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Admissible Generalized Bayes Estimators and

Exterior Boundary Value Problems

1. Introduction. In recent years the problem of determining admissible
estimators of the mean of a multivariate normal distribution has drawn the
-attention of many authors. In this paper, we revist the problem and

develop more general admissibility results for generalized Bayes estimators of
the mean under the squared error loss function.

L. Brown [ 3 ] related the problem of admissibility of an estimator
to a calculus of variation problem and obtained a necessary anc sufficient
condition for the admissibility of bounded risk generalized Bayes estimators.
Brown's result includes the admissibility and inadmissibility'results of
the best invariant estimator due to Stein [ 12 ].

Even though Brown's theorem covers a lrage class of estimators, there
are many unbounded risk estimators some of which are krown to be admissible.
We have been able to obtain a generalization which covers, besides bounded
risk estimators, a large class of unbounded risk estimators;

Our approach to the problem, though similar to-that of Brown, uses the
exterior boundary value problem in partial differential equétions. Moreover,
our proof is shorter and does not require such technical results as mean valQe
propérty of minimizing functions of the calculus of variation problemd We give
a brief outline of the paper below.

In Sections 2 ﬁnd 3 we give the notations, assumptions and'relation of
the admissibility problem to the calculus of variation problem. Section 4
deals with the calculus of variation problem and the associated exterior
boundary problem. The main'iheorem of Section 4 relates the calculus of
variation problem to the exterior boundary problem, thus enabling us to con-

7

struct suitable minimizing sequence of functions for the calculus of variation



. problem. The proof§ of results in Section 4, since they do not fit in to
_the mainstream of this article, are presented in the appendix at the end

of the paper. The discussion of our assumptions are given in Séction 5.

In particular, we show that Brown's assumptions -.ply orrs. Some technicaf
results, which are needed in the proof of our admissibility theorem, are
presented in Section 6. The proof of the main thereom is contained in

Section 7. Examples and applications are given in Section 8.

2. Preliminaries.

Let X be an m-dimensional normal random variable with unknown mean
vector 6 and the identity matrix as the dispersion matrix. Let-pe(x)

/ 2"

denote the m-dimensional normal density (2N)-m Zexp—%-ﬁ(nl—ui)
by E" and its norm by |-]. We consider thé probleﬁ of estimating 6 with
‘respect to the squared error loss function L(8,t) = ]e-t|2 where t is an
m-dimensional vector. For any estimator §(x) = (Gl(x),...,ém(x)) its risk
function is denoted by R(6,8).

Let G be an non-negative o-finite Borel measure on E" such that.

g(x) = fpe(x)G(de) < » for almost all x in E". Then the generalized Bayes

“estimator of G exists and is denoted by GG' The estimator GG(x) is given
by

[ © pg(x)G(de)
§ (x) =
G ] P, (X16(d8) -

It is easy to see, by differentiating under integral sign, that

b v 1
GG(x) = zﬁ%i%’* X where "V'' stands for the gradient of a function.



An cstimdtor 6(*) is said to be admissible if, for any othcf estimator

© 81, R(0,8") < R(8,8) for all 6 implies R(8,8') = R(0,8). By a generalizéd
 prior F we mean a non-negative o-finite measure such that f( ) =f pe(x)F(de)( o
almost everywhere with respect to the m-dimensional Lebsque measure. For any
generalized prior F, let KF denote the closed convex hull of its support.

If x is any point in E" define

de(x) = inf{|x-y[: y ¢ Ke}

to be the distance of x from KF' Let m(x) denote the projection of x onto

Kg- Clearly, d.(x) = [7(x)-x].

Finally, if u: E" > El, we shall say that u is piecewise differentiable

m

if there exists a collection (countable) of disjoint open sets {Oi}’ such that

E" = U 0, (0, is the closure of 0 ) ard u is continuously differentiable

. i
i=1 1 *
in each Oi.

w

The Problem and Assumptions.

The basic problem we are concerned with is to obtain necessary and
sufficient conditions for the admissibility of an estimator‘ﬁ(x) of 6.
Brown [3] has shown that édmiésible estimators of 6 are generalized Bayes
(see also Farrell [ 4], Sacks [10 ]. Therfore, our study of admissibility
of estimators can be confined to generalized Bayes estimators. ‘The main aim
of this paper is to obtain sufficient conditions on f(x) for GF to be
admissible. Through out the rest of this paper we assume that F is a fixed
nonnegative o-finite Borel measure with unbounded support. (if the support
of F is bounded then F is a finite measure and therefore GF is proper

Baves and hence admissible.



The basic tool for our study is the following necessary and sufficient
condition for admissibility due to Farrell [ 5 ] (see also Stein [ 11])).
An estimator 6(x) is admissible if and only if there exists a sequence of
finite measures {Gn} satisfying (i) Gn has compact suppert (ii) for some

compact set C and a constant g > 0 such that G (C) _ for all n and

[(R(8,87) - R(e,acn))cn(de) + 0 as n > (3.1)

Using the fact that GG(X) = z%%;%—+ x and interchanging the order of

integration in (2.1) we have, as in Brown [ 3]

1/2

. (x) | 2£0x) dx ' ,_(3.2')

where hn = gn(x)/f(x) and gn(x) = fpe(x)Gn(de). This identity (3.2} plays a
crucial role in the rest of the paper.

