9)
with respect to t, pzh times under the integral sign and putting

t=0 1in the final result, we get

p,h ~
ELL, 3" = Ug(pys s 2, 1) py° z AR HEMCRER SN ER A

-1 =, . .
tI,,8 @)/((npz-fk-+3)hp2k!31) (3.20)

Let b,
D(pys ns2) =1/(]Z,|" 1 I(n-i)) , (3.21)

i=]
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then
L, 2" Ty T pah "2 .
E[L, T =D(pyun,2) J ] 1 1B, ks ppsnsZ)p,” T r(h+n-i)
J=0 J k=0 « i=1
P2
T (h=-i+1), /T(py(h+n)+k+3j) (3.22)
i=1 i

where B(7, k, PysNs %) 1is defined by (3.18). Now using Mellin
integral transform on both sides of (3.22) (see lemna (2.4), Chapter 1),

we get the density of LVC in the form

P(Lyc)=DlpysnaZ) J 1 T T B(J,kspysn,3)
j=0 J k=0 «
P2
. T(h+n-i) 1 (h-i+1)
1 ¢ CHie poh P2 .= .
(i) [T, M2 1= (3.2
Cmioo i=1 F(pz(h+n)+k+j)

Now applying the transformation h—+h-+p2 and using Gauss - Legendre's

multiplication theorem (see (3.22), Chapter I) on P(pz(h*-n)+l<+j)

we get
L) =Dyl i, T T peen )
p( = panag L s Ko P 3ns~
e 1°72 ve 520 3 k50 « 2
P2 P2
- I T(h+p,-i+1+k.) I T(h+nt+p,-i) :
A GRPIPRRLY i KT N & s 2 dh
P2 " _ve P, Py
Gy I T(htpy=i+1) T T (htp et (kei+i-1)/p,)
i=1 i=1
(3.24)

where C] =C+p, and D](pz, n, L) 1is given by (3,18). (3.24) can

also be written as
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(L, )=D( oy P2 § 7T 7B )
p P,n,Z) . aksp anag
e ve 350 J k50 « 2
Py Py
(k+3) | (€ X n]r(h+a]) H]F(h+b )
~(k+J S\ -h i i=
p (2mi) f (L) dh (3.25)
Y Ci—iw Ve p2 p2

il F(h+c1) I r'(h+d.)
i=] i=] 1

a> , bs , c? , and d? | being defined in (3.19). Noticing that the
integrals in (3.25) are in the form of Meijer's G-function (see (2.4)

of Chapter I), wecanwrite (3.25) in the form (3.17).

Special Cases. We now discuss the cases Py =1 and p2==2.

p,=1. Putting p, = 1 in (3.17), we obtain

-2
(bye) rin+k) 2)kg2 0| 1 nrkH
Pllye) = Tty kZ (-1p12/(1 - 101%)%65 ) Lyely ka1 [(3-26)

-
T o ? -
where L= 5 E }pl = pp .

Now using (2.5) of Chapter I, (3.26) can be put in tahe form
n-2

| (L) © p(ntk) 2 2.1k
plL,,) = —L L) (1012701 - 1012
Vel p(n-1) Lo ! ol o
2F](n,—k,]; 1 —LVC), O<<LVC<']. (3.27)

In particular, under the null hypothesis, H];’ p=0, the null density

of LVC is given by

- n-2, , -
p](ch)v-(ch) l(n)/;(n-—l), 0 'ch‘ 1. (3.28)
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p2==2° In this case I = |1 P10 Cp]3 , C==c3/02

P1g 1 Lpo3
- - 2
Coyz Cppz €

L. -t

Now putting p,=2 in (3.17), we obtain

r(n)[g,,] "
) = —— 221 ple2n g

p(ch ~ Ve
T(n—2)F2(n) j=0 J k=0

[nJgr(en+k+3)C (-2, G- L7y + 2, B'B)/KIG!

(3.29)

where

a, =n+1, a,=n; b]=2+kP 2=1+k2

!
c]=2, %=1; d]=2+n+(k+ﬂ/L d2=2+n+(k+j+1N2

Also under the null hypothesis we have

-3 2 0 2+n, n+¥,

) TG !

¥, ,1-2n ~
y=m'? 2 r(2n)/[r(n-2)r,(n)J(L .
2 ve 2 21 V¢l q , n+l

pl(ch

(3.30)

which after using the duplication formula of gamma functions and (2.5)

of Chapter I, can be written as

) r(n)T(n+ %) (L )n—3U L )5/2 Fi(%,1, % 1-L )

b - - 5> by 5 -

Ve r-n)r(n-2)r(%) 0 V© vel 2o 2 .
(3.31)

O<L <1
vC



Using the relation 2F](a,b, C; 1)=r(C)r(C-a~b)/T(C~-a)T(C~-b)

(see Erdelyi (5)), it can be checked ihat
1

Jp1(ch)dch =1
0

4.  THE EXACT NON-NULL DISTRIBUTION OF LvC CRITERION THROUGH

CONTOUR INTEGRATION

Starting from (3.23) of Section 3, we have

p(L, ) =D(p,, n,Z) ) ) Y B(J, k,p,,n, I)
ve 2 J=0 J k=0 2
Py Py
Ct+iw b.h i r(h+n-i)_n (h-:+1)k
(2w1)—]J (L, Mp, 2" 2l Ui N E 1 (4.1)
C- oo F(pz(h+n)+-k+-3)

For simplifications, make the transformation h+n-=h. Then (4.1) can

be written as

n-1
E B(J, ks pysm, E)(L,0)

He~1 8
iHe~1 8

D(L )=D(p2,n,§)_

vC
J

)
0 J k=0
P2 P2
. IT{h-i) T (h-n-3+1)
Cotie P h o - k.

(L, ./p
J vere P (pyh+k+J)

Cl—im
where C] = (C+n and

-np _
pZ Z(ZWi)

P2
-1 n .
D (DZ, n,g) = |222| _H]F(n"1)
'l:

B(3, K by 1> 2) = [n] rlnp, +k+5)E (1-25) (4.3)

(1-15 | +37 58 B)/KLG!

Cyl-1
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Let
i} P2
L] "‘ch/pz ’ (44)

then (4.2) can be written as

i .n-1_""P7
p(L,)=D(p,on,2) T T I IBWLKkipysn,2)(L, )" 'p, SF(L ).
e 2 j=0 J k=0 ¥ 2 ~"tve 2 Ve
(4.5)
where
-1 C1+1w
fj,k(ch)—-(2n1) jC i G(h)dh (4.6)
1
and
P2 P2
-h . . :
G, th)=(L;) "1 r(h-9) W (h=-n=-i+1) /T(p,h+k+3j) (4.7)
3-k LA i=1 kit e
For ease in typing, the functions fj,k’ Gj,k’ Rj,k will be
written as f, G, R respectively throughout this Chapter.
We now consider a special case.
Py = 1. We have from (4.2)
_ 1 n-1 % 2 2y\k
p(ch)— Ty U‘vc) k'—Z'OT(ETk)' (-1pl"/7(1 - |p|%))
R PR '
et [T (L, )= 1) (- /i ¢ (4.8)
C -l
1

The integral in (4.8) will be evaluated by contour ‘integration. The

poles of the integrand are at points
h=-£, £=-1,0,1,2, ... (4.9)

The residue at these points can be found by putting h=t-£ in (4.8)

and taking the residue of the integrand at t=0. The integrand is



given by

G(t-2)= (ch)"“‘r(t-z- 1)(t-£-n) /T(t-2+K). (4.10)

To evaluate the integral in (4.8), we need to consider separately,

the cases (A) £<k (B) <£=k.

CASE A: £<k; £=-1,0,1,...,k=-1. In this case, after expanding

the gamma functions (4.10) can be written as

£+1

Mt—£)=uvﬂ'“{ﬂt+1ﬂt-£-th(tH#t—a)ﬂt+k—£)L (4.11)
, ;

The integrand G(t-4£) in (4.71) has a simple pole of first order at

t=0, and the residue at this point is given by

R£=]1'm t G(t-2) ,

t-~0
and
R,=(L )Khﬂ-n)(J)&H/H£+1)W%k—£n (4.12)
£ vC 'k ) ) : )
CASE B: 2=k; &=k, k+1, ... . After expanding the gamma
functions in (4.10), we get
) L=k £+
G(t-£)=(L_.) (t-£-n), T (t=-8)/ 1 (t-3). , (4.13)
ve K =1 5=1

The integrand in (4.13) does not have any pole at t=0.
Thus from (4.12) and (4.13) and using Cauchy's residue theorem,

the integral in (4.8) for this case is given by

k§1 o
) = R, . 4.14
=1 £

fll,c

66
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and the density (4.8) is given by

(L )""2 w T{n+k) 2 kk (-L. )Y (-v-n+1)
oL, )= —e— 7 |zl e — <,
ve r(n-1) k=0~ 1-jp[4V0  VIT(k+T-v)
O<L, <1, (4.15)

which after using Vandermonde's theorem (see Erdély; [5])
2F](-n,b; c; 1) = (¢~ b)n/(c)n c#0,-1,-2, ... (4.16)

and for other b and ¢, reduces to (3.27) of Section 3. This form of
the density has been used for power computations, which are presented
in Table (2.1).

Now for finding the density of LVC for pzzzZ, we still use the
method of contour integration but the density now will involve psi
functions and their derivative. We wi]i make use of lemma (4.1) of
Chapter I in this connection. Throughout the rest of this Chapter

n

n
all empty products I (-) and empty sums } (+) for m>n will be
i=m i=m :

treated as 1 and 0 respectively.

Now from (4.7), the poles of the integrand G(h) are at points

h=-£, £ﬁ=—p2, —p2'+], vees =1,0,1,2, ... (4.17)
To compute the residue at these poles, we put h=t-£ in (4.7) and
find the residue at t=0 ¥ £. Now, (4.7) can be written as
P2 P2

1 (t—ﬂ—n—iﬂ)K. _ F(t—ﬂ—i)/r(pz(t-ﬁ)+k<+j)
i=1 i i=] (4.18)

6t~ €)= (L )"t

Let C=k+j-pyl. Iwo cases arise: (A) £-:0 (B) £<0.
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Let
Py
GP(t)= T F(t—ﬁ—i)/f‘(_pz(vt—ﬂ,“*rk+j) (4.19)
i=1
The poles of the integrand in (4.18) are the poles of (4.19)

CASE A: £=>0. Two subcases: (A1) c¢c=<0 and {A2) c>0.

SUBCASE Al: £>0 and c<0. Expanding the gamma functions in (4.19)

we obtain

Py =(p,-1) -c P2 e+
" T tpy-8)/(T(tp,+1) T 1 (t-6))

@ (t) = p,(r(t+1)) X 1o
= 1= =
(4.20)

Thus for £20 and k+J <p,L, the pole of the integrand G(t-¢)

is of order Py - 1.

In the folilowing the functions A, GP, B, C, G, R depend upon j and
k, but for the ease of typing the subscripts j, k will be

supressed. Now using (4.20), (4.18) can be written as

o bt
G(t-2) = (L]) a,t Aj’k(t) | (4.21)
where
k+=p,(py*1)/2 P2 P2
ar=(-1) ‘po(-c)! T (~£-n-7+1), /1 (£+1)! (4.22)
0 R Ki'i=i -
Py k;-1
-t ! ) . Po -
Am)=(H) I 10 (T+t/(s-2-n-1+1))(r(t+1)) I U-tmgaw
i=1 §=0 §=1
(T(tp,+1) T 1 (1-1t/8)) (4.23)
i=1 6=1 3 .

