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Abstract

Monotonicity of Power Functions of Tests Based
on Traces of Multivariate Complex Beta
and Canonical Correlation Matrices

, by
S. Sylvia Chu
Purdue University

It is proved that the power functions of tests based on Pillai's
trace for MANOVA and canonical correlation in-the complex case are
monotonically increasing in each noncentrality parameter prbvided that
the cutoff point is not too large, extending the work of Periman in the
real case. An illustrative table is also given of the smallest error
degrees of freedom less the number of variables in MANOVA guaranteeing
the above monotonicity property given other sample arguments and

significance level.
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1. Introduction

For thg MANOVA_prob]em in the real case, Perlman [ 2] has shown
that the pbwer function of the test based on Pi]]af's trace of a
multivariate beta matrix is monotonically increasing in each noncen-
trality parameter provided that the cutoff point fs not too large.
This result has also been proved true for the problem of testing
independence of two sets of real variates. In this paper, both of
these results are extended to the complex case. An illustrative
table is also given, of the smallest error degrees of freedom
less fhe number of variables in MANOVA guaranteeing the above
monotonicity property given other sample arguments ahd significance

level.

2. Invariant tests for the MANQVA problem

" Let Z](pxr) and Z.(pxn) be independent complex matrix variates.

~2
The columns of Z] and Zz are mutually independent and complex

normally distributed with common nonsingular covariance matrix I,
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and EZ] = 0, EZ2 = 0. The joint density function of Z] and 22

is given by

(2.1) ﬂ—p(r+n)|§l—(r+n) 1

o l-tre (2,0 (2 E) 2,201

The problem is to test
& = 0 against 6 # 0.
This problem is invariant under all transformations of the form:

where B(pxp) is nonsingular and E](rxr) and Ez(nxn) are unitary.
Here, we assume that p < n + r. Let t = min{p,r}. A maximal
invariant statistic is (2q,...,2;), where 1 280 20022, >0

are the ordered t largest characteristic roots of the multivariate

complex beta matrix Z]Zi(g]zi+222')_]. An invariant parameter 1is

~ ~232
(wys-+-s0y)s where wy >...> wy > 0 are the ordered t largest
characteristic roots of 9§'§'].
! . o
Start with equation (2.1) and put 68' = (~])D (txt)(ui,ué)
_ \ - Eo ~v w
My 3 ﬁi Ez -
and £y = ( YO %) = un' where g]((p—t)xt), uz(txt),
B BT "

uz((p-t)x(p-t)) and E4(tx(p—t)); and y, and uy are nonsingular;

and Dw denotes the diagonal matrix with characteristic roots

wy _‘>_--:-Z_ wg of 65'2-]

-~~~

as its diagonal elements. Put g =

0
1, _ M : . _ -1
(92) = (EZ)P = ¢(txr) where ¢ is determined by ¢ = Qw_%gz 6, and



9¢' = I and complete §'(rxt) into a unitary matrix ' {rxr).

Finally transform

~ ~ -~

Ve is T
Then the joint density of V and W is

n-p(r+n)exp[-tr(wﬁ4VV'-2ReVD**+D£)],

w

D O D/— 0
where D*(pxp) = (7® 7) and D** (rxp) = (' ~ ) and 0
~w 00 “Vo 0 Q] N

. is (r-t)x(p-t)

~ -~

. 2ero matrix. Note that the characteristic roots of §]2](§]§i +
Zzié)'] are the same as those of yY'(yY'+w@')"].

(r+n)

Now, for any region Q g_Cp invariant under all transforma-

tions (2.2),'def1ne

@Q(w]"--?wt) = Pg,g{(gbgz) ¢Q} = PD**I,I{(Y)w) ¢ Q},
"V
o} q is the power function of the test with acceptance region Q.

For each i = 1,...,r, denote the vi-section of Q for fixed Vis

j # 1 and fixed W by

oD = vl (v € gt < P,

where yi(px(r—1)) = (v],...,v1_1,vi+],...,vr).
Pillai and Li [3 ] have proved the following theorem. They

assumed that p < n, but their proof is also valid if p < r + n.

