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Abstract

This paper is mostly expository and is concerned with the connection
between two dimensional Brownian motion and analytic functions provided by
P. Lévy's result that, if Zt’ 0 <t <=, is twoldimensional Brownian motion,
and if £ is analytic and not constant, then f(Zt), 0 £t <=, is also two
dimensional Brownian motion, perhaps moving at a different speed. This can
be used to study Brownian motion via_analytic functions and, conversly,
to treat analytic functions probabilistically. Recently several open problems
in analytic function theory have been solved in this manner. We will
present some of Doob's earlier work on the range and‘boundary values of
~analytic functions, the probabiiistic theory of .HP spaces due to Burkholder,
Gundy, and Silverstein, the author;s reéults on conjugate function in-
equalities, and sketch probabilistic proofs of Picard's big and little theorems,

Koebe's theorem, and others. There are some new results.



Introduction. A fundamental connection between two dimensional

Brownian motion Zt = Xt + iﬁ%, t > 0, moving in the complex plane,
and analytic function theory, is Paul L&vy's theorem that,

if f(z) is analytic and not constant, the process

f(Zt), t > 0, is again Brownian motion, although perhaps moving at a
different speed than Zt' This conformal invariance can be used to study
Brownian motion via analytic functions, by making a judicious choice of

f(z). For example ([16]) let Z, = 0 and let a % b be complex numbers.

7 0
Then (a-b)e ty b, t 2 0, is Brownian motion started at (a—b)eo + b = a.
Clearly it never hits b,since e? never vanishes. This proves the well
known result that the probability Brownian motion ever hits a fixed
point other than its sfarting point is 0. (Here Brownian motion means
two dimensional Brownian motion moQing in the complex plane, the mathe-

matical description by Norbert Wiener of a physical process observed by,

among others, Brown.)

Levy's result can also be used to study analytic functions probabilist-
ically, the principal subject of this paper. In this context it is
usually applied to a collectign of functions. For example, it is proved
in the next section that Rrownian motion hits each closed set of positive
capacity with prbbability one. Thus, the range of each Nonconstant
entire function cannot omit a closed set of positive capacity, since the

Brownian motion f(Zt) moves entirely in f(¢).
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Except for new maferial in the last section, this paper is an expository
presentation of some of the applications of the conforﬁal invariance of
Brownian motion to analytic function theory, including the recent solutions
of several open problems. Often probabilistic expressions.can be written
in classical terms, and the theorems of probability can be brought to
bear directly on non-probabilistic problems. Other expressions arise

which do not seem amenable to such a translation, and in this way

intrinsically new tools arise, which, aside from their use in the study

of classical fungtion theory, are sometimes interesting enough to
deserve attention in their own right, and are thus a source of new
theorems and problems. Several of the latter are given at the ena of
this paper.

Brownian motion is a very intuitive thing to work wifh, because at the
_back of our mind is the corresponding physical process, or rather an
idealized version of it, which is only very briefly described at the
beginning of the next section. A much more detailed and very enjoyable
physical and historical account of Brownian motion can be found at the
beginning of Edwara Nelson's book, [33].

Although there is necessa:ily some overlap between the subject of this
paper and the better known probabilistic potential theory, no attempt
will be made to treat the latter systematically. See ;he book [21]rof‘
E. F. Dynkin and A. A. Yuskevitch for a very readable elementary intro-
duction to the use of Brownian motion in studying harmonic and subharmonic
functions, and see [18] for more advanced treatment.

For simplicity, the treatment here_is usually restricted to entire
functions and functions defined on the unit disc. . Extensions of the
resﬁlts here to more general situations will often be immediate. Proofs

are usually just sketched, except in the next section, where the

‘



foundations of the subject, up to and including some basic theorems of

Kakutaui and a version of LeVys theorzii, are rigorously presented.

In Section three the author's proof of Picard's little theorem is
sketched. This theorem can be proved using Brownian motion on Riemann
surfaces and the modular function, together with ideas of Kakutani
(see Section 8). Here Riemann surfaces are not used and the work of the
modular function is done by a law of large numbers, which is used to
derive a result about Brownian motion paths originally provgg (via the
modular function) by Ito and McKean. For another, shorter,
exposition of some aspects of this proof see P. J. Kahane's paper [28].
We remark that Picard used the modular function in his proof and that the
first elementary (that is, modular.function free) proof were bésed cn Bloch's
theorem. Now there are a number of proofs.

In Section four some of Doob's earlier work on the range and boundary
values of analytic functions is sketched. One sample of this has
already been given. The particularly close connection between Stoltz
regions and Brownian paths is discussed here. See Burkholder, [6], for
related expository material.

The next topic is the theorems and techniques associated with the
probabilistic treatment of HP spaces of analytic functions, including the
famous solution by D. L. Burkholder, R. F. Gundy, and M. L. Silverstein
of a long standing problem in this area in [12], and some of Burkholder's
later work. The original proof, which used martingales, is tfanslated to
enable use of Lévy's theorem. This is the approach taken by -Burkholder

more recently. Karl Peterson has written a book, 34 ], mostly devoted to



presenting and explaining [12]. For another exposition of [12] as well
as a thorough treatment of modern uP neory, much of which was inspired
by [12], see Charles Fefferman*s paper [22]. Fefferman and E. Stein
were the first to give a non-probabilistic proof of the Burkholder, Gundy,
and Silverstein result, in [23].

In Section 6 the author's method of studying conjugate function and
Hilbert transform inequalitiés will be sketched. This provides a
uniform approach to a number of these inequalities and often gives the
extremal functions and best Possible constants for them, some of which
were found for the first time in this manner. There are expository aCcounté
of this method, applied to different problems than the one considered here,i
in J. P. Kahane's paper [28] and D. L. Burkholder's paper [6]. Recently
Albert Baernstein II has givenrnon—brobabilistic proofs of most of these
results, as well as some very nice extehsidns, in [2].

