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Linear rank statistics are shown to be almost surely liﬁear with a rate
under the assumption that the score function has a bounded second derivative,.
but with otherwise very mild conditions on the statistic and the undeflying
distribution function as compared to previous results of this type. This
paper is a continuation of the study of asymptotic linearity of lineaf rank
statistics that began with Jureékov; (1969). Several previous results on
almost sure linearily of linear rank statistics are obtained with more

precision and generality as corollaries of the main theorem of this paper.



Section 0. fntroduction.

| Let th,...,Xnn be independent with distribution function F(-+d2n®o) 2=1,2,
...n respectively. For each 0 let Rin = the rank of X2N+dzne among x1N+d1NO’

"Xnn+dn% . Let Tn(@) be a statistic which is a function of the ranks
Rin 2=1,...,n.
Jureékov; (1969) proved under very general conditions, including F having

a finite Fisher information number, that if T;(O) is a linear rank statistic
éppropriately normalized, T;(O) is linear in probability. That is, for all
positive ¢

* * ny
sup | T (0) - T (8) - A (6 -0) | = o (1/5%),
OEIn(GO) n* o n n- o p 'R
where I1_(6) = [-cl//H +8.,8 + cl//ﬁj,

and An is a constant depending on Tn and F. See Section 5 for the exact form

of An and the conditions on Tn'

We will investigate.conditions on-F and T; such that a stronger kind of
linearity holds, which we will call almost sure linearity with a rate.
Meaning that if o and wn n=1,2,... are appropriately chosen positive
constants, then for all ¢ > 0 and A > 0, there exists a ¢ > 0 such that

* * . -A
Pééiu%e J Tn(eo)—Tn(O)-An(eo—e)| > Cpy) <m,
n-o

where In(eo) = [—clan+eo,eo + clan]. This will be written:

su T (0 )-T (6)-A_ (0 -0)| = SSO(y.).
OeInIEeo) ] n (o] n n (o] l n

Previous results of this type for rank statistics are as follows:
Wilcoxon one sample statistic, Lemma 4.2 Geerstema (1970); One sample
rank statistics Theorem 4.3 Sen and Ghosh (1971); Kendall's Tau,
Theorem 3.1 Ghosh and Sen (1971); Spearman's rank test, Theorem 2,3
Ghosh (1972); Wilcoxon two sample statistic, Inagaki (1973); Linear
rank statistics under assumptionsstated in Section 5, Theorem 3.2

Ghosh and Sen (1972).
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In all the aboye it is assumed that the underlying distribution F has a
density f which has a bounded derivative f'. In Theorem 2.1, Section 2,
we will show that under very genéral conditions almost sure linearity with
a rate holds for linear rank statistics; not only when f' is bounded, but
also when

-}

f [ £ (u) |du < =,

- 00

This includes distributions which have a finite Fisher information number,
Jureékov;'s condition on F for linearity of Tn in probability. In Section 3,
Theorem 2.1 will be applied to several common rank statistics and the rate
obtained will be compared to previously published results for such statistics

when available. Finally in Section 5, Theorem 2.1 will be compared to a similar

theorem obtained by Ghosh and Sen (1972).

Section 1. Basic Notation and Assumptions
We will establish here notation aﬁd assumptions that will be used
throughout. Let in 2=1,...,n be independent randbm variables with
distribution function F(- + dzneo) 2=1,...,n, respectively. Note xln +
dzneo has distribution function F. We will write an(x) = F(x + dZnoo) =1,
.sn. By the rank of an + Odkn among Xln + Odln""’xnn + @dnn written

C] .
Rkn’ we will mean

n
0
(1.1) Ry, = zzll(xk“ - X+ (4 - d,)0),
lu>20
where ' I(u) = .
Ou<o

~ o ‘
Denote Fkn(o) = Rkn/n' Observe that

- 1 % 1

E(Fkn(e)lxkn) - n lgk Fon®in * Qi = 400 + o



Let Sen k=1,...,n and d n k=1,...,n be constants,

k
) n _ n
(1.2) ‘én = 2zlgzn/n,dn = lzlen/n,
* n 2 &
= <
(1.3) “kn ckn/( Zl czn) ?
n 2 %
(1.4) D= (1 (dy, - 4 )/m%,
2=1
2 L 2
(1.5) orqg= 1 (4, -3d)%/n, and
=1
n - - n 2 %
(1.6) I, = Y (cﬁn - cn)(dln - dn)/(n y czn)
2=1 =1
P S S
=n"? Jc, (d, -d)
e=1 Ln* n n

Note that we will often drop the subscript n in such terms as Hn, En’ Fon® €tce

a(u) will be a nonconstant nondecreasing function on [0,1] such that
1
|a'(u)|< A' and [a"(u)|< A" for all u € (0,1). Set a = f a(u)du and oi =
1 » ' 0
f (a(u)-a)“du.
0

*
Tn(@) and Tn(e) will be the linear rank statistics,

n

0

(1.7) T (0) = RZI Cond Ry /M)
and

* _%n * 0
(1.8) T (0) =n QZI cond(Ry /n).
Let G_(6_,0) = F,(6) - F_(0) - E(F,_(6) - B, _(9)] %) (1.9)
and

i n *

(1.10) 6, (0,,0) =n 2 Z | ckankn(eo,O).

k=1



Definition 1.1.

A sequence of random variables {Xn}:=1 will be said to be of strong
stochastic order ¢(n), if for every A>0 there exists a ¢ > 0 such that

P(IXn|>c¢(n)) < n—x for all n sufficiently large. This will be written
Xn = 8S0(¢(n)).

