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Summary

A general téchnique is developed for improving upon inadmissible estimators
of natural parameters (or integral powers thereof) from continuous exponential
families. The technique is to reduce the problem to the study of a differential
inequality. Typical differential inequalities are presented and solved.

Explicit results are given for simultaneous estimation of gamma scale para-
meters (and their inverses) for a variety of natural loss functions. Surprising
behavior is observed for many of the estimators improving upon "'standard"
estimators.

For squared error loss (and any continuous exponential family) it is shown
explicitely how to establish inadmissibility of an estimator and construct im-

proved estimators.



1. Introduction

There has recently been considerable interest in improving upon standard
estimators in multivariate estimation problems. This interest has been stimulated
by the development of two powerful tools of analysis in Stein (1973) and Brown (1974) .
In Stein (1973)1the use of integration by parts is shown (for the multivariate
normal distribution) to lead to a relatively simple method of finding estimators
improving upon the usual estimator (the sample mean) under squared error loss in
three or more dimensions. This technique was shown to apply to general continuous
exponential families by Hudson (1978). The result of the technique is essentially
the representation of the risk of an estimator, §, as the expected value of an
expression involving 6 and its derivatives. Indeed if X = (Xl,Xz,...Xp) has
density f(x[@) with respect to Lebesgue measure on RP, and the loss in estimating
v(8) by 8§(x) is L(8,y(8)), the representation for the risk, R(5,8), of § is of the
form

R(8,8) = Eg L(8(X),(8)) = [ L(SC),u(8))f(x|e)dx = [O(s(x))£(x|e)dx,

where 8(8(x)) involves § and its derivatives (but not 6). In comparing an estimator
* *
§ (x) with a "standard" estimator 6°(x), if it happens that A(x) = (8 (x))-96°x)) <0
for all x, then clearly
* ) * fo}
A (8) = R(S ,8) - R(67,8) = Ee[A(X)] <0
.
for all 6, so that § is better than §°. The problem of improving upon an estimator
*
5% can thus be dealt with by trying to find a solution, 6 , to the differential
inequality A(x) < 0.

The importance of the study of such differential inequalities has been

cmphasized by Brown (1974), who developed a number of gencral techniques to use



them in proving inadmissibility. (Stein (1965) earlier indicated their impor-
tance. See also Brown (1971 and 1975) and Berger (1976a, 1976b, and 1976¢).)

This paper has two purposes. This first is to explain, for the general
exponential family model, how the question of improving upon §° can be reduced to
the study of a differential inequality A(x) < 0, and to discuss and give solutions
for the types of differential inequalities that are usually encountered. In so
doing, a constructive general theory is developed for improving upon most inad-
missible estimators of the natural parameters of an exponential family under
squared error loss.

The sccond purpose is to apply the results to interesting practical
problems, for the most part problems involving simultaneous estimation of gamma
scale parameters (or their ianrses). More precisely, assume that X = (xl,..nxp)
is observed, where the Xi are independent Gamma (ai,ei) (ui >0, 0 < Gi < @} random

variables, having density (on (0,«=))

oy (mi—l) -X.0.

£(x;]8,) = 0,7 x, e T l/F(ai).

Although one example involving the estimation of 8 = (61,92,...6p) will be given,

we will for the most part discuss the estimation of the 6;1. {The 8;1 are generally
of greater interest, being for example multiples of the variances if the Xi are

chi square.) Assume the loss in estimating (eil,eél,...6;1) by §(x) = (6l(k),...6p(x))

is of the form
) m 2
(1.1) L{(§,0) = 5 8. (1-8.(x)86.)".
=1 * i i

- 2.
The "standard" (best multiple of xi) estimator of Oil for the loss 6?(1~6161)” is

éz(x)vz x;/ (@;+1)



It is thus natural in the simultaneous estimation problem to seek improve-
ments upon 6O(x) = (Gi(x),,...ég(x)).

Four choices of m in (1.1) will be considered: m=-2, m=-1, m=0, and
m=1. The choice m=-2 corresponds to the usual sum of squares error loss (for
estimating the 8;1), while m=0 gives the standard invariant loss. =-1 will
be considered because it is the simplest of the four possibilities to deal
with (and hence easiest to understand), and also may be of intrinsic interest
as a compromise between the m=-2 and m=0 losses. The choice m=1 is examined
because it leads to a different type of conclusion than the others. Indeed it
will be seen that the cases m < 0, m=0, and m > 0 have considerably different
solutions.

The results obtained are quite surprising. Three fairly prevalent
beliefs about simultaneous estimation are:

(i) Improvement is usually obtained only in three or more dimensions
(Clevenson and Zidek (1975), Berger (1976a), Berger (1976b), and
Zaman (1977) being considered atypical situations);

(11) Improvement is obtained by shrinking 8° towards a point (or at least
a subspace);

{iii) Somehow the improvéd estimators are really just taking advantage of

some similarities between the coordinates (say in some empirical
Bayes fashion).

The results obtained in this paper seem to violently contradict all
three notions. First, improvement seems usually obtainable in just two or more
dimensions. (Only the case m=0 requires at least three dimensions.) Second,
the improved estimators need not shrink §°. Indeed to improve upon §° when
m < 0 it seems necessary to expand §° towards infinity. Finally, an example will
be given which seems to contradict (or at least makes meaninglessly vague) tenet

(iii) above.



In Section 2 the basic tools for obtaining the differential inequality
in continuous exponential families will be developed, and applied to the gamma
problems. In Section 3 the most commonly encountered type of differential in-
equality will be presented, and a general solution obtained. Section 4 gives
the specific solutions of the differential inequalities {and hence the estimators
better than 60) for the gamma distribution and the four losses of interest.
Section 5 gives a formulation and solution of the problem cf improving upon an
inadmissible estimator 6  for arbitrary continuous exponential families and

squared error loss. Section 6 consists of some concluding remarks.

2. Obtaining the Differential Inequality
Let X Fave density (with respect to Lebesgue measure on (a,b), a and b
possibly infinite)

x|y = B8t (x) e TN,

where t(x) > 0 and r(x) is absolutely continuous (on (a,b) of course) with

r'(x) = a%— r{x) > 0.

Lemma 1. Assume that h(x) 1is a real valued function satisfying

(i) s(x) = t(x)h(x)/r'(x) 1is absolutely continuous on (a,b),

| b
1) [ st 00le ®™ax < =, and

a

(iii) lim [s(x)ewgr(x)] = lim [s(x)e_er(x}] = 0 for all 6 in the natural
X>a x*b
parameter space.

Then EO[O h(X)] = Ee [s'(X)/t(X)].
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Proof. Note that

b ! -0r(x)
Ejleh(0] = 8(8) [ [s(x)jjer (x)e Jdx.
a

Al integration by parts establishes the lemma.l’
This is essentially the result in Hudson (1978), though stated here in a

somewhat different way.

Lemma 2. Assume a finite indefinite integral, g(x), of [t(x) h(x)] exists, in

the sense that

Y
gly)) - glyy = Iyz t (x)h (x)dx.

Assume that h satisfies

(1) E[Jh(X)]] < =, and

(ii) 1im [g(x)e—er(x)] = lim [g(x)e—er(x)] = 0, for all 6 in the natural
X->a x-b '

parameter space.

Then for 6 4 0, Ee{e“lh(X)] = B [r' 00200/t (X)].