The next to last section contains new proofs of Koebe's theorem
(without the constant 1/4) and Picard's big theorem, and in the final
sections some problems are posed and Brbwnian motion on Riemann surfaces,
" including an early paper of Kakutani on the type problem for Riemann

surfaces, briefly discussed.

Fundamentals. A very small particle suspended in a liquid can be seen to

move rapidly about, due to the bombardment of the ‘ ‘
particle by the molecules of the liquid. If the position of the particle
is projected onto a plane, a two dimensional motion results. This is

what would be observed if the particle was watched through a microscope and

it was impossible to discern the up and down component of its position.



In the 1920's Norbert Wiener gave a mathematical description of an

idealized version of this motion. We.wi1ll distinguish between stan-

dard Brownian motion, supposed to describe the movement of a particle
suspended in a liquid of a certain unchanging temperature,.and Brow-
nian motion, in which the temperature of the liquid, which influences
the rapidity of the motion of the particle, is allowed to vary.

Wiener constructed a family of random variables Zt = Xt + 1Y 't > 0,

t’
on a probability space Q, Zt representing the position of the particle

at time t. For each £ > 0, let ro(e) =T, = 0, and if i 2 L. define

0

Ti(e) =T = inf{t > T |Zt - ZTi_ll =e}, and let Ai(e) =4, = ZTi—ZTi_l.

The process Zt satisfies the following postulates.
(A) For almost every w € Q, the path Z (W), 0 st<w, is continuous
and unbounded.

(B) For each € > 0, A are independent and each is uniformly

1’ A2,...

distributed with respect to linear Lebesgue measure on {|z]=€}.

T 10 i > 1, are independent and identically

distributed. Furthermore E(ti(l)-Ti_l(l)) = 1/2 (a normalization).

(C) For each € > O,:'ti -

Standard Brownian motion is defined to be a process satisfying these
three postulates, while Brownian motion is defined to be a process satis-
fying the first two. It is not difficult to show that this definition of
standard Brownian motionris equivalent to the usual one. .What we call.
Brownian motion might be given other names elsewhere; Wiener's ¢onstru¢tion

of standard Brownian motion may be found in [4], and there is a . :,‘='
different constrUction.in [32].

Although these definitions are new, it has been recognized for a long
time that the property of hitting circles with a uniform distribution is
very useful when using Brownian motion to study harmonic and analytic func-

tions. Of course postulate (B) means that, for each integer n, the



measure on ¢n induced by the map (Al,:;.,An) from @ is product mea-
sure un, where p puts uniform measure on the circle of radius e
about 0.

In the rest of this paper Zt will be standard Brownian motion, and
PZ énd EZ will denote probability and expectation associated with Zt
started at z, that is satisfying ZOEz. Since Zt will usually start
at 0, P0 and EO will be written P and E to avoid subscripts.‘ Linear
Lebesgue measure will be denoted by %, and a A b = min(a,b).

Recall that a harmonic function defined on a region R is“aﬂcontinuohs
function which satisfies the averaging property. That is if
{Iz—zo| < €} CR then
(2.1)  u(zpy) = fg" u(zg*e eie) de/ 2.

This connects nicely with postuiate {(B). The foliowing fundamental
theorem is due to Kakutani, in [29]. The proof is essentially Doob's
([18]). Although it is stated only for standard
Brownian motion, since it is only a theorem about the paths of Zt’ it
also holds for (non-standard) Brownian motion. It will be seen that
only postulates (A) and (B) are used in fhe proof. This also is true
of .Theorem 2.2 and 2.3.

Theorem 2.1. Let u be harmonic on a bounded region R and continuous on

R (closure of R). Let TR = inf{t > 0: Z, € 3R (boundary of R)}. _Then

E u(Z. ) = u(z), z €R.
A TR

Proof. Let ¢ > 0 be fixed for a while, and let N = min{k:|ZT —ﬁRls e},
: k

where Tk = Tk(e) is defined as before.



If |z-3R| < e, N = 0, so assume |z-3R| > € which gives P(N > 1) = 1.

Then
2n ig
Eu(z_ ) = [ u(z+tee ")do/2r = u(z)
z 1
1 0
by (2.1) and (B).
Now 2 - Z_ is uniformly distributed on {|z| = €}, and independent
2 1 .
of ZT - ZT » so it is independent of {N > 1}. Thus, integrating first
1 0

with respect to the second coordinate and then the first in ¢ X ¢, (2.1)

and (B) again give
B, (0% ) - w IO > D)

_ 1 ¢2n i _
= E, [5% fo u(z_ + ee )do-u(z .

JII(N > 1)
1 1

E_[0]-I(N > 1) = 0, so

E u(Z. ) = Eu(z

2, A ) + Ez(u(ZTZ) - u(Z_ I > 1) = u(a).

1 1

Continuing in this manner we get Ezu(ZT ) = u(z) for each k, and the
"N AK

bounded convergence theorem gives Ezu(ZT ) = u(z). Now (A) gives
‘ Y

ZTN -+ ZTR almost surely as € -~ 0, so u(ZTN) +—u(ZTR) a.s., and another
application of the bounded convergence theorem completes the proof.

This theorem implies immediately that the distribution of Z under Pz’
T
R
and harmonic measure on 3R with respect to the region R and the point
z, are the same. Readers not familiar with the concept of harmonic
measure may use this fact to give a probabilistic definition. Sometimes
probabilistic arguments may be used to find or estimate harmonic measure

whén other methods don't work. Conversly, Brownian hitting probabilities

can be found by using the standard methods to find harmonic measure, as



in what follows.
Let 0 <a <1 <A <« and let R be the annulus {a < |z| < A}, and
apply Theorem 2.1 to the function u(z) = £n|z|. Let

p(a,A) = p = Pl(ZT =a) so that 1-p = Pl(Z = A). Theorem 2.1 gives
R TR ,

(2.2) 0 = 2n(1) = ElJLnIZTRI = Pin(a) + (1-p)&n(A),

If A is held fixed and a -~ 0, (2.2) gives p - 0, which proves, since A
was arbitrary and Zt has continuous paths a.s., that the probability
Zt'ever.hits {0} is 0.  This proof goes through similarly if Zt starts

at any point except 0, and uses only the existence of a harmonic function
on ¢ - {0} which goes to @ at 0 and to -» at ». An analagous function
exists for every compact set of capacity 0, so the probability Brownian
motion started at a point outside sﬁch a set ever hits it is 0.