Some easily verifiable properties of SSO are

(1.a) If Xn = SS0(¢(n)), then for any two sequences of non-negative constants

{an}n_1 and {bn}

n=1’ aan+bn = SSO(an¢(n)+bn).
(1.b) If xﬁi) = $50(¢, (n)) i=1...k, then

k _
Xﬁl) + L.+ Xé ) SSO(¢1(n) Fooot ¢k(n))= SSO(¢1(n)V..,V¢k(n)).

(aw = max{a,b})

(1.c) 1If Xn = SSO(¢1(n)) and Yn = SSO(¢2(n)), then

XY, = S50(6; (o, ().

(1.d) I£X, = $50(4)(m) and y(n) is such that H2 y(n)/6(n) > 0, then X_ =
S0 (#(n)).
a.s.
(1.e) 1If Xn = 8S0(¢(n)) then Xn = 0(¢(n)).

(1.£) I£ {X } _, is nonrandom and X_ = 0($(n)), then X = §50(¢(n)).

Section 2. Almost Sure Linearily with a Rate for Linear Rank Statistics with

a Bounded Score Function.

Theorem‘2.1.

n

=1 n=1,2,... be such that for some positive constants D2'> D1 S.O,

Let {dzn}

T 2 . 2
D2 > 1im o d > lim Ond >D,.

N0 n-o
Assume that F has a density f which is absolutely continuous with

derivative f' such that either



(2.1.1) [ ') |du < =

or
(2.1.ii) . |[£'| < M' for some M' > 0.
Also assume the conditions on a(u) described in Section 1.

Then for any ¢, > 0

(2.2) sup )IT;ceo)-T;ce)-(eo-e)rn ] a'(Fw)f’(wdu| = ss0(w(n))
o€l_(o ‘e
n-o

where In(eo) = [—c1¢10g10gn//ﬁ'+ eo,eo + c1¢1oglogn//;]

and y(n) =

. ‘ n 1
‘:'/lognlogm’logn/ng/4 V(] (c; (dk -c_l))z) %y/1oglogn logn/n

: Koy kn'kn ,
(Proof deiayed until Section 4).

Remark 2.1.

[+ o]

Theorem 2.1 will be proven with f a'(F(u))fz(u)du replaced by

-00

Jaree B2 et

Remark 2.2.

(2.1.1) or (2.1.ii) imply that there exists an M > 0 such that |f| < M,

Remark 2.3,

If £ has a finite Fisher information number then (2.1.i) is satisfied.

Remark 2.4.

lim 2 . 1im .
e nd > D1 > 0 iff =—— min Dkn > D for some D > 0.
lﬁkfp :

Remark 2.5.

In Section 3 examples will be given where each of the terms in the expression

for y(n) is the dominating term.



Section 3. Examples.

We will show how Theorem 2.1 applies for various conditions on the clnfs

and the d,_'s,.
n

ExamEIe 3.1.

Suppose in addition to the conditions in Theorem 2.1 there exists a c > 0

* £
such that for all n sufficiently large max lcknl < ¢/n®. Then simple
1<k<n ‘
calculations show that

(2.2) = SSO (5loglogn v1ogn /n3/4).

In particular:

Example 3.1.1. The Wilcoxon Two Sample Statistic

,X__ be independent such that X 4 F(++0 )
n kn o}

Let X ,.,.,Xn n’Xn FEPTERI
m m

In

for k=1,...,nm and an 1 F(+) for k=nm+13;..,n.

. 1 2=1,;..,nm
Let a(u) = u, dzn =Con = s
0 Z=nm+1,...,n

nm Rgn
so that T_() = ) -

k=1

2 -2 L .

Let An = nm/n. Now 221 (dln_d) = nkn(l-kn), 221 Con = Mo and Pn = An(l—kn).

Assume that there exist 0 < Al < A2 < 1, such that:(3.1.1.1) Al :-An 5_x2

for all n sufficiently large.

It is easily checked that with (3.1.1.i) the Wilcoxon Two Sample Test is a
special case of Example 3.1.
Hence (3.1.1.ii) =

% * 1 ©
sup |T.(0,) - T.(0) - (6,-0)AZ(1-1) [ £ (u)du| =
0l (0, -

SSO( ﬁfsélogn Ylogn /nSA').

Inagaki (1973) shows that (5.1.1.iifés'0(]}oglogn ilogn-fn3/4), and only under

condition (2.1.1ii).



Example 3.1.2. Spearman's Rho

Let xln""’xnn be independent such that an % F(-+ dkneo) k=1,...,n.
| 3 T - -
Assume that the dkn s are distiact. Let Con = Rep = rank of d2n among
no, n () =
dln""’dnn° Hence gzl Con = n(n+l) (2n+1)/6 and Pn = 221 R(dln -d) =

1
2, where d{l) <0< dM are the reordered values of d,_,
n nn In

C]
T Ron Ron
"dnn' Now Tn(O) = 221'——7T_—— (letting a(u) = u).

/€ /(n(n+1) (2n+1))

Assume that there exist D1 > 0 and D2 > 0 such that for all n sufficiently

: * Y
large D, > Oid > D;. Note that max Icknl < /6/n®.
1<k<n
Hence .
, ) n x@® - @ -,
sup lTn(Oo)—Tn(e) - (OO—O) z —~ /6 f f (u)dul
eEIn(eo) k=1 (n(n+1)(2n+1))*= -

4
= SSO( Yloglogn vlogn /nS%A).

Ghosh (1972) proves an SSO rate type result for Tn’ but in his case the

dgn's are random variables.

Remark 3.1.

Analogous to Kiefer (1967), for Example 3.1 the best almost sure rate is

probably
a.s.