Proof. Again, just integrate by parts.l[

For any loss which can be written in the form L(6,6) = I emi hi(x) {the m,
being integers and the hi functions of 6), the above lemmas can be used to
represent the risk R(6,0) as the expectation of a quantity involving only functions
of x and not 6. If m, > 0 for a particular term, Lemma 1 is applied repetitively
(namely m. times) to the term. If m, < 0, Lemma 2 is applied Imil times to the
term. To obtain a differential inequality in the latter case, it is necessary
to express all quantities in terms of the last indefinite integral, g, obtained.

An example of this will be seen shortly.
Let us now return to the gamma problem discussed in Section l; and derive

the desired differential inequalities. The following coroliaries to Lemmas 1

and 2 will be needed. In these corollaries, Xl""xp will be independent Gamma



(ai’ei) random variables. For a functian h(x): RP » Rl, let

k

— n P00 = n),

nt g = 2

dX.
1

providing the partial derivatives exist. Finally, define

j . . (a.+k-j-1) .
. _ Gy L Si-k> i i(k)
5i’j(x) = kio (1) o X5 h (x),
where o = (a-1) (@-2) ... (a-2) @? = 1), and (1) = /G-t

. . o . 1 e -
Corollary 1. Assume m 1s a positive integer and h{x): RP > R' satisfies for all

0 < X < w(k$i) and j=0,1,...m-1,

(i) s. j(x) is absolutely continuous as a function of x, on (0,«),

i,
. (1-a.)
.. i(1) i -
(ii) EG[ISi,j (X)IXi 1 < », and
-X.0. -X.0.
(ii1) Iim [s. .(x)e * l} = 1lim [s. .(X)e * l] = 0 for all 0 < 6, < =,
1’3 l:J 1
x .0 X,
i i
Then v
E 00T - B ls oone V7o Ty @ i gy Gem))
gtvy N = Bgls; n(X%y 1= S ot i ‘

k=0
8
Proof. The proof will be by induction on m. By condition (ii) it will always

be possible at all stages to reverse orders of integration so that the inner

integral of Ee[e? h(X)1 is over xi. Lemma 1 will then be applied to this inner

(a;-1)

integral with t(xi) = x5 .

For m=1, Corollary 1 is just a restatement of Lemma 1, noting that

. . ) (a.-1) L (a.-1) (a.-2)
)y, o d_ ) _ 9 i S 1 O 0 AP _ o1
S0 (x) = axi 5i’0(x) = 3Xi [h(x)xi ] = h (,\)x.l * ol l)h(.\)xi

= si’le).

If the corollary is true for (m-1), one has that

(1-a.)
E [0"h(X)] = E : '

0r1 0[6 (X)X I

P70, (m-1)



/

a .
It can be checked that 5;; Si,(m—1)<x) = Si,m(x)' Hence applying Lemma 1 to

(1-a.)

the function s. and using thé’ induction hypothesis gives the

1,(m—1)(x)xi

desired result. f]
(a.-1)

Corollary 2. Assume a finite indefinite integral, gi(x), of [xi ! h(x)] over

x; exists, in the sense that for all 0 < X, < e (ki)

Y1 (o;-1)
gi(xl""Xi-l’yl’xi+1""xp) - gi(xl""Xi—l’y2’xi+l""xp) = f Xy h(x)dxia

72

Assume also that

) (1—al)
(1) E L[h(Of] < =, Eollg, () ]X, ] < ®, and
—x‘ei —xiei
(ii) 1lim {g.(x)e = 1 = lim [gi(x)e ] = 0 for all 0 < 6, < o,
x.>0 * X > .
i i
Then
(1-a.)

Eglo;'h00] = B0 T (0],

Proof. Rearranging orders of integration so that the inside integral is over x
(a.-1)
and applying Lemma 2 (with t(x) = X, *

1°

and r(x;) = 1) gives the desired result. ||
We now proceed with the derivation of the differential inequalities for the

gamma problems.

Case i. L(§,8) = "871(1—6.6.)2 (i.e. m=-1).

E— jop 1 i'i

This case gives the simplest differential inequality and so will be considered

[

first. Note that
E [671(1-6,(X)6,)%] = 6™} - 2B [6.(X)] + E,[0.6200]
gt® 5 (1-6,(X)8; i ol%3 pt8;8; (X) 1.

Applying Corollary 1 with m=1 and h(x) = 6i(x) gives

| 1 . | .
Ee[eiaf(x)] - kzouzl—k>Ee[X£k_l)hl(k)(X)] - Ee[(al—l)xgldi(x) . 25i(X)ai(l)(X)].

(The conditions needed for the corollary to apply will he satisfied by the esti-
mators we end up using. The verification will be easy and so no further mention
of the conditions will be made unless they .impose some restrictions on the

solutions.) Hence
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(2.1) R(6,8) = E,L(8(X),8) 8. + E,t §\[—26i(X) . (ui—l)Xildi(X)
i=1

I ~—713

i

i(1)
4 zai(x)éi (X)1}

For a competitor §*(x) to So(x) (recall Gg(x) = xi/(ui+1)), define
A¥(8) = R(8*,8) - R(87,8).

A simple calculation gives that R(@O,e) = § [(ai+1)ei]—l' Writing
i=1 :
X,
i

8% (x) = TEI:TTA (1+¢i(X))

and using (2.1), a little algebra then gives that

226 (M (xy

A*(e) = E_{ § = 1 (1+¢. (X)) + E
954 (ui+l)2 1 i=1

X, ¢ (X)
(. +1) e

Hence if we can find a solution ¢ = (¢l,...¢p) to the differential inequality

2x @
(2.2) A_l(x) = §
i=1 (a +1) i=1

1(1)

() ? x5 (x) R 2 Zor ™M 0, 0
+

(o +1) <0

i=1 (ai+1)
for all 0 < X, < (i=1,...p), with strict inequality for some set of x with

Y *
positive measure, then A (8) < 0 for all 6 and 6 is better than §°

Case 2. L(6,60) = g (1»6i6i)2 (i.e. m=0).
i=]

This 1s the natural scale invariant loss for the problem. Using the usual
log transform, this problem could be transformed to a location parameter problem.
It is easier, however, to deal directly with the untransformed problem.

Noting that
E_[(1-5.(X)6,)%] = 1-2E [6.6. (X)] + E.(6°62(X)]
8 i i 7171 8171 ’
Corollary 1 can be applied to give

<d-k>, 1(k) (k-1) -1

o L8 (0 X,

fl [~y

, T S S
Eglo.6.(X)] = L 1= Byl -DX 76 (X) + 6. 1



and

]

2.2 2 <2-k>
Egl676; (0] = § () oy

2 i(%). (k-2)
Ee[{ai(X)}‘- X; ]

- Ee[(ai—l)(ai—Z)X;26§(X)+4(ai—l)X;léi(X)éi(l)(X)+261(X)éi(2)(X)+2{6i(1)}2].