If we hold a fixed and lét A > = in (2.2), then p + 1. Thus Brownian
motion sfarted at 1 hits {|z| = a} with probability 1, for each a > 0,
and it is easy to argue (using thé Strong Markov Property, which will
soon be discussed) that {|z| = a} is almost surely visited at arbitrarily
large times t, or, to put it another way, the probability that Zt’ t >2n,
visits {|z] = a} is one for each integer n. Any compact set of positive
capacity may be handled similarly, giVing the following theorem of Kakutani,
([29]), which can be used to give a definition of capacity 0.

Theorem 2.2. Let K be a compact subset of {.

If  cCap(K) = 0,P (Z, €K for some t 2 0 =0, z £x
If cap(K) > 0,P (Z €K for arbitrarily large t) = 1, for al] z in .

A nonnegative random variable T will be called a Markov time for Zt

it ZT+t - ZT,

o-field g(Z

t > 0 is a standard Brownian motion independent of the

AT 0 2t < &he past up to pime T)_ A nonnegative



random variable T is called a stopping time for z, if, for each X > 0,
{t < A} is in this o-field. Thus, if t ic a stopping time, whether stopping
has occurred by time A can be determined by observing z up to time A. For
instance, the first exit time from a region is a stopping time. It can be
proved that all stopping times for standard Brownian motion are Markov times
(see [4]). Another way to say this is that standard Brownian motion has the
Strong Markov Property.

Now a version of Lévy's theorem will be proved. In its simplest form,
which is sufficient for many applications, this theorem says the

following.

Theorem 2.3. 1If f(z) is a nonconstant entire function, and Zy

‘'starts at z_, then f(Zt)’ 0 <t <, is Brownian motion starting at

0’
f(zo).

Proof. C(Clearly, f(Zt) has continuous paths a.s., since Zt does, and they
are almost surely unbounded since, by Theorem 2.2, Zt visits {If(z)l > A}
with probability one. This takes care of (A).

Let v, = inf{t > 0: If(Zt) - f(zo)l =¢}. To show that f(zY ) is
1 .

uniformly distributed on {lz—f(zd)l =g} it is sufficient to show that,
for all functions u harmonic on S = {z: lz—f(zo)l < g L and continuous

on S, Ezu(f(ZY )) = u(f(zy)). This is an immediate consequence of Theorem 2.1,
0 1
since, if R is the component of {z: If(z)-f(zo)l < €} containing Zgs

u(f(z)) is harmonic on R and continuous on R,while Yl= inf{t > 0: Zt € 3R}.

Now if, v, = inf{t > y,: lf(zt)-f(z )| = }, £z, );f(z ) is
51
uniformly distributed on {|z| = ¢} and independent of f(Z ) f(Z )= f(Z ) f(zo).

This follows immediately from the Strong Markov Property, the fact that
i is a stopping time for Zt’ and the result-of the previous para-

graph. An iteration of this argument gives property (B) for,f(Zt).
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Several things may now be evident. We have only made use of property
(B) in the limit as € » 0. In fact, (&) for only very small € can be
shown to imply (B) for all e. This has the corollary that whether
a process is a Brownian motion is largely a local pfoperty. Thus,
an heuristic proof of Lévy's theorem could be given as follows.
Locally, analytic functions are almost like az + b. The functions
az + b clearly take Brownian motion to Brownian motion, Q.E.D. This
argﬁment can be made rigorous, too. See McKean'sbook [32], page 109.

Now a more complicated version of Lévy's theorem will be:stated but
not proved. See [32] for a proof. The following notation will be used
throughout the paper. If f(z) is analytic and not constant in the unit

disc D, and Z0 = 0, define
S 12
(2.3) pe(s) = p(s) = [ Ier@)y|cat, 0 ¢s <t
i 0 t D

Since Zt misses the (countable) zeros of f', p is almost surely strictly
increasing. Now f(Zt) is Brownian motion, but perhaps moves locally
too fast or slow to be standard Brownian motion. We speed it up or

slow it down by changing the time scale. Let

), O0<t< 1.
1 D
P (t)

Then Wt is locally standard Brownian motion, but

(2.4) W, = £(Z_

it is only defined up to t = p(Ib), which may or may not be .infinite.
The process Wt could be talked about as standard Brownian motion up
to time p(ﬁﬂ’ but ‘it is more convenient to define Wt for t 2 p(ﬁg so

that the whole process Wt, 0 <t <o, is standard Brownian motion.

This is done by defining, on {p('b) < o},
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{(2.5) = limit and

W W {yt
o (p) t >y e(t)

W =W +(Z_ . -2 ), t>0.
p(Tp)+t p(ty) Tytt L

The limit can be shown to exist almost surely on {D(TD) < «}, One
form of Lévy's theorem states.

Theorem 2.4. The process Wt, 0 <t <=, is standard Brownian motion.

Because of the central role of the time pf(TD) in what follows we
designate
pelty) = vif)
which will be further shortened to y if the function f is clear from
the context. The distribution of y is a measure of the size of f(D).
For example, if f is univalent and maps D onto R and 0 to 0 then
P(v > a) is the probability that standard Brownian motiqn started at

0 takes more time than a to exit from R.

