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by
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é§§xgégx. Some examples from recent literature involving nonidentifiability of
iistributions arising in stochastic modeling for live.situations, are briefly
surveyed, In particular, examples are drawn from the areas of competing risks,
Markov illness-death models, reliability theory and accident proneness. For the
reliability models, the discussion here is restricted only to shock-type models,
although similar nonidentifiability problems arise in more general models
involving damage, wear er fatigue Besides shocks. Finally the author emphasizes
that in stochastic modeling, the nonidentifiability pfoblem is typieally much more
acute than is usually thought of or looked into or even reported; that it should
be investigated first, before the model is put to any practical use, and that in
the presence of nonidentifiability, one needs to search for additional
conveniently observable variables, which could be used to reduce or if possible
to eliminate the existing nonidentifiability.

Key Words: Stochastic Models, Non identifiability of Distributions, Competing

Risks, Markov Illness-Déath:Models, Reliability Theory, Accident
Proneness Threshold Versus Nonthreshold Hypothesis.

*
This research was supported in part by U.S. National Science Foundation
Grant No: MCS77-04075, at Purdue University.



A INTRODUCTION. Iﬁ order to study a natural random phenomenon arising in somé
live situation, ofteﬁ an attempt is made to idealise the underlying stochastic
mechanism, while still trying to keep it close enough to reality and then
construct a stochastic model based on this mechanism. As a result, one usually
ends up with a family of distributions of the observable random variable (r.v.)
X, generated through a set of unknown parameters. Let this family of probability
measures corresponding to X, as given by the stochastic model,be represented by

& = {Pe,e € @}, (1

where 6 is a labeling parameter taking values in an appropriate.set.®. Here X
could be a random vector or the realization of a stochastic process over a fixed
time—interval, etc., as the case may be. Similarly the possible values of the
parameter 6 could be over a class @ of vector-valued functions (see sections 3
and 5), or over a subset of k-dimensional Euclidean space, etc.

A natural question, although not that often raised in practice, is whether
the members of & are distinct for distinct 0's. Ef they are;then based on.the observable

r.v. X, we say that the family & of distributions is Identifiable. Otherwise

we say that it is Nonidentifiable (see sections 2, 3, 4.1 and 4.2, for examples).

The question of nonidentifiability must in general be settled before one attempts
to estimate the parameter 6 by suitable statistical methods and uses the model
and the estimate of 0 to draw practical inferences.

Again, it is not uncommon to try to explain the same observable r.v. X,

through more than one stochastic model, each based on its own set of underlying
assumptions and on possibly different mechanisms. Each‘then will generate its
own family of probability distributions for the observable r.v. X in question.
Let

& = {Pg
1

, ei€.®i}’ i=1,2 - (2)

be two such families corresponding to two different stochastic models.



DEFINITIONS. The familx»E& is said to be nonidentifiable with respect to the

€ ®1 there exists 6

family 3&, if for each el 5 . = Pez, so that

Haciﬁb. If however 3& = 35, we say that 3& and 35 are completely mutually

€ ®2 such that P9

nonidentifiable. Again, 31 and 35 are said to be partially mutually

nonidentifiable, if 31 n 35 is nonemty and is a proper subset of each 3&, i=1,2.

Finally, if 3& n 35 is emty, the families 3& and 35 are said to be mutually

identifiable. (For examples, see sections 4.3 and 5).

If a family & itself is nonidentifiable then typically in practice one
attempts to find soﬁe additional suitable observable r.v. Y to go with X and
enhances the original family & to cover the joint probability distributions of
(X,Y), so that the enhanced family with the added information may become
identifiable. - If it is possible to find such a Y, we shall call the original
nonidentifiable family & of distributions of X as 'rectifiable' (see for example,
section 4.3). Again similar added information may make the previously mutually
nonidentifiable famiiies 3& and 35, now mutually identifiable. One early example
of this type occurs in the well known work of Bates and Neyman [3] on the theory
of accident proneness. There exist however situations, where no such Y exists
and as such it is impossible to make any progress in reducing the
ndnidentifiability (see section 5, for such an eiample).

The purpose of this presentation is to briefly survey some eXamples
recently arisen in literature, which involve nonidentifiability problems in
stochastic modeling for live situations. In these examples, our primary concern

will be of nonidentifiability and not about the reasonableness of a model for

the intended live situation.