*

"
Defining ¢ and A as before, a calculation then gives that

A*(G) = EG{AO(X)},

where
i(1)
(2.3) x) % 00 . § 234500 E Xi 0 ()07 (x)
io1 (a +1) o1 (a +l) i=1 (ai+l)
p x? . ) .
+2 ) —= [¢;(2)(X)+¢i(x)¢;(2)(x)+{¢i(l)(x)}z].
i=1l (a, +l)

A solution ¢ to Ao(x) < 0 1is thus sought.
2 .
Case 3. L(6,8) = E 8.(1-6.8.) (i.e. m=1).
—_— . i i’
i=1
*
A fairly lengthy calculation using Corollary 1 gives that 4 (8) = Ee{Al(X)},

where
1(1) 2 i(2)
E ai(ai—1)¢i(X) o § X600 (%)

(cxi+l)xi (a +l)

(2.4) 8,00 = 21 (a +1) L

) .¢.(x)¢}(l)(x) X, [{¢l(1)(x)}“+¢ (X)¢l(2)(x)]
+ 6 & ke - : + 6 §

(o;+1) i=1 (a;+1)

107 00301 000l g, 0t P 1

+

[N}
-
I o~
—

(o +1)

Case 4. L(s,0) = E éf(l—aiei)z (i.e. m=-2).
i=1

This "standard" squared error loss turns out to be the trickiest to work

with because Corollary 2 must be used. Since

- o721 21 e 020 107y X 162y
(2.5) L o (l"‘i(x)ui) = 01 - Log)i ‘i( )]+L”[ui( ),

Ol i
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Corollary 2 can be applied to give

y (1-0.)
Egle 76, (X)] = EolX4 g, (01,

(o -1)
where gj(x) is an indefinite integral {over xi) of [xi di(x)] as defined in
Corollary 2. Note that
(1—ai)

5.0 = g1 poxg

2

so that {(2.5) can be rewritten

(1‘ai)

(2.6) E 9;2(1—6i(x)8i)2] - 8;2+Ee{—2gi(X)X +[g§(1)(X)X. 1792y,

6[ i

(Note that it is important to write all quantities in terms of g, so as to obtain
* - *
a differential inequality.) Defining Gi(x) = (ai+l) lxi(1+¢i(x)) as before, g4

as the corresponding indefinite integral, and

* (ai+1)
hi(x) = (ai+l)gi(x)—xi /(ai+l)’

calculation using (2.6) shows that

R I 2 -2 Xi ~2h, (X) Zhi(l)(X)
Eelei (1—6i(x)ei) ] = ei “he{(a +1) }+ Ee{ (@i”l) + (ai_z)
i (OLi+1)Xi (ai+l) Xi
m; oo1?
+ —*~*~“;—§T&;tij}.
(aiél}“xi

*
Defining A& (9) as before, it follows that

A*(B) = E s (X1,

where .
R iMoo ; i e0r?
(2.7) b 00 = -2 ) TN 3y b Tl 1)
i=1 i i=1 i=1 i
(a.+1)x, (a.+1)7x, (a.+1) 7 x.
1 1 1 1 1 1

Again, a solution to Aﬂz(x) < 0 is sought. Note for future reference that

. o, % (a.-1) o, o,
1(1)(x)-xil = (0y+1)8, (0%, * —xil = xil¢i(x).

AU 1(1) . .
(2.8) hi( ) (x) = (n,+1)g;
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3. Heuristic Solution of the Differential Inequality

An examination of the differential inequalities Am(x) s 0 (see (2.2),
(2.3), (2.4), and (2.7)) shows that a wide range of expressions can be encountered.
Finding a general solution seems very difficult. On the other hand, it often
happens that only a few terms of the differential expression are important, in
the sense that they determine the basic nature of the solution. Indeed, in the
expressions (2.2), (2.3), and (2.4) it will be seen that the first two terms are
dominant. ((2.7) is a special case that will be discussed later.) These first
two terms are of the form

(3.1) E o, x

(1-m) i(1) -m 2
L ; ¢i (x) + igl bixi ¢i(x).

Rough heuristic arguments can be given which show, for any m, that the diff-
erential expression Am(x) resulting from the application of Corollaries 1 and 2
should behave as in (3.1). The basic idea is that multiplying a term of the loss

by ei or 6, is roughly equivalent to multiplying the corresponding term of the
differential expression by Ci/xi or Xi/ci’ respectively. No attempt will be made
to make such heuristics precise, since (3.1) will be used simply as a guide in
choosing solutions to the actual differential inequalities encountered.

The expression (3.1) is quite specific to the distribution and losses invol-
ved. It is, however, a typical special case of the more general form

p .
(3.2) 200 = v T v, )P - E Wy () 67 ().

i=1 i=1

Many simultaneous estimation problems encountered will have an expression of this
form dominant in the resultant differential inequality. The functions y, Vi and
w. can be quite arbitrary, except that usually wj(x) > 0 and Y(X) > 0 with probability

onc. This will be assumed in the following analysis,



To find solutions ¢ to the inequality A(x) < 0 (A(x) as in (3.2)), let
1
o [x 4 PP . \ 5 -
“i‘xi) be an indefinite integral of [1/vi(xiﬁ1 (so that Oi(xi) l/vi(xi)),

and find numbers b > 0, dj > 0 and Bj such that

W, ()g] (x))

B.
+ g g J
v (x) (b jgldj|°j(xj)[ )

(It is assumed that y, Vi’ and W, are such that this can . be done.)

Theorem 1. If p > max{Bi} and 0 < ¢ < (p—max{Bi})/(pK), then

(3.3) b, (x) = -cg; (xy) (i=1,...p)
R
b+ E d.|g.(xj)| J
j=1 17
is a solution to A(x) < 0.
Proof. Let D denote the denominator in (3.3). Clearly
(Bl—l) 1
— 1
iy . eel(xy) cg, (x,)d; |g, (x,)] {sgnlg, (x)1g; (x,)
¢i (x) = D + 5

b

B
) cgd g (x| 7

= +
vi(xi)D

2
vi(xi)D

Since, by assumption,

) |
f W, (x>¢ e (E?\ § wy (E50y) 2y
= w(x) DL T wROD =D

it is clear that
b0 =001 v 08 D v T w0/
i=1 i=1
B.
1
.El 8;d;le; ()| 2
VOO B+ (@ & + S

i

i

D
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) c max{B.} 2
= y(x) [ Bp * T CDPK ]
= ZS%Lél»[p—ﬁax{Bi}‘CPK] < 0. |]

It is generally desirable to choose the Bi in the above theorem as small
as possible to maximize the improvement in risk and minimize the number of di-
mensions needed for improvement. The di are arbitrary positive constants often
chosen for convenience, as will be seen in the following examples. The constants
¢ and b will typically have to be adjusted when dealing with the actual differen-
tial inequality (of which A(x) is, hopefully, an approximation) to take care of

nondominant terms. Examples of this will be seen in Section 4.

. N B (1-m) O

btxample 1. Let ¢(x)=2, v.(x.)=a.x. and w.(x)=b.x." (a, > 0 and b. > 0), and
17717 TiTi i ivi i i

assume a solution to A(x) < 0 is sought for 0 < X, < e, i=1,...p. (This, recall,

is (heuristically)'the situation for the gamma problem.) Clearly

m
X5 .
;n—; 1fm:{=0
1
1
g (%)) = [ ———dx, =
a.xglnm) log(xi) ifm=0
1 1 e
a.
1
Also
b.x. ™ ?m »
s ifmio
xgl(x,) 2(ma, ) [b+zd, {x"/ (ma )}Bj]
Wi 08y Xy ) i jr¥y/may
g x| ]
b 0r Ve, x| D) b (low x 12
j=1 ) ) i (o x;) ifm=0

2&2[b+Xd a 1|Iog X lBj]
L i



This quantity is bounded if B, 2 1 (mf0) or By

2

14

(m=0). Since small Bi are

desirable, this suggests choosing Bi=l if m$0 and 81:2 if m=0. Theorem 1 then

gives solutions to A(x) < 0 if p > 2 (m#0) or P

3 (m=0).