Picard's little theorem. .This theorem, which states that if f is a

nonconstant entire function then the range of f contains every
complex number, except perhaps one, is of courée equivalent to the
statement that if a and b are distinct complex numbers then either a
or b is in f(¢). It involves no loss of generality to assume a = 1
and b = -1, and we make the further simplifying assumption, which can

be easily circumvented, that £(0) = 0. What will be shown, then, is

that, if f(z) is a nonconstant entire function satisfying f(0) 0,

then one of the points *1 is in f({). Assume, to the contrary, that
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£f(C) contains neither of these points.. Identify the points of

Y

{z: |z| < .1}, call this set 0, and let-¢ be ¢ - {+1,-1} with the
points of 0 identified. Let ¥ be the component of f_l(O) containing

0, and let $ be ¢ with the points of ¥ identified. Then f gives a
continuous map from % to ¢, in the usual manner, and a closed curve in

~

a is mapped to a closed curve in ¢. Clearly any closed curve in &
can be continuously shruhk, while beingvkept a closed curve, down to
a single point, while this is not true of all closed curves in &,
only those which are not tangled around *1(i.e., those homotepic .to 0).
Thus the image under f of any closed curve K in 1 must be a closed
curve in & which is homotopic to 0, since, as K shrinks to a point,
so must f(K). A contradiction will be gotten by exhibiting a closed
curve in & with an image not homotqpic to 0 in 6.- This curve will be
(the projection of) a Brownian motion path.

First we need the following Lémma, equivalent to a theorem of Ito
and McKean (see [32]), who used the modular function in their proof.

A different proof is indicated.

Theorem 3.1. There is a time =, P(t < ) =1, such that s 2 t and

Z €0 implies Z , 0 <t <'s, is not homotopic to 0 in ¢.

The tangling of a curve in &vcén be represented by é word written
using the four 'letters" a, a_l, b, and b—l, where a and a-; stand
respectively for clockwise ahd-countefclockwise loops around 1 and

b and b-1 serve similarly for -1. The curve in the picture would have

_]_ .
a bas its word.
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If this curve is a Brownian motion path, it will get less tangled

in the future only if it loops counterclockwise -around -1, i.e;
unwinds, before it does any of the other three possibilities, which
would tangle it more. Each of the four possibilities is about equally

likely, by symmetry, so the Brownian motion is about three times as
likely to become more tangled up as less. By considering times
Y. <Y, < Y,...> such that Z € 6, and such th
1 2 3 Yi at Zt’ 0stcx< Yi+
is about three times as likely to be more tangled up in ¢ than Z
t’

1,

0<tx< Yi» and by using a law of large numbers related to the one which
says that, if a coin with probability 3/4 heads and 1/4 tails is tossed
repeatedly, eventually heads become and stay more numerous than tails,

Theorem 3.1 can be proved.

Note that although Theorem 3.1 is stated for standard Brownian motion,
since it involves only path properties it is also true for Brownian

motion.

Now the proof of Picard's Theorem can be completed. Let t(f) be the T
guaranteed by Theorem 3.1 for the Brownian motion f(Zt). Since Zt €y
for arbitrarily large times t by Theorem 2.2, there is.a time n > t(£),
P(n < «) = 1, such that Zn € 0, which implies f(Zn) € 6. Any of the

paths Zt’ 0 <t < n,gives the contradiction. Details of the above can

be found in [16].

Stoltz angles. The idea to use probability to help prove theorems of

the type proved in this section is Doob's, and he worked in a. very general
setting. "His proofs, which were based in part on classical theorems

in potential theory, especially those involving the fine topology,

have been altered here to make use of recent techniques of Burkholder,

Gundy, and Silverstein for dealing probabilistically with Stoltz domains.
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First, two more or less immediate theorems toncerning Brownian motion
and analytic functions will be proved, énd}fhen the older classical
gnalogues will be stated, together with a sketch of how to get from
the former to the latter. If f is a nonconstant entire function and
H is a closed set then, using the notation introduced at the end of

Section 2, {WV € H} = {1im

g f(Zt) € H} using (2.4) and (2.5).

Theorem 2.2 now immediately gives the following.

Theorem 4.1 1If f is a nenconstant entire function, and K is a

compact set of capacity O, then e

P(1lim, £(z,) €K) = 0.

T

The other half of Theorem 2.2 implies that, for each number a, almost
every path Wt, a <t <o is dense ih the plane, since the probability
it visits each disc of rational center and radius is one. Thus, the
probability Wt, a <t <o, is dense in ¢ for all a is one, thch implies
that on {v = «}, almost all the paths f(Zt), (tD—e) A T < t < 1, are
dense in ¢ for all € > 0, since Wt, 0 <t <v, and f(Zt),'O <t < tD;
traverse the same paths at different speed. On {v < =}, limt > T f(Zt)

exists and equals W almost surely. This gives the following dichotomy.
v

Theorem 4.2. With probability 1, either lim

t 1, f(Z.t) exists or
f(Zt), L (é A TD) <t < s is dense in the plane for each e > 0.

The classical analogues of these theorems involve Stoltz domainS,'
which will now be defined. For each e'®, and each o between 0 and 1,
define the Stoltz domain sa(e) to be the interior of the smallest convex

set containing the disc {|z| < a} and the point el® (see the picture).
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If A is a subset of 3D, define Sa(A) = U Sa(e). These Stoltz
domains often have sawtooth like boundaries. The following theorem is
implicit in [20], although the proof is based on a result of Naim
about fine limits. A probabilistic proof is implicit in the last

half of Burkholder's paper, [6].

Theorem 4.3. For each fixed a, 0 < a < 1, and each Borel set A,

P(Zt € Sa(A))’ T, - (e A ) <t < T, and Z, €A) » P(Z_ € A) as

D D D

e+ 0.

This theorem is of course vacuous if R(A) = 2nP(ZTD € A) = 0, but,
if P(A) > 0, it says that almost all Brownian paths which hit points
in A get in and stay in Sa(A) before they hit. It will not be proved,

but note that it is immediate if A is open.