We can take, without loss of generality, the compaét Set C fo be the
unit sphere and 8 = 1. This implies, as shown by Brown [ 3], that hn(x) > 1
for |x| <1 for all n (if necessary normalize F on the unit sphere). The
qondition (i) that Gn's here compact supports implies the following. For

any a >0

lim - sup hn(x) =0 for all n. (3.3)
e {x: xEK;, |x| > r} - .

See Brown [ 3] for proof. Now, let J be the class of all non-negative

piecewise differentiable real valued functions j defined in BN satisfying

(1) jx) >1 for x| <1



(i1) 1lim sup j(x) =0 for all 0.

% fn: xﬂ§,|xlzr}

Then it is easy to see using (2.1) that

J(R(8,6;) - R(6,6;))G (d9) > inf [15 0 | 2£(x) dx (3.4)
n o T jed ' '

“for all n. Consequently, if 8. is admissible then (3.1) goes-to zero as’

F

n - «» and we have -

inf f]vi(x) | 2£(x) dx (3.5)
j€&d o

equal to zero. In particular, if (3.5} is positive then GF is inadmissible.:

The converse, that (3.5) is zero implies_‘c‘iF is admissible, was proved by Brown [3]

. v . . . . |
under the assumption I—fiflJ is bounded in KF. This assumption, as shown by
. £(x) ' _
_ Brown [ 3 ], is equivalent to the fact that the risk of GF is bounded in KF.

We generalize the result of Brown in this paper. We make the following

assumptions on F through the rest of the paper.

I. Alogf(x) < B for all x
x V(x) VE(x)
II. X[ ECH) + If(x) | < K for all x € Kp.-

where A is the Laplacian operator. We discuss these assumptions in Section

5.

4. The Calculus of Variation Problem

We observed in the previous section, that the following calculus of

variation problem

inf []95 (0 |2£0x)dx
je



is crucial to our study of admissibility of 6[’ We are, in particular, interested
in finding under what conditions this infimum is zcro or not. We introduce

below an exterior boundary valuc problem which describes when this infimum

is zero.

Let Lf denote the ellintic differential operator given by

v
£

qu = Au + Vu . (4.1)

where u is a twice differentiable function. We say that Exterior Boundary
Problem for Lf(BP for Lf) is solvable if there exists a unique .ounded

solution ug for the equation qu(x) = 0 in the exterior domain Si = {x: |x] > 1}

satisfying the condition uo(x) =1 on lxl = 1. Lea.u(x) take the value
1 continuously on the boundary 381 of the unit sphere. We are now in a

position to state our result. Note that the unique bounded solution uo

is identically equal to 1.

Theorem 4.1. A necessary and sufficient condition for inf f|Vj(x)|2f(x)dx=O
’ ' ' jed

is BP for Lcis solvable.

Proof. See appendix..
The above result enables us to obtain a smooth minimizing sequence of
functions for our calculus of variation problems. Indeed, if kn(x) is a

sequence of functions satisfying

Lfkn(n) =0 if 1< x| <n | (4.2)
k() =1 if x| =1 (4.3)
K (n) = & if |x| =n (4.4)

where 1 > qh(x) > 0, then kn -+ 1 uniformly on compacta and 1imf|an(x)|2f(x)dx
. : ’ n->o C
= 0. We would need suitably chosen such Kn's to prove the admissiblity resuit.



It is also a known fact that, by Maximum modulasvprinciple, 0 < kn(x) <1

. forl < |x| < n. For a proof see Miranda [ g ]. The Exterior bourndary
._problem has been studied by Meyers and Serrin [8] and he has given sufficicnt
conaitions for its Sdvability. Also see Brown [ 3 ] for some sufficient

conditions. We list a few towards the end.

5. Discussion of the Assumptions

We show in this section that our assumptions I and II are weaker than
" the assumption |z§1 < B on K made by Brown [3 ].
The assumption (I) Alogf(x) < B is equivalent to the boundedness of the

posteriori risk. Indeed,

v

pogf(x) = [|x-of Pe(XF(d®) —  gf 2
£(x) 3 -
- 2 p,(x)F(d®) .
= [lep(x)-¢~ Too 70T TN (5.1)

f(x)

Therefore, Alogf(x) is bounded if and only if the posterior risk is bounded.

Theorem 5.1. Suppose |¥%§§ll < B for x € K. Then there exists B, (depending"
only on B and m) such that Alogf(x) < Bl'
We need the following technical result (see Brown [ 3]) to prove

Theorem 5.1.

Lemma 5.2. Let K > 0 be a constant. Then theré exists a constant K1 > 0

{depending only on K and m) such that

- 2
eKIx elpe(x) < ](1 / pe(x+5) de.

le]<ke1



" Proof. See Brown [ 3].

We now prove Theorem 5.1.

Proof of Theorem 5.1.

Assume lvggigl < B.

Alogf(x)

I A

| A

Let x € K.