Our first example arises in the area popularly

known as 'Problem of Competing Risks', asso¢iated with simple survival

experiments, as opposed to the ones considered in the next section. Here in a
biological context, a sample of N newborn animals, belonging to a 'conceptual’
population of énimals, are observed for the duration of their lives. For each
animal, the age L at death and the cause C of death are recorded. With these
data at hand, what one can estimate at best are the probabilities P(L<t,C=d),
with d€D, where D is the‘preconceived finite (exhaustive) list of distinct,

well defined and mUtuallyéexclusive causes of death., For this, one repeatedly

studied model in literature is based on the so called Potential Survival Time
(see Berman [5], Dévid [10], David and Moeschberger [11], Elandt-Johnson [12],
Gail [15], Hoel [16] and Hoel and Walburg [17]). Here it is postulated that for
each cause of death d€D, there exists an associated nonnegative r.v. Zd’ called

" the potential survival time. The distribution of the age L at death of a

typical animal is then assumed to be the same as that of min Zd with cause of
dep

death given by C = {k: z, = min Zd}. Also it is typically assumed that the
da

joint distribution of Z's is continuous, so that with probability one there are
no ties among Z's and the cause C is uniquely defined. If Fé denotes such a
joint distribution function of the potential lifetimes'{Zd, dED}, then for each
such F, one can easily obtain the distribution P of the observable r.v. X=(L,C).
Let us denote by &, the family of distributions of X, as generated by varying F,
which correspond to our parameter 6 in (1).

Until recently, it was commonly assumed that the potential survival times
Zd's are independently distributed with continuous distribution functions Eys
d&. (Even now one continues encountering papers in literature based on such
an assumption). Let 3& denote the subfamily of distributions of X, which are
computed subject to this independence assumption, so that 3& < &, Based onvfhe

r.v. X, it is then possible to show that this smaller family a&Of distributions

is identifiable. However, as was brought out in a recent workship on



Evaluation of Environmental Biological Hazards and Competing Risks, organized

at Oak Ridge, Tennessee, since around 1972, about half a dozen authors, some
independently, some not, have discovered that corresponding to each element in
3&3&, there always exists one in KI’ such that the corresponding distributions
of X=(L,C) are identical (see David [10], Gail [15], Miller [20], Peterson [23],
Rose [31], Tsiatis [32]). The original family & is therefore nonidentifiable.
Thus, generally speaking, any prediction based on these models, to author's mind,
are purely of academic interest, unless of course in a highly rare and
ekcep;ional situation, one has some definite:prior kmnowledge about thé-

form of F%, which forces his model to correspond to an identifiable subset of &,

A similar caution is required when it comes to using these models in reliability

theory contexts (see Proschan and Serfling [24]).

In connection with what was discussed in the last section, it may be
mentioned that the cause of death strictly speaking is only a fiction. What
is more appropriate instead is to talk of combinations of various possible
'illnesses or 'morbid conditions' present at the time of death. The particular:
combination of conditions (illnesses) present at death can be established
through proper autopsies. One of the early models for this situation advanced by
Neyman [22] and then applied by Fix and Neyman [14], is based on a time
homogeneous Markov illness-death model. The reader may find a generalization of
these models to the case of time-nonhomogeneous Markov processes in Chiang [7].
The parameter o of (1) for these models is typically represented by a vector of
appropriate nonnegative functions vij(-),i+j, and ui(-), i,j=1,2,...,s, where
s 1s the number of possible states (conditions® combinations) allowed; vij(»)
is the usual nonnegative intensity function for a transition from state i to j
for the assumed Markov process and ui(-) is the nonnegative intensity function

for occurrence of death from state i. The usual data based on a follow-up of



several experimental animals correspond to the observable random variable
X=(L,S). Here L is the time of death of an animal and S represents the state

it was in at death. Unfortunately the corresponding family & of distributions
of X with 0 as specified earlier by (gg-), g(-)), is highly nonidentifiable.
From a paper written by a group of biologists and published in 1969 (see
Upton,et al [33]), it appears that, at least in principle, they were aware of
the difficulties connected with the nonidentifiability of the family & associated
~.with the present model. In order to cope with these,ithey introduced a novel
experiment, where apart from naturally dieing animals, they also serially
sacrificed a number of animals over a certain period of time to find out the
states (conditions) they were in, at the time of sacrifice. This leads to an
additional observable r.v. Y=(S(t2), 2=1,2,...), where S(tk) is tﬁe state a