A function g, analytic or not, defined in D, is said to have a non-

tangental limit at ele if

lim g(z) exists for all a, 0 < a < 1.
i0
z>e
€
z Sa(e)

Using Theorem 4.3 it is easy to show that, if g is any function with a

nontangental limit g(ele) on a Borel set B C 3D,

.g(Zt) = g(ZT ), ZT € B) = P(ZT €B).

(4.1)  P(lim
: D D D D

> T

This equality and Theorem 4.1 now give the following theorem of Privilov.

Theorem 4.4. If f is a nonconstant entire function,and K is a

" compact set of capacity U, then the Lebesgue mcasure of the set of D

where f has nontangental limit in K is 0.
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Now let © be'fixed. The conceptiof Brownian motion Zt condi-

. ie . . o , . eps .
tioned so that ZT e’ is intuitive, vut difficult to make rigorous

..D
since P(ZT = ele) = 0. Nonetheless this was done by Doob in [19]
D

and the resulting process will be denoted ZS, 0<tx - Here, Zg
will always be 0. As you would expect, if E a Borel set in D such that

e16 ¢ E, and FE = {eX? : 6c <@ <06 + €},

4.2) P(z? ¢ E for some t, 0 5t < 1.)
t D

P(Z, €E for some t, 0 st < t_, and Z € r.)

D D

e >0

P(z_ €r1)

TD €

and the prcbabilities of other events for Zg are similarly computed.
(If e1e € E, the limit may not exist.) Conditional Brownian motion is
nice enough to be used in the following way. If E is a Borel subset of

D,
(4.3) P(Zt €E for some t, 0 <t < TD)

2w
= f P(ZS €E for some t, 0 <t < TD) de/2w.
0

(1f E Nap = 0, (4.3) can be derived difectly from (4.2) without

much difficulty)

A fundamental connection between conditional Brownian motion and

Stoltz angles is the following theorem, essentially proved in [12].

Theorem 4.5. For each o, 0 < ¢ < 1, there is a constant a(g) > 0

such that, for all z € so(e),

P(Z:, 0 <t < Tps contains a closed loop around z) > a(e).

Now wrapping around a point in a connected set F means intersecting the
. r} . . .16 . .
set, so if F SO(B) contains points z, >e ,and if An is the event
0 .
that Zt’ 0 <t < Tp» contains a closed loop around Zn’ then

P(lim An)'z lim P(Ah) > a .- ‘From this it can be concluded, since
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Z.,0<t < T 1S a curve which first hits 9D at T,» that
(4.4) P(ZE, 0 <t < s hits F at times arbitrarily close to TD) 2 a(a),

and a 0-1 law ([3], page 30), applied to the reversed process, gives

(4.5) P(ZS, 0 <t < Y hits F at times arbitrarily close to TD) = 1.

Now let u be a harmonic function, and define u;(e )=1lim ieu(z).

Applying (4.5) to the connected sets {u > A} gives

P (Tim, u(z)) » ut(ei®) = 1.

> T

and integrating with respect to d6 gives
T +
(4.6) P(llmt N T u(Zt) > uo(zTD)) = 1.

There is a corresponding result for lim.
Now let T = {ele: lim 16 f(z) does not exist}. Either the
o z>e
€
z sc(e)
limit of the real or imaginary part of f fails to exist as z - e'® in
so(e), e1e € To’ so that (4.6) and its analogue for lim give

AN o E =
P(11mt f(Zt) exists, ZT To) 0,

> T D

which implies

D Ph=ez €T - Pz, €T = (T2,

while (4.1) gives

(4.8) Py <> Z ¢%)=”%Df%%
D :
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Equation (4.7), Theorem 4.3, and the second sentence before the statement
of Theorem 4.2, givé that, if A is aéyﬁpofel subset of Tc’ then f(SG(A)) is
dense in {, which implies that f(SUté)) is dense in ¢ for almost every

g € To' Furthermore, (4.7) and (4;8) imply l(To) is the same (27 P(v = = ))
for all ¢. Thus the following theorem of Plessner holds.

Theorem 4.5. Except for a set of 6 of Lebesgue measure 0, either

f has a nontangental limit gE_ele or f(Sa(e)) is dense ig_¢ for each a,

0 <a<1.

Hardy spaces. The probabilistic treatment of P spaces, by D. L.

Burkholder, R. F. Gundy, and M. L. Silverstein, was made possible by
Burkholder and Gundy's prqof, a few years earlier, of a theorem about
standard one dimensional Brownian motion. If Zt = Xt + th is standard
two dimensional Brownian motion then Xt and Yt are independent standard
one dimensional Brownian motions. This connection is usually used to
define two dimensional Brownian motion, in fact. The definition of
Markov time for standard one dimensional Brownian motion parallels the
definition of Markov timelgiven in Section 2, and if t.is a Markov time
for Zt then it is for Xt and Yt also. When P(1 = ») > 0, we say that t

is a Markov time if t A n is a Markov time for each integer n. It -

follows from the construction of Section 2 that v is a Markov time for

wt and thus for. Re Wt and Im Wt. If At’ 0 <t <=, is any stochastic

* *
process, define the new process At,.O £t < o, by At = sup, <s <t [Atl.
In [11], Burkholder and Gundy prove that, if Ft, 0 <t < é, is standard

one dimensional Brownian motion satisfying FO = 0, then, for each p > 0,

there are positive constants cp and Cp such that
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*
(5.1) ¢ EtP/% < P < ¢ pP/2
P T P

for all Markov times .