The residue of order pz-l at t=0 1is given by,

p2'2

% = (1) /Ty 1) [ eg ex0logAe) . (a.28)
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Using (4.36), (4.37), (4.38) of Chapter I, we can write TogA(t) as

logA(t) = a]t-ka2t2/2!-ka3t3/3! +oeee (4.25)
where '
Py Ky~ ¢ P2 o+
a, =-logl,+ Y)Y 1/(S-n-2-i+1) - ) (p2/6)+ Y (1/8)
i=1 =0 8=1 i=1 §=1
(4.26)
and for q=2, we have
P, k.-1
q ¢ G+ q
= - - - i - - - -1
3q = Pp =P )i (1) + (g - 1)1 121 go(]) /(8-n-£-i+1)
-C q Po p+i h
- I pp/8)t+ 11 (178)8
i=1 i1 6=1 |
Using (4.25) in (4.24) and lemma (4.1) of Chapter I, we get
R£=(L])£aéDp2_2(L]; a)/T(p, - 1) (4.27)
where
3y -1 0 0
a. 2a a 0
(L5 a)= |3 2 1 (4.28)
pZ—Z I
ap2~2 (p%—3]ap2_3 {p%;4Jap2_4 ce Ay

where aés are defined in (4.26).

SUBCASE A2: £=0 and c>0 i.e., k+j >p2£. Expanding the

gamma functions in (4.19), we get
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Po =P, Po o4
G(P(t)=(r(t+1)) “t “/(nm = (_t-cS)I'(pZt+c)) (4.29)
i=1 &=1
Thus in this case we have a pole of order Py at t=0. Using (4.29)

in (4.18), we have

-p
6(t-£) = (L)¢ t % by exp(logB(t)) (4.30)
where
£p,+p,(p,*1)/2 P2 P2
by = (-1) crene I (-¢-n-i+1) /1 (£+1i)! (4.31)
i=1 i =1
and
Py ki_] 5
B(‘C)=(L])°Jc I 0 (1+t/(6-2-n-i+1))(T(t+1)) 2/(F(tp2+c)
i=1 =1
P2 +i
T 10 (1-t/8)) .
i=] §=1

Using (4.36), (4.37), and (4.38) of Chapter I, logB(t) can be

written as

TogB(t) = -TogT(c) + byt +b,t?/2t +bt3/31+ o0, (4.32)

where -

py k;-1 P2 g+
b,=-TogLy;+ Y J 1/(6-n-&-i+1)+p,(w(1)-w(c))+ § [ (1/6)
1 1 Le L 2 I =
i=1 &=l i=1 §=1
(4.33)
and for q=2, we have

Py ki_]

- q - . O Y q
bq-Pzwq_](U-Pzwq_-;(C)Jf(q 1! 1-;] 620 ( 1) /( n-4 'l+|)

P2 e+i ~
+ 77 (178)9
i=1 6=1
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using (4.32) and lemma (4.1) of Chapter I, the residue at t=0 is

given by
R, = (L, )%.D. -(L.s b)/T(p,) (4.34)
AN e Pal > .
where
b0==b0/r(c) (4.35)
and bé is given by (4.31) and bés are given by (4.33). The
determinant Dp ~](L]; b) is equal to the determinant on the right

; 2
hand side of (4.28) with pz—] rows and aés replaced by

bqs; q=1,2, ..., pz—] .
CASE B: £<0 1.e.,£f=—p2,—p2+1,...,—2,-] . For this case, (4.19)

after the expansion of gamma functions can be written as

-(pytet] p,+e+1 -L-1
GP(t) = (t) (rit+1)) mor(t-£-1)/(ritp,+c)
i=]
P2 i
I m(t-¢)) (4.36)
i=]  6=1

Thus in this case, we have a pole of order p2-+£-+1 at t=0.

Using (4.36) in (4.18), we have

-(p,+e+) '
Glt-0)= (L])£C6(t) 27 e (4.37)
where
(p, ) (py+e+1)/2 P2 P2
Cl=(-1) (-L-n-i+1), / T (£+i)! (4.38)
0 i=1 S B
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Pp Kyl ~£-1
Clt) = (L])'t I 0 (14t/(8-L-n=-5+1)) T T(t-£-1)
i=1 &=0 i=1
p, e+l P2 pti
(ret+1)) /(,r(tp2+c) n 1 (1-t/8)) (4.39)
i=-f §=1 :

Thus the residue at t=0 1is given by
P+

] exnliogc(e)/rip,+ £+ 1) (4.40)
t=0

- 2o !
Re= (L) |

where after using (4.36), (4.37), and (4.38) of Chapter I, C(t) can

be written as

1ogC(t)==C5-+C]t-+C2t2/2!-+C3t3/jﬁ-+o~- (4.41)
where
~(£+1)
Cy = Tog( m T1(-£-1)/T(e), where e= k+Jj-pyt (4.42)
i=1
Py ky-l Py i
Cy=-logly+ § ) 1/(6-L-n-di+1)+ 7 } 1/§
i=]  &=0 i=-f §=|
-(£+1)

+.% W(=1-2) = pp( Q) + (py+ £+ 1)y(1)
'1:

and for g>2, we have

—

£+1)

— . q
Cq-— 121 wq_](-z- i)-p, wq_1(c) +(p2-+£-+1)¢q_](1) +

(g-1)1] J D s-k-n-i+ )T+ T T (1/0)

[P k-] Po e
) |
i1 650 i2-e 621
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and let

CO = Cé'exp(Ca)

Now appealing to lemma (4.1) of Chapter I, and using (4.41) in
(4.40), we have
C0, 4pllys ed/m(py 2+ 1) (4.43)
2
where the determinant D £(L1’ ) is equal to the determinant on
the right hand side of (4 28) with aés replaced by
C's, g=1,2, ..., p2-+£ and have p2-+£ ‘rows. lience, for any
p2:>1 we have from (4.5), (4.6) and Cauchy's residue theorem, the
non-null density of LVC in the form

p(LV ) = D{pzs n, Z) _2 kZO B(J K, p2’ n, Z)
- ‘npz z _;2
( R + R (4.44)
T £=1 ’?J

k+J<P2 k+j>p2£

where R,s are given in (4.27), (4.34), and (443). If we put py=1

in (4.44), we get (4.15).

5.  DISTRIBUTION OF LVC AS A CHI-SQUARE SERIES

In this section, we express the density of ch as a chi-square

series using methods similar to those of Chapter I.

Let x=(L )n and A*=-2plogk, where p is chosen so that

Ve
the rate of convergence of the resulting series can be controlled,

p>0. Let¢(t) be the characteristic function of A*. [hen
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_ -2itpn
olt) = E(L,) (5.1)

In Section 3, we obtained the non-null moments E [ch]h for integral
values of h. But the result (3.22) can be extended to any complex

number h by analytic continuation. So, we have for any complex

number h
h (o) [oe)
E[L,.) =D{p,,n,z) ¥ } L )B(J,k,p,,n,Z)
ve 2277 55003 k=0 « 2
p2h P2 P2
P, T I(h+n-1) n(h-i+1)k /I‘(pz(h+n)+k+j) (5.2)
i=1 i=1 i

where B(J, k,pz,r1,§) is defined by (3.18). Using (5.2), (5.1) can

be written as

3(t)=D(py>n2) I T 1 L83k pps 0, T)
j=0 J k=0 ¥ ~
-2np,pit Po Py _ .
Ps (1 -21‘tpn-—6)k 1 r(n(1- Zitp)-6)/F(np2(]-291t)+|<+3)
§=1 A s 8=1

(5.3)

_ . -1 -1 -
Note that ¢(0)=1 (using Zoo = Iy 171 o

z, g'8) and for t#0,

-~

(5.3) can be written as

(b(t)zD(pza nsz-:) Z z Z }: B(J: K, pza n, g)exp(log G(t)) (54)
= =)

where Gj k(t) is denoted by G(t) and is given by

3

—2np21tp2 P2 .
Py m Tinp(1-2it) -&+n(1- p))éH]I‘(np(] -2it) + kes +1-8-np)
$=1 _ =

P2

T T(np(1-2it) +1-§-np)
=1

G(t) =

T(npyp(1 - 2it) +k+j+pyn(l "p”(g
(5.5)
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Throughout this section functions G, W, w, R al’ depend upon j and
k, but for simplicity of notation the subscripts or the superscripts
J, kwill not be explicitly given unless necessary. From (5.5) taking

Togarithm on both sides, we get

Py
]ogmt)=—mmzﬁﬂogp2+ ) Tog I'(np(1-2it) - §+n(1-p))
§=1

P2
+ ) Tog T(np(1 - 21't)+k6 +1-8-np)- log F(npzp(] -2it)+k+j
§=1
P2 |
+ pzn(l- p))- ) TogT(np(1-2it)+1-6-np) (5.6)
§=1

Using the expansion (5.7) of Chapter I, for each of the gamma functions

in (5.6), we obtain

10gG(t) = (p,-1)/2Tog2n - (k+Jj+pyn-") logp,
. 2 . m N
- (G+p,+ (py-1)/2N0g (no(1 - 2it)) + Z](an -2it)) W,
Y‘:

+ R% (n,t) ((5.7)

m+]

where the coefficients W, are given by

p p
2 2

- 8. . _ Y o
WY‘ = LZ]Br+](]-6—np)-6§18r+](]+k6 8 np)+Br+](k+J+>p2n(] p))/pz

P2
= 1B (n(1-0)-8) | (-1)7/(r(r+1)) (5.8)
8=1

Thus G(t) 1is given by



(pp-1)/2 ~(tp,+(p5-1)/2) = (k+itp,n-3
s(6) = 2 2 o1 - 2y PP e /2)

o]

rZowr(u- 2it)on)”" + R (ns t) (5.9)

where W, s the coefficient of ((1- Zit)pn)'r in the expansion
m

of exp( ) ((1- 21t)pn)“rwr).
r=1

Let u =p2-+p§/2+-j- Y,. Then (5.9) can be written as

(py,-1)/2 -(ktjtp,n-"o) _
ot = () F Ty T (- 2ieen) T e n, 1
: r= .
(5.10)

Hence the characteristic function of A* 1is given by

o(t)=Dy(p,sn2) ) ) 1 1 B(J.kipysn, )
= = K

j=0 J k=0
~(k+j s : -{r+ 0
P! J)rzowr((1 ~2it)on) P R (0, ). (5.11)
where
(py-1)/2  (U2-np,)
Dy(pys 15 ) = D(py, n, Z)(2m) Py

Since (1 - iBt)_u is the characteristic function of the gamma

density ga(s,x), where

9, (8, x) = [6% T(e)]7! x*7" 7/ (5.12)

Thus the density of A* can be derived from (5.11) in the form

(k+3)

PO*) =0y (pyomaz) T 1 g B(J, ks pys s 2D,

o0

) (pn)-(r+u)wr9

1 (2, 3%) + R" (n) (5.13)

r+u

76
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Hence the probability that A* 1is larger than any value, say Ag is

p[A*>x1=D,(py, 1, I) ZO § kZO L B{J, k, pys n,Z)nZ(k+j)
J: = K
- -(r+
rzo(pn) (r 6, (2, 2g) + Roeptn)s (5.14)
where
Gr+u(2’ Ag) = j 9r+u(2’ x)dx (5.15)
Ao
and
) -_l [o0] (o8]
R .,(n)=(2m) 'Dy(p,on,Z) ) Y ) ) B(Jd>k,p,>n,3)
1l 17722 7757520 § k=0 « er -

Zowr(pn)_(r+u)(]-21t)_(r+u)[exp(R%;](n))—JJdtdx*
Y‘:
Ao (5.16)

From (5.14), we get the distribution of A* as a series of chi-

square distributions. Now.

n

P[X*:>AO]==P[-2p]og(LVC) > Ao] = P[ch < exp(-AO/an)] (5.17)

fherefore, once we know the distribution of A*, the distribution of

LVC can be obtained by using (5.17).