F Then, plainly,

[1x-g? Pg(IF(d®)
f(x)

RESUINENICH

£(x)
F(d6)
< K f f p, (x+£) (5.2)
1
for some constant K1 > 0 by lemma 5.2. Now,
Vf(x)l
(5.2) <K E(c+E)dE/E() < K| e 2! G g
£]<K, +1 le|<K +1
1 1
for some constant K2 depending on Kl' Therefore, for x € K P Alogf(x) < Bl
for some B1 > 0 (depending on B, Kl’ K2 and m) since | f(x)l B for x € KF.

Now let us consider the case x £ K Let w(x) be the projection of x

£(x)

on to KF' It suffices to show that |Alog I (x))l is uniformly bounded

in view of the fact IAlogf(n(x))] < Bl' Assume without loss of generality

that x = (-d(x), 0,...,0 , ©n(x) = 0 and KF c {e: el > 0} (To see this,

consider the hyperplane tangential to the boundary of Kp at m(x).

and translate the space so that the normal coincides with the axis (-1, o,...

and w(x) = 0.). Then

T2
2 -1/2 6°
1! /2 Lo

-1/2|x-# iZo

Now rotate

= [e e F(d6) (5.4)

(5.3)

,0)



, 2
where -Xy = d(x) and absorbing £(0) = e-1/2|6] F(do) in F we have

) x,0 2
02 e 11 e-1/2|e| F(dO) -
' £(x) / 1 - —
< . -
Aog Foy = ex1 1,-1/2]0] F(do)
x, © 2 2 ' :
1 -1/2{0]",.
_ I 0 e 1 e /2| ‘ F(de) , (5.5
1 x, O 2 ’ (. ).
171 e-1/2[e| F(do) .

© Now conditioning with respect to 61 and integrating with respect to the other

variables we have

2 L2
- x. © -8 o x,9 -0 :
fo2el 1 ¢ "1 kqdey [fo, et e lE e |
. 1 1 1 1 1 1’}
Alog f(x) . 0 }o
£(0)  — ©  x.0 2 ©  x.0 L2 1
[e V1 o p ey ffe '1 ez RO
1 1
0 0 .
(5.6)
m .
-1/2 § ei
where Fl(el) = e 2 F(dez,..;,demle.). (Note that fixing 61 amounts
to fixing a hyperplane). A
Therefore, integrating (5.5) by parts, we have
6,x
2 171 ¢
£0x) fo] e F(6,)d8, 7 .-
Alog £(0) < (5.§) 

0,x
e 5t U
[e F(0,)de,

In obtaining (5.6) we havé used the fact that elx1 < 0. Observe that ;(ei) is

non-decreasing and lies between 0 and 1 because f(0) has been so absorbed in

F as to normalize F(el). Moreover, since | V§E§%| < B for y = w(x) it

follows, by ChebygheV's inequality, that for some constant K > 0,
o 1/21y-012 g 4oy
£(y)

| ] > 1/4 for y = n(x). Since n(x) = (0,ii,0 therefore
y-0|<K

we have F(el) > 1/4 for 61 > K. We shall use this fact to get an upper bound

for (5.6) as follows.
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o 6.x
0.x, . 2 171
F(x) fefe ' '1'3(91)“61 2 2£ R
Alog — < < 4K° + (5.7)
£f(0) -— lel" - 2K lel :
[ e TF(0))de, 1/4 [ e " “do,

Therefore, since 81 > 0 and Xy < 0, it follows from (5.7) that

[Alog fg’(;%l <B,

where B1 depends only on B and m. This completes the proof.

+«S a growth

The assumption II that T~T-V10gf(x) + fVlogf(x)| < K in K1

K, |x
condition on f(x). It implies f(x) E-Kl e 1 for x € KF' It is also
easy to see that Brown's assumption IVfEx%I < B1 implies assumption II.

6 Technical Resulté

The proof of the admissibility thebz:m requires cerpain technical .
results which we present in this section.

Let u be a bounded piecewise differentiable function defined on Em.
The following result is a rather standard one.
Lemma 6.1. There exists a constance C2 > 0 such that

1

———— Py(x)dx
|x_e'm—_1 3]

J(e) - ux))’py()dx < ¢, [f|v uta) [?

+ f1vu(0) [ °pg(x)dx]

Proof. Write x in polar co-ordinates around 6 i.e. x = (r(x),¢) where
r(x) = ||x-8]||. Assume that ¢ has been nonmalized. By Schwartz inequality

we have

r(x)

W) - ue” <t [ [vue,e)|]? ds
0
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Therefore, denotihg r(x) by r, we have

2 ' r 2. -1/2t m-1
f(®-ux))* Py (x) dx < [ r( f||vu(s,0) || ds(e r dr dsd¢
. 0
p ' 2 ¢ om —1/2r2 ’
= [ Hvuell® [r" e/ dr dsdg (6.1)
0 . s :
Now integrating by parts we have
w | 1222 ) -1s° -15°
" e /2x dr'E_Cz(sm_ e +te )
S :
for some constant C2 > 0.
" Therefore,
2 102

. . oo _ _; : o0 ) .
(61 <, 0 [ Hvue,n|1?s" e dasde + [ [louis, )| € dsdgl
0] ’ ) 0 .

= C,[f l!vu(x)ll?pe(x) dx + jllvu(x)llz' 1 py(x)dx]

[1x-8] ™"

Heﬁce the lemma.