Let & be the class of all functions f = u + iv, analytic in D,
which satisfy f(0) = 0. 1If Ap(f) and Bp(f) are two quantities asso-
ciated with the functions f € &, we write AP ~ Bp if these exist pos-
itive constants kP and Kp, not depending on f, such that -
kpAp < Bp < KPAp, 0 < p <. The relation ® is clearly symmetric and
tragsitiver An application of (5.1) to Re Wt, t 2 0, gives

*qy *yy
(5.2) <Evp/2’¥ ERe W P = Eu(z_ ) P,
o v TD.

and similarly we have

(5.3) W/ 2~z )P,
"D,

which together give

* * .
(5.4) Eu(Z_ ) P~ Ev(Z_ ) P -
D D
Now define, for a set FC D, the sets A(F) = {Zt € F some t < TD}and
N(F) = {6: S _(6) M F} $ ¢. It is proved in [12], in a slightly diff-

erent form, that for each o, 0 < 0 < 1, there are positive constants Sy

and.C0 such that, if F is a connected Borel set,
(5.5) COP(A(F)) < Z(NI(F)) < CUP(A(F)).

(We may take q;lto be the a(g) of Theorem 4.5.) Note that if F is
closed, P(A(F)) is the harmonic measure of F relative to D - F. An

application of (5.5) to the sets {|u| > A} yields_ the beautiful inequality

(5.6) COP(u* >0 < 20N (W > A) s CP(u* > ), 2 > o,
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where N_(u)(8) = sup, ¢ SO(6)|u(z)| is the nontangental maximal
AP-1

function of u. Integrating (5.6) times gives

2w
5.7) EuP e/ NO(u)(e)pdG, o fixed,
.

and the equivalent result holds for v, which, when combined with (5.7),
yields
2w D 2 p _
(5.8) [ N P(exe ~ [ N (V)7(6Mo, o fixed. -
0 0
This is a major theorem of [12]. Together with previously existing
results, (5.8) made it possible to prove
2m ) 2m ie .
(5.9) [N Peode ~ [|£]|1P. = 1im 20yt [ | £(xe)|Pde, o fixed,
o] p 1 .
0 H 0
where ||f]] p is the HP norm of f.
H :
The relationship (5.9) can be used to give a number of quantities
that are equivalent to the HP norm for f € & Perhaps the most useful is

to combine (5.9) with (5.2) and (5.7) to get

€] P~ Ev
P

In particular, f € HP if and only if Evp[z < ®, For many purposes
EVP/2 is a simpler quantity to work with than | 1£]] p’ as D. L.
Burkholder has recently shown. We illustrate by ske?ching a proof of the
following theorem, first proved by Burkholder in [8], although implicit
in the work of Lowell Hansen, t25], if £ is univalent.

Theorem 5.1. Let f and g be analytic in D with £(0)=g(0)=0.

p . i6 .
Suppose g € H and that lim _, g(re”") exists and belongs to ¢ - £(D)

for almost every 6. Then f € HP.
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The hypotheses of this theorem, together with equation (4.5)

. ' ie .
(Here F will be a segment {re”, R < r < 1}), imply there is a random

variable s < o such that

(5.10) Pg(z) £ £(D) = 1.

Let n = inf{t > 0: W _(g) € £(D)}. Then (5.10) implies P(n < v(g)) = 1.
Let v = inf{t > 0: Wt(f)z$ f(D)}. Clearly vy > v(f). Now y and n have

the same distribution, since both are the first'exit time of a standard

Brownian motion started at 0 from the set f(D). Thus

Bv(£)P/% < P2 - P42 Ev(g)P/2.
Since g € HP, E\)(g)p/2 < », SO E\)(f)p/2 < o and thus £ € HP,
completing. the proof.
Albert Baernstein II has recently shown, without probability, that

the hypothesis of Theorem 5.1 imply ||f]] See [8]. For

< |legll .
HP uP
related recent applications of probability to analytic functions, also

see [5], [7], [9], and [10].

Conjugate function inequalities. Let £ = u + v be analytic in D,

continuocus in D, and satisfy v(0) = 0. If U and ﬁ deﬁote, respectively,
the restriction of u and v to the boundary of D, if is easily seen that

U determines U completely, and U is called the conjugate function of

U. This map can be extended so that the conjugate function of aﬂy
totally finite signed measure is defined in a way compatable with the
definition just given, but here we will work with U which are as just
above, that is, boundary values of function analytic in D and continuous
in D. The collection of all functions on 3D of this type will be denoted

G, In a number of senses, the distribution of ﬁ cannot be too much
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greater than that of U. An example is the following theorem of Kolmogorov.

For a number of related theorems, see [35].

Theorem 6.1. For each p, 0 < p < 1, there are positive constants

Kp such that

LT 1/ 2 e
(6.1) f luce*”y|Pdey™/P <K, [ |uee*™y]de,u € G,
0 0

Note that if we define

2T . .
(f  |ucet®) |Paoyl/P
0

(6.2 : =C,
sup 27 .
U 0 10
U i " [ Jue™)|de
’ 0
then Theorem 6.1 is equivalent to Cp < o, We will sketch a proof of this under
i 27 c L
the simplyfying assumption that f U(ele)de = 0, which is of course equivalent
0

to £(0) = 0. Let C; be the supremum in (6.2) if G is replaced by the class
. U* of those U in. G satisfying this condition. A proof that CE < = will be
sketched.

Note that, since ZT is uniformly distributed on 3D,

(6.3) j;-f [U(e™ )| de = E|v(zT )IF = E|Im LA
0 D
and
i 2 10 . |
(6.4) 5;-[0 |U(e™)lo= E|Re wv| = lim E|Re Wooa t|,

the last equality by the bounded éonvergence theorem. Also W0-= 0, by our
simplifying assumption.
Let 7 be the class of all Markov times for Wt. In view of (6.3) and
(6.4), if
(E|Im wnlp)l/p
% lim . E[Re wn

boo e

su = C!,
P p

n A ¢l
n
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1 * ' L
then “p * €, 50 if CP is finite then Cp is. A natural way to prove
]

Cp < o is to find the n = p which maximizes the ratio (6.5), and then

to calculate

\.p

Elim W |P )"

(6.6 ( 2 -
Lim, .E|Re WA ¢l

which will of course be C;. A solution is y = inf{t > 0: |Im th > 1,

Re Wt = 0}. This will not be proved here. It happens that C; is not
only finite, but also C; = C;. The examples necessary to show this are
associated with the standard analytic function g(z) = 22/(1—22) mapping

D into {z: }Im zl > 1, Re z = 0}, which is not surprising, since v(g) = u.