(2.2) = 3/4y

0( (loglogn)3/4/n

Example 3.2. Jureckova (1971)

Assume that Tn(®) satisfies all the conditions of Theorem 2.1. In addition

assume that there exists a ¢ > 0 such that for all n sufficiently large

=
max |d, -d| < ¢ n% % where 0 < & < %.

lfﬁjp n



Then (2.2) = SSO( vloglogn logn/n3/4-6)
A similar result without a rate and in general more restrictive
assumptions on T by Jureckova (1971) is as follows:

If a(u) is a nondecreasing function with a bounded first derivative,

2 *
~dy) 20 for 1 <k, 2 <mn, 00y <Dy, max |c, | =0(1),

(cp -c, ) (d
n kn 2n 1<t<n

It~

* "
Con = 0, the dzn's satisfy the above condition and f(u) has the property

2=1
" £ @)’
that there exists an e > 0 such that sup f '———ffﬁj———'du < = for all u and
tl<e -0
a.s. :
f(u) > 0. Then (2.2) = o(1//n) for all ¢, > 0 where In(oo) =

[cl//ﬁ +0.,0 + cl//iT].

In the remaining examples only conditions on the Con'S OT dln's will be stated

and then the corresponding SSO rate.

Examgle 3.3.

Assume max |c
1<f<n

*
l = é—(El-where §(n) ~» 0.
n logn N

Then
(2.2) = SSO( &(n)YToglogn //n).

In particular if Con = dln_d 1<4<n,

T e )-T @) - (6 -0)0 jw a' (F(w)) £ (w)du| =
OEIS%B y moo “'n © Yo 7nd Y
“~*n“Yo

SSO( §(n)YIoglogn //n).

Example 3.4.

n
Assume ) (dzn—a)4 /n <D for some D > 0. Then (2.2) = SSO( vVloglogn 10gn/n3/4).

=1
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‘Section 4. Proof of Theorem 2.1

Preliminaries

Frequent use will be made of Bernstein's inequality. The version we will
use is as follows:
Let Xl,...,xn be independent random variables such that IXZ_EXZI < B for
1 <2 <n and some constant B > 0. Then for all t > 0,

2,,,2 2
P(ISn—ESn|>t) < 2 exp(-t"/ (20" + 7 BY)),

where Sn = Xl +oo.t Xn and 02 = Var Sn' (See Bennet (1962)).

Q.

Let a = Vloglogn/vn, Y,

=R MS

vlogn/ vn and n, = %, logn/vn.

Pick constants y, 6§, v, a, B and ¢ such that

(4.a2) 1im,nyz/(a logn) >T > 0
E‘:*—; n n
(4.b) 0 :_iiz Yn/an <§ <0
(4.¢) 0 < 1im log(e /v )/logn < v < o
- n’ 'n
n—>ow
1
(4.d) lim o /(n.n®) < o < =
e D \
1
(4.¢) lim nznn/(anlogn) >8>0
N
(4.1) 0 < lim log(an/nn)/logn < g < ®
noo

The reason for the generality of these conditions will be explained in the

remarks after the proof. Now set

L
v, () = n Ynkzllck“IDk"

2
b, = v/o_
wS(n) =n z lcknlenanYn
k=1
17 A N
o= 2 * .2
l')4(n) =0 Y z ICanDkn
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T % 2 2
ws(n) = nn( Z €kn Dkn)
k=1
and
A0 x 2 2
_ =B
¢6(n) =n klecknlen %n

~ Routine calculations show that if a random variable is SSO(wl(n)V...Vw6(n)),
it is SSO(¢(n)).

The proof of Theorem 2.1 will now be given in the following steps:

Outline of Proof

We can write (2.2)

*

< swp |} C—“%G(Ek (O)-aEF,_©)]X_))
OEIn(OO) k=1 ng n < n" o n

(4.1.1)
aF, () - aE(F,, @ ] 1)
voswp | ] GEE 0%, - aEF ©]%)
G€r_(6,) k=1 n®
(4.1.ii)
- E[a(E(F, (0) X, )) - a(E(F,_ (@) X,_)T)]
v oswp | ) X frama, )X ) - aEE ©1x_))]
o€ _(0,) k=1 n*
(4.1.11i)

L, (m-1) Y
(©,-9) (4, -d) {w a' (<= F(u) + Df (u)du)|

By Proposition 4.2, (4.1.i) = SSO(wl(n)vwz(n)vws(n)vw4(n)), by
Proposition 4.3, (4.1.ii) = SSO(¢5(n)), and by Proposition 4.4, (4.1.iii) =
SSO(¢6(n)). Hence, Theorem 2.1 will follow immediately once Propositions

4.2, 4.3 and 4.4 have been established.
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Proposition 4.2.
n
Let {d,_} n > 1 be such that min D, >D>0 for all n sufficiently large
n° - k<n k
=1 1<K<n

and some D > 0,

> 1 be positive constants such that (4.a), (4.b) and

4

Also let an, Y, B

(4.c) are satisfied, then for all c. > 0,

1
(4.1.1) = SSO(y, (n) Vi, (M) V() Vi, (n)) ,

where In(eo) = [Oo—clan, OO + clun].

Proof.

Before we prove Proposition 4.2 we need some lemmas.

Lemma 4.2.1.
For all ©

|a(Fy, (0.))-a(E(F,_(6) X ))-[a(F,_(0))-a(E(F,_(©)|x )1
< Atle 0] + A | B o) - BR 0 |x )2
+ DR @ - BF_ (@ ]% )]

* A"]E(f:kn(eo}lxkn) - E(l;kn(e)|an)|l%kn(oo)_ E(-Fkn(v-eo)lxkn)]'

Proof.

Repeated use of Taylor's theorem and the mean value theorem gives for all
x! y, Z’ w e (0’1)

la(x)-a(y){a(w)-a(z)){

1"

< A xey--) |+ B fxeyl? e B fuez]® e At fy-z] lxey )

Now let x = F, (6.), y = E(F,_(8)) X ), w = F_(6) and z = E(F, (6) lxkn) .0
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Lemma 4.2,2.