Lemma 6.2. Let.p be a constant such that 0'< p < 1/2. Then there exist

constants K, and K2 such that

1
'2 1 : 27
/ [Fu)||® ———55 pg(x) dx < K / [{vu(x) || 7p, (x)dx.
[1x-0]]<p -~ Hx-o| x-8]]<k, :
Proof. Fix 8. Define a density function r(8,x) by
r(8,x) = € 1(8,x) ——2——— p(x)
[1x-8]]
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where 1(0,x) = 1 if [[x-0]] < p and = 0 otherwise and C is the normalizing
constant so that f re(x)dx = 1. Notc that C depehds only on p. Define a

new density function s(6,x) by setting-

s(8,x) = f ... f r(8,t)T(t,t,)...r(t,,,x)dt .. .dt,

where X » 1 is a fixed integer. Plainly f s(6,x)dx = 1. Moreovef, s{8,x) =0
for ||{x-e|| > Z%—and s(0,x) is bounded.

depends only on p, m and 'A. It is also

The bound of s(e,x),vsay K3,

easy to see

[ v u@[[% r(0,dx = [||7 utx) ]2 s(6,%)dx 6.2
wa,i
TR “(")”zf—ehﬁ‘?e(x) dx = [l1vue||? ¢, (0 dx
x- xn

= ILJV-U(X)||2 si9,x)dx

= f [lv ux)|] s(e,x)dx
1x-8] < 2 |
- P
\ < Kq / [ v u(x)llzdx C(6.3)
[1x-6]]< 2 |

Since,

2X,2

i o112 -1/2(55
e /2 [Ix-el]" e e for x in {x: ||x-8]| 5_2%-},

we have
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| 172242 )
(6.2) < Ky e / [Heuta | pyadx.
) 2
[1x-0]]< ry
2),2
_ 1/2(—2) -
- Letting K1 = Ki e and K2 = . the lemma follows.

qg.e.d.

Corollary 6.3. Let u be a piecewise differentiable function in E. Then

there exists a constant K > 0 such that

- ,
J(e)-ut? py(x) dax <k f]]vua|]? e /2811,

Proof. By lemma (4.3) we have

1

=

fu(e)-ue)® p (0 dx < ¢, [[|vu@]|?
0 2 |

v ¢y fllvam (17 py 00 dx

Now, write,

2 1 2 1
[Hrue) [1° ————g pyx) dx = [ - |{vu(®)}|® ——— p, (x)dx
||x-] ™1 7O | 1x-8]]<p ||x-e] )™t 70
12 1
+ / Hvux) ] p,(x)dx
|1x-8] >0 ||x-o[ ™1 *°
(6.4)

where p = p is a fixed positive constant, say 1/4.
The first term in the right side of (6.4) can be bounded using Lemma

6.2 as follows



14

' 2 1 5 |
[l vu(x)|] — p,(x)dx < K / [lwu() || p.(x)dx
st [lx-ol (170 T Y e e,
<k [ Hv ux |2 pe(i)dx (6.5)

~ The second term in right side of (6.4) is bounded by

" py00 1wt ]2 ax e
Combining (4.16) and (4.17) we have
f(u(8)-u(x))? pg(x) dx 5_(c2+K1+4m)j|Jv ux) |1 Py (X)dx.
;_ Hence the corollafy.
The neXt lemma is an extension of Corollary 6.3.

Lemma 6.4. Given a constant K1 > 0 there exists a constant K2 > 0 (depending
on K1 and m) such that

K _
: 2 1 2 . .
f(u(e)—u(x)) lx— d pe(x)dx E-KZ f f |Vu(x)[ pe(x+g)d§dx.
lg] <k, +1
2
Proof. The result follows from lemma ‘5.2 and an argument similar to lemmas
6.1, 6.2 and Corollary 6.3.

Let us now prove some consequences of our assumptions I and II. The

following result is trivial.

Lemma 6.5. Suppose Vlogf(x) < B. Then there exists a constant-C, depending -

only on B and m, such that lvggig - V§E§g| < CIx-y[.

Lemma 6.6. Assume I and II. Then there exists a constant Kl’ depending oniy

on K, m and B, such that
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for all x ¢ Ki

where K2 = {x: d(x <2} (d(x) = dp(x)).

Proof. Follows from Lemma 6.5.

Next few results are consequences of Assumption II on the calculus

of variation problem.

Lemma 6.7. Assume I and II. Suppose inf f|Vj|2f(x)dx = 0. Then for any

j&J
K2 > 0,
Vi(x)
inf [, [vj % e 2057 pdx = 0.
jeJ kg

Proof. Define, for any constant K > 0, x-K to be TiT-(|x|—K). It is easy to

see that inf fIVjIZf(x)dx = 0 implies inf . [ _ TVj(x)sz(x—K)dxzo and hence
j€J ' jeJ |x|>K+1 o

inff]vj(x)lzf(x—K) dx = 0 . Now, by assumption IT and Lemmas 6.5 and 6.6, we
jed 2
have for x in K

F
e VE(R) VE(x)
Kyl K e ¢
e 2Tk <o ® T A pxky
E(x-K,
KZIVE(X)l + K2 x  VE(x)