A better bound for c¢ than that in Theorem 1 can be obtained if di:bi/(mai)

(m%O) or di:bi/ai (m=0) are chosen in (3.3). Direct calculation as in Theorem 1

then shows that
a -c(p-1-¢/2)

[bzglbix?/(mai)zl

A(x) <
-c(p-2-¢/2)

o

2, 2
b, (log x,)“/af]
1i=1

The conclusion is that A(x) < 0 for

m
-CX.
1

ma. [b+ §
1 e

m 2
3 bjxj/(maj )]

1
(3.4) 9, (x) =
-c(log xi)

2
bj(log xj) /a?]

a.[b+ §
e

*
In the gamma problem it will be estimators Gi(x)

ifm+4 0

ifm=0

ifm#$ 0, b> 2, 0<c<2{p1)

>3, 0<cc< 2p-2)

(ai+1)‘1xi(1+¢i(x)), with the

¢i as in (3.4), that will be shown to be better than &°.

*
Several interesting observations about these estimators 6 can be made.

First,

.. . . . . . o .
p=2 seems to be the standard minimal dimension in which improvement upon & is

possible.

Also of interest is the form of the estimators, themselves.

e .
éi(x) is

a;(x) - 8000 = (ai+1)’lxi¢i(x).

Three dimensions appear needed only for the loss corresponding to m=0.

The '"correction'" to



If m > 0 this correction is always negative (i.e. 62 is pulled towards zero);

if m < 0 the correction is always positive (i.e. 6? is pulled towards infinity!);

while if m=0 the estimator corrects 6? negatively if X5 > 1 and positively if

Xg <1 (i.e. pulls 6? towards (ai+1)~l)- This indicates that shrinking towards

a point seems to be the exception rather than the rule, and that usually impro-

ved simultaneous estimators will pull to, or away from, a boundary of the para-

meter space, It.also seems rcasonable to believe that the need for p=3 when

m=0 is due to the fact that the estimator can't decide which way to correct 8°.
For m > 0, the ¢i(x) in (3.4) are very similar to correction factors obtained

by Clevenson and Zidek (1975) for estimating Poisson means Ai under the loss

E -1 2
A - ‘T me
oy i (9-4;)7-For m=0, the ¢

are similar to the correction factors in‘Peng (1978)

2 .
estimating Poisson means under the loss- E (6i—ki) . The ¢i tfor m=0 are also
i=1

related to '"Stein type'" estimators, as can be seen by letting yi=(log xi). (This
is to be expected from Brown (1966), since the transformed problem induced by

the log transform is a location vector problem when m=0.) For m < 0, however, the
estimators determined by (3.4) seem completely novel. When m=-2, for example,

(corresponding to standard squared error loss) the suggested estimator for ei is

% X. c/xi

Z(ai+1)ai[b+.§ bj(Zaj)_zxgz]

j=1
Example 2. Assume Xl""Xp are independently N(Si,l) {(i.e. normal with mean ei

and variance 1), and that it is desired to estimate 6 = (61,.u.6p) under loss
) 5 .
L(§,0) = & (6.-0.)7. It can easily be calculated using Lemma 1 that if
i=1 !
Gi(x) = xi + ¢i(x), then

2

. )
R(6,6) =p + Ee{z E ¢;(l)(x) + & ¢{(x)).
i=1 i=1

fox
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(This result was obtained by Stein; (1973).) Noting that Go(x) = X has risk

R(GO,G) = p, it is clear that an improved estimator will have been foupd if a

solution to

(3.5) v =2 56 W+ § e <o
. i L i
i=1 i=1
is obtained. This is the form (3.3) with y(x) = 2, vi(xi) = 1, and wi(x) = 1.
Calculating
_ 1 -
g; (%) = fvi(xi) dx; = Xy,

and using 8i = 2 as suggested by Theorem 1, the indicated solutions to (3.5)

are

A direct calculation gives that these are indeed solutions for b > 0 and

0 <c <2(p-2). Note thatp > 2 = Bi is required as indicated by Theorem 1.

The above choice of the ¢i gives rise to a standard "Stein estimator'" for a
multivariate normal mean.

Example 3. 1In the previous two examples, the differential inequality involved
similar terms. To emphasize that this need not be so, we consider an interesting

combination of the two previous examples. Indeed consider the differential

inequality 2 5
2 . 2x Xz (%)
(3.6) a0 = ) 260 s geo) s 2 SWg L 380
izl i i (a+1)2 3 (at+l)

(These are the dominant terms arising from the simultaneous estimation of two
normal means under squared error loss and one normalized gamma mean under loss
6_1(1—66)2.) Even though the third coordinate terms are quite different, the
solution given in Theorem 1 to A(x) < 0 is still valid. Indced a calculation

shows that for b > 0 and 0 < ¢ < 2 solutions to A(x) < 0 are given by
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-eXy
7> 3 ifi=1o0r2
b+x +x-+ (a+l) 7 /x
(3.7) o 12 5
¢l X)) =
c(a+1)2/x3
> 3 if i=23
b+xl+x2+(a+l) /x3

The implication of this is that in seeking improved simultaneous estimators,

it doesn't matter what problems are combined. More will be said of this later.

4. Results for the Gamma Family
Using the results of Sections 2 and 3, we now proceed with a rigorous

analysis of simultaneous estimation for the gamma problem and the four losses of

interest.

N o110

671(1-5.9.)2.
1 1 11

Case 1. L(8,8) =
i

By the results of Sectin 2, an estimator better than &° will have been deter-
mined if (2.2) can be solved. The heuristic solution to (2.2) is given in (3.4),
namely

2
c(ai+l) /xi

(4.1) 6, (x) =

b+ E (a.+1)3/x.
j=1 I j

(n=-1, a,=1/(a,+1)7, b;=(a;+1)). Noting that

i (1) -C(‘ﬁ+l)zxiz c((ﬁ+l)5/x§
q)l (X) = 3 + - 3 2 < O,
b+E(aj+1) /Xj (b+2(§j+l) /Xj)
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it 1s clear that

2
X. . ~. X. .
SO LV S S [T S SO SIS OP
-1 i1 (ai+1)2 i 21 (ai+l) i (di+1)2 i i
E X2 . E X
<2 ¥ R Gy oy T 20
51 (o401 =1 (eg*h) i

But this is the basic expression which was analyzed in Example 1 of Section 3. The
conclusion is that A_l(x) < 0 for the solution (4.1) with b > 0 and 0 < ¢ < 2(p~1),
Thus a better estimator than 6° for p > 2is

X X, clo, +1
(;+1)

* i i
GI(X) = 'm (1+¢1(X)) = (0‘__*_1)
1 1 b+ §
j:

a.+l)3 X.
1(J ,/J

This estimator can easily be shown to satisfy the conditions of Corollary 1
(which was used in the development of él(x)). Natural choices of b and ¢ are
b=0 and c=(p-1).