For all A > 0 there exists c. > 0 such that

2
) = p( U | | .
(4.2.2.1) =p(UT sup G, (6,9 >c,D, v 1) <n”
k=1 O€I_(6) kn" o 27kn'n
n- o
and
(4.2.2.i1) sup | G_(0_,0)] = 880 (¥, (n)).
o€l (0 ) ™ °
- n- o
Proof.
Pick A > 0.

Claim 4.2.2.1.

For Bl>0, 82>O and 1>k>n,

e~

let S(Bl,Bz,k,n) = {Sn: S =

Y., Y. ,...,Yr
n n

p VT

L
are independent, Var Sn E-Blenan/n’ and lYgl < 62/n 2=1,...,n}. Then for all
*
Bl>0’ 82>0 and A >0, there exists a ¢ > 0 such that for all n sufficiently large,

*
max sup P(lSn—ESn] > ey D) < pm (A 41

1<k<n S_€S(B,,8,,k,n)

Proof. (0Of Claim 4.2.2.1).
Pick A*>O, Bl>0, 82>0. Now pick NO large enough so that for all nzNo

nyﬁ/(anlogn) > T, yn/an < § and min Dk > D. Choose any n:NO, k such that
1<k<n

1<k<n and SnES(Bl,BZ,k,n), then since ]YR—EY2| < 282/n, by Bernstein's
inequality,

P(ISn-ESnl > cy D)

222 %n 4
< 2 exp(-¢Ty Dy /(28D o+ g B0y Dy )

= 2 exp(-cznyﬁDkn/(Zslan + %-CBZYH)).
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2
. . R Yn
Now, since for all >N, 12;2n Dkn >D, E;T3§H'> T > 0 and E;-< § < =, the above

48

is <2 eﬁcp(—czDrlogn/(ZB1 + ——Z'CGJ) = 2n

~c’De/ (28, + 3 8,c6) _
- -

pn-

Note that °h does not depend on k or the particular Sn chosen. By making c
sufficiently large P, < n-(k*+1)i]
Now some observations:

Let Wkln(eo’e) =

1
n {I(xkn_xln * (dkn—dln)eo) B I(an—in * (dkn_dln)e)}'

Let a

min{an * (dymden)®gs Xpp * (dknndln)e}5

o
]

max{an + (dkn_dzn)eo’ Xin +(ﬂkn—d2n)6}.

For X, €[a,b), W, (6 ,6) = sign ((dkn-dzn)(Oo-O))/n and
for X ¢[a,b), Weon(©,20) = 0. So that for X, fixed,
('\
sign((d, -d, (0 -©))/n w.p. P, (0_,0)

wkln(eo’e) =

2}0 w.p. 1-P, (0_,0),

Foa®) = Fy (a).

where Pkn(eo,e)

Note that P, (6 _,0) <M ldkn—dln] leo-o| and Var(Wkln(eo,@)lxkn)

1 M
= ;5'Pkln(eo’e)(l—pkzn(eo’o)) :-gf'ldkn—dzn Ileofe

Claim 4.2.2.2.

|
It e~

. ' Te i
Let Sn = wkln(eo’oz)’ If all the 0,'s are in In(eo), then

2=1 2

n
(s, %) = Rzl W, (0.,0)]% ) is in chlfgz,k,n) where 8, = M c; and 8, = 1.
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Proof. (Of Claim 4.2.2.2).

We easily see that (Snlxkn)’ that is, Sn with X fixed, is a sum of

kn
independent random variables (wkzn(eo,oz)lxkn) 2=1...n, such that

1
| (W, (9,50, 1%, )] < = and

n n |d,_-d I
1 M kn “&n
Var(Sn|an) T2 z pkﬂn(eo’el)(I—Pkln(eo’oz)) i—ﬁ' z n €1%»
n- ¢=1 2=1
which by Schwarz's inequality is < Mo oD Hence, (S_|X, )€S(B;,8,,k,n) O
q —n 1 nkn" > “n!%kn 1’72 .

Now to complete the proof of Lemma 4.2.2.

Let n.(6) =0 + ¢ ro b-l, where b—1 = vy /o_ and r are integers such that
r o o) nn n n’ n

1

|r| < b_+1,
—n

n .
; -1 .
El I(an_x£n+(dkn_d2n)(eo+c1bn an(r+1k2))),

=R R

Let B, (n.(0))) = .

1ifd_-d, >0

kn &n
where 1 =
k2 .
0 if dkn—dkn <0
1 ¢ -1
and bkn(nr(eo)) - H-zzl I(xkn—xkn+(dkn_d2n)Ceo+clbn 0Ln(rﬂzk)‘))'

Pick @EIn(OO), then there exists an integer r such that

_1-b <r<b_ and 0 +o_b-‘c.r<0<a b lc (r+1)+0 .
n——n o nn 1'— nn 1 0

Note that for such an r depending on 0O,
b (n.(6,)) < F,_(8) < B _(n (0)) for k=1,...,n.
So that for all k such that 1<k<n,
bkn(nr(eo))_Ekn(eo)_E(Bkn(nr(@o))—gkn(oo)Ian)

= Gyn (49 :-Bkn(nr(eo))_Fkn(Oo)_E(bkn(nr(eo))_Fkn(eo)lxkn)'



Now write bkn(nr(eo))-Ekn(@o)rE(Bkn(nr{Qo))fikn(Oo)lxkn)
= bkn(nr(Oo))-ﬁkn(eo)_E(bkn(nr(eo))—ﬁkn(eo),an)
+E(b,_(n_(0))-B, (n_(6.))|X ),

and B (n.(0.))-F, (6 )-E(b _(n_(6 ))~F, ()X, )

Bkn(nr(eo))—%kn(oo)_E(Bkn(nr(eo))—ﬁkn(eo)lxkn)

+

E(B, (n (6))-b, (n_.(® )X, ).
So that for all k such that 1<k<n.

sup | G,_(0 ,0) | <
oel (0 ) Kmoo©
n o]

nex { sup | b, (n_(6))-F, (6 )-E(b, _(n (8 ))-F (6)|X )1;
r{<bh +
- n

R Bkn(nr(eq))-ikn(eo)—ﬁchncnrceo))—Ekn(eo)kan)l}
<b, |

Trng +1l E(B, (n.(6))-b,(n_(6)) X, )I.
—n

Note that for all r such that lrljbn+l

n |d,_-d, |
2 knn n _ Otnb;ll ,
=1

[EB, (n (8 ))-b, (n (6 ) [X, )| < Me
which by Schwarz's inequality is :_MclynDkn.