live animal is in, at the time ty of its sacrifice. In the language of

section 1, the question arises whether or not the enhanced family % of
distributions of (X,Y) is now identifiable. As has been recently shown by
Clifford [9] (see also Berlin, Brodsky and Clifford [4]), the answer to this
question unfortunately is still negative. In [9], Clifford considers a
time-nonhomogeneous Markov illness-death model of the progressive type, where
the transition intensity functions vij(-),i*j, are possibly positive only for
those pairs (i,j), for which the state j contains exactly one more "morbid
condition' (or disease) than the state i did; all other vij(-)‘s are identically
zero. For such a model, based on the random vector (X,Y) defined above,
Clifford proves in his theorem 1 that while it is possible to identify the
time-dependent death intensities ui(-), i=1,2,...,s, the various time-dependent
intensities vij(-) of transitions between -states are not identifiable. A close
scrutiny of his proof reveals that he assumes the possibility of estimating the .

probabilities_Pi(t) = P (an animal is alive and is in state i at time t),



for all t-values over a certain time-interval, using the data on Y-values.

This is unfortunately impossible in practice, since the animals can be
sacrificed only at a finite number of time-points. Thus to the author it
appears that, based on the usual data on (X,Y), even the death intensity
functions ui(-), i=1,2,...,s,are not quite identifiable, so that the problem
bf nonidentifiability appears to be much more severe than projected in [9].
However as indicated in [9], it is encouraging to note that the subfamily,é s
obtained by assuming that the various intensitieé vij's and ui's are all
constant (so that the underlying Markov process is time-homogeneous), is

identifiable provided the various sacrifices are made on a number of different

days for observing Y.

4. CERTAIN STOCHASTTC MODELS TN RELIABILITY THEORY.
In Section 4.1, we discuss briefly an extensively studied stochastic model

arising in reliability theory, based on a (random) threshold hypothesis, while

in Section 4.2 we discuss its analog based on a nonthreshold hypothesis, which

to us appears more appropriate. In Section 4.3, these two models are compared

from the mutual identifiability point of view.

%&%. A TE

EL. Consider a system which involves only a
single component. It is commonly assuﬁed that the system receives in some
random manner over time, the so called 'shoecks' or 'blows'. Assoctated with
each such system, the existence of a random threshold K for the total number
of shocks is then postulated, so that as soon as the threshold K is reached the
system fails. More specifically, following the treatment in a key paper by
Esary, Marshall and Proschan [13] (see also Barlow and Proschan [1]), we assume
that the arrivals of shocks is governed according to a time-homogeneous Poisson
process with parameter X, so that the distribution of the length of life L of

B
the system given by



P, t>0, (3)

where
Fk = P(K>k), k=0,1,2,..., with 50 = 1. (4)

Such a model will be called a 'Threshold-type' model. Typically the

occurrences of shocks are not observable, so that the only observable r.v.

is L. Let Bq denote the family of distributions of L, generated by varying A
and {ﬁk}. Unfortunately, as also noted by Clifford [8] and by Esary, Marshall
and Proschan [13], this family is nonidenfifiable. This follows from the fact

that for every v>)\, we can write Hi(t) of (3) in the form

L o™ g, w0, (5)

1 K

I o~ 8

0

where corresponding to (4) we now have

k=0,1,2,..., (6)

K
~ -k
g =V ] K’

& -0 E
=0

—_— *
with Q0=1. Again, if on the other hand A were known, then the family 31

generated by only varying {ﬁk}, can be easily seen to be identifiable.

4.2, ON- SH -TYPE SHOCK M . Under a nonthreshold type shock model,
Y Y . yP

the assumption about the existence of a threshold is abandoned and instead,
perhaps more realistically, one assumes the existenée of a nonnegative risk
function B(N(t),t) depending on time t and the number N(t) of shocks received
until time t, such that

P(failure occurs in (t,t+T)lNO failure occurred until t, and N(t) = n)

= 8(n,t)t + o(1). (7
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The reader may refer to Puri ([25], [26], [27] and Puri and Senturia [36], for
general discussions about threshold versus nonthreshold type models arising in
several live situations in biology. In the present context of reliability theory,
the reader may refer for nonthreshold type models to Mercer [19] and a recent
paper of the author [28].