Case 2. L(8,0) = E (1-616i)2.
i=1

It is now necessary to find a solution to Ao(x) < 0, where Ao(x) is given by

(2.3). The solutions suggested by (3.4) for the first two terms of (2.3) are

—c(ai+l)(log xi)

0,00 =

b+ E a.(a.+1)(1log x,)z
o1 it

(aizl/(ai+1), m=0, and bj:-aj/(aj+l))‘ Using this choice in (2.3) and defining

for convenience, yi=(1og xi) and D = b+ E aj(aj+1)(log xj)z, a calculation gives

j=1
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2
2+c/2)za. (a.+1)y.
(4.2) A (x) = 22 - (2re/2) oy (g + 1)y R
u D D (ui+l)
2 2 3
. ﬁg_{ SZaiyi ) Zaiyi ) 4Zai(ai+l)yi ,
D D D D2
2 5(20.+1)y 1020, (0, +1)y>  25(20.+1)a. (o, +1)y>
. 2c B i i iv7i i i 171 i
D D D2 D2
122@?(Q.+1)2y4
ivi i p
+ 3 + B—}
D

In simplifying this expression, the following two lemmas are useful. Their proofs

are standard calculations using Lagrange multipliers and will be omitted.

Lemma 1. For a; > 0, c; > 0, and b > 0, the expression

!_l.
H o~13
s

®

b + E c.y
i=1 *
1s maximized at
a
_ i b 1/2 _
yl “E'l‘( ) s i=1, jor
§ a./c
j=1
achieving a maximum value of
(53 /C)
=1
2b /

Lemma 2. For b > 0 and z, 0 (i=l,...p), the expression

(Y

2 3
z.7 /(b + E z.)
L jo1

I g ]

is maximized when zj = 2b/p and has a maximum value of 4/(27bp).



Denote, for convenience, the three terms on the right hand side of (4.2)

as Tl’ T,, and T, respectively. Since

o 2 2
“ui(di+l)yi Zui(ai+1)yi

D - 7 <L
b+2ai(ai+1)yi
it is c¢lear that
-2c 1
Vi el - P e —
(4.3) Ty 5 otp-(2re/2) -2 (a;+1) s

To bound T2, note that for (i=1,...p)

2 3
a; (a1 |y, |

aly.] 2

1 1 2
b + g a. (o, +1)y.
j=1 J ] ]

llence

- o 2 3
BLuiyi ) 4“ai(ui+1)yi . SZailyil
D DZ D
and so
;. L2 nog |yl }
2~ D D

Lemma 1 can be applied to this last expression (with a;=o. and c.=a. (a,+1)) to give

oo o /(e 1Y 6elza,/(a,+1) 12
(4.4) T, <=<£E Lt 1 } = 1 i .
2° D 2b1/? Db/
To deal with TS’ note first that for i=l,...p,
2 2 4
oy (e +1) 7y

2
o (o +1)yy > D

. . . . 2 . '
Using this with Lemma 2 (sctting z, = ai(ai+l)yj) gives

1 o 2 24
i .,./.ui(ui’rl) yi
v

, B T 4 " 27bp
)2 i | o I

2 2 2
~!()'/L<L.l(u_‘1rl)yi l.,’)lw..,(lti'l) y

(4.5)
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Observe next that for i=1,...p,

(20, +1)a, (o, +1) |y. |
(20;+1) |y. | > 1 ——

which, with Lemma 1, shows that

\ 3
z(zai+1)yi 22(2ai+1)ai(ai+l)yi z(zai+1)}yi]

(4.6) -
D DZ b

IA

[7(20;+1)°/ {o (a;+1) 112
2p1/2

[4p+31/ (o, (o, +1) /2
2b1/2

Using (4.5) and (4.6), together with the observation that p/D < p/b, it follows
that

1/2

2 4p+Zl/{a. (a.+1)}

4.7y T, < EE—» {E-+ 8— + el al(al M
37 D b 27bp 2b1/2

}.

Combining (4.3), (4.4), and (4.7), the following bound is obtained.

1/2
i85 4 ¢ ooz 1 S[Zai/(ai+l)] .
(4. o) = 5 [Ap-2% ey - 1/2
» i b
-1.1/2
. 2p 16 [4p+2{ui(ai+l)} J
g I 172 E

Equality can hold only if all xi=1 (i.e. yi=0). Hence we have a solution (with

probability one) to Ao(x) < 0, providing

2{pw2—2(ai+1)"1-3b~1/2[Zdi/(@i+l)]l/2}

(4.9) 0 < ¢ < - .
1+(2P/b)+(16/[27bp])+b_1/2[4p+2{ai(ai+1)} 1y1/2
By choosing b large enough, it is clear that a solution always exists providing

' -1
p >2+Z(ai+1) s

which if @; 2 3 will be satisfied for p > 3.
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For ¢ satisfying (4.9) (note b > 0 is necessary), the estimator improving

o .
upon & is
X. c(ai+1) log X,

).
b+2aj(aj+l)(1og xj)z

This estimator essentially shrinks towards (oci+1)_1 {(attained when xi=l). To
achieve shrinkage towards a point Yi/(ui+1), simply replace (log xi) above by
[(log xi)—(log Yi)]' It is easy to check fhat none of the calculations leading
up to (4.8) are affected by this change. Hence such an estimator still improves
upon 66, and allows shrinkage towards apriori suspected values of 6;1.

A final observation is that 5;(x) should clearly never be allowed to be
negative. One method of preventing this is to truncate the estimator at zero.
Alternatively, b could be chosen to ensure that Gz(x) is ngver negative. Indeed,
using Lemma 1 it can be checked that

-1.1/2

c(ai+l)Ilog Xil c(l+ai )

2pt/ 2

<
5 <
b+Za. (a.+1) (log x.
} J( j ) (log J)

so that choosing b 2 (c2/4) (l+1/min{ai}) will suffice.

Case 3. L(8,8) = E Gi(l—ﬁiei)z.
i=1

It is desired to find a solution to Al(x) < 0, where Al(x) is given by
(2.4). The solutions suggested by (3.4) for the first two terms of (2.4) are

(choosing b=0, ai=ai/(ai+1), and m=1)

-c(ozi+1)xi/ai

(4.10) 9. (x) =

‘ 5 d.x.

j=1 J ]

(It will be convenient to choose the dj in a manner somewhat different than

suggested by (3.4).) In order that the resultant estimator satisfies the con-
ditions of Corollary 1 of Section 2 (so that the derivation of (2.4) is valid),

it is necessary to assume that a; > 1, i=l,...p.
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Defining D = E djxj’ a lengthy calculation using (4.10) in (2.4) gives

(4.11)

(4.12)

and

Hence

(4.13)

j=1
L0y +1) (0, +2) (o, +3) 0 2x.  Bezd.x. /a
A (x) = -2(P-1)c N i i 1 i1 . i1’ 1 & T +T +T T
1 D DZ 2 172 °3 "4
D
22 2,34, 2
-8 X /.
czdlxl/al ) 24c¢ Zdixi/ai
D3 D5 ’
22 33
d.x. . (o X, .
_IZC.g-Z lxl/[al(a1+l)] _ Zdlxl/[al(ai+l)] z
D3 D4 ?
. 2 . 2, 2 2 3, 2
o2 ) Py (o +1)xjoy ARy leyrxg /ey S5dy ey +)xy/a) .}
l, D D> p*
’ BZd?xé/a? Zd.x?/a?
2 17174 17177
12¢ -§, 7 - 3
D D
' 2.2 3.3 .
that for K, > 0, dix7K. 2 dx7K./D, it is clear that
i 17171 ivi
T2 < 0,
2 2,2 2 22,2
) Zdi(ai+1)xi/ai Zdi(ai+l)xi/ai -24c¢ Zdi(ai+1) xi/oci
T3 < -6¢ z + 3 = 3 3
) D D D
24c22d?x§/a? 24C2Zd.x?/a?
i%i’ 71 i7i' 7
D4 D3
DR (et 2 0? azd x2/a?) c6cid, [ (a.+1)2-4]x2 /a2
2 11 1771 1107 i 1 1771
T3 + T4 < ~6¢C 3 - 3 = 3 .
D D D

At this point, two lemmas are needed. Their proofs are again simple

Lagrange multiplier arguments.