Hence,

Irng +1l E(B,_(n_(0,))-by (n (63X )< Megy Dy .
had 0} ’

Note that bkn(nr(eo))—Fkn(Go)

n

1

n Zl (T Xy X iy =d ) 29) T R Xy * (A4 )8))
P -1 X

. szn(eo,zg), where Zl = Oo + Clbn an(r+llk)

nNe~18 =

L

16

(4.2.2.1ii)
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and similarly Bkn(nr(@o))—Fkn(eo) = _2

Il o~

1 wklnceo’wz)’

. -1 .
where WQ = Oovclbn an(r+1k£).

Now observe that IGO-ZQI AN 2=1,...,n and IOO-WZI 20 2=1,...,n.

1 1

Hence, by Claim 4.2.2.2, (bkn(nr(eo)')’_’Ekn(eo)]xkn) and

(Bkn(nr(eo))-pkn(eo)|xkn) are in S(By,B,,k,n) where B,=M ¢, and B,=1.

1

*
Therefore, by Claim 4.2.2.1for all X >0, there exists a c'>0 and an No>0

such that for all n:No

max sup P(|B, (n_(® ))'% (6. )-E(B, (n_(© ))
Leken |v[<h +1 (kn" 7)) Tin %) i 1 6

*
. -(A +1)
aFkn(Oo)lxkn)I>C'Dknynlxkn)< n

and

max  sup P(|b, (n_(6 ))-F, (© J-E(b, (n_(6))
1<k<n Irlfbi+1 (1 kn*'r o kn*"o kn“~'r o

*
-(A +1)
_Fkn(eo)lxkn)l>chknYn|an)<n :

Since c¢' and N, do not depend on X, _, we have in combination with (4.2.2.iii)

*
that (4.2.2.1) < 2(2b +3)n”" for some c>@.
*

Also, with probability > 1 - 2(2b_+3)n™" ,

0l
sup | Gn(eo,o)] = sup | T'Gkn(eo’@)l
o€l _(6) 0€I_(0 ) k=1 n®
n (o] n- o
*
s |CknI
i Z - X sup ] Gkn(eo’e)l
k=1 n* 0€I _(0)
n (o)
ey |
rz] —‘(1('!1’]— ¢ Dy =' c,¥ cn)
T k=1 n® kn'n 2"1

for some c2>0 .
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*
Note that log(2(2bn+3))/logn-A
*
= log(2(2(a /v, )+3))/logn-)
*
which by (4.c) is less than v-A for all n sufficiently large.

* *
Now pick A so that v-A < -A. This completes the proof of Lemma 4.2.2.0]

Lemma 4.2, 3.
~ ~ 1
- 2
max | Fkn(eo)-E(Fkn(eo)lxkn)l = SS0(y, /o)
1<k<n .
Proof,

Pick A > 0. Note first that E(Fkn(eo)|xkn)

_ 8 Pt 40 din%) P i) 1
9=1 n n n
- E F(an+(dkn_dsln)eomzneo)‘_ Fkn(xkn) N 1
=1 n | n "
F, (X, )
kn *"kn 1
= F(an+dkn60) -ty
|F_ (X )]
Now ——EBE—EE--f_%-implies that

~ ~ : ~ 2
IFkn(Oo)"E(Fkn(oo)kan)| f-]Fkn(Oo)_F(anﬂlknoo)i nc

- ~ 1
Therefore, P( max ] Fkn(eo)‘E(FknCeo)lxkn)l > ¢4 yn/as)
1<k<n

(.

< P(max | F,_(0)-F(X,_+d 0] > cqy /aZ - 5
1<k<n

But for all n sufficiently large, we have by (4.a} that
2

1 1 1
Yn/aﬁ > (1t logn)® / n® > = .

Hence, for all n sufficiently large, the above is

~ L 2
< P( max I Fkn(eo)—F(an+dknOO)| > (c3-2)(r logn)%/nz),
1<k<n _
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which by the Dvoretzky, Kiefer, Wolfowitz (1956) inequality is <

2
Cn—ZT(CS-z)

Cexp(-2 r’logn(c3-2)2 ) = , where C is a constant independent

of n, ¢, and 1. Now pick c, such that logC —2T(c3-2}2 < - [

3 3

Lemma 4.2.4.

(4.2.4.1) = .

n e |
sup I —
OET_(0 ) k=1

n"- o

(1B (R (Og) X B Py (@ X [y, (0B (Fy, (90 Xy ) )

= S50y, ().

Proof.

First note that for O€I (e ) ]E(Fkn(eo) lxkn)-E(Fkn(e)lxkn)l

= l If (Fvln(gxkn".(dknv-dln)eo) Fln(xkn+(dkn—d9,n)e)) |

9-1 n - n

la, -d, |
kn "%
<M —__l%T-lL' | @o_@| < Mc;Dy o .