6. POWER COMPUTATIONS OF LVC CRITERION

Powers have been computed for p=2 wusing (3.27) and (4.15) which
have been tabulated in Table (2.1). The computations were carried
out on CDC 6500 computer at Purdue University Computing Center. Before
computing the power for specific values of the parameter the total

probability for that case has been computed and the number of decimals



included in the tables were determined depending upon the number of
places of accuracy obtained in the total probabilities. From Table

(2.1), we observe that power increases with the sample size N as well

as the parameter |p].

78
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Table 2.1
Power Computations For Wilks' ch Criterion
P =2

ol oy .071 .0%1 .0%5 .01 .1 .15

3  .05000095 .0500095 .050095 .05048 . 05096 . 06047 .06655
L .050002 .050023 .05023 .05117 .05236 .07670 .9301
5 .050004 ,050038 .05038 .05191 .05385 L0947 .1228
6 .050005 .05005 .05053 . 05266 .05537 L1136 L1542
7  .050007 .050068 .05068 .05342 .05691 .1331 .1866
8 .050008 .050083 .05083 .05418 .05846 .1531 .2195
9  .0500097 .050098  .05098 . 05494 .06002 .1735 .2528
10  .050011 .05011 .05113 .05571 .06158 L1942 .2861
15  .050019 .05019 .05188 .05956 .06952 .2993 L4L69
20  .050026 ,05026 .05264 .06347 .07762 L4026 .5877
25  .050034  .05034 .05339 .06741 .08589 4992 .7022
30  .050041  .05041 .05415 . 07140 .09429 . 5864 .7905
Lo  .050056  .05056 .05568 .07950 .1115 .7284 .9028
50  .05007 .05071 .05721 .08774 .1292 . 8290 .9579
60 .05009 .05086 .05874 .09614 1473 . 8960 .9827



Table 2.1 (Continued)
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bl

.25 .3 .35 b 45
3 .07331 .08089 . 0894k .09916 .1103 .1232
Lo o.1117 1332 1579 . 1864 .2192 .2572
5 .1553 .1926 .2352 .2835 . 3377 .3980
6 .2010 .2543 .3138 3794 4502 .525
7 L2477 .3160 .3905 4695 .5512 .63
8  .2046 . 3765 L4631 .5515 .6387 .73
9  .3409 347 .5306 L6245 712
10 .3863 4901 . 592k .6883 .77
15  .5891 L7141 . 8147 .88
20 .7409 . 8524 .923 .99
25 L8441 .9284 .99
30 .9097 .967
35  .9494
LO 972k
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CHAPTER III
EXACT DISTRIBUTION OF WILKS' ch CRITERION AND ITS
PERCENTAGE POINTS IN THE COMPLEX CASE

1. INTRODUCTION

Let Z], zZ’ ""ZN be independent complex no:mal random

p-vectors with unknown mean vector £ and positive definite

hermitian (p.d.h.) covariance matrix L, i.e., ;i ~CN (g, Z). Let
Z;:(Z], Ly, "’ZN)'
the complex multivariate normal distribution is defined by (as can be

Then Z~cN(Z; u, £), (see Goodman [6]), where

seen from Chapter II, but repeated here for convenience)

eN(Zs s 2) = (M7 PNz Nep-trs Nz (TE D) (1.1)

~

and p=(g, &, ...,£) isa pxN complex matrix Let us define

N
Z. and §==.§ (Z"'Zo) (51-20) . (1.2)

_1
Then N ’Q(ZO-—g)'vCN(Q, £) and S has an independent complex Wishart

~

distribution which is defined by

CH(Ss ps N, 2) = [ (T 5175 " Pexp(-trg™'s) (1.3)
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and S is a p.d.h. matrix of order p. In this chapter, we obtain

the exact null distribution of Wilks' ch criterion for testing

H: Z==62[(1-p)£ + pgg'], >0, o and p unknown against the
alternative A#H where e'=(1,1,...,1). In Section 2, we present
the distribution of LVC in terms of Meijer's [11] G-function, where
as in Section 3, using the methods similar to those of Chapter II, we
obtain the distribution of LVC in two series forms which are useful
to compute the percentage points of LVC to a desirable degree of
accuracy. The percentage points of LVC have been tabulated for

p=2(1)8 and for various values of the significance level inTable (3.1).

2. DERIVATION OF THE DISTRIBUTION OF Lvc

In this section, we obtain the null moments and the exact distri-
bution of LVC in terms of Meijer's [14] G-function using Mellin's
integral [19] as special cases of the results in Chapter II.

As in Chapter II, the test of H: §==02[(1— p)I +pee'] reduces

to that of H: = c% 0 s 0]>O, 02>O

2
0 021

~

P2

and unknown, against the alternative A#H; p2=;J—1. The Tikelihood
ratio criterion for testing H versus A, can be expressed in terms

of the following statistic

p
_ 2
Lo = 18170sq;(tr(Syy/p,)) ©] (2.1)
where
St 312!
S = with n=N-1,
22 322|Pp
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N being the size of the random sample from CN(g, I)

The following lemmas are direct consequences of theorem (3.2) of
Chapter II.

P2
Lemma 2.1. The h-th moment of LVC =|§[/[s]](tr(522/p2)) ] under
the null hypothesis H

is given by
h_Peh P2 P
ElL "= ¢, T(np,) mr(h+n-1)/[T(p,(h+n)) T I(n-1i)] (2.2)
ve 2 A 2 i=]
where h is any complex number.
Lemma 2.2. The null density of LVC is given by
-(p,#1) P2 O AL
P(Lyc) =Dypys (L, ) 6, b |Lye (2.3)
"2 2 b ) b ] sb
172 Ps
where
(pz'])/z 1/2"npz pZ .
D,(p,, n) = (2m) p r(np,)/ T 1(n-1) (2.4)
1'F2 2 2 i=1
and
- . -1
ai"p2+n+(1"])p2 ’
‘ (2.5)
bi=p2+n-1 5 i=1, 2,

Special Cases In particular for Py = 1 and p2:=2, respectively, we

have p(LVC) =(ch)n'2P(n)/F(n— 1)
and

(2.6)

p(Lye) =21 2 (an) /lr(n - 20Ty (m)1(L, )% @O, 1240 ™ (2.9)

Using the duplication formula of gamma functions and (2.5) of
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Chapter I, (2.7) can be written as

I'(n)r(n+%) (L )3/2 (1-L
vC vC

p(L )'—' )5/2 2F1(372’137/2; ]_LVC) (2-8)

Ve r(n-1)r(n-2)1(7)

3.  EXACT DISTRIBUTION OF ch IN TWO SERIES FORMS

This section has two parts (a) and (b). 1In part (a) we obtain
the distribution of LVC using method of contour irtegration as in
. Chapter II. This form of the density is well suited for the computa-
tion of percentage points of ch for small values of N, the sample
size. In part (b), we obtain the distribution of LVC as a gamma
series. This form of the density has been used for the computations
of percentage points for large values of N.

(a) Distribution of LVC through Contour Integration

Using Mellin Integral transform on (2.2), we hiave the density of

L in the form

Ve
? (h-1)
R I T{n-1
_ AN NS B (o
p(L,.) =D(pysn)p, = (L, ) " (2mi) (L) ————dh  (3.1)
C-io F(pzh)
h
where b, | |
D(p,, n) =T(np,)/ _H]F(n- i) (3.2)
‘]:
_ P2
and L]_ch/pz
The poles of the integrand are at points
h=-¢, £=-p2,...,-1,0,],2,.... (3.3)

The residue at these points can be obtained by h=t-¢ in (3.1) and
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then finding the residue at t=0. Making this transformation, the

integrand in (3.1) can be written as

Py
Yot rr(t-g- 1)/T{py(t= L)L =pys ..es=1,0,1, ... (3.4)
i=1

G(t-2) = (L]

Two cases arise (A) £=0, (B) £<0.

CASE A: £=20. After expanding the gamma function in (3.4), we have

- (p,-1)
8- 0) = agltb(0) 2 AGe), (3.5)
where
P, (py+1)/2 P2
q = (15T eppR )M (2 4): (3.6)
i=1 .
and
+ P, Pyt Po p4i
AL = (L) D)E (1 ppt/0)/Irlty + 1) 1 T (1= 8/6)] (3.7)
- ]: -

From (3.5), we note that we have a pole of order (p2-]) at t=0.
Using (4.36), (4.37), (4.38) of Chapter I, we can write log A(t) as

Tog A(t) =ayt + ayt?/2t + a t¥/31 + ... (3.8)
where
7 i (3.9)
a, = (1/8) - logL, - P,/S) ' 3.9
17k o 155172
and for q=2
P2 i Pot
o = U] op=p1 ¥ @=L T (/) - ] (pyr6)]

Now using (3.8) in (3.5) and Temma (4.1) of Chapter I, we get the
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residue R£ given by

Ry = (1) gD, o(Lys a)/0(py1) (3.10)

where Dp -2 is the same as the right hand side of (4.28) of Chapter
2
IT with aés defined by (3.9).

CASE B. £<0. As before, after the expansion of the gamma functions

in (3.4), we have

- (p,y+e+]
6t-0) = (L) 2 e (3.11)
where
(p,) (pytex1)/2 P2
by = (1) /T (e+i)i (3.12)
j=-p
and
" poteH ~£-1 P2 o+
B(t) = (L) "(r(t+1)) .H1F(t-£- 1)/[r(p,(t - 2£)) ‘Hz Gﬂl(l - t/68)]
1= i=- =

(3.13)

From (3.11) we notice that we have a pole of order (p24-£4-1)
at t=0 and as before using (4.36), (4.37), and (4.38) of Chapter I,

TogB(t) can be written as

TogB(t) = Tog by + bt + b2t2/2! L, (3.14)
where 2= .
by = 1_1=I] r(-2-1)/r(-p,yt)
-2-1 Po g+j
b, =-Tog Lyt (p, + £+ 1)9(1) - poul-py2) + § w(-£-i)+ § ] (1/6)
] b AN H MERE Y
(3.15)
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and for q=z2, we have

-£-1
= ; q
bq" iz] ll)q_](-ﬂ- 1)+ (P2+£+1)wq_](1) - pzwq_] ('pzz) +
P2 o+ q
(-1t )} (/8
i=-£ &=

Now using (3.14) in (3.11) and appealing to Temma (4.1) of Chapter I, we

have the residue RE in the form

D0 e (Lys bY/T(p, £+ 1) (3.16)

P2

where bo==b0-bO and the determinant Dp2+

p2-+£ and is the same as the one on the R.H.S. of (4.28) of Chapter II,

K(L]; b) 1is of order

with elements aqs replaced by bés » Where bés are defined by

(3.15). Hence for any P,21, we have from (3.1) and (3.2) and
Cauchy's residue theorem, the exact distribution of LVC in the
form

_np2

-1
)=D(pps M, (L™ IR+ TR, (3.17)

p(L
ve £>0 £=—p2

vC

where Rés are given in (3.10) and (3.16) respectively.