Lemma 3. For a; > 0, bi > 0, and X; > 0 (i=1,...p), thgfexpression
{
/

2 2
(igl aixi)/(ig1 b.x,) j

is minimized when X5 is a multiple of bi/ai’ attaining|a minimum value of

3

H
}

i

1/ E b’/a.). |
. i'Ti /
i=1 /

. ] .
For a. >0, bi > 0, and Xs >0 (i=1,...p), ghe expression

3

Lemma 4.

/

(.E aiX?>/(.§ byxp)” |
1=1 i=1 (

. o . . 1 [ .. .
- is minimized when x, 1is a multiple of (bi/ai) /3, aytalnlng a minimum value of

1T 63l

i 1
i=1

Applying these lemmas to T1 and the last expressi¢n in (4.13), it can be concluded

that
2 2
~-8¢ 24c : 6c¢
(4.14) T +T_+T.+T < _ -
L2574 7 Dizay) D(Z[diai]l/s)s D(Zdiai/[(ai+1)2—4])

Returning to the second term of (4.11), it seems natural to define

d; = (ui+1)(ai+2)(ai+3)/a§.

Noting, finélly that
2d;x;/ay 1
D $ min{ai} ’

it can be concluded that

-2c 4

(0.+1) (0. +2)
4 1 1 -1
b () s tp-1 - min{ai}>+ (Zai)]

C
- E-[1—6(Z (ai_l) )

- 24 (2 (1) (@,+2) (0 +5) |37



The ¢i in (4.10) are thus solutions to Al(x) < 0 for

2[p-1-4/minfo. }+4/ (Z0.)]
(4.15) 0 < ¢ < = z

(0,+1) (2,+2)
(di"l)

-1

1-6(2 )T - 20001 (0,+2) (0,+3)) 33

(It can be checked for ui > 1 that the denominator above is always positive.)
To have a solution we thus need

1 1
p > L+ 4{min{ui} T e 1.

If ai >4 (i=1,...p), it follows that solutions will exist when p 2 2. if the
a; are all equal, the numerator in (4.15) can be rewritten (p-1) (1-4/[pal), so
solutions will exist for p>1landp > %—. Thus a=3 will suffice to ensure the
existence of solutions for p 2 2.

. . . o .
The estimator improving upon & is

* X, V c(o.+1)x./a.
509 =y A - —— .
1
j?l (ai+1) (Ol.i+2) (di+3)xi/qi

As before, this estimator should be truncated at zero (if necessary) to prevent
possible negative values.
P2 2
Case 4. L(8,8) = ) 6.7(1-8.06.)°.
—_— . i il
1=1
This case requires a different technique-of analysis, due to the fact that
Corollary 2 of Section 2 was used to derive A_z(x) in (2.7). The difficulty is
that we can't work directly with the ¢:5 but instead must deal with the functions
h..
1

A natural approach is to choose ¢i as suggested by (3.4), determine the hi

@ .
from the ¢i’ and see if A_Z(x) < 0 for this choice. Unfortunately, the analysis
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becomes too difficult and an alternative approach is needed. One that suggests
itself is to try and choose the hi so that A_z(x) is relatively easy to deal

with. Such a simplifying choice is

(a.-1)
h, () = (ui+1)2xi T,

where h is a function to be determined later. For this choice, (2.7) reduces to

(4.16) 8_,(x) = -4ph(x) +’2zxihi(l)(x) . Z(ai+1)2[hi(l)(x)]2

. Y(a -2 X 2h2(x) + 2h()1(a. +1)2{ . 1)x;lhi(1)(x).

Using (2.8), a calculation gives that

(4.17) ¢, () = x; R I CI S R IR S PR Ne RN CR SO e o 1(”( x).

The heuristics of Section 3 suggest that ¢i(x) should be as in (3.4), i.e.
-2
Xy
b 00 -
2a. [b+2d.x.7]
1 3

T

The first term on the right hand side of (4.17) is like this if

h(x) =

b+ f d.xf2

je1 33

is chosen. For this choice of h, (4.16) becomes (letting D denote the denominator

of h) , ) )
ctd x % actr(e+1) %% Pred-ni?
A _ -4pc ii i ii i i
1O 2 7 ' 2
D 4 D D
2 2 -4
4c Z(ai+l) (ui—l)dixi
¥ 3
D
2 2-2 2 2 2.2 2, g2
-4pe 4¢ dc Z(ai+1) Xy c Z(ai-l) x dc” )(u +1) . l)X
TR T 2 * 2 * J
D D n
%5 (g +1) 72
-4(p-l)c ! i
D Dz
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If di = (oci+1)4 is now chosen, it follows that

b_,(x) < l%-{4(p—1)«c} .

The given h is thus a solution to A_Z(x) < 0 for
0 <c < 4(p-1).

Clearly p > 2 suffices to give a solution.

Using (4.17), the estimator better than 8° can be calculated to be

. X. X. c(a?—l)x?l 2c(a.+1)5xf3
§.(x) = =t (146, (X)) = —de + 2 + = s
i (ai+1) 1 (ui+1) [b+Z(uj+1)4X;2] [b+Z(aj+l)4x§2]“

For this estimator and the corresponding hi’ it can be checked that the conditions
of Corollary 2 of Section 2 (needed to derive A_Z(x)) are satisfied. Note that

*
for large a, or large p, the third term of 6i is likely to be.considerably smaller

than the second term ( which was the correction factor derived from the heuristics).

5. Simultaneous Estimation Under Squared Error Loss

Usually the heart of a theory lies in methods and examples, which are what
the last three sections concentrated on. It is possible, however, to construct
a fairly elegant general theory, using the results in Sections 2 and 3. This
will be demonstrated here for the simplest situation - squared error loss.