Considering a simpler case for the present, we assume that B8(n,t) = na(t),
where a(+) (i) is a nonnegative function, (ii) integrable over time intervals

(a,b), for all 0 < a <b <, and (iii) is such that it satisfies
f(l—exp{—f a(u)dul)dr = e, (8)
0 T

Thus for a nonthreshold type model, we have the distribution for the length of

life L of the system, given by
t

Hy(t) = P(L>t) = E{exp[-/ N(t)a(t)dt]}. (9)
_ 0
Using the fact that N(t) is a Poisson process with parameter A, this can be

easily shown to be equal to

t t
Hé(t) = exp{QX f (l—exp[—f a(u)dul)drl, (10)
0 T

so that in view of (8), L is an honest random variable. Again, 1et_3§ denote
the family of distributions of L, genérated through (10) by varying A and the
function a(*) subject to the above conditions (i)—(iii).. Based on the data .
only on the length of life L, this family too is unfortunately nonidentifiable,
since for a given 61 = (Al,al(é)), for every Az > Al, there exists a unique
function az(') satisfying (i)-(iii), such that the expression (10) corresponding
to el = (Al,al(-)) and 62 = (Az,az(-)) becomes identical. The corresponding

function a2(~) is given by
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0, (t) = Ayo; ()h (E)[Oym2p)t + xlhlct)]"l (11)
where
t t
hl(t) = [ exp[-f al(u)du]dT. (12)
0 T

*
Finally, as before if on the other hand A were known, the family &,, as

generated by only varying a(+), becomes identifiable.

4,3. ONMITUAL NONIDENTIFIABILITY. BETHEEN 3, ANR 3,. In this section, we study
briefly the two families 3{ and 3., as introduced in Sections 4.1 and 4.2, from
the point of view of their mutual nonidentifiability. The reader may find a
similar comparison in Puri and Senturia [30] between a threshold versus a
nonthreshold_typé model arising in quantal response assays in biology. In the
present case, we shall compare 3i and 32 under the assumption that the Poisson
parameter A corresponding to the occurrences of shocks is same in the two cases.
"Thus the only difference is that whereas Bi corresponds to a threshold type model
chargcterized by the distribution P, , the family 3§ bears on a nbnthreshold
approach characterized by the risk function o(:) satisfying conditions (i)-(iii).
While the details as well as other general results can be found in Puri [28], we

briefly mention here only a few results:

Based only on the observable r.v. L, for each member of‘Bq corresponding
to a given {Fk}, there always exists one in 3; with a risk function at-), such
that the correspohding distributions of L match, so that 3q CZB;. Also 3q is a
proper subset of‘3;,'since there do exist some réspectable members of Br, for
which there do not exist the corresponding matching members of Bq. Thus in the

* *
language of Section 1, & is nonidentifiable with respect to 3&. Also the family

1
* *

35 (nonthreshold type model) is much more richer than the family 33 (threshold

type model). Again, if at all it is possible to identify the so called 'shocks'

in practice, one can reduce the level of nonidentifiability by observing the

total number NL of shocks received by the time L of failure, and by enhancing

* *
the families 3& and Eb to cover the joint probability distributions of (L,NL)
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under the two models. As it turns out, the joint distributions of (L,NL)

coincide for the two models if and only if the distribution of the threshold K

under Sq is geonetric, given by

P(K=k) = c(i+c) K, k=1,2,..., | (13)
for some ¢>0 and the corresponding risk function a(.) under 8; is given by
a(t) = ¢/t, for t>0, and with the same constant ¢ as taken in (13). Thus the
observability of the additional random quantity NL does succeed in reducing the
nonidentifiability tb a considerable extent. On the other hand, in order to
completely remove the nonidentifiability between the two families (or models)
one needs some further observable information such as the number of shocks N(t)
by some time t, prior to the failure of the system. This is analogous to the

serial sacrifice experiment mentioned in Section 3, where a live animal is

sacrificed to observe the state it is in at a time prior to its death.

Our final example in modeling which goes back to the work of Bates and

Neyman in 1952, on their theory of accident proneness, is given below. The
reader may find in Bates and Neyman [2], [3], details for the practical
appropriateness of these models;

Nonfatal accidents are assumed to occur to an individual over time
according to a Poisson process with constant parameter A. However, it is
postulated that X varies randomly over the population of individuals
according to some distribution function F(-) concentrated over (0,»), so that
the distribution of the number of accidents N(t) occurring during time interval

(0,t) is given by

(At)
k!