Il e~133

2=1

Hence (4.2.4.1)

W=

in - “
< Meyo, n kzllcknlDRn max | Fkn(eo)_ECFkn(eo)]xkn)I

1<k<n

which by Lemma 4.2.3 is equal to

i n * 1
2 2 —
Mcia n kgllcknlnknssoun/an) = 550 (¥, (n)) .0
Lemma 4.2.5. *
tt ékn z - 2
sup ] —= | F_(0)-E(F_ ()X )]

= 2
OEIn(OO) k=1 n

= 8S0(y, (), (n)).
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Proof.

~ Pick A > 0. By Minkowski's inequality,

*

! - - 1

( ] —% (R, (6 )-E(F, (eo)lxkn)-{Fknce)-Echnce)kan)})z‘)a
~ 2 1
‘(Z —TcF NCRBICICRIEARIED &

o 1
(Z —'n—r' (F,  (©)-E(F, _ (e)lxkn))2)2

Now, by Lemma 4.2.2, there exists a c, > 0 such that for all n

sufficiently large,

n
P(U {sup |G _(0,0)]>D v 1) <3n
k=1 O€I (0 ) kn" o 2kn'n
n'o
By Lemma 4.2.3, there exists a cy > 0 such that for all n sufficiently
large,

P(max | F,_(6) - E(F,_(© )Ix Dl > egy /< Za

1<k<n
Observe that by the above

n lcknl

-~ 1
swp ]~ Gy @-E G @5 )7 )
o€l (0 ) k=1 n®
n [o]
n e | 1
QL —F s ] 6,0,,0h7 )
k=1 n® 0€I _(0)
n (o]
n l knl %
) ——— ( max | F (e,)- E(F NG )lxkn)]) )
k=1 n*® 1<k<n

which with probability > 1 - = n > - -;—n-A =1-ntis

n e s

< z kn C2D2 2\ % kn ZYZ/G

— Tz 2 kn'n €3"n
k=1 n® n*
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*
n e |
Now, since ——<— < 1, the above is
' k=1 n®

*

<, (TZI kn 2) +c/0t)y

Therefore, for all n sufficiently large with probability < n_A,
e |
“x - 2
sup ) -——;}- |F kn (- E(Fk (O)IX )I

OEIn(Oo) k=1 n*

*
n J|c | 1 1
kn' 2\z 2\2.2
el F Bmleye. by
2 k=1 nZ kn 3 n n
This completes the proof of Lemma 4.2.5.00
Now to finish the proof of Proposition 4.2. By Lemma 4.2.1 we can write
L ICknI

(4.1.i)  <A'  sup ) —— | 6G,_( ,0] (4.2.1)
T o€ (o) k=1 n® kn "o

+ S5 eeiulge ) kzl —-1-13 | Fkn(eo)—E(Fkn(Oo)Ian)l (4.2.ii)
n- o

A I . | F,_(0)-E(F,_(0)|X, )|? (4.2.1i1)
+ == . sup —_— - «4.111
‘o€ (6) k=1 n® kn ™ Tk

A" IZI oy (JEGF,_ (6 )X, ) - ECF,_(0)]X, )|
+ sup — - : .
@EIn(eo) k=1 nZ? kn""o" '"kn kn kn

- - (4.2.1iv)
IFkn(eo) B E(Fkn(oo)lxkn)l)

Now by Lemma 4.2.2, (4.2.i) = 5§80 (¥, (n)),
Lemma 4.2.3, (4.2.i1) = SSO(wZ(n)),
Lemma 4.2.5, (4.2.iii) = SSO(wz(n)V¢4(n)), and
Lemma 4.2.4, (4.2fiv) = SSO(ws(n)).

By property (1.b) of SSQ,the proof of Proposition 4.2 is complete.
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Proposition 4.3,

Let Hkn(e) =

*

“kn - - :
= % (B, 0) X)) -2E F, O %)

- E[a(B(F, (01X, ) - a (EF_(®)]x_N])

and Hn(O) =

. Hkn(O).

1

o~

Let o s n>1 be any two sequences of positive constants such that (4.d),

(4.8), and (4.f) hold. Then,

sup | H (0)] = SS0(¥s(n)).
OEIn(@O)

Proof.

(Note that without loss of validity we will write
E(; (O)IX ) = 1 % F_ (X, +(d,_-d je) dropping the l-'term)
kn kn n 24k fn"kn “kn in ’ n )

= i ‘ < =
Let bn an/nn. For integers r such that |r|__.bn +1 set N

o + c,ra b L,
o] 1" nn
*
1if Ckn(dkn_dln) >0
Let ikl = *
0 1if cp (dp-dgy) <0
and
Jxe = 17 Ay
For GE[nIn,nr+ln » by the nondecreasing property of a(u) and F, observe

that
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*

“kn = Bt : : -1 .
E BEELOIGDaC] By O @2, ) 0+ cpa b e adD/m)

“kn - -
2 -;g @(E(l’kn ) Ian))—a(E(Fkn ©) |xkn)))
> kn (E(E' 0 )|x ? F._ (X, +(d, -d 0 + b~ L (r+i
——;‘% a kn( o) kn))—a‘(ﬂ#k ln( kn ‘kn~ Qn)( o €1% n (r 12k)))/n))‘

Now, let A =

kn
“kn a r -1 .
Tz a(E (Fkn (eo) _an))—a( Ek FILn (an{dkn-dln) (eo * clanbn (r+] Rk)))/n) ) ’
n 2
and let aknr =

C n
—I (a(B(F, (0 % ))-al ;Xék Fon O+ (& ~d, ) (0 + ca b~ (r+dp)))/n) )
n 2 .

and Aknr = .