We will seek an improvement upon an estimator s° (which could be any esti-
mator) in the general continuous exponential family setup. Thus assume
X = (Xl,...Xp) is observed, where the Xi are independent with densities

- erl (Xl)
fi(xi[ei) = B3 (8,0t (x,)e

with respect to Lebesgue measure on Rl. Assume it is desired to estimate



6 = (61,...6p) under loss

Ls,e) = ) (6,-6,)°.
i1

Using Lemma 1 of Section 2, it can be shown that (under the appropriate

conditions)
' p
R(8,0) = E,[L(S(X),0)] = ¥ 02-2 ¥ Bgl06, (01 + ) E [6200]
i=1 i=1 i=1
p p tx8,00 W s o) p
= ] ef2 ] g A A i, S et NN Cige R B
i=1 i=1 £ T (X)) T (X)) lr, (X)) i=1
Writing a competitor to §° (componentwise) as
(5.1) 5,00 = 830 - q,(x)8, (),
a little algebra then gives that
(5.2) 4(8) = R(8",8) - R(8°,8)
(1) ' ? 8
2. (X)q. (X))  qr o , t.(X,) 1. (X.)
- ] Egl ——— { g - 5007, (x)) + oy o Y
i=1 r(X,) 94 iy r, (X,)
i(1)
p 20, (047 (X)
+ Bgl ) ——— - a; (045 (X)].
i=1 r, (X)) i=1

To simplify this, define si(x) as an indefinite integral (with respect to xi)

of [dg(x)ri(xi)], and let
' : 5. (x)

1
r.(Xx.)e
( l)

ti(xi)

(5.3) q; (x) =
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It is easy to check that the first term on the right hand side of (5.2) is then
zero, so that
8(0) = B[],

where

i(1)
. D 2qA(x)¢% (x)
s = U

S HCIHOT

i=1 r;(xi) i=1
To find an estimator 8* better than 60, we seek a solution to A(x) < 0.
Providing
(5.4) q; () = T(x)h, (x,)
(without loss of generality assuming that T(x) > 0) this is exactly the problem

!
solved in Section 3 (with y(x) = 27(x) and vi(xi) = hi(xi)/ri(xi))' The

answer found there was to calculate the indefinite integrals

1 r;(xi)
(5.5) g, 05) = [ gy dxg = ] mox.y 4%
. 1 1 1 1

find constants b > 0 and Bj such that (for i=1,...p)

2 2 2 2
‘ q; (xJg; (x,) Txh (x gy (xy)
(5.6) R B = D B §K<oo,
[reolies | le;l 7T 2+ | g (x0] )
j=1 j j=p 3

and use (for p > max{Bi} and ¢ > 0 small enough) functions of the form
-cg. (x.)
217

b+ X
j=1

d Bj ’
. LAUX.

where the dj are convenient constants. (Implicit in all these calculations are

certain conditions on the functions involved; namely the existence of all necessary
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functions, derivatives, and integrals, and the cbnditions of Lemma 1 (Section 2)

. _ <0 S _ 0 _ : .
as applied to h(x) = Si(x) and h(x) = 6i(x) = Gi(x) qi(x)¢i(x), i=1l,...p.
No attempt is made to write down general sets of conditions, since verification
in specific instances is usually very easy.) Some examples of this technique
should prove enlightening.
Example 1. Assume the X. are Gamma(u.,e.) with a. > 2 (i=1,...p). (Note we are

{
now trying to estimate the 61 themselves, not the 6 o1 .) Here r.(x.) = 1 and
(06 -1)

t. (x ) = . Consider the '"standard" (i.e. best multiple of x ) estimator
defined by éi(x) = (ai—Z)xll. A calculation using (5.3) shows that
si(x) = (aj—Z)(log xi) and qi(x) = xil. As in (5.4) and (5.5) define 1(x} =

-1
hi(xi) =X and

T, (x )
- _ .2
gi(xi) f " (x ) dx f X dx xi/Z.

It is easy to check that (5.6) is satisfied for 8i=1 (i=1,...p). Hence solutions

to A(x) < 0 are given in (5.7) (for small enough c and p > 1). Indeed, choosing

-CX.
1

b () = — ——
1
b+, 2

i+1%3
a simple calculation verifies that A(x) < 0 providing b > 0, p 2 2, and
0 < ¢ < 4(p-1). The estimators improving upon §° are thus given (componentwise)

by

* o (Oti-Z) cX
8500 = 6300 - 4y ()43 () = ———+




' 2
E hd - . ' . = - . . )=ex -
xample 2. Assume the Xl are W(el,l), so that rl(xl) 1 and tl(xl) exp{ xi/Z}.
Assume

6°(x) = x-xo(]x|%),

where © is a real valued function. Then

N N

X 5
s; () = [ -s{(0dx; = =* A(l;l )

where A(z) is an indefinite integral of ©(z). (Assume that A exists for all
0 £z < =) Hence by (5.3)
| q; (x) = -exp{k(lxlz)/Z}.
This is of the form (5.4) with t(x) = exp{k(lxlz)/Z} and hiixi) = ~1. Hence define
r!(x.)
gi(xi) = f EiTEij-dxi = f (l)dxi =X,

It is now necessary to find b > 0 and Bi such that (for i=l,...p)

T(x)hi(xi)gi(xi) exp{k(]xlz)/Z}xf
(5.8) — - 2 - <K <o,
2[b+ f g5 (x))] T 2[bs ) ;] 7]
j:: J:I

1
L . . 0 .
Assuming this can be done, estimators better than & are (componentwise)

(5.9) 6,00 = 69(x)-0, 008, () = x;,-x, (| x| DrexpOr(lx| /230, (),

where the ¢i are given by (5.7) (for appropriate c¢) and p > max{Bi}.
From Lemma 1 it is easy to check that the conditions needed for this analysis

are
(5.10) (1) 6O(x) and qi(x)¢i(x) are absolutely continuous in all coordinates; and
(ii) EOI!Xi6i(X)] + la;(l)(X)[] < w, und

1{l)

l”llxl'[(ll(X)dal(X)! + i({l(X}!,;l(X) t :lri (X)({I(X)ll < for i;;]'_'_p_



It remains only to check (5.8). A more convenient bound to work with
can be obtained by noting that for reasons or symmetry it is desirable to

choose all Bj = . Note also that

(1-8/2)

(5.11) min{l,p bo< % (T—%” )B < Pp.
i=1 _

Recall that for (5.7) to be a solution it is necessary to have p > max{Bi} = B,

so from (5.11) it follows that for any feasible 0 < B < p,

jge]

k@ x® < T Ix 1% <plxlF,

i=1
where Kl(p) > 0. Noting also that summing over i in (5.8) does not qualitatively
affect the bound (if each term is bounded the sum is, and if the sum is bounded

cach term is) it follows that a bound equivalent to (5.8) is

exp{r(]x|%)/2}]x|?

< K (p) < =,
bK, (P) {xIB 5

where Kz(p) > 0 and Ks(p) > 0. Since A(z) is finite and continuous for 0 < z <
(the finiteness by earlier assumption), it is clear for a fixed p that the above
expression can be unbounded only as Ix] » o (if b > 0). The verification of
inadmissibility thus reduces to showing that
(5.12)  lim z(l—B/z)exp{A(z)/Z} < oo

7,70
Note that to do this it is only necessary to know A{z) as z .

Example 2 (a). So(x)=(1~d)x (d < 1). Here 9(z)=d so A(z)= f@(z)dz=zd Clearly

for 0 <d < 1, (5.12) cannot be satisfied for any f. (This indicates the admiss-
ibility of s° for this choice of d, a well known resulf.) Ifd <0, (5.12) is
satisfied for B=0. Hence choosing ¢i(x)=—cxi, it follows that 6* in (5.9)

improvcs upon ° for appropriate c¢. (The conditions in (5.10) are easy to verify.)

This, of course, is well known also. If ¢=0, (5.12) will be satisficd for B=2.



(3]
(O3]

This corresponds to the basic situation in which Stein estimators improve
upon 6o(x)=x. If ¢ > 1 the conditions in (5.10) will be violated (though §°
is clearly inadmissible), so the method will not work.