< Ce £(x) TXT. £(x) : f(x—Kz)

where C is a constant depending on Ky» K, B and m. Therefore, by assumption:

II, for x € Ki

e £(n) < C; £(x-K,)

for some constant C1 > 0. The result now follows easily.
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Theorem 6.8, Assume | and 1. Supposc inf/IVj(x)lzf(x)dx = 0. Then, for
' j&J
VE(x)
any K > 0, infj]vj(x)|2 e £ f(x)dx = 0.
ieJ

Proof. By Lemma 6.7, given any ¢ > 0 there exists jO(x) such that

vE(x)
[ 19,17 e F07 £radx < e. (6.7
2

Ke

Representing x in terms of w(x) and d(x) it follows from {6.7) that there

exists a, 1 <aqa < 2 such that

Vf(x)

Kl

195,07 a0y |2 e F(x 1,00 )dr < €. (6.8)

With a as above, consider the set Kz = {x: d(x) < a}. Plainly,

»Vf{x)
[17,001% e T fgax < e . - (6.9)
K
F

Let "a(x) and da(x) be the projection and distance of x from KF’ Define now

the function uO as follows

uy = 3ol () | (6.10)

We shall now prove that
VE(x)

w12 e £ fax <. - e (6.11)
0 h

1

whereC1 is constant depending only on B, K and m. The left side of

(6.11) can be written as

VEf(x) Vf(x)
K|t AEICINI.

f |Vu0(x)l2 e £(x) f(x)dx + f quO(x)]2 e £(x) f(x)dx
a m o
Kp- E"-Kp (6.12)
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Clearly the first term in (6.12) is less than ¢ by (6.9). To deal with
the second term, observe that
2
-id (X) .
£(x) 5_f(na(x)) . e (6.13)

For a proof of this fact see Brown [3 ]. Moreover, by lemma 6.5

Vf(x)|

. K[ 263) | KCda(x) Vf(nab())
e < e

. exp(K|—~T(?;—(})~)|) (6-14)

Therefore representing x in terms of . and da we have

vu_({x) e f(x)dx
{ vy K £()

F vE(T )

Sy
2 KCd 3 -1
< fd £0|VuO(X) |“ e | we FOG)T gx (v ,d ))Jdn dd_.

a

(6.15)

Where J is the Jacobian of the transformation x - (na,da) and |J| <i_(da+1)m_1;
Hence
vE(n
2 (KC+1)d a2 X fi"a;| |
. + =, o
a
(6.15) < [ [ |vig(m )" e e e £(n )dw dd_ (6.16)
d >0
Integratinngith respect to L it follows from (6.8) that
29
(KC+1)d -id, - PR
(6.16) <e [ e ba o " %dda. (6.17)

d >0 5
o 144
Setting Cl-- 1= f e(KC+1)da 'e - adda, we have the result.

7; Admissibility Result

We prove the main theorem of this article in this section.
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Theorem 7.1. Assume I and II. Then GF is admissible if and only if Exterior

Boundary problem is solvable for LFu = 0.

Pzoof. The "only if" part is trivial. We shall prove the sufficiency below.
The proof involves constructing a sequence of finite measures {G&-as in

Farréli's result and fhen shéwing (3.1).
o

Since the Boundary problem is solvable for qu = 0 it ‘follows by Theorem

vf(x)

6.8, inf [Jrj|? e T £(x)dx = 0.for a large constant K. larger ihan

i 1

(B+K+2). Let jk(x) be a sequence of non-negative functions satisfying

(1) 300

=1 for |x| <1
(1) o) = AR for R < |x| < 2R
(iii) igle) =0 for I¥| > 2R
and (iv) Lgjp(x) = 0 for 1 < |x| <R

S Lo VE(X) v .
. K 1=ty .
here f(x) = e 1 (x -+ f(x). Such a sequence exists by Theorem 4.1. Let

GRCde)‘= jﬁ(e)F(de) and gR(x) = fpe(x)GR(de). Also, lgt wk(x).=
ij(e)pe(x)F(de)/f(x). We shall now prove that
J(R8,8p) - R(e,acgpcR(de) +0asR>e - (7.1)

We can write 7.1 as

2 2 Py (X)F(d6)
‘lx]{m [[GGR(®) - ¥px)) (0-6,(x)) g 1 g
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(8-6.(x))p,. (x)
v Uik —E 0

2

We will call the two terms in (7.2) T1 and T2 respectively. Consider first
the second term T2' Since jR(e) =0 for-]8|>v2R, using Schwartz inequality

and Lemma 6.5 we have

T, < C [ x| jé(ejpe(x)F{de)dx. (7.3)

[x]|<2R le|<2r . .
Now let D = {6: |8] < R} and E = {x: [x] >3R}. It is easy to see that, by
assumption II, fe-Klel F(d8) < = and therefore

I%uwmmiemfpgme*mﬁw) (7.4
D D _

Hence, using maximum modulus principle on jR(e), we have

KR IXIZpG(IXI—R)dx (7.5)
R

12 [ 52(0p (I F(de)dx < o
D x|>2

: le>éR

The right side of (7.5) is easily seen to g0 to zero as R » =, By a similar.