=}

| -1, .
_;%.(Ea(zgk F!Ln(xkn+(dkn_d2n)(eo+clanbn (r+1k2)))/n)

n .
- Ea ( ;k an(xkn+(dkn_d2n)(eo+clanbgl(r+jlk)))/n))'
L

By the above inequalities, we have

n n n
kzl(Aknr_EAknr+Aknr) i-klekn(O) Z-kzl(akn-Eakn_Aknr)'
Note that | ] * | | * |

n d, -d c c
kn in kn kn
IAknrl Ln,GAM o1 n z 5 AT Pin T3
= n n
*
Now (4.3.1 7 ™ E D %
ow (4.3.1) | kgl Aknr| S cyAtMny k=i kn ":ﬁ?'
Ay (7 02 ¢ 2F - e Ay ()
=49 nn(kzl knckn ¢ bg ).
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(4.3.1), in combination with the following claim, will complete the proof

of Proposition 4.3,

Claim 4.3.2.

*
For all A > 0 there exists a ¢ > 0 such that

(4.3.3) =
( ] | B 3> ol &
max P(max { sup (A, _-E )], sup ( ~Ea, )|} > cy (n)) <n .
1<k<n [r|< b +1 k=1 knz”enr r|<b +1 %=1 “knr™ oz >
Proof.
n n
Note that ) Aknr and z 8y are both sums of independent random variables.
k=1 k=1
Now
n n n c*2 22 n |d,_-d, |
Var(J A _ ) = [ VarA_ < ] —ZAM ( ) —-]-‘1‘-11—4’1’-?—)2 ciai
k=1 k=1 k=1 - 2=1
o? n
' o *
<A b e,
k=1 kn
n o n
L 122 2 n %2 2
Similarly, Var( ) aknr) SAM ¢ — ) cknDkn
k=1 k=1
*
| knI dlA'Man
Also max I Ak r] < max —x— Dk clA'Ma = B —~——p—
1<k<n 0 1<k<n n® n®
*
'éknl clA'Man
1 =
and max | aknrl < max —I DknclA Man = Bn —z

1<k<n 1<k<n  n n
Now by Bernstein's inequality,

_p(lAknr-EAknr| g c*ws(n))

*
P(|a Eaknr] > ¢ ygn)

knr~
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2
*2 2 22 2% ¥ %22 4 cAM
< 2 exp(-c ws(n)/(ZA' M o —E-kZl cknDkn * 70 — B o ws(n)))
. Z .-
czaz an
* *
< 2 exp(-c 2ni/(ZA'ZM2 1nn + -‘-;- c,c A'™ —I-l-—r:zt- ))
n
xy 11 o *
= 2 exp(-c 2,2 aﬂ-/(ZA'ZM2 ci -125 + %-clc A'™™)).
n n.n
n

By (4.d) and (4.e) for all n sufficiently large, the above is <

3]

exp(—c*zslogn/(2A'2M%§a + %—clc*A'M )) = P,

Now by Bonferroni's inequality,
(4.3.3) < 2n(2 bn +3) Py for all n sufficiently lgrge. By (4.f) for all n
sufficiently large

(4.3.3) | <2n@n®+3) o (4.3.4)

: . _ )
If we choose ¢ sufficiently large, we have (4.3.4) < n AJD

Proposition 4.4.

Assume (2.1.i) or (2.1.ii). Then there exists a ¢ > 0 depending only on

a(u) and f such that for all o,

*

] L (Ea(E (R, (0)) X ))-Ba(E (R () X, )

k=1 n®
o [y n=1) L e (ydu) | < ’Z‘ oy | b2 (6 -6)>
-(0,-0) (d; _-d) L a' G~ F) + Df (du)| <c LT E D%

Proof.

Note first that Ea(E(Fkn(O)]an))

) |
- | G J, Pty ) (0g-0)) + DE@du
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and
© . n
1] (facsl ry + 3y - add L P gm0, )00 D1fw)

- D @0 & (B Fw + 3 £ w)du

o« n
<1 a2 raw + D QZI(F(“(dkn'dln) (0,-0)) ~F (w) £(u)

(4.4.1)

- (4 -3 (0_~0) £ (u) Jdu]|

e f ( F(u+ (d; ~d, ) (6_-0))-F(u)

n )2 £(u) du. | (4.4.i1)

The above follows from Taylor's theorem.
Now, (4.4.ii)

-d 2
A" 2 kn ln 2 A"MT 2 2
( Z —E ) 0,0 < Ao (o0,

To bound (4.4.i) by a similar term, we need a lemma.

Lemma 4.4.1.

. *
If (2.1.1i) or (2.1.ii), there exists a ¢ > Q dependent only on f and

a(u) such that for all ©
| J 2B p )+ DI, -d, ) (0,-0))-FW) £w)
(4.4.2)

- @ -d, ) (@O—@)fz(u)]du] < c*(dkn-dkn)z(eo-e)z.

kn
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Proof.
Assume (2.1.1i) f lf?(u)ldu < o, then

-0

Jar (@)« D(FEr A -dg,) (8,-0))-F@) £(w)- (A -d, ) (6,-0) £2(w) Jdu

-0

© 0 -0
110 e W - D (e Ggra -t e avan @ -d)

which by Fubini's Theorem

CR (n-1) 1
= (f) [ @' CEEE@ D (Fr (@,d, IV -F () £(u)dudv (& -4, ).
Now,

{ma'(-(—nr-l-l—)-F(u) + 2 (Eur(dy -, )W) - £@))£(u)du

equals by integration by parts to

_[m[(F (u+ (dkn—dln) V)-F(u)) (éu(_(ll_r.'l_l_)_‘ F(u) + %1_) f2 W) (nr_ll)

+ a'(-(i;ll—) F(u) + i—)f' (u))]du.