(r+n)

Theorem 1. Let Q g_Cp be invariant under all transformations

(2.2). Suppose that for each i = 1,..,r, Q(1)(Yi,ﬂ)is convex, then
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qb(m],...,wt) increases monotonically in each 0y
Now consider the following acceptance regions:
(1) Roy's largest root test:
Q'l = {(Y’W)IQ"‘I < k]}, 0 < k-] < ],

(2) Hotelling's trace test:

: t
_ -1
(3) Likelihood ratio test:
| t
Q3 - {(Y’w)|121(1-21) > k3}, 0 < k3 < ],
(4) Pillai's trace test:
t
Q4 = {(Y,w)lT_—Z]Q] < k4}, 0 < k4 <v t.

The tests are defined for p < n; but the last will be defined for

P <n+rin the sequel. Pillai and Li [3 ] have shown that Qs Q2
and Q3 satisfy the conditions of Theorem 1 and hence their power
functions are monotonically increasing in each population root.
However; the monotonicity property has not yet been estéb1ished

for test 04 based on the trace statistic iilzi. In this paper,

we show that qb4(w],...,wt) is monotonically increasing in each ws
provided that the cutoff point k4 is not too large. In order to

show this, we need the following lemma:
{

Lemma 1. Let ¢ (z],...,zp) and n =(x],y1,...,xu,yp) where

P

zj = xj + iyj, J=1,...,p, and let T be a one-one transformation

between & and n such that T(£) = n with the following properties:



in

(1) T(gy +&)) +T(gy) + T(¢,) and

(2) T(at) = aT(£) where a is a real number. Let Q be a subset
of £'s in p-dimensional complex sample Cp, and Q* be its
corresponding subset of n's in the 2p-dimensional real sampie
space R2p. If Q is convex in cP and symmetric in g, then Q*
is convex in R2p and symmetric in n and conversely.
The proof is given by Pillai and Li [3 ].
ForIO <a<Tand p <r + n, define k4(a,p,r,ﬁ) to be the size a
cutoff point, i.e.
P( Z 2s > k (a,p r,n)je = 0)
i=1
Theorem 2. The invariant acceptance region Q4 satisfies the conditions

of Theorem 1 if and only if

k4(a,p,r,n) < max{1,p-n}.

t
Proof. Q, {(Y,W)I'X]Qi < kgl
1:

fl

COVM) [ErLVT (VT i) 7T < kg3,

where 0 < k4 < t. Since Q is symmetric in the columns v],...,vr
of V, it suffices to prove that Q(1) W) is convex for almost all

(V1, ) if and only if k4 < max{1,p-n}. Now
tr[VT (VTR ) V] = petr[WR (VT WA ) T

and (VT+) ! = (v il V) = g



-~

1t WH' is nonsingular for almost all (y],w) since

~ o~

[ =i ] |

where U = V]
p < ntr-1,

Hence, exc]dding a null set of (g],W) values,

1

< tr WU -prk ).

_ -1
WW'U 2, Tet y = U= Vy»> and define the region

MOV H) = Y2 < trnepek

}.
143y K

Thus Q3" (7 W) = umi w3,

-~

-~

1 - 1
where U2[M(V],W)] = {U¥]y € M(V],w)}. Choose y to be a pxp
unitary matrix such that '

A= yD, (pxp)y',
~ -~ .i ~
where A 3:..3_Ap are the ordered characteristic roots of A. Let

z = @'y = (2],...,zp)' and define the region H(Q],W) E;Cp by

P

~ i p
(2.3) HOV.W)=(z] } z.Z2. (0. T & +p-k,) < T A -p+k,J.
~17~ J.—E] JJ J m=1 m 4’ — mZ] m 4

Then M(g],W) = ?[H(?],W)], so that except for a null set of (Q],W)

values,

o R B

(2.4) Q{0 0) = URLH(T, ).
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Now assume that k4 < max{1,p-n}. In view of (2.4) and the linearity of
the operator.y% Y, to verify that Q4 satisfies the conditions of Theorc:
1, it suffices to show that H(y],W) is convex for a]](g],w). Now defin=
the region H* g;RZp by |

p P

p
2, 2\,
2.5) H* = YyseensX sy ) by ) (A o - - ,
(2.5) {(xy5y, x yp) I_Z (x +yJ)(AJ mz]xm+p k4)5mzlxm Prkyds

w Aiy.=z., j=1,...,p.
here xJ 1yJ zJ, j=1 p

Since A and I-A are positive semi-definite and and rank (£)