argument it is easy to prove that

[ Ix|? ol Ja(0)py(x) Fd8) » 0 as R » o - (7.6)
, |

: Therefore, to prove T2 goes to zero as R -+ =, it sufficies to show

|X|2 / j;ce)pe(X)F(de) +0as R>w (7.7)
2R<|x|<3R R<|8|<2R -

This follows immediately from the fact that jp(®) = e KR £or R<[6]<2R. We will

now complete the proof of the theorem by showing Ti goes to zero as R » « ,



Expressing (p(0) - ¥A(X)) as (5,(8) - ¥y () (Ig(®) + ¥ (x)) and usine

Schwartz inequalityv we have

T, 22 [ G0 - v (0)%[0-5,() | %p, (x)F(d8)]
|x|<2R »

1L (x)
x [fJ (6) + wR(x) A F(d0)] dn

2 gp(x)
Since wR(x) < O by Schwartz inequality,

(7.8) <4 [ [ (Gple) - wR(x))zle-éF(x)Izpe(x)F(de)dx
x|<2ZR

<4 [Gp(®) - 3g0x0)%[0-5,() |%p, () F(d0) dx
[x]<2r °

r4 f (jR(X) - ¢P(x;)2l9—5F(X)]ZF(de)dx.
[x]<2R ‘

Let the two terms in 7.10 be denoted by T3 and T4.

Now, by Lemmas 6.3, 6.4 and 6.5 we have
. 2y, 2
T, < C " { JGRee) - 5p00) “fe-x| “p, (x) F(de) dx
<2R

¥ 'V§§3%1 _'x{;ZR (3p(8) - jR(X))zpe(x)dxF(de)

0 [, 100 Pae T e i
Vf(x)l
<c, [lvigl?e T £(x)dx

20

(7.8)

(7.9

(7.10)

(7.11)

(7.12)

(7.13)
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Where Cl and Lz

‘of'jR's imply that (7.13) goes to zcro and hence Ts-gocs to zero as R » w,

arc some constants depending only on B, K and m. The choice

Let us now consider T4. Using Schwartz inequality and assamptionvl

2
2 l6-6.(x) |
Ty 2 [/ J(Gr) - jR(H))Pn(X)F(dn)] —F Pg(x)F(d8)dx
le<2R
< B [ [ Gpl - p(m) % ()F(dn)dx (7.14)

[x]<2rR

Appealing to_Lémma 6.3, it is easy to see that

T 5_B-IIVjR(x)[2f(x)dx >0 as R » o,

4

| Hence T2 goes to zero as R » = and this completes the proof.

8. Applicatidns and Examples

We present some applications of our admissibility theorem in this .
section.  Observe that, by Theorem 7.1, in order to verify admissibility
of a generalized Bayes estimator GF we need to verify the solvdbility of _
the associated boundary'froblem. Brown [ 3 ] has given various necessary
and sufficient conditions for the solvability of the boundary broblems.
We-list a céuple of such results which are not found in Brown's'article; We'

require the following definition to state the result.
Definition. A non-negative function §(t), t > 0 is called a dini function

if [ 8(t)/t dt < = for some ty > 0.
t
0
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Theorem 8.1. If there.exists a L > 0 such that

x VE(x) 2-m - e({x]) - )
T oo < = - for all |x} > L ‘ (8.1)

t )
~where e(|x|) is such that A(t) = exp(- { e(|x[)d|x]) is a definition then the

boundary problem of GF is solvable. Conversely, if

x  9f(x) , 2-m _ e(]x])

T f0 2T ¢ T for all | > 1 - @2

where e([x|) is such that A(t) is a non-dini function, then the boundary

problem is not solvable and hence GF is inadmissible.
Proof. See Meyers and Serrin [8].

At is well known (see Brown [ 3 j) that the solvability of the béun&ary
pfoblem is equivalent to the recurrence of the diffusion process associated
with the differential operator Lf. Recently, more general necessary and
'sufficient conditions (but similar to Theorem 8.1) for the recurrence of
a diffusion process have been obtained by R. N. Bhattacharya [ * ]. These "
results can be used to verify the solvability of the boundary proﬁlem; We |
do not, however, pause to list those results here.

The problem of verifying whether a given estimator is generalized Bayes:
or not has been dealt with in great detail by vafioug authors. Strawderman
and Cohen [ 14] have given necessary and sufficien; conditions for a sphericaily
symmetric estimator to be generalized Bayes. Using their conditions and

Brown's result, they have.obtained'necessary and sufficient -conditions for the

*Personal correspondence.
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:'admissibility of spherically symmetric estimators. Their results can be
~_ proved in greater generality using Theorem 7.1. The generai ease (non-
" spherically symmetric case) has been studied by Berger and Srinivasan [ 2 ].
Théy have obtained necessary and sufficient conditions for an estimatbr to

be generalized Bayes. Combining Theorem 7.1 with the results of Berger and
Srinivasan one can obtain easily verifiable necessary and sufficient conditioﬁs
for an estimator to be admissible. We do not bause to li$t these results |
 here. |

We consider now the problem of improving inadmissible estimators.- Let

‘GF be a generalized Bayes estimator such that the associated boundary prgblems'-
is th_solvable. Then, by Theorem 7.1, GF is inadmissible énd there exists

a better estimator. How does one get hold of this better estimator? 'Brown [3T]_"
conjectured that probably one could use a solution qf the houndary problem to 4