Example 2(b). do(x)={1~a/(d+[x|2)}x. Here @(z)=a/(d+z), so A(z)= f@(z)dz=a log (d+z).

Clearly
lim z(l—B/ZJexp{A(z)/Z} = lim 2(1'8/2)(d+z)a/2 = 1im (1*a/2-8/2)

zrw Zroo zrw
This is finite (and hence (5.12) is satisfied) for 8 = (a+2). Recalling that this
leads to an improved estimator only for p > B = (a+2), this means that §° is
inadmissible if a < (p-2). (Again the conditions in (5.10) are easy to check.)

If one were solely interested in proving inadmissibility in Example 2, the
results of Brown (1971) would apply (in for the most part greater generality). The
nice features of the approach in Example 2 are that it is easy, and that it is
constructive, with an explicit improved estimator being determined. Note that
this method is not just for "simultaneous estimation', in that it applies to one
dimensional problems also.

Unfortunately there are certain inadequacies of the method. The calculation
of the q; and the gs> and the verification of (5.6) can be analytically difficult
in some cases. Also, the improved estimators obtained can be unwieldy and are in

no sense necessarily optimal improvements.

6. Conclusions and Generalizations
The results of the precceding sections provide support for the statements
. . . ' o) . .
made in the introduction. Improvement upon &  was most commonly obtainable in

two dimensions, with only Case 2 of Section 4 and the standard Normal situation

requiring at least three dimensions. Also, in Cases | and 4 of Scction 41 and

. s . . . * 0 Ce o
Example 2 ol Section 5 the improved estimators, § , corrcected § by shifting towards
intinity, a rather surprising phenomenon. Finally, consider the following cxample,



which undermines any intuitive Bayesian or empirical Bayesian explanations of
the "Stein effect".

Example 3 (continued). Example 3 of Section 3 involved the analysis of the

differential expression (3.6), which arises as follows. Assume X1 and X2 are

independent W(@i,l) random variables, and it is desired to estimate (61,82) under

' 2 2
§ -0 _
the loss [(<1 Ol) + (62 62)

]. The standard estimator éﬁ(x) = X (i=1,2) 1is
*
known (James and Stein (1960)) to be admissible. If a competitor éi(x)=xi+¢i(x)

(i=1,2) to (6?,63) is considered, Example 2 of Section 3 shows that

e300

1[2¢§(1)cx) ACY

i
is the integrand of the difference in risk between 6; (i=1,2) and 62(i=1,2).

If (independently) X3 is Gamma (u,@s), and it is desired to estimate 1/63 under
loss 6g1(1—6383)2, it is known that 6§(x3)=x3/(a+1) is admissible. (Hodges and
Lehmann (1951).) For a competitor 6;(x)=(a+l)_lx3(l+¢3(x)) to 6§(x), the analysis
in Case 1 of Section 4 shows that the integrand of the difference in risk between
6;(x) and 6§(x) is bounded above by

2001) PxZ o3 )+ (av1) g6 (0,
providing ¢§(1)(x) < 0.
* % o

* *
Letting § = (61,62,63), §

o}

= (89,

o .0 _ _
62’63): X - (Xl’XZ’XS)’ B = (el, 62’ 83):
and assuming that ¢§(1)(x) < 0, it follows that in estimating (61,62,6;1) under

2 2 .-1 2
the overall loss [(51—91) +(62—62) +83 (1—6363) 1,

5(8) = R(6 ,6) - R(8°,8) < E [8(0)],

where A(x) is given by (3.6). The solutions to A(x) < O which are given in (3.7)
can be shown to satisfy all necessary conditions of the derivation provided b > 0.

Hence an estimator better than 60 is (for b > 0, 0 < ¢ < 2)



Xy
X, - if i=1 or 2
b+x2+x2+ta+l)3/x
" 172 2
di(x) =
X
3 c(a+l) S oa
(a1 + 3 if i=3.

b+Xf+x§+(a+l) /x2

The implications of this are interesting. First, two completely unrelated
problems, one involving a two dimensional normal mean and one a gamma scale
parameter, can bé combined to obtain an estimator improving upon admissible es-
timators in each separate problem. Secondly, the improved estimator treats the
coordinates quite differently. In the first two coordinates Gg(x) = X, is
shrunk towards zero, while for the last coordinate 6§(x) is shifted towards
infinity.

This example will be very difficult to explain using any Bayesian, empirical
Bayesian, or other intuitive arguments. The point is not that such arquments are
not useful or enlightening in other situations, but that the basic Stein effect
obtainable in simultaneous estimation appears to be a more basic and general
phenomenon.

A number of questions remain concerning the actual application of the estimators
found. in Section 4 to practical problems involving simultaneous estimation of gaﬁma
parameters. One such question is whether or not an improved estimator can be
found which will work well for several or all of the losses considered. Unfortun-
ately, the drastic differences between the estimators that were obtained for the
different losses indicate that hoping for a positive answer to the question may be
somewhat optimistic.

A related and useful generalization is to weighted losses 6f the form

)
(6.1) L(&,0) = % q Mi1-5. 02,
oy i P
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where the q, are positive constants designed to:reflect the relative importance
of the various coordinates. There are:two possible methods of ‘dealing with such
a loss.

The first is to include the a; inwthe:differential expressions A(x), and
then solve A(x) < 0 along the same lines as before.. The second method of
dealing with the q; is simpler, and so is used here.

This second method is discussed in Berger (1977b) , and involves a decompo-
sition to similar subproblems. Begin by ordering the q, say so that
44 2 Gy > qp. Consider the subproblem of estimating (6;15,. 83]) under 1055.

) 6?(1—6161)2, and let 6(3)(xl,...xj)%be*angimpnav&d;eStimath»found in Section 4
i=1 L

(with p=j and x = CXi,...xj)). If j=T1 om‘thewaij are such that no improved estimator
was obtained, let s - 500D . ((al+ﬁy‘LxI».LmﬁajﬁL)_ij), Finally, define for
i=1,...p, and j=1,...p,

-

0 if § < i
gl =
1
‘H(qj-qj+1)/qi if j 2 14,
where Upt1) is defined to be zero. Berger (1977b) then proves that an estimator

better than 8° in the original problem with loss (6.1) is given coordinatewise by

. ; s s
5,00 = Jf ) s 0

(providing‘that in at least one of the subproblems, Gﬁja is not identically equal
to 62000,

Another:prbblém‘of~inte£est~is;ﬁhatadfzthe incorporation of prior information.
n simUltuncouslestimation‘offnormal:meana,%itghas%beenrobsqryod;Lﬁccgﬁqrgcr:(l977a)
and Berger (1977b)) ‘that toaobtainfSigﬁiﬁicantipracniqalg;mprpvqmqptjgppn §° it is
usually neceéssary to lincorporate prior iimformatien. Inthe simplest case, this

C e et % e 190 U ¢ o , .o R P o
can‘bc”accomplIshed“by“ShYInkﬁng~5 znawandS&ana@prgqxl?Qm%%t;&%K@%y”;PER%@?FQr



value. It is, unfortunately, not clear how such prior information can be

*
incorporated into the gamma estimators & , except for Case 2 in which shrinkage

towards an arbitrary point is possible. Perhaps a broader class of solutions to

86(x) < 0 is needed, allowing a solution corresponding to possible prior' information

to be chosen.
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