(b) Distribution of LVC as a gamma series

We shall now obtain the distribution of LVC in a gamma series

form. Let A==(ch)n and A*=-2plogA, where ¢ 1is chosen so

that the rate of convergence of the resulting series can be controlled,
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O<ps<T1. Let ¢(t) be the characteristic function of A*. Then

o(t) =E(L, )T Ten (3.18)

Now using (2.2), (3.18) can be written as

¢(t)==D(p2, n)exp(logG(t)), where (3.19)

—2np21t P2
G(t) =Py I}

T(np(1-2it) +n(1-p) - 8)/T(np,p(1 - 2it) + p,n(1 - p))
§=1

(3.20)
and D(p2, n) is given by (3.2).
Taking logarithm on both sides of (3.20) and using the expansion
(5.7) of Chapter I for each of the gamma functions involved in (3.20),

we obtain,
10gG(t) = (p, - 1)/21092 - (p,n - 2)1ogp, - (p, + (pg- 1)/2)Tog(np(1 - 2it))

+ 7 (on(1- 2it))"w_ + RO

1 D q(n, t) (3.21)
r=

where the coafficients w. are given by

P2
= [Bray (0901 - 001/ - LB (-0 -8)| 07 (r(re 1) (3.22)

Thus G(t) can be written as

(p,-1)/2 (P, *(p2-1)72) -(pn-Yp) o

G(t) = (2m) "2 (np(1-2it)) P2P2 Py 2" Zowr((l—Zit)pn)_r
r=

+ R (n, t) (3.23)

where wr is the coefficient of ((1- 2it)pn)-r in the expansion of

((1-2it)pn)™"

1

exp(
r

He~13

wr).
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Let u = p,+p5/2-%. Now from (3.19) and (3.23), we have

o620y (pys m) [ (-2t M ere 00 (320

(p,-1)/2 (*-np,)
where D](pz, n) = D(pz, n)(2m) 2 P, g .

Now (1-1i8t)"% being the characteristic function of the gamma
density ga(B, x), we have from (5.12) of Chapter II and (3.24) above,

the density of LVC in the form

) =0, (ppe m I (om) W g (2, 00) 4 RY (n) (3.25)

r=0

p(L

vC r+u

Hence the probability that A* 1is larger than any value, say

Ao is
PI* > 21 =D, (py, 1) ofo(pn)'(”“)wrem(z, Ag) * Rouq(n) (3.26)
r=
where G.yy (25 2g) = f 9,4y (2 x)dx  and (3.27)
A |
Rper (1) =(2“)—]D1(p2, n)f J e-itx*rzowr(pn)'(r+u)(1 _2 gy ()

A =

[exp(R%;](n))— 1]dt dAx*. (3.28)

The choice of p=1 does not give rapid convergence of the
series in (3.26) for small values of N. Therefore, we chose p such

that w]==0 which is obtained by taking p as
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0=1-[(25(py + 1) (py+2) +p5- 1) /Bnp,(p5+2p,- 1)1 . (3.29)

Thus from (3.26) we obtain the distribution of A* as a series of

gamma distributions.

4.  COMPUTATIONS OF PERCENTAGE POINTS

In this section, we tabulate the .005, .01, .025, .05, .1, and

2/N for p==2(1)8 and various values

.25 percentage points of L] =L
of N wusing (3.17), (3.26) and (3.29). These percentage points

have been presented in Table (3.1) upto four sigrificant digits. All
the computations were carried out on CDC 6500 computer at the Purdue
University Computing Center. The accuracy of the results have been
checked by computing the percentage points for the case p= 3 in two
ways (i) using the exact distribution of LVC given by (3.17) and
(11) using the chi-square series form of the distribution of LVC

given by (3.26). The results obtained were in complete agreement

at Teast upto four decimal places.
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Table 3.1
Percentage Points of Wilk's LVC Criterion (Complex Case)
p=2
\\TPQL.005 .01 .025 05 .1 .25
3 .025000 .01000 .02500 .05000 .1000 .2500
L .o7071 .1000 .1581 2236 L3162 . 5000
5 .1710 .2154 L2924 . 3684 o4z .6299
6 .2659 .3162 . 3976 4729 .5623 . 7071
7 L3466 . 3981 4782 . 5493 .6310 . 7579
8 4135 NI Y . 5407 .6070 .6813 .7937
9 L4691 .5180 . 5904 .6518 .7197 . 8203
10 .5157 .5623 .6306 .6877 . 7499 . 8409
11 .5551 . 5995 .6637 .7169 L7743 . 8572
12 . 5887 .6310 .6915 L7411 L7943 . 8706
13 .6178 .6579 .7151 L7616 8111 .8816
14 L6431 .6813 L7354 L7791 . 8254 . 8909
15 6653 .7017 . 7530 L7942 .8377 . 8989
16 6849 L7197 L7684 . 8074 . 8483 .9057
17 . 7024 .7356 .7820 .8190 . 8577 9117
18 . 7181 . 7499 L7941 .8293 . 8660 .9170
19 .7322 L7627 . 8049 . 8384 .8733 .9217
20 L7450 L7743 L8147 . 8467 . 8799 .9259
22 L7673 7943 .8316 . 8609 .8913 .9330
24 . 7860 L8111 . 8456 .8727 .9006 .9389
25 L7942 .8185 .8518 .8779 L9047 .9415
26 .8019 . 8254 .8575 . 8827 .9085 94139
28 .8156 .8377 .8677 L8912 .9152 L9481
30 . 8276 . 8483 .8766 . 8985 .9211 . 9517
35 .8517 . 8697 . 8942 .9132 .9326 .9589
40 . 8699 . 8859 .9075 L9242 L9412 .9642
Ls . 8841 . 8984 .9178 .9327 9479 .9683
50 .8955 .9085 .9260 .9395 .9532 .9715
55 . 9049 .9168 .9328 L9450 .9575 9742
60 9127 .9237 .9384 . 9497 .9611 .9764
65 .91913 .9295 L9431 .9536 . 9641 .9782
70 . 9250 <9345 L9472 .9569 . 9667 .9798
75 .9300 .9389 .9507 .9598 . 9690 .9812
80 9343 Lou27 .9538 .9623 .9709 .9824
85 .9382 L9460 .9565 . 9646 .9726 .9834
30 9416 . 9490 .9590 .9665 L9742 .984L
95 LOUL6 .9517 L9611 .9683 .9755 .9852
100 LOL7L .9541 .9631 .9699 .9768 .9860



Table 3.1 (Continued)
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p =3
N2 . 005 .01 .025 .05 1 .25
b .0°1011  .0%2028  .0%5128  .01043 02167  .06003
5 .02051  .02951  .O4B24  .07077  .1055 -1869
6 .06311  .08122  .114k 1497 .198L .2978
7 1158 -1407 .1835 .2260 .2814 - 3863
8  .1702 .1995 .2479 . 2940 -3519 1566
9 .2222 2542 .3055 -3532 ‘4113 5131
10 .2703 -3039 .3565 .h0L3 4615 .550L
11 .3143 -3485 4013 L4485 -5043 .5978
12 3541 .388% 4408 4871 .5410 16302
13 .3901 “h2k3 4758 .5208 .5729 .6579
15 Lh2z7 456k . 5069 .5506 6007 6817
15  .4523 485 .5346 15769 6252 .7025
16 4792 .5116 .5595 .6005 L6469 L7207
17 .5037 .5354 .3820 .6216 L6662 -7369
18 5281 (5571 18023 .6406  .6836 9313
19 . 5467 . 5769 .6208 .6579 .6993 L7642
20 . 5656 . 5950 .6377 .6735 L7135 .7758
22 .5902 L6271 L6674 17010 .7383 - 7960
oh  .3280 L6546 .6926 -7243 . 7591 8128
25 L6410 .6669 -7039 - 7346 . 7684 .8203
26 .6531 .6783 7144 7442 L7769 .8271
28 L6750 .6991 .7332 L7614 -7923 .8394
30 6944 L7173 . 7498 .7765 .8057 . 8500
35 L7341 NI . 7835 - 8070 .8327 . 8713
Lo L7848 .7832 .8002 .8303 .8531 .887L
45 .7891 .8059 . 8204 . 8485 . 85601 .8998
50 .8089 . 8253 .8l58 .8632 .8819 19098
55 . 8253 .8395 .8593 .8753 .8925 .9180
60  .8391 .8523 .8707 .8855 -9013 9248
65  .8509 .8632 -8803 -8941 .5088 .3306
70 .8611 .8727 .8886 .9015 .9152 .9355
75 .8700 . 8809 .8959 .5079 15208 .9358
80  .8778 - 8881 19022 .9136 9257 .oL36
85  .88L8 -804 5 .5078 .9186 -9300 .9469
90  .8910 .9001 .9129 .9230 .9339 LoL9y
95 . 8965 .9053 .9174 .9270 .9373 .9525
100 .901% .9059 L9214 .9306 .oLok .9545
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Table 3.1 (Continued)

p =4

N, 005 .01 .025 .05 .1 .25

5 .023016 .075898  .0%1467  .0°2989  .0%6277  .01822

6 .0°6977 .01016 .01696 .02546 .03915 .07392

7 .02530 .03307 .04778 . 06409 .08769 . 1400

8  .05264 .06498 .08690 .1097 .1407 . 2044

9  .08515 .1014 .1291 . 1567 .1929 .2634
10 .1199 .1393 1713 .2023 .2h19 .3162
11 .1551 .1769 .2120 .2453 .2869 .3631
12 .1897 .2131 .2505 .2852 . 3280 .Loks
13 .2229 . 2476 .2864 .3220 . 3652 b1y
1L 2544 .2800 .3197 .3557 . 3990 Ah2
15  .2843 .3104 .3506 .3867 L2907 .5036
16 .3123 .3388 .3792 4151 4577 . 5300
17 .3387 .3652 L0356 e 4832 .5539
18 .3633 .3899 4301 4653 . 5065 5755
19  .3865 4130 4527 L4875 .5279 . 5952
20 .Lo82 43hs 4738 . 5080 . 5476 .6131
22 4476 4730 5117 R .5826 L6448
2l 4825 .5076 . 547 . 5764 .6127 6717
25 L4098 .5232 .5596 .5908 6262 .6837
26 .5135 5379 - .5736 L6042 .6388 . 6948
28  .5411 . 5647 .5992 .6286 6617 . 7150
30 .5659 .5887 .6220 .6502 .6819 . 7327
35 6177 .6388 .6692 . 6947 .7233 .7686
L0  .6587 .6781 . 7060 .7293 . 7552 . 7960
45 6919 .7098 .7355 .7569 .7806 .8177
50 .7192 .7359 .7597 L7794 .8012 .8352
55 7422 .7577 .7799 .7981 .8183 .8L96
60  .7617 L7762 .7969 .8139 .8327 .8618
65  .7784 .7921 .8115 .8275 . 8450 .8721
70 .7930 .8059 .8242 .8391 .8556 .8810
75  .8058 .8180 .8352 . 8491 . 8648 .8887
80  .817+ .8287 .8450  .8583 . 8730 . 8955
85 .8272 . 8382 .8536 . 8663 .8802 .9015
90 . 8362 L8467 .8614 .8735 . 8866 . 9069
95  .8443 . 8543 . 8684 .8799 . 8924 .9117
100  .8517 .8612 .8747 .8857 .8976 .9160