~obtain better -estimators. We solve this problem partially below. Let 6F be

. .'a generalized Bayes estimator. Then the risk of GF can be written as

Af(x)]_
f(x)

Vf(X) I 2

R(8,8;) = m - E [ oL (8.3)

This representation of the risk of a generalized Bayes estimator is dué to.
‘Stein [ 13]. We use this to obtain better estimator than &, if &, is
inadmissible. Suppose GF is inadmissible. Then by Theorem 7.1 the boundary
problem iﬁ not solvable and hence the calculus of variation problem has a
minimizing solution, say jo(x), such that jo(x) =1 for (x) <1 and jo(x) <1
“for x| > 1. We will use this j, to construct a better estimator.

is inadmissible and jO is the minimizing function.

| (3 (I £(x))
Then the estimator &§(x) -~ — + x is better than 6.. i.e.
, JOZXSF(X) F

Theorem 8.2. Suppose Sk
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R(8,8) < R(8,6p), V6.

Proof. Observe that the risk of §(x) has similar representation as (8.3).

Using this fact it is easf to see that R(8,9) f_R(G,GF)_Ve if

. 1/2
JO(f(x) / . .. .
Lf (——?TET—) < 0 for almost all x. Since o is such that Jo(x) =1
for |x| <1 and Leig(x) = 0 for Ix] > 1, we have ijé/zcx) < 0 for almost

all x and hence the result,.

The above argument yields, in particular, yields whole class of minimax
estimators for dimension m > 3. It is well known that the bes* invariant
estimator is inadmissible minimax estimator for m > 3 and it corresponds
to the function f(x) = 1. Thebcorrespoﬁding differentia! operator Le is the - -

Laplacian operator. It follows, therefore, from Theorem 8.2 that every

vj(x)
jx
]x[ < 1 and j(x) is superharmonic for'lA{ > 1. Indeed, it is éasy to show

estimator §(x) = + x i3 minimax.where j(x) is such that j(x) = 1 for
that the minimax estimators constructed by Baranchik [ 1] and Strawderman [15 ]
correspond to such superharmonic functions. We end this discussion with thé
following result which generalizes Strawderman's theorem. Strawderman [ 16]_
showed that there do not exist spherically symmetfic proper Bayes minimax
estimators for m = 3 and 4. We show below thére does not exist any kind of
proper Bayes minimax estimators for m = 3 and 4. Our proof depends only in

the maximum modulus principle for elliptic equatibhs (see section 3}.

Theorem 8.3. There do not exist proper Bayes minimax estimators for m = 3

and 4.

Proof. Suppose there exists a proper Bayes minimax estimator. Let it be

. L . = Y8(x) -
Qenoted bx GG’ where G is the finite prior. _Clearly, 6G(x) = 2y + X
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- where g(x) = fpe(x)G(de). Moreover, using Stein's representation (8.3),

we have

- ve(x) 2 _ 28g(x) 4 .
R(8,80) - m = Eg[I= 5y |” - T 1 20 (8.4)

since GG is minimax. It follows using Schwartz inequality and integration

by parts, that (8.4) implies
29(8) +]vw(e)[2 < 0 for all 6. (8.5)

‘where P(6) = (Zn)_m/z flog'g(x)pe(x)dx. Therefore, we have, from(8.5),
2(9)

that e is superharmonic for all 6. Now, an application of maximum

modulus principle implies that

eQW(e) > C L for ]6[ > 1 (8.6)
R Ul
For some constantrC1 > 0, since u(8) = I—T%ji- is a harmonic function for
0
|e] > 1. Hence, by Jensen's inequality,
-m/2 2 1 '
(zm) fg(x)pe(x)dx > €] ;ﬁifﬁiij for 8] > 1 (8.7)
and therefore
2 1
fg(x)dx Z-Cl If 2(m-2) db - (8.8)

ol o]

The right side of (8.8) is infinity for m = 3 and 4 which implies
f g(x)dx = =, contfadicting that G is a finite measure. This completes

the proof.
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Appendix.

In this appendix we present a bricf description of the boundary value
problem and the proofs of Theorem 4.1 and 8.2.

Let Lf denote the elliptic differential operator given by the

equation

_ Lf u(x) = Au(x) + vgg;g Ju(x) . (1)

where u is a twice continuously differentiable function. Let Q be a
bounded open connected set with boundary 3n. Then we have the following
maximum principle for twice continuously differentiable function defined on

Q.

Theorem Al: If Lf u(x)

| v

0 (Lf u(x) 5_0) for x in @ and u is continuous

on 30 then

u(x)

| A

max  u(y) (u(n) > min u(y))
y€aQ y€aQ

for every x € Q.

Proof. See Miranda [ 9 ]

Then next result deals with the existence of solutions of boundary
value problems on bounded domains. Let Q2 be an annulus i.e. Q =
{n: 1, < [x] < Ty} Let @ and g, be two continuous functions defined

on {x: [x| =1} and {x: [x| = r,} respectively.