rank (W) <

min{p,n} = s, say, we have that

1 g_x] >e..> A

S >0 =2 Too.= AL

Hence for each j = 1,...,p,

p
- +p-k
A mglxm Pk,

v

-min{p-1,s} + p—k4
= -min{p-1,n} + p--k4

max{1,p-n} - k4

> 0.
Therefore from (2.5), H* is an ellipsoid (possibly degenerate or empty)
in R2p and hence is convex in R2p. By Lemma 1, we have that H(Q],H) is
convex for all (Y],H) in ¢P. So Q4 satisfies the conditions of Theorem
. |
Conversely, suppose that k4 > max{1,p-n}. Since k4 < t = min{p,r}, this
requires that r > 1, Let‘d = s(g],W) = E Am-p+k4 and szsj(Y]’w) =

m=1
Aj—s, so that

‘ 2,2
* = ' -ty )R, .
HE = {xqyps e axpuyp) |j§](xJ yjl8; < 8



[se]

We shall show later that there exists (ﬁ],w) such that

(2.6) ](V W)> 0 > Bp( W).

17~ ~1°2

Since . (V],W) is a continuous function of (V],w), there must

n+r-1) such that (2.6) holds for all

exist an open set A g;Cp(
(~], ) € A. Thus H* fails to be a convex set whenever (y],W) €A,
which is a non-null set, so by Lemma 1, H(Q],W) also fails to be

a convex §et whenever (9],w) €4, SO Q4 cannot satiéfy the conditions

of Theorem 1. Back to the existence of (Q],w) satisfying (2.6),

which can be rewritten as

p_
(2.7) Aj < p-k4 < .Z Aj'

e~

j=2
By assumption, max{1,p-n} < k4 < t = min{p,r}, or
(2.8) max{0,p-r} < p-ky < min{p-1,n}

Case (i). p<n,p<r.

Choose (V],N) such that WN' = I and V]Vi = Dd » where 0 < dy <...<d

are defined below. For such (V],w) we have
(Ays-eoan)) = ((14d) 70, (14d) 1)
],---9 p -I LICIR IR p s

so (2.7) becomes

’ -1 Pl -1
(2.9) : } (14d.) 7 < p-k4 < ) (14d.)
- j=2 J j=1 J

Also (2.8) reduces to 0 < p-k4 < p-1, so 0 < a < p-2 where

-1

a = [p—k4]. If a = 0 choose the dj such that (1+d]) =1 and

(]+dj)"] < (p—k4)/(p-1) for 2 <j <p. If1 <a <p-2 select



8, such that (p-k4) ~a<08<land0<e < 1-6, and choose the

1

d. such that (]+d])_] == (4d) 7 = 1, (14d )71 = 6, and

J
P

) ) (1+dj)_] = e. Then it is easy to see that for all 0 < a < p-2,
J=at2 '
(2.9) is satisfied. Similarly for the other cases (ii) p <n, p > r,

a+l

(iii) p>n, p<r, and (iv) p > n, p > r.

Since k4(a,p,r,n) is decreasing in o and n, while increasing in
p,r. The power function of Pillai's trace test for the MANOVA problem
has the monotonicity property with respective to each population root
provided that « and n are not too small and p and r are not too large.
' Approximate values of k4(a,p,m+p,s+p), where m = r-p, s = n-p,
has been tabulated by'Krishnaiah and Schuurmann [1 ].> In Table 1 and
2, we give the values of S*(a,p,m) for o = 0.05 and o = 0.01, where
S*(a,p,m) is the smallest value of s > 0 such that k4(a,p,m+p,s+p) < 1.
Thus, by Theorem 2, Pillai's trace test has the monotonicity property
if s > S*(a,p,m).

TABLE 1

Values of $*(0.05,p,m)

\'

4 22 29 36 42 49

4 - b 8 10
9 12 14 17

NN

6 45 56 69 79 90
8 77 92 109 126 140
10 119 138 155 177 194



TABLE 2
Values of S*(0.01,p,m)

w
P 2 4 6 8 10

2 8 11 14 17 20

4 25 33 40 48 55
6 50 62 74 85 97

83 39 118 134 147
10 127 145 165 185 203

3. Invariant tests for independence of variates

Let g((p]+p2)xm) be a complex random matrix whose columns
are independent and complex normally distributed with mean 0 and

_common nonsingular hermitian covariance matrix . Let

Z, In e
Z=1(5)and z = ( )»
S 7 I I
where Zy(pyxm), Z,(pxm), Z17(p1xpy)s Zoq(poxpy)s Zon(poxpy).
The problem of testing independence of two sets of variates is

to test

Iyp = 9 against Zqo £ 0.
This problem is invariant under all transformations of the form:

g B 0,4
Y ——— 1,
L, 0 8, I

-~

where B](p]xp]) and Bz(pZsz) are nonsingular and F(mxm) is unitary.