P(N(t) = k) = e M dF(); k=0,1,2,... . (14)

Ov— 8
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Let 5& denote the family of processes {N(t), t>0}, as defined above, and as
generated by varying the distribution function F under the above simple model.
Here N(t) is essentially a mixture of Poisson processes with mixing distribution
given by F (see also Puri and Goldie [29]). Also, in [3], Bateé and Neyman

consider only a special case, where the mixing distribution F is taken to be a

Gamma distribution given by

dF(x) _ 8% a-1

dx T T(o) X

exp(-8x), x>0, (15)

for o,B>0. Notice the distinct conceptual difference of this model with an
alternative one, where N(t) is instead assumed to be a time-nonhomogeneous
Markov process with some nonnegative intensity functions pn(-), n=0,1,2,...,
for occurrences of accidents, such that

P(an accident occurs in (t,t+T)]N(t)=n) = pn(t)T +0 (1), (16)
and

P(more than one accident occurs in (t,t+T)|N(t)=n) =o(1). (17)
It is assumed that the functions pn(~) satisfy only the conditions (i)_and (ii)
of Section 4.2. Let 3& denote the family of time-nonhomogeneous Markov
processes N(t) so defined and as generated by varying the sequence of'
intensity functions {pn(-), n=0,1,2,...}, which correspond to & of (1), in the
present case. In [3], Bates and Neyman consider another model labeled as
'Polya Model', which is a special case of % , with the intensity functions
given by

p, (1) = 8 (m) (B+t) T, 1=0,1,2,...; (18)

where &,0 and B are all arbitrary nonnegative constants. Our aim here is- to

compare the families J. and 3& with respect to their mutual identifiability

1

properties.
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: A
It is known (see McFadden [18]) that each element of 3& corresponding to

an F, is itself a Markov process. However, recently Cane [6] has proved a
rather interesting result; namely that for each model in &, there exists a

N
corresponding element of 3% with such a sequence {pn(-)} of intensity functions

that not only the distributions of N(t) coincide for every t in the two cases,

but also so do their conditional joint distributions of times 0<T1<T2<...<Tn<t

of occurrences of the accidents, given that N(t)=n, for all n>1 and t>0. Thus

here the corresponding two procésses are mutually indistinguishable. More
specifically, for a given element of 3& with a mixing distribution F(-), the

corresponding element of &, with the above property has the sequence {pn(-)}

2
given by
o, (8) =(J A" exp(-at)dF()) (f A" exp(-At)AF (M) T, (19)
0 ' 0
n=0,1,2,... ; In particular, for the special cases with (15) and (18) considered

by Bates and Neyman, such an indistinguishability of the two processes arises if
in (18) one takes 6=1 and identifies o and B8 of (18) with those of (15). Thus if
we let 3; beithe subfamily of 5&, where for each element, the sequence {pn(-)} is
given by (19) for some F(+), then in view of the ahove result of Cane, the two

A ~u
families 3& and 35 are completely mutually nonidentifiable. Furthermore, since

for each process in one family, there is a corresponding one in the other,

which is indistinguishable from it and can be regarded as describing the
experience of thz other, the nonidentifiability between && and_ﬁz is not at all
rectifiable, in the sense of section 1. From the practical viewpoint, as far as
predictions are concerned, this nonidentifiability does not matter, sincé the
two models would anyway predict the same thing. Nevertheless, the two models
are conceptually miles apart. Under the first one, A, which represents the
accident proneness (or risk of accident) of an individual, although picked up
randomly according to the distribution function F, yet it remains constant

throughout the experience of the individual. Contrary to this, under the second
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model, the accident proneness of an individual varies both with time as well as
with the number of accidents he had in the past. Unfortunately in the present
case, it does not appear possible to compare the validity of one model against

the other.

6. gQEEkQR&%%&EEMQR&Q' From the history of above examples, it appears that in
stochastic modeling, the problem of nonidentifiability is typically much more
acute than is usually thought of or looked into, or even reported. On the other
hand, if such a problem does exist, it should be investigated first; before the
model is put to any practical use for the purposes of predictions. Otherwise,
as indicated by Clifford [9] through numerical examples in his case, oné may
arrive at quite conflicting predictions by using them. Also, in the presence

of nonidentifiability, one must look effectively for additional conveniently
observable quantities, which could be used to enhance the underlying family of
distributions in order to reduce or if possible, eliminate the existing

nonidentifiability.
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