Theorem A2: There exists a unique continuous function u defined on & (the
closure of ) such that Lf u(x) = 0 for X € @ and u(x) = wl(x) as {x: |xl= rI};

u(x) = @ (x) on {x: [x| = Ty},
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Proof: See Miranda [ 9 ].
Now we consi&er the exterior boundary problem defined in Section 4.
‘Let E be the region {x: [x| > 1} and let 3E = {x: |[x| = 1}. We say
the exterior boundary problem is solvable if there exists a unique contin-
uous function u defined on EU3E such that Lf u(x) = 0 if x € E and
u(x) = 1 for |[x| = 1. Note that such a unique solution ought to be identically - 3

equal to 1. Let S, = {x: |x| < n} and asn ={x: |x| = n}. Let u be a

continuous function such that Lf un(x) = 0 for x € EFSn and uh@() 1 for

1

[x] =1 and u (n) = 0 for |x| = n. Such a function u_ exists and is
unique by Theorem A2. Moreover, it is a general fact the sequence {un} has

a convergent subsequence.

Theorem A3: The exterior boundary problem is solvable if and only .if every

convergent subsequence of {un} converges uniformly on compacta to 1.

EEQEEF "only if'. Suppose there exists a subsequnce of {un} which convergesv.

to a function Uy # 1. It is easy to show using maximum principle Lf uo(x) =

i for x € E and uo(x) = 1 for |x| = 1. This contradicts the fact that the
boundary pre¢* iem is solvable. |

fif” Let every cdnvérgent subsequence of {un} converge to l-wuniformly on compacta,
Suppose that the-boundary problem is not solvable. Then there exists a function
ug # 1 such that Lg uy(x) = 0 for x € E and uy(x) = 1 for [x| = 1. Now

appealing to maximum principle we have uO(x) > 0 and un(x) f_uO(X)VX € E

for every n. Since every convergent subsequence of {un} converges to 1, it

foliows uo(x) = 1 and hence a contradiction.

Proof of Theorem 4.1:
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"Necessity'. Assume inf fllvj(x)llz f(x) dx = 0. We shall give the proof
jieJ
in three stages.

(a) Let {kn(x)} be a sequence of functions satisfying

for 1 < ||x|] < n

Lk (x) =0
k (x) =1 for |Ix|| =1
=6 (x) ' for lell = n

=0 for ||x[| > n

where ¢n(x) is a smooth function such that ¢n(x) 1 for x i K and 1 > ¢n(x)'z
€ > 0 for x € K and J]xll = n with equality holding at some point and e < 1.
By hypothesis there exists a sequence {jﬁ}C.J such that f l[an(x)llz

f(x)dx + 0. Let {um 1 be a sequence_of functions satisfying Lum = 0 for
n ' n
1< ||x]] < mn)umn (x) =1 for ||x]]| =1 and umn(*)'= j(x) for [x]] >m,

where m is so chosen to satisfy i _(x)<e.

su
{x:llxﬁl=mn,xaK} n

The minimizing property of u implies
n

1Y 5, call%ee0dx < [11v5, 00112 £ 00 dx.
n

- Assume without loss of generality that {mn} is an increasing sequence. It
follows from Schauder's estimates that um converges tb a solution of u of
L in E" satisfying u(x) = 1 for ||x|]| = 1?
From a result of Serrin's on lower semicontinuity (See Morrey T[17]) it -
follows that for every compact set |
v uo | [PE(0dx < Lim inf [[]v u  |]%£(x)dx
c n

m - o
n



29

i A

lim inf f||vj

n-+w

neo 2 eax = o

1. On the other hand

. This implies u(x)

'Km {(x) 3_um (x} for 1 j_llxll f_mn by maximum modulus principle. Therefore
. n n '
Km (x) converges uniformly on compacta to 1.

n
(b) Let {(wn}(x)} be a sequence of functions satisfying L (wn)(x) = 0 for
1 < ||x]] <n, (v )(x) =1 for |[x]] =1 and W )(x) =0 for [[x|] > n.

Let {V_(x)} be another sequence such that Lv, = 0 for 1 < [Ix]] < n, v (x) = 1

for ||x|] = 1 and v, () =W (x) for ||x|]| = n where W (x) is a smooth function
satisfying € < Wn(x) <1-¢€,0c<¢e<1/2and Wn(x) =1 -¢ for x £K, ||x]] =n
and Wn(x) >€>0 for x € K, ||x|[| =n. Suppose vn(x) converges to 1

uniformly on compacta. Then vn(x) = l/e[vn(x) - (1 - €)] also converges to
1 uniformly on compacta. Moreove: L_vn(k) =0 for 1 < ||x]|]| < n. By maximum
modulus principle it is easy to see that (¥} (x) >V (x) for 1 < |lx]] <n

for all n. Hence (¢n)(x) + 1 uniformly on compacta.

(c) Observe that the result in (a) goes through if the boundary functions

¢n's of Kn" satisfy o - 1 —-en for x £ Kn le[l = n and l—gn > ¢n(x) 3_en

for x € K, lell = n, where &n monotonically deqreases to 7ero. Now, using

(b) we can get a subsequence of {(wn)} which converges to 1 uniformly on
compacta. But {(¥ )}is a montonically increasing sequence. Therefore ool
uniformly on compacta.

"Sufficiency". The pioof is similar to the one given by Brown [ 3 ].
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