With a little more work it can be shown that c; = ¢, (see [17]),

which is of course the best possible value for Kp in Theorem 6.1. The
value is C:P = (%%L:TIm g(rele)lp)lfp. This method is applied to other

problems in [14] and [15].

~J

Growth of analytic functions. If f is analytic in D, and |f'(0)] = 1,

then f(D) cannot be too small. There are several classical results
which make this statement precise, and following is one way to do it
probabilistically.

Theorem 7.1. There is a positive constant C such that if f is

analytic in D then
| TIGEIHOIBERS

This theorem will not be proved here. It is a conscquence of the

definition of v, the subharmonicity ©of [f'(z)]z, and the lemma of [13].
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Theorem 7.1 will first be used to prove Koebe's theorem, stated
below. It is known that the largest rc.ssible value for the constant
K is 1/4, but we don't get this.

Theorem 7.2. There is a positive constant K such that, if f

is analytic and univalent in D, and satisfies f£(0) = 0 and |f'(0)l =1,

then {z: |z| < K} C £(D).

Proof. Let us say that a curve y= Ty, &% t < b, encloses a set A if
there are times a £ o < B < b such that Yio O <t <B, is a closed
curve with none of A in the unbounded component of its complement, and
define the radius of enclosure R(y) to be the largest r such that

{z <r} is enclosed by.y.

If there are numbers a < t, < t, < b such that |y_ | = |y, | but
1 2 - t, t,

Arg Yo * Arg Ye o it is easily seen that there exists an N such that
1 2 :
n N implies Yt’ a <t <b, encloses 0, since the changes in argument

of yz, are n times as great as those of Yo Thus, since almost every

Brownian path has many such pairs of times, there is a random variable

N, P(N < ®) = 1, such that n > N implies Z:, 0 <tzx T encloses {0}.

Thus

. n
(7.1) 11mn P(Zt’

-+ ©

0<t

IA

Tps encloses {0}) = 1.

But, since 2" is analytic, and maps 3D onto itself, 22, 0 < t< Ty
is just Brownian motion started at 0 up to the first time it leaves D.

Thus each of the probabilities..in (7;1) is the same, and
(7.2) P(Z,, 0 <t < 1, encloses {0}) = 1.

. -1 .
= 1nf{|Zt| = a}, thena "Z,, 0 s tc< is

If a > 0, and T < TaD,

D

Brownian motion up to the first time its absolute vdlue is 1, since
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a z is analytic, so (7.2) implies P(Z%, 0sts<rt,, encloses {0}) = 1.

Since P(t, ~ 0) =1 as a +~ 0, this gives

D

A

(7.3) P(Z,, 0

¢ t < e, encloses {0}) = 1, for each & >0.

Let K satisfy

(7.4)  PR(Z,, O

IA

t <C) > K > 1-C,

Cc as in Theorem 7.1. Such a K can be found since, by (7.3), if C is
fixed and K - 0 the probability in (7.4) approaches 1.
Applying (7.4) to Wf we get

P(R(W,, 0 <t sv) >K)
> PR(W,,0 < t <C) >Kand v 2 C)
> (1-C) - (1-C) > 0,

Thus, since all the paths Wt, 0 <t <v, lie in £(D), £(D) contains at
least one closed curve enclosing {|zl < K}, which, 'since f(D) is simply
connected (this is the only place univalence is used), proves Theorem 7.2.

To conclude this section the following theorem will be proved.

Theorem 7.3. Let h(z) be an entire function satisfying

limZ 5 |h(z)| = 0. Then either h(z) = +1 for infinitely many z, or

h(z) = -1 for infinitely many z, or both.

This is equivalent to Picard's big theorem, which Says that an
entire function g(z) which is not a polynomial must satisfy g(z) = a
for infinitely many z, with at most one exceptional vﬁlue a. The
classical result, that if g(z) is not a polynomial then limz+w|g(z)| = 0,

must be used to get this cquivalence.
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First several 1emmasrwill be stated. The first of these is an
extension of Theorem 7.1, and is a li;tle more general than equation
10 of [13], It can be proved in a similar way.

Let rD be thebdisc of radius r around 0, let (r) = inf{t:]Ztl =1},
{so that (1) = TD)’ let £ be analytic-in rD, define p as in (2.3), and

let M(r) = ma)jZl - 'fv(z)l. Then

Lemma 7.3. For each s, 0 < s < 1, there is a positive constant

C(s) , which decreases as s increases, such that

P(p(t(a))) > C(S)M(sa)zaz) > C(s). - ERENE

The statement of the next lemma is related to Theorem 3.1. Although
Zt started at 0 in that ﬁheorem this was done only fo simplify notation,
and in fact Zt could have startedvat.any point in 6. Thg proof of the
following lemma follows from the proof of Theorem 3.1 of [16].

Lemma 7.4. If Z = z € 0, there is a time t, P (t <=) =1, such

that s > 1t and Z €0 implie§ Zs» 02t s s, is not homotopic to 0

ig_¢. Futhermore, there is a function A(x), which does not depend on
z €0, satisfying A(x) + 1 as x + =, such that
Pz(t S x) > A(x).
Next the following weak form of the Picard-Schottsky‘Theorem
(see [1]) is proved.

Lemma 7.5. For eachr, 0 < r < 1, there is a positive constant

K(r), such that M(r) > K(r) and-lf(O)l < i%;imglies f(D) contains
either +1 or -1 or both.
Proof. Let r be fixed. Either Lemma 7.3 or Schwartz's iemma

guarantees that, if M(¥) is large enougﬁ, fhenlf(D/;.) is not con-

tained in 0, and we assume that M(r) is this large.. Let Dx be the
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largest disc with center 0 such that'f(Dx)(: 0.