Table 3.1 (Continued)

o4

p=2>5

™ 005 .01 .025 .05 1 .25

6 .021234 .032238 .075162 051014 .0%2091  .0%6124

7 .0%2510  ,0°3677 .0%6227  .0%0493  .01492  .02047

8 .01029  .01361  .02006  .02743  .03845  .0&hok

9 02379 .02975 04061 .05224 . 06865 .1041
10  .04188  .05053  .06563  .0B115  .1022 .145)
11 .06322  .0743%5  .09323  .1120 11368 .1858
12 .08659  .09990  .1220 1435 1712 ‘22Ls5
13 .1111 1262 -1510 1745 2046 .26088
15 .1359 -1526 -1795 . 2049 12365 . 2049
15  .1607 11787 12073 .2339 12568 13265
16 .1851 .2041 .2340 .2616 .2954 -3558
17 .2089 .2287 .2597 .2879 3222 -3830
18 12319 .2524 .2801 -3128 S 3l "LoB2
19 .2541 .2750 -3073 -3363 .3711 4316
20 2754 .2967 . 3293 .3585 .3933 4534
22 .3153 3371 . 3700 . 3993 4337 4926
2bk  .3519 .3737 -4067 1355 4655 .5268
25 .3689 -3908 4236 4523 4858 S5423
26 .3852 "4070 14396 .4%81 15013 5568
28  .h157 4372 .L&oL 4973 .5296 .5834
30 .4k3s 4BL8 -4963 .5236 5520 15070
35 .5033 «5237 .5535 . 5790 .6083 .6560
L0 .5521 L5713 .590L .6232 16503 .6043
45 592k .6105 16369 .6552 - 6841 .7250
50 6262 6433 . 6681 .6890 .7125 .7502
55 .6550 L6711 69k - 7140 -7360 L7711
60 6797 L6949 .7169 .7353 .7560 .7888
65  .7011 .7156 7364 7538 .7732 "8040
70 7199 .7336 .7533 . 7698 .7881 .8172
75 .36k L7455 17683 .7839 18012 .8287
80  .7512 17637 .781%5 17963 8128 .8388
85 . 7644 7763 .7933 .8074 .8231 . 8478
90  .7762 L9876 18039 L8174 - 8324 .8559
95 . 7870 7979 .8135 .8264 L8407 .8632
100 .7967 18072 .8222 .8345 " 8482 . 8667
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Table 3.1 (Continued)

p =6

N~ 005 .01 .025 .05 .1 .25

8 .029465 .021384 .022354 023620  .0%5772  .01177
9  .0“B201  .0%5607 .0°8393  .01165 .01665 .02886
10  .01062 .01342 .01864 .02437 .03266 .05135
11 .02019 .02L62 .03254 .04087 .05245 .07720
12 .03249 .03862 .04925 .06009 .07473 .1048
13 .obLé69g? .05476 .06796 .08111 .09847 .1331
1L .06308 .07243 .08798 .1032 .1229 .1613
15  .08035 .09111 .1088 .1257 L1475 .1889
16  .09835 L1104 .1299 L1484 .1718 .2157
17  .1168 .1299 .1510 .1708 .1956 .2h14
18  .1354 .1495 .1719 .1928 .2187 L2661
19  .1539 .1689 .1924 L2142 .2410 .2896
20 .1723 .1880 .2125 .2350 .2625 .3119
22,2081 .2249 .2509 L2745 .3030 .3533
24,2423 .2598 .2868 L3111 . 3401 .3907
25  .2586 .2765 .3038 .3282 .3574 .4079
26 2745 .2926 .3202 L3447 .3739 RIS
28  .3048 .3232 .3511 .3758 .LokLg .4s5u8
30 .3332 .3517 . 3797 Lok3 4332 J4BL2
35  .3961 Y Ago2 L4662 J4ok2 .5410
40 4493 674 4041 .5172 .5438 . 5881
Ls Lol .5119 .5376 .5596 . 5849 L6266
50  .5331 . 5499 . 5744 . 5954 .6194 .6587
55 . 5664 . 5825 .6060 .6260 .6487 .6858
60 .5955 .6109 .6333 .6523 .6739 .7089
65 .6210 .6357 6571 .6752 .6957 .7289
70 .6435 .6576 .6781 . 6954 .7149 L7463
75  .6636 L6771 .6967 .7132 .7318 L7617
80  .6815 . 6945 .7132 .7290 .7L68 L7753
85  .6977 .7101 .7281 L7432 .7602 . 7874
90  .7123 .7243 L7415 . 7560 .7723 .7983
95 . 7255 . 7371 .7537 .7676 .7832 .8082

100 <7377 . 7488 . 7648 .7782 . 7932 .8171



Table 3.1 (Continued)
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p=17
ol

Y\Fb\\.005 .01 .025 .05 1 .25

9 .023774  .0J5468  .0J923%  .051420  .052278  .0°h74s
10 .0%1725 .0%2315 .0%3504  .0%k921  .0%7143  .01275
11 024689  .0%5081  .0%Bk27  .01117  .01522 .02465
12 .0%9547  .01176  .01577  .02008  .02620  .03971
13 .01631  .01957  .02533  .03132  .03959  .05711
14 .024B2  .02021  .03678  .OLLARE  .054B2  .07611
15  .03485  .04039  .oh974  .05906  .07139  .09612
16 .ok615  .05280  .06387  .07h72  .08887  .1167
17 .05845  .06616  .07884  .09111  .1069 -1374
18 .07153  .08024  .00h41  .1080 11252 .1581
19 .08518  .09481  .1103 .1250 L1436 .178L
20 .09922  .1097 -1261 J1422 11619 .1984
22 .1279 .1399 -1587 -1761 11976 12369
24 .1568 -1699 -1903 .2090 .2319 .2730
25 .1710 |1846 .2057 .2250 -2L8k 12901
25 .1852 11992 .2209 21405 L 26kk4 13067
28 .2127 2275 .2501 - 2701 - 2949 13379
30 .2393 L2545 .2778 . 2987 .3235 3669
35 .3006 . 3166 -3407 -3621 '3872 -L30L
L0 L3545 -3708 -3950 5163 Jhb11 4832
45 4018 B179 kL9 4627 - 4869 5275
50 L4433 4591 4825 15027 L5261 15651
55 L4797 4952 .5179 .5375 . 5600 .5973
60 .5120 5269 13490 15678 15895 16252
65  .5406 .5551 “5764 L5046 5153 L6495
70 .5662 15802 15008 .6183 . 6382 16709
75 .5892 .5028 6226 - 639% 6586 16899
80 .6099 16230 L 6l21 658U 6768 17068
85  .6287 6Lk - 6598 .6755 16932 .7220
90 .6458 6581 6759 .6910 - 7080 .7358
95 661k 16733 .6905 -7050 7215 7182
100 .6757 .6872 .7039 7179 .7338 . 7595



Table 3.1 (Continued)
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p =28
N .005 .01 .025 .05 1 .25

10 .031597 .ogzzsu .023803 .075810 .029305 .051957
11 .0J7175 .0J9652  .051470  .032080  .033053  .0%5577
12 .052056  .0226k1  .053764  .0550M4  .0°8970  .01159
13 .0Zuuhs (025519 .0%7500  .0%9663 .01279  .01989
1L .0%8022 .0%%711  .01273  .01593  .02042  .03021
15  .01282  .01522  .01940  .02373  .02966  .0k219
16 .01879  .02195  .02738  .03287  .04027  .05548
17  .02583  .02979  .03648  .0ok315  .05198  .06976
18 .03383  .03860  .oh654  .05L435  .06L456  .08L75
19 .ok266  .oL822  .05738  .06628  .07779  .1002
20  .05218  .05851  .06884  .07878  .09150  .1160
22 .07283  .08059  .09307  .1049 1197 1477
24 09492  .1039 1183 1317 .1483 -1790
25  .1063 1159 .1310 1551 1625 L1904
26  .1178 1279 1438 .1585 11765 .2095
28 .1L409 1519 11691 11849 .2041 .2387
30 .1639 1757 1940 .2106 .2307 2665
35  .210% .2327 .2528 .2708 .2923 .3299
Lo .2709 . 2849 .3059 . 3246 . 3467 . 3807
45 L3177 .3319 .3530 .3722 -394 L322
50 .3598 -37h1 .3956 LAkl 1363 4733
55  .3976 L1119 4332 L4517 L4731 .5092
60  .h317 Liy58 4867 4848 L5057 5408
65  .Lb2k 4763 4967 L51kb .5347 .5687
70 4901 .5037 .5237 . 5409 . 5607 .5935
75 .5153 .5286 L5481 L5648 .5839 6156
80  .5383 .5512 .5701 .5863 .60h9 .6355
85  .5592 5718 .5902 .6059 .6239 6535
90  .578K4 .5906 .6085 .6238 L6412 .6699
95  .5960 .6079 .6253 L6402 L6571 L6847
100 .6123 .6239 L6408 .6552 6716 .6983
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CHAPTER IV
ON THE EXACT DISTRIBUTION OF THE LIKELIHOOD RATIO
CRITERION FOR TESTING H: y=yos £=0°l .

1. INTRODUCTION AND SUMMARY

Let X158 5+ 38y be a random sample of size N from a p-variate
normal distribution with unknown mean vector p and positive definite

covariance matrix I, i.e.,

~

Let

Then the 1ikelihood ratio criterion (LRC) for testing the hypothesis
HO: B0 gayzl against the alternative AO#HO, 02 unknown and IR

a given known vector can be expressed as (see Khatri and Srivastava [13])
L= [P ISI/Ttr () o) PV (12)
Let

L, = e | (1.3)
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In this chapter, the exact null distribution of L] hes been obtained

in the form of Meijer's [14] G-function and also in a chisquare series
form using the methods similar to those of Chapter I in order to compute
percentage points of L1. We also discuss the asymptotic behavior of the
distribution of -2logL. The percentage points of L] have been tabu-
lated for p=2(1)10 and for various values of the significance level

in table (4.1).