The absolute value of the first term is bounded by

Al ld, -d, ||v]

znll

and the absolute value of the second term is bounded by

Mla,_-d, | Ivl] {L A™ME(u)du + A' [ |£'(u)]du}.
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Let 2 ¢ = A'M2 + A”M2 + A'™ f |f'(u)|du, then we have (4.4.2)

- 00

2

0 -0
0 * 2, o+
< ”o 2 ¢ |vlaved, -4, )°] = ¢ (o _-0)%(d,_-d, )

Now assume (2.1.ii) |f'| < M', The conclusion follows from observing that
. (Tl*l 1
[ ot (B P + D (F e (@m0, )V -£00) £ )l

< A |v] |dkn-d£n|2.t:|

To complete the proof of Proposition 4.4, note that (4.4.i)
n [+
1y (n-1) L
s boall @GR T s DI g-d,) (0,-0)
2
-F(u))£(u)-(d, -d, ) (6, -0)£"(u)]du],

which by Lemma 4.4.1 is

2
» D (d _=-d ) ' *
<ty R g )2 < (e -0)% D2 .
- =1 n o o) kn
2
Ty *
Now let c = A2M + C .

This completes the proof of Proposition 4.4.00

Remark 4.1.

The only conditions on @ Y, and no used in the proof of Theorem 2.1 are
(4.a) through (4.f). So as long as these conditions are satisfied, Theorem 2.1
is valid for the more general interval In(@o) = [-clan +0.,0 + clan] with

b)) = vy @VenV Ugm) -



29

Remark 4.2.
The proof of Theorem 2.1 can be modified to give an alternate proof of
Jureckova's Theorem 3.1 (1969) in the case when a(u) is absolutely continuous

inside (0,1). The essential ingredient is Lemma 5.1 Hajek (1968).

Section 5. Comparison of Theorem 2.1 with Theorem 3.2 Sen -and Ghosh (1972)

Jureckova (1969) showed that if a(u) is nondecreasing on (0,1),
1 n

IO a’(u)du < =, max fc ¢, | =0, zzl Cyy = 05 (cp -, )(d; =d, ) > 0
1 < k,2 <n, Tim ozd < o and f has a finite Fisher information number,
n—+oo

then the linearily is probability statement for T (0) w1th_a(n) replaced bya(n+1

given in Section 1 holds with An = f a(u) p(u,f)du,where ¢(u,f) =
-ftF—l(u))/f(F;l(u)). The question naturally arises: When does a stronger
kind of linearity hold? An SSO rate is needed in the construction of bounded
length sequential confidence intervals fof @o, (See for example Sen and Ghosh
(1972) or in the determination of the exact rate for which estimates for OO.
based on Tn(e) converge to Oo.' Inagaki (1975) considers the particular case
of estimates of the shift based on the Wilcoxon Two Sample Statistic. The
strongest published result on the SSO question is given by Sen and Ghosh (1972)
for the case of regression rank statistics.

We quote Theorem 3.2 Ghosh and Sen (1972). Ghosh and Sen consider linear
rank statistics of the form: (The following is in our notation).
Let xln”"’xnn be independent such that in é F(-+d2n90) for g=1,...,n

n _

Set T_(6) = ) (4, -Da® /(+1)), i.e. cp = dp -d. (5.1)
2=1

Assume that there exists a kK >0 such that for u€(o,l)},

la(u)| < -K_ log[u(1-u)] and
(5.2) -0 "
lat @< K (u(l-u))
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F has density f which is absolutely continuous

(5.3)
with derivative f' such that

there exist M>0 and M'>0 such that

(5.3.1) .
|f] <M and |[£'] < M', and

(5.3.2) lim f(x)a'(F(x)) is finite

X+
| ay-dl/ (] %% - ou/hm
(5.4) max d -d|/ ( (d, -d))* =0Q/vn)
1<g<n P =1 M
2 2
(5.5) lim o =g >0
e nd d

Then for all ¢, > 0, integers k>1 and all § such that 0<6<%,

1

(5.6)= sup | T*(@ )'T;(O) - (6,-9)oy i a'(F(u))fz(u)du|= SSO((logn)k+1/n%+6),_
o€I (o) n-o -

K - k
. (logn) 6,5 0, * cl.(logr_l) 1.

where I_(0 ) = [-c
n"- o n2 ‘ 1'12

Comparison with Theorem 2.1

Observe that if |a'(u)| < A' and | a"(u)| < A" (5.7)
then (5.3.2) is automatically satisfied.
(5.4) combined with (5.7) applied to Theorem 2.1 gives

(5.6) = $50((loglogn)*(logn)Z/m3’%),

Wl
nj

where In(eo) = [_cl(loglg_n) + OO’OO+C1 (loglogn) ];

n* n®
‘which is a finer rate than that obtainable from Theorem 3.2. Refer to Example
3.1. The smaller interval enables us to obtain law of the iterated logarithm

rates of convergence of estimates of Oo based on Tn(O).
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Theorem 3.1 Sen and Ghosh (1972) allows a moderately unbounded a(u)

function, but requires a strict Noether condition on the Con ' S- Theorem 2.1

~

in a sense reverses the restrictions. If we are granted (5.7), Theorem 2.1
becomes much more versatile that Theorem 3.2. The czn's need not be of the
form Con = dzn-a, the exchange of (5.2) for (5.7) permits condition (5.4) to
be relaxed or dispensed with (refer to Example 3.4), and there is a finer
tuning of the SSO term, since it is a function of the cln's, dzn'S and the
particular an's, yn's and nn's chosen. See Remark 4.1. Almost sure
‘linearity with an SSO rate can now be considered forllinear rank statistics
for which Theorem 3.2 does not apply; for example, Spearman's Rho (Example
3.1.2). In addition, Theorem 2.1 extends the class of density functions

for which an SSO rate holds. Not only can an SSO rate be obtained when the

underlying distribution function has a density which satisfies (2.1.ii) but

also the SSO rate can be obtained when only (2.1.j) is satisfied.
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