A maximal invariant statistic is (r%,...,r%), where t = min{p],pz}

and 1 3_r$ >0 ri_i 0 are the ordered t largest characteristic

roots of

J1 ‘] 3 21 -] S - '] ']
(GO) (LILL) (L4) = S17 81555,
where S = ZZ' is partitioned as . Here we assume that max{p],p2}<m
to ensure the nonsingularity of §]] and §22. An invariant parameter
is the vector of canonical correlations (p],...,pt), where

p% > ..3_p$ > 0 are the ordered t largest characteristic roots of

_ §{% §]2§é;§21. The power function of any invariant test is a function

of (o],---,pt)-

The conditional distribution given §22 of the matrix

1

1 -1 1
S S 2§2]

- _ - -] -
S11512522521 = ($17.2%892522521) 7 /8155,

is of the same form as the distribution of the matrix_(yY'+y@')']YY'
in the MANOVA problem if we take (p,r,n) = (p],pz,m-pz), and their
unconditional null distributions are the same. (See Pillai and Li

[3 1). Therefore, we have the following:

Theorem 3. If the power function of an invariant test for the MANOVA
problem, which accepts the hypothesis 6 = 0 if and only if
(2],...,2t) € Q, increases monotonically in each noncentrality parame-

ter Wy then the power function of the invariant test for the

indépendence problem, which accepts the hypothesis Lyp = 0 if and

~ ~

only if (r?,...,ri) € Q, increases monotonically in each canonical

correlation Pj-



For p]+p2 < m, Pillai and Li [3 ] have shown that the power

function of Roy's largest root test based on r?, Hotelling's trace

t
test based on } r?/(]-r?)'], and the 1ikelihood ratio test based
i=1
t I
on .n](1—r§) all have the monotonicity property.
1 =

Now consider Pillai's trace that for testing the independence.

This test accepts Zyp = 0 if and only if

t,
Z ry < k4(a,p],p2,m-p2),

where k4 was defined in section 2.

Theorem 1, 2 and 3 imply the following:

Theorem 4. The power function of Pillai's trace test for independence
increases in each canonical correlation Pj if k4(a?p],p2,m-p2)_i
max{],p]+p2-m}, '

Since ka(a,p],pz,m—pz) is decreasing in o and m, while increasing
in py and p,. The power function of Pillai's trace test for the
independence problem has the monotonicity property provided that o and
m are not too small and Py and p, are not too ]arge. Table 1, 2 can

also be used in this case.
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List of Symbols

Greek letters:

b3 u. c. sigma (e.g. p. 1, line 22)
G 1. c. theta (e.g. p. 2, line 1)
T 1. ¢. pi (e.g. p. 2, line 3)
W 1. c. omega (e.g. p. 2, Tine 13)
1 1. ¢. mu (e.g. p. 2, line 15)
b 1. c. phi (e.g. p. 2, Tine zJ}
¥ 1. c. psi (e.g. p. 3, line 1)
£ 1. c. xi (e.g. p. 4, line 20)
n 1. ¢c. eta (e.g. p. 4, line 20)
o " 1. c. alpha (e.g. p. 5, line 8)
A u. c. lambda (e.g. p. 6, line 5)
A 1. c. lambda (e.g. p. 6, line 11)
S 1. c. delta (e.g. p. 7, line 19)
B 1. c. beta (e.g. p. 7, line 19)
A u. c. delta (e.g. p. 8, line 4)
€ 1. c. epsilon (e.g. p. 9, line 1)
o 1. ¢. rho (e.g. p. 11, line 7)
Non-italic symbols:
'exp (e.g. p. 2, Tine 3)
tr (e.g. p. 2, line 3)
min (e.g. p. 2, line 9)
Re (e.g. p. 3, line 5)
max (e.g. p. 5, Tine 13)
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Monotonicity of Powers of Trace Tests for Complex Matrices.