2. DERIVATION OF THE DISTRIBUTION OF L].

In this section, we derive the exact distribution of L]. Let

Styy' and u = X'!-]X where y = N1/2(5'Eo) . (2.1)

=z
1l

0° V' has Wishart distribution W(g,p,n). Now V and ﬂ=¥]/2X

are independently distributed (see Khatri [10]) and consequently vV and

Under H

U =w'w are independently distributed. Now
T-u = (Toy' V) = 1ogy 'V = eyt 1/1V] = 151/ IS+ | (2.2)

S and y being independently distributed, 71-u has beta distribution
with parameters ((n-p+1)/2, p/2) (see Rao [21]). Thus

u ~Beta(p/2, (N-p)/2) and the joint distribution of u and vV is given

f(u,V) = C(p,N,g)up/z'](1-U)(N'p)/2']lyl(”'p)/zeXp(-trg’]M/Z)
- (2.3)
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cHpNg) = slpr2,(h-p)/2) 22 (V21 2) (2.4)
and
p
ppN/2) = PP g paye-(ia1)2),
'l:
1 (2.5)
g(%,m) =/ xg"]ﬂ—x)m']dx
0
In terms of u and y, L] can be written as
Ly = pPIVl (1-u)/(tr V)P (2.6)
Hence
1
E[LT = pPMC(pan.g) J/. ./f uP/271 (3T HN-P)/2
MU (2.7)
lv|h+(”'p)/2 -1
= " exp (-try~ " V/2) dh
(tr V)P CT

which can be written as

E[L?] = pphc(p,m;)e(p/z,h+(N-p)/2) ‘/~ 'M|h+N/2—(p+])/2
e (2.8)
exp(-trg"1 v/2) ,

(tr )P

dy

Now, make use of the transformation 2—1/212—1/2 =W, where L = oZL.
The Jacobjan of the transformation is (GZ)p(p+1)/2’ under this trans-

formation (2.8) can be written as
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ELLT = pPc(p,ng ) 6(p/2,h-pHay2) ) P/2 _/’|y|“+N/2"<P+1>/2
w0 (2.9)

exp(-tr.W/2)
(tr W)P" -

But it is well known that

[ lylh-!-N/Z-(P'ﬂ )/2 (tY' E)"ph exp(_trﬂ/z)dy = I‘p(h+n/2,0)
4>0 (2.10)
r(pN/2)2NPR £ (p (ne/2))

(see Pillai and Nagarsenker [19]). Thus
ELLYT = pPMr(p/2) ¢ (h+(N-1)/2)/ [R(hN/2)e (N-1)/2] (2.11)

Now using Gauss Legendre's multiplication theorem (see (3.22) Chapter I)

on r(@(h+N/2)) and (2.5), (2.11) becomes

p P
ELLNT = K(p,M) o r(nN-0)/2)/ 1 (e 2e(i-1)/p) - (212)
'l: 1:

where

; .
K(p.N) = (2m)P"1 pl1-NP)/2 P((np)/2)/ 1 ()/2) (2.13)
i

Using the Mellin integral transform on (2.12) (see Lemma (2.4), Chapter

1), the distribution of L] has the form
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p
CHioo R
nm 1 ((N-1)/2+h)
f(Ly) = K(pW)(2ri) (P = dh (2.14)
Cofeo

r (N/2+h+(i-1)/P)

i=]

The integral on the right hand side can be represented in terms of

Meijer's G-function [14]. Hence, we have

-1 P © A758p5.-452

L) = kML 6 (L) U2 (2.15)
p p ], 2,..., p

a; = (N-1)/2, b, = N2+(i-1)/P3i=1,2,3,....0  (2.16)

3.  DERIVATION OF THE DISTRIBUTION OF | AS A CHISQUARE SERIES

Using (2.11) one obtains

eL"] = ELL)™71 = p"PZ r(hp/2) ¢ ((N-140) 72/ r (N-1)/28 (Wp (41 /2]
(3.1)

Using (2.5), (3.1) can be written as

r((N(h+1)-1)/2)/r (Np(h+1)/2) (3:2)

=T

ELL"] = Ky (o) P/

i=1

where

() = T{0/2) T Ov1)/2) (3.3)
i=
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Let
A = -2plog L, (3.4)

where 0<p<1, and is chosen so that the rate of convergence of the re-
sulting chisquare series is as rapid as possible. If ¢(t) is the
characteristic function of 3, then

o P
o(t) = ky(p,N)p™™ 1T (N(1-2it)-5)/2p(1-21t0)/2)  (3.5)
P

Now taking the logarithm of o¢(t), we can write Tog ¢(t) 1in the form

Tog ¢(t) = Tog k,(p,N) ~P Nitelogp 4 ﬁ Tog r((Np(1-21t)+N(1-)-3)/2)
’ (3.6)
- Tog T((Npe(1-21t)+Np(1-))/2)

Further, using expansion (5.7) of Chapter I to each of the gamma func-

tions in (3.6), one obtains

Tog ¢ (t) = Tog ky(p,N) + (p-1)/2 log 2n -s Tog (No(1-2it)/2)

(3.7)
- (Np-1)/2 log p + ;g% w (N (1-21)/2)™ + R (N,1)
where
s = (p°+3p-2)/4 (3.8)

and the coefficients wrs' are

W, = (-1>‘”LBM<N'p(1-p)/2)/p‘"-§ By ((N(1-p)-3)/2) /r(r1)
(3.9)
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Thus the cheracteristic function of X can be obtained from (2.25) as

3(t) = Ky(p,N) (No(1-21t)/2)" }: W(No/2)" J(1-2it) J+R"+](N t)
(3.10)
where

Ko(psN) = k}(p,N)(Zw)(p“])/zp“'Np)/2 (3.11)

. m
and Wj is the coefficient of N¥ in the expansion of exp(}{%wJN J

Now (1-29t)”® being the characteristic function of a chisquare density
with 2a degrees of freedom, say 92a(x2), the distribution of A can

be derived from (3.10) in the form

72 - 5~ (1/2)” %), o GEaRI (1) (3.12)
J=0 _

Hence the probability that A is Targer than any value, say Ag» is

Np/2 (j+S)G +R

m+](N) (3.13)

2(s+3) %o

P[A2A ] = N) 20 W (
0 J

J

where

i 2 2
GZ(S"‘J)(}‘O) =/ 92(S+J)(X ) X
%o
and

R (N) = (2")-]k2(p’N)/ f exp(- i)Y W W (Ner2)” (Jrs)

j=0
A0

(1-2it)” (J S)[exp(R%;1( t))-1]dt dx .

-00
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The choice of (=1 does not give rapid convergence of the series in
(3.13). Thus we choose p such that wy=0, which is obtained by taking

p as follows:

o = (1-(p+1) / 6NRL(20°+7p%+4(p-1))/ (p*43p-2) ] (3.14)

4. CHISQUARE APPROXIMATIONS TO THE DISTRIBUTION OF L.

We will now show that for large sample sizes -2log L has a chi-
square distribution with (p(p+1)/2+p-1) d.f.
From (3.3) and (3.5), the characteristic function of A= -2log L
is given by
-pNit P oy
p PNt 1 y(N(1-2it)-3y2r(Np/2)

i=1
$(t) = - (4.1)

i(N-3)/2rtNp(1-2it)/2)

=

Using Gauss-Legendre's multiplication theorem (see (3.22) of Chapter I)

p
o(t) =1 ¢j(t) (4.2)
j=1 ,

where

6. (t) = L{N/2+(3-1)/p) T(N(1-2it)-]

)/
J T(N-37/2)T (N(1=23t) /2+(3-T)/p (4.3)

2)
)

Thus -2log L is distributed as the sum of p independent variates,

the characteristic function of the jth variable being given in (4.3).
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Now using Stirling's approximation (see Anderson [1 ]) to each of the

gamma functions in (4.3), we obtain

o (t) ~ EXR(=(N/2+(5-1)/p) - (N(1-2it)-J)R2)
J exp(-(N-3)/2 - N(1-21t)72 = (3-T)/p)

(4.4)
(v/2+(3-1)/p) WD2HE1/P (n(1-2it)-gy2) (MT-21E)-3-1)72
((N-3)72) N-3-1072 (N1 224t) s24(3-1) 7p) (NT-2T2)-T) 72+ (3-T) 7P

P A R )V L 71—275)(”” -2it)-3-1)/2 nﬁ-l‘—

(1 __%)(N-j-1)/2 (1 + ﬁé%;1%1t )(N(1-21t)- )/2+(J-1)/P)
a = (N-1)/2+(3-1)/p.

Now as N » o, ¢j(t) > (1-21t)'j/2-(j'])/p the characteristic function

of a XZ variable with j+2(j-1)/p degrees of freedom.

Therefore, A = -2log L is asymptotically distiributed as a X2
variable witn _E;(j+2(j-])/p) = p(p+1)/2+p-1 degrees of freedom. Table
(4.1) gives theJBercentage points of L] up to N = 300. For larger
values of N, we can refer to chiéquare tables. Chisquare approximations

for p=2(1)6 and o = .025, .05 and .1 are given below.
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Chi-Square Approximation

b/a .025 .05 .01

2 .9635 .9689 L9744
2 .9432 9496 - .9564
4 .9209 .9281 L9361
5 .8961 .9044 .9133
6 .8696 - .8784 8882

5. COMPUTATIONS OF PERCENTAGE POINTS

In this section, we tabliuate the .005, .01, .025, .05, .1 and .25

2/N for p = 2(1)10 and various values of

percentage points of L1 =L
N wusing (2.15),(3.13) and (3.14). These percentage points have been
presented in Table (4.1) up to four significant digits. All the compu-
tations here were carried out on a CDC 6500 computer at the Purdue Univer-
sity Computing Center. The accuracy of the results have been checked by
computing the percentage points for the case p =2 in two ways, (i)
using the exact distribution of L] in terms of Meijer's G-function and
(i1) using the chisquare series form of the distribution of L,. The

results obtained in two ways were in complete agreement at least up to

four significant digits.
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Table 4,1
Percentage loints of the LRC for westing H : | = g 5 I = 021
p=2
(61
\\FF\>.005 .01 .025 .05 .1 .25
3036269 .022513 071583  .06412  .0%263%  .0179%
hooo.0"171h 03469  ,08892 01832 .03834 .1065
5 .01229 .01984 .03768 . 06180 .1027 .2082
6  .03426 04931 . 08042 1174 L1732 .2979
7 06451 .08662 .1287 L1749 .2398 .3727
8  .09928 1272 1775 .2297 .2997 L4347
9 .1358 .1681 L2242 .2802 .3525 L4862
10 .1722 .2097 .2678 .3259 .3990 . 5296
11 .2077 2457 .3080 .3670 4398 . 5665
12 .2415 .2811 3448 4oko L4758 . 5981
13 .2735 3141 .3785 4373 . 5077 .6256
14,3036 3448 4092 467 . 5361 L6496
15  .3317 .3732 4373 LoLs . 5615 6707
16  .3581 . 3996 4631 .5193 . 5844 .6895
17 .3827 L2440 14868 . 5418 .6050 .7063
18  .4os7 L6y . 5085 . 5623 .6238 .7213
19 4273 4678 . 5286 . 5812 6409 L7349
20 b7y 4875 5472 . 5985 6565 7473
22 .48Lo . 5229 . 5804 .6293 L6840 .7689
24,5163 . 5540 .6092 .6558 .7075 .7871
25  .5311 . 5681 .6222 L6677 .7181 7951
26  .5h50 . 5814 L6344 .6788 .7278 . 8026
28  .5706 .6057 6566 .6989 L7455 . 8160
30 « 5935 .6275 6763 7167 .7610 .8278
35  .6L416 .6727 .7170 7533 7927 .8515
Lo 6797 .7083 L7486 .7815 .8170 . 8694
hsg 7106 .7369 7740 .8040 .8362 .8835
50  .7360 .7605 L7947 .8223 .8518 . 8949
55 7574 .7802 .8120 .8375 . 8647 .9042
60  .7757 . 7969 .8265 .8503 .8755 .91.21
65 .7913 .8113 . 8390 .8612 . 8847 .9187
70  .8050 .8238 . 8499 . 8707 . 8926 L9244
75  .8169 .8347 .8593 .8789 . 8996 .92904
80  .8275 . 8llly . 8677 . 8862 .9056 .9337
85  .8370 . 8530 . 8751 .8926 .9110 .9375
90  .84sh . 8607 .8817 .8983 .9158 L9410
95  .8530 L8676 . 8876 .9035 .9202 L9440
100  .8600 .8739 . 8930 .9082 L9241 .9468
150  .9048 9145 .9277 .9381 9490 L9644
200 .9279 .9353 .94l .9533 .9616 .9732
250  .9420 L9480 .9561 .9625 .9692 .9786

300 .9514 .9565 L9634 .9687 L9743 .9821
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Table 4.1 (Continued)