Let T = inf{t > t(¥X): Zt =1 of'i}, and let S = inf{t > T(r1/4):2t=

1 or x}. The Strong Markov Property and an equation like (2.2) give

(7.5) P( lzT] =x| 2,0<ts (%) = 1/2.

t’

Since x < /T, ¥x < ?F , so C(¥x) > C(aﬁ?), and Lemma 7.3 with s=a=vx implies
(7.6)  P(t0X)) > e My > cl/dy.

By the mean value theorem, xpix) 2 (1/10)-(1/20), so, since

o(T) 2 o(T(YX ), (7.5) and (7.6) give -

7.7 P((M) > c(x4) (400 )™ and Z;.€ D) > c(x¥%y/2.
Also,

(7.8)  P(lzg) = x|z, 0 5 ¢ < /M) = (e ),

and an argument similar to the one which gave (7.7) gives

(7.9 Pe(s) > cr/*M@)%/F and Zg €0) > cx>*)an(r) /4.
From (7.7) and (7.9) it can be deduced that; if M(r) is large

enough, then either

(7.10) P(p(S) > y and Zg € D) > 1-A(y), for some y,

‘or

(7.11) P(p(T) > y and ZT € Dx) > 1-X(y), for some y,

where A(y)ris as in Lemma 7.4. (If x is very small, (7.10) holds, while

if x and M(r) are large then (7.11) will hold.)
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P e

€ Dx) > 0,and (7.11) guarantees

Nh

Now (7.10) guarantees P(p(S) > T,

!
P(p(T) > =, Zy € D) >0, T as in Lemr# 7.4, so, if M(r) is large

enough, either +1 or -1 or both are irﬁfCD), by the argument of Section
. f
Now let T' be the region {z: 3 < Izl < 2 and -w/4 < Arg z < 3u/2}.

The following lemma can be proved in a manner similar to the proof of

the last lemma, or can be proved using this lemma ahd the existence of a

univalent analytic function mapping I' onto D.

Lemma 7.6. Let g be analytic in I and let lg(1)] < 1/20. Let
r_ = {z € I: distance (z,5T) > e}. There is a constant, 8(e) > 0,

such that Ig'(s)] > 8(g) for z € Fe implies that g(T') contains

either +1 or -1 or both.

Now the proof of Theorem 7.3 can be completed. Let z. and z, be

1
two points on {z: [z] = R}, R > 1, such that lh(zl)l < 1/20 and

Ih'(zz)l > ®(.bl). Such Zy, z, occur for arbitrauly large R. Both
h(zlz) = gl(z) and h(zl]z)= gz(z) are analytic in T and satisfy

Igi(l)l < 1/20. Furthermore, lgi(zz/zl)l = le'(zzj| = Igé(zl/zglg and
one of ZI/ZZ’ zz/z1 is. in T and at least a distance of .01 from the
boundary of I'. Thus Lemma 7.6 guarantees thaf one of gl(F), gz(F)
contains either -1 or 1, which implies that h takes on either -1 or

1 in R/2 <_Izl < 2R. Since this is true for arbitauly large R, h

takes on either -1 or 1 infinitely often.

Concluding remarks. As was mentioned in the introduction, some

probabilistic expressions have arisen in the preceeding sections which

are directly translatable to more conventional expressions, for example,
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E]Wvl = f2ﬂ|f(eie)|d9/2ﬂ, while others cannot be so handled. The
most interesting of these, to me, is. the time v(f). The distribution
of v(f) is an intuitively appeéling measure of the size of £(D),

since if f is univalent then v is the first exit time of standard
Brownian motion from f(D) and, even if f is not univalent, a similar
interpretation can be given using Riemann surfaces. In the preceeding
sections there are a number of instances where information about the
size of v(f) translates easily into more conventional information about
the size of f(D). However, little of a ptecise nature is- known about Q. For
example, it is not even known in what sense, with regard to v(f), z is
the smallest analytic function in D satisfying If'(O)l = 1. It would

be nice if

(8.1) P(v(z) 2 A) < P(v(f) 2 1), » >0,

fqrall such f, which would improve Theorem 7.1, and it is prqbably

true that

(8.2) B(v(z)) < Be(v(f))

for all increasing and convex functions ¢ on [0,~), but neither ‘of

these results is known (although it is known that (8.2) holds if

$(x) = x; see equation (2) on page 309 of [27]). In the other direction,
it can be asked in what sense, with regard to v, the Koebe functign

—-—E—E- is the largest univalent function in D such that ]f'(O)I = 1.
(1-z) |

The reader interested in these questions should see Burkholder, [7].
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The subject of Brownian motion on -Riemann surfaces is outside the
scope of this paper, but it has been: sccessfully defined, and, since
the analogue of Levy's theorem holds, csgn be used to study analytic
functions on Riemann surfaces. Many of the arguments in Section 4
were adapted from proofs for such functions. Now on some surfaces,
for example the plane, Brownian motion is recurrent, that is returns
to each neighborhood qf its starting point at arbitrarily large times,
while Brownian motion on other surfaces, for example an open disc,
does not have this property. If there is an analytic function mapping
one Reimann surface onto another, theﬁ, by Levy's theorem, Brownian
motion is recurrent on both or neither. Kakutani wused such ideas to
study when there exist such mappings, in [29]. See McKean's book,
[32], for more about Brownian motiqn‘on Riemann surfaces; It is in this
context that a number of interesting applications of function theory
to Brownian motion occur.

The whole subject of conformal invariance has been studied in a
more abstract setting, in [29]. Finally, we remark that there are

uses of Brownian motion in analysis other than those mentioned here.

See, for examples, J. P. Kahane's paper [28].
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