Pp=3
~ O
N .005 .01 .025 .05 1 .25
L °051913 .026487 .023589 .021389 075643  .024016
5 .02u443 .059085 .0°2380 .0°5032 .01095 .03329
6 .0°3879 .0°6367 .01247 02111 .03665 .08134
7 .01260 .01848 .03115 . 04697 .07235 .1355
8 .02673 . 03660 .05620 .07883 1126 .1892
9 .04523 .05908 .08509 .1135 .1539 .2398
10 . 06680 .084130 .1159 1490 L1943 .2863
11 .09030 .1110 1471 .1839 .2328 .3286
12 .1148 .1382 .1781 .2176 .2690 . 3668
13 .1397 .1653 .2081 .2497 .3028 Lo1h
14 .1645 .1919 .2370 .2801 .3342 4328
15 .1889 2177 .2645 . 3086 .3633 L4613
16 .2126 2426 .2907 <3354 . 3903 4872
17 .2355 2664 .3154 .3605 4153 . 5109
18 <2577 .2892 .3388 .3841 L4386 .5325
19 .2789 .3109 .3609 L061 4601 . 5524
20 .2993 .3316 .3817 L4268 4802 .5708
22 .3373 .3700 4200 L6Lh . 5164 6034
24 .3721 .Lo4Ls Ash2 L4977 . 5482 .6315
25 .3883 4209 L4699 . 5129 . 5626 L6441
26 4039 4362 4848 . 5272 . 5761 .6559
28 4328 .L64s .5124 . 5536 .6009 677h
30 4593 4908 . 5373 . 5773 .6230 L6964
35 .5165 . 5463 . 5900 6271 .6690 .7353
4o . 5631 . 5913 .6322 6666 .7051 .7655
Lg .6018 6284 6666 .6986 7342 .7896
50 6344 6594 .6953 .7251 .7581 .8091
55 6621 .6857 L7194 L7473 L7781 .8254
60 L6860 .7083 .7400 . 7663 .7950 .8391
65 .7067 .7279 7579  ,7826 . 8096 .8508
70 .7249 . 7450 7734 .7968 .8222 .8610
75 7410 .7601 .7871 .8092 .8333 .8698
80 .7553 .7736 .7993 .8202 .8430 .8776
85 .7682 .7856 .8101 .8301 .8517 .8845
90 .7798 .7964 .8198 .8389 .8595 .8907
95 .7902 . 8062 . 8286 . 8468 .8665 .8962
100 .7997 .8151 .8366 .8540 .8729 .9012
150 .8624 .8733 . 8885 . 9007 .91138 .9334
200 .8952 .90136 .9154 .9248 L9348 .9498
250 .9154 .9223 .9318 .9394 .9L76 .9597
300 .9290 L9349 L9429 .9493 .9562 L9663
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p =k
N~ .005 .01 025 .05 1 .25
5 .o§5136 .o§1756 .029597 '.023670 .og1u8h .0%1082
6 .071324  .032722  .057228  .031556  .0°3478  .01123
7 .051328  ,052207  .0°bh21  ,0°7666  .0137h .03251
8  .0°4B60  .0%7241  .01252 .01953 .03079 .06136
9 ,01138 .01538 .02495 .03588 ,05288 .09L27
10 .02088 ,02772 .04095 .05597 .07818 .1288
11 .03300 .04230 .05959 .078L2 1052 1633
12 .ok723 .05893 .08001 .1022 .1329 .1969
13 .06305 .07699 .1015 1267 .1606 .2292
14 .08000 .09599 1235 1512 .1878 .2569
15  .09769 1155 L1457 .1755 2142 .2889
16 .1158 .1353 1676 .1992 .2396 .3161
17 .1301 .1550 .1893 2222 . 2640 .3418
18  .1524 1745 2104 .2UL s 2872 .3658
19 .1706 .1937 .2309 .2650 . 3004 .3883
20  .1884 2124 .2507 .2865 .3305 5095
22,2231 .2485 2880 .3250 .3696 4481
24,2551 . 2823 .3232 .3603 .Lols 4823
25  ,2718 .298L .3396 . 3768 L4212 4979
26 2871 . 3140 .3553 .3925 4367 5127
28  .3163 L343 . 3850 4220 L4657 .5398
30,3435 . 3709 L4123 4489 4919 .5643
35  ,Lok2 5313 4718 . 5071 . 5480 6155
L0 4556 4819 .5210 . 5546 .5932 6562
45 4993 . 52L7 .5621 . 5041 6304 .6892
50 .5369 . 5613 .5969 .6273 6615 .7165
55 . 5694 . 5928 .6268 .6555 .6879 .7395
60  .5977 .6201 .6526 .6799 .7105 .7590
65  .6227 L6441 6751 .7010 .7300 7758
70 6448 .6653 .69L9 .7196 7471 . 7904
75 6645 .68L2 .7125 .7360 7622 .8033
80  .6821 .7010 7281 .7506 7756 81146
85  .6081 7162 7422 7637 7876 .8248
90 7125 . 7299 L7549 .7755 .7983 .8338
95 7256 L7L2l 7660 . 7862 .8081 .8L20
100  .7376 .7538 L7769 .7959 .8169 .8495
150 .8175 .8293 L8461 .8597 8747 .8976
200  .8602 .8695 .8825 .8932 .0048 9224
250  .8867 .8943 9051 .9138 .0232 .9376
300  .9048 9113 .9203 0277 .9357 .9L"8
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p=>5
[0
\\N\\ .005 .01 .025 .05 .1 .25
6 .oﬁ3114 .028901 .023956 .021337 .034963 .033438
7 .034354 .038888 .022363 .055129 051167 .073932
8 ,02h727 .037935 .021618 .052858 .0°5251 .01306
9 .051909 . 052880 .0°5085 .0°8025 .01311 .02745
10 .024867 .0°6865 .01106 .01623 .02456 . 04593
11 .0°9602 .01292 .01952 .02722 .03899 .06722
12 .01614 .02097 .03018 . 04051 .05568 .09025
13 .02435 .03079 . 04268 .05558 .07396 L1142
14 .03403 04210 .05662 .07196 .00328 .1384
15 .O4lhol .05461 .07163 .08923 1132 1626
16 .05685 . 06804 .08740 .1070 .1333 .1863
17 .06954 .08216 .1037 .1251 .1535 . 2094
18 .08280 .09675 .1202 L1433 1734 .2318
19 .09648 1116 .1368 1614 .1930 .2534
20 1104 1267 .1535 .1792 .2121 2742
22 .1387 .1568 .1862 2140 . 2489 L3132
24 .1668 .1865 .2178 2471 .2833 . 3490
25 .1807 .2010 .2331 .2630 .2997 .3657
26 .194h 2152 2481 .2784 .3155 .3817
28 2211 .2428 .2768 .3078 3454 4117
30 . 2468 .2692 .3039 .3353 L3731 4391
35 . 3061 . 3294 .3650 . 3967 L4342 4983
4o . 3584 .3820 4175 L4487 4852 . 5467
Ls Lobl 4277 L4626 4930 . 5282 . 5869
50 Aung 4677 .5017 .5311 . 5649 .6207
55 4804 . 5027 <5357 . 5640 . 5964 6495
60 . 5120 <5337 .5655 . 5927 .6238 L6743
65 . 5401 .5611 .5919 .6180 L6477 .6058
70 .5653 . 5856 .6153 L6404 .6689 7148
75 . 5879 L6076 6362 L6604 .6877 .7315
80 .6084 L6274 .6550 .6783 7045 L7h64L
85 .6270 L6454 .6720 L6oul .7195 .7597
90 .6439 .6617 6874 .7090 .7332 7717
95 .6594 L6766 .7015 .7223 7456 .7826
100 L6736 .6903 L7143 7344 .7569 .7925
150 L7701 .7826 .8005 .8153 .8317 .8574
200 . 8227 .8327 . 8469 .8586 .8714 .8914
250 .8557 . 8640 .8758 .8854 . 8960 9124
300 . 8784 .8855 .8955 .9037 .9127 .9265
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p=6
\a
N>~ .005 .01 .025 .05 .1 .25
8 .0%1581 .023155 .028244 .021784 .034086 021416
9 .031732 .0292k  .036035 .021081 032026 .0 52146
10 .0g7562  .031153  .032071  .033325 .0°5551  .01212
11 .052078  .052965  .0Z4867  .0°7273 .C1125 .02192
12 054377  .095962  .0%9179  .01303 .01907 .03421
13 .0°7789  .01024 .01503 .02052 .02880 .0L4849
14 .01235 .01580 .02232 .02955 .0LO14 06425
15  .01803 .02257 .03090 .03991 .05276 .08105
16  .0247L .03041 .04058 .05135 .06638 .0985L
17  .03239 .03919 .05119 .06365 .08073 L1164
18  .0LOo8L .0L877 .06254 .07660 .09558 1344
19  .04998 .05901 .07LL6 .09003 .1108 = .1524
20 .05970 .06977 .08682 .1038 .1261 .1703
22  .08042 09244 L1124 .1318 .1568 .2051
24 .1023 .1160 .1384 .1598 .1870 .2384
25 .1135 .1279 L1514 .1737 .2018 L2544
26  .12L7 .1399 .1643 .1874 .2163 .2699
28 1473 .1637 .1898 2141 L 2hul .2996
30 .1697 .1871 2145 .2399 .2711 . 3274
35  .2237 2429 .2726 .2996 .3322 .3895
Lo  .2737 .2938 . 3247 .3523 .3852 4421
L5 .3191 .3398 .3710 .3987 4313 4870
50 .3602 .3809 L1121 .4395 4715 .5255
55  ,3971 4178 L4486 4755 .5067 .5589
€0 .L305 .4509 4812 .507L .5377 .5880
65 4607 4807 .5103 .5358 .5651 .6136
70 .4880 .5076 .5365 .5612 . 5896 .6363
75  .5128 .5320 . 5601 . 5841 L6116 .6565
80 .5355 . 5542 .5815 6048 6313 6747
85  .5562 .57kl .6010 .6236 L6492 .6910
90  .5752 .5929 .6187 .6407 .6655 .7058
95  .5927 .6100 .6350 .6563 .6803 .7192
100  .6089 .6257 .6500 .6707 .6939 .7315
150 .7205 .7336 .7524 .7680 .7856 .813k
200 .7829 .7935 . 8086 .8212 .8351 .8571
250 .8226 .8315 .84l . 8545 . 8661 . 8842
300 .8501 .8577 .8685 .877L .8873 .9027
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Table 4.1 (Continued)
p=7

\N\S\.005 .01 .025 .05 .1 .25

9 .006329  .0}1222 0%3087  .o%6578  .031498  .025260
10 .0%6%43  .021104  .032293  .024146  .027886  .0%2108

11 .033015 .024633 .ogauuu .021375 .022339  .0%5290
12 .028837 .0%127h  .052126 053226  .055087  .01027
13 .021976  .052721  .0Z4261  .0°61khk  .0%9168  .01702
1h  .023708  .024931  .0%7356  .01020  .01k59  .025K0
15 .0%6163 .0°7972  .011k5  .01539  .02129  .03520
16 .0%9379  .01186  .01651 02165  .02912 0L516
17 .01336  .01659  .02249  .02887  .03796  .05806
18 .01808  .02200  .02931 103695  .Ok764F  .07070
19 .02348  .02832  .03686  .ok576  .05801 .08388
20 .02953  .03519  .OK506  .05519  .0689k  .0974k
22 .04326  .05057  .06301 07546 .09200  .1252
24 .05876  .06763  .08245  .09701 11160 .1531
25  .06702  .07663  .09255  .10806  .1281 1670
26 .07554  .08585  .1028 11192 11403 .1807
28  .09218  .10L8 1237 1417 L1645 .2075
30 .111k 1241 1406 -1640 .1883 -233L
35 L1574 .1725 .1962 .2180 L2445 .2935
Lo  .z02k  .2190 I . 2682 . 2965 - 3465
45 .2bsq . 2627 .2897 .3139 - 3429 -3934
50  .28L8 -3030 -3306 .3552 .38k ‘1346
55 . 3215 . 3399 . 3679 « 3925 4215 4709
60  .3552 .3738 4017 L261 4547 .5031
65 .3862 "LoL7 ‘4324 4565 T4BLE .5318
20 .L146 -4330 L4503 4840 L5115 .5575
75 L1408 -4500 4858 .5091 .5359 .5806
80  .46LS ‘4828 . 5002 15319 .5581 16015
85 L4872 L5047 -5306 .5528 .5783 .6205
90 . 5077 .5250 .5503 .5720 .5968 6377
95  .5268 15437 .5685 .5896 .6138 L6535
100 .5445 5611 .5853 .60%9 .6295 - 6680
150  .6696 .6830 .7023 .7185 .7368 7663
200 .7414 L7852 L7682 814 .7962 .8198
250  .7877 .7970 .8103 L8214 .8338 . 8535

300 . 8200 . 8280 .8395 . 84901 . 8597 . 8765
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le 4.1 (continued)
i p - 8
N - .oo5 .01 .025 .05 .1 .25
1 . 32560 : 34297 . 38908 .031617 .023105  .078505
12 .031212 .0J1873  .033kb9 . 075682 . 39813 .022288
13 .033748 .025448 .059220 .021418 2274 . 24736
14 . 288@4 . 21229 031954 . 052857 4337 .0°8307
15 . 21743 . 22341 . 23546 . 4987 097256  .01302
16 053029 033957 . 5769 [0%7864  .01106 .01883
17 4797 6128 .0%8657  .01150 .01573 .02564
18 . 27082 028878  .01222 .01589 .02122 .03336
19  .0°9896  .01221 .01643 .02098 .02746 .04185
20  .01324 .01611 .02127 .02673 .03438 .05100
22 .021k44 .02551 .03262 .0399L .0Lgok .07084
24 .03146 .03678 . 04586 .05501 .06725 .09210
25  .03707 . 04300 .05306 .06309 .07638 .1030
26  .0L302 .04957 .06058 .07146 .08576 L1141
28  .05581 .06355 .07636 .08885 .1050 .1365
30  .06955 .07841 .09289 .1068 L1247 .1588
35  ,1065 .1178 .1358 .1527 .1738 .2129
LO  .1449 .1580 .1786 .1976 .2210 .2632
s .1830 .1975 .2199 .2403 .2651 . 3092
50  ,2197 .2351 .2588 .2802 .3058 .3508
55 2546 .2706 .2951 .3170 L3431 . 3883
60  .2873 .3038 .3288 . 3509 L3771 222
65 .3180 .3347 . 3599 .3821 .L0o82 U528
70 L3466 . 3634 . 3886 L1107 4366 L4806
75,3732 . 3900 L1151 L4371 L4627 .5058
80 . 3989 A48 L4397 L4613 L4865 .5288
85 L4211 4377 L6224 .4837 . 5085 . 5499
90 4427 4591 4834 . 5045 .5287 .5692
95  .4628 L4791 .5030 .5237 . 5475 .5870
100  .4817 4977 .5212 .5415 . 5648 L6034
150  .6179 L6314 .6509 .6675 .6863 ".7168
200  .6984 .7097 . 7260 .7397 L7552 .7801
250  .7511 .7608 . .7747 .7863 . 7994 .8204
300 .7882 .7966 .8087 .8188 .8302 . 8482
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D=9
\\\\ a ]
N~ 005 .01 .025 .05 1 .25
13 .o§4939 .627646 .031417 .032354 .0Jk115 039837
1  .031588 .0J2325  .033980 1006152 .051008  .0%2157
15 .0J3929 .0J5506  .07BB70  .031313 .0%2024 053986
1§ .0JBl0s .0%1098  .051687  .072B02  .0Z35K9 026541
17 .021469 .021936 .022862 .023950 .025639 .0°9862
18 022416  .0%311h  .054460 035997  .0%8326  .01393
19 023692 .0Zk669  .0%6513 .0°B57>  .01162  .01B73
20 .025323 .0%6626 .0%9033  .011€7"  .01550  .02420
52 .0%3713 .01178  .01548 .01940  .02k92  .03693
56 .01461°  .01855  .02369  .02000  .03628  .05162
55 01910  .02250  .02839  .03kk1  .0B257  .0595k
58 02293  .02681  .033k6  .0h018  .04922  .06777
28 03153  .03637  .obhshk 05266  .06340  .084OL
50 .ohizk  .0k703  .05668  .06614  .07848  .1028
35  .06914  .07717  .09020  .1026 1184 S1484
L0 .1003 1102 ©1260 .1408 .1593 11934
bs L1327 1kb2 1622 .1788 11692 12362
50 .1653 .1779 21976 .2155 12373 12762
ts 1971 12107 12316 " 250L 2731 3132
60  .2278 " 2420 . 2638 12837 - 3086 3473
65  .2571 2718 .20k -3100 .3377 .2?87
50 .2848 .2999 "3226 3428 - 3666 "L075
75 .3111 - 3264 -3493 .3695 ©3933 "4340
80  .3359 .3512 - 3743 "39L5 3181 458y
85  .3592 " 3946 "3976 4177 4412 -14,809
90  .3B12 -3966 Lok L4394 4626 15018
95 .B019 ‘4172 4399 4596 4826 5211
100 A214 4366 L4591 4786 .5012 .5391
150  .5662 L5795 - 5990 L6157 6347 17168
200  .654k4 16659 6825 | 6966 7126 . 7801
250  .7133 17232 "7376 "2hg7 9633 - .8204
300  .7551 .7638 7764 -7870 - 7989 8482
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p = 10
T~
N~ 005 .01 .025 .05 .1 .25
13 .024419 .057260 . 41474 .042657 . 35113 .031439
14 uzoug . a3168 . 35886 ) 39825 .031732 . 34227
15 . 36755 1050930 .031715 .032693 .034436 .039726
16 .031737 .032451 .033994 .035977 .029340 .021885
17 .033733  .035097 .0 37926 .021142 .021711 . 23234
18 .037032 o 29347 . 21399 .02195u .052829 055070
19 .071200 1559 22262 053078 . 24330 0%7423
20 .071895 2417 02341k, 24545 .0%6241  .01030
22 . 23988 . 4935 .0%6679  .0°8583 .01134 .01761
2k 037133 .0 28623  .01129 .01412 .01811 .02682
25  .0%9121  .01092 .01411 L01744 .02208 .03206
26  .01139 .01352 .01724 .02110 .02641 .03767
28  .0167L .01957 . 0244L .02939 .03607 .04987
30 .02314 .02671 .03276  .03881 .04 685 .06313
35  .04298 .0L8LL .05743 .06615 .07740 .09927
LO  .06694 .07417 .0858L .09690 .1109 .1373
Ls  ,09339 .1022 .1161 .1291 .1453 .1752
50  .1211 L1312 L1470 .1616 .1795 .2120
55  ,1491 .1602 L1776 L1934 .2126 2470
60  .1769 .1889 .2073 .22Lo . 2hl2 .2800
70 .2301 .2433 .2633 .2812 . 3025 .3397
75  ,2553 .2688 .2893 . 3076 . 3292 . 3666
80 .2793 .2932 . 3140 . 3324 . 3542 .3917
85 . 3023 .3163 . 3373 . 3558 <3777 4150
90 . 3241 . 3382 . 3593 . 3779 . 3997 4368
95  .3448 . 3590 . 3802 . 3987 204 L5792
100  .3645 . 3787 . 3998 4183 .4398 L4762
150  .5151 .5282 N . 5638 .5827 .6658
200  .6101 .6216 .6383 .6526 .6688 .7385
250  L,6745 . 6846 .6993 L7117 .7258 .7853
300 .7209 .7299 L7429 .7538 .7662 . 8180
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CHAPTER V
SUMMARY AND CONCLUSION

The present thesis has dealt with the dis-

tribution problems of Wilks' (1946) LVC criterion

for testing H: L= 02[(T-p),{ + pe g\e}'] , p and ¢

unknown against the alternative A # H and also of

the likelihood ratio criterion for teswting H:g=g0§

%ﬁgé s Wy specified, czunknown. The main objective

of the current work has been fo presenf the non-null

distribution of Ly, criterion in a form suitable

for power computations which was not possible earlier.
In chapter I of the thesis, the non-null dis-

tribution of L,. has been given in a closed form as a

series of Meijer's G-functions using Mellin - Integral

transform. This form of the density was used to com-

pute the powers for five percent critical points of

ch for the case p=2. The powers seem to increase
with N, the sample size, and the anly parameter p .
The non-null density of L,, criterion has also been

derived in two other series forms using contour in-

tegration and as a series of chi-square distributions.
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These forms of the density were used to compute the power
for the case p=3. Powers have been computed for different
N and the parameters pq,, P13s Pop3 and c= %/02. In this
case powers increase with N, each of the parameters

s 0195 P13 but decrease with pp3 Power computations
involve the computations of zonal polynomials which
become complicated for higher values of p. Therefore,
it might be of interest to investigate tile asymptotic
behavior of the non-null distribution cf L,o -

In chapter II, the non-null distribution of
Wilks' Ly, criterion has beeﬁ discussed in multivariate
complex normal case. In order to obtain the non-null
distribution.of L,,» certain theorems have been proved
regarding the distribution theory of muliivariate
complex normal distribution. In this chapter, the

non-null distribution of L,. have been computed in

c
three series forms using methods similar to those of
chapter I. Powers have been computed for the case
p=2 for different values of N and the parameter |ol
In chapter III, the exact null distribution of
Wilks' Ly, is deduced form chapter II in the multi-
variate complex normal case in forms suitable for
computations of percentage points. The percentage
points have been computed for p=2(1)8, 4=.005, .01,

.025, .05, .1, .25 and for various degrees of freedom

n = N-1.
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In chapter IV, the density of the likelihood
ratio criterion L; for testing Hipg=ngs 2°501L , &,
a given known vector, and qunknown, was obtained in
a closed form in terms of Meijer's G-function using
Mellin - Integral transform. The distribution has
also been expressed in two series forms in order to
facilitate the computation of the percentage points
of the criterion, using methods similar to those of

chapter I. The percentage points of L1 have been

tabulated for p=2(1)10, values of ¢ as above and for
various values qf N. The asymptotic distribution of

-2 log Lj has also been studied. It was proved that

-2 log L is asymptotically distributed as a chi-square
variable with p(p=1)/2 + p degrees of freedom.

In summary, the present work solves most of the
distribution problems regarding Wilks' (1946) Lo
criterion in the classical and complex Gaussian cases.
The methods obtained in chapter I are quite general
and could be used to express the non-null distributions
of other well known likelihood ratio criteria in the
field of multivariate analysis, in forms which are of
practical use.

The following are some suggestions for future
work :

1. The non-null distribution of L1 available so far

(See Khatri and Srivastava (1973)), is not suitable
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for power computatioﬁs. The methods similar to
those of chapter I may be used to express the non-
null distribution of L, in forms suitable for power
computations. The asymptotic non-null distribution
of L; may also be investigated.

Further work needs to be done to obtzin more
rapidly convergent series in all the distribution

problems obtained.
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