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ON THE ADMISSIBILITY OF
ESTIMATORS IN EXPONENTTAL DISTRIBUTIONS

Introduction

The problem of estimating the mean of general exponential family has drawn
the attention of many authors. KXarlin [ ] studied the prbblem and gave
sufficiant condition for the admissibility of linear estimators in the
1-dimensional case. Zidek | ] and Cheng Ping [ ] also have obtained
results similar to Karlin in the 1-dimensional case.

We consider, in this paper, the problem of estimating the mean vector of
m-dimensional general exponential family under squared error loss. In Section 2,
we give a sufficient condition for the admissibility of 1iﬁéar estimators in
m-dimensions using an exterior boundary.?alue problem of elliptic differential
equations. The result coincidés with Karlin's (or Zidek's). when the
dimension is 1. The sufficient condition can be used to obtain easily
verifiable conditions on the normalizing function of parameter of density for
the admissibility of the linear estimators.

In Section 3, we deal with the question of whether admisgible estimators
of the mean are generalized Bayes. We have been able to answer this question

positively in the l-dimensional case under mild conditions.

1. Preliminaries

Let x = (xl,...,xn) be an m-dimensional random variable with density

fe(x) = B(e)ee'x(GERm) with respect to a o-finite measure u with support E™.  Let



&= {86: feexu(dx) < w}, Assume @ is an unbounded open convex set. It is

desired to estimate the mean of x ie - Vgggg = n(8) under the squared error

loss L(6,t) = ]In—tl[z—(||~|| is the usual Euclidean norm). Let I be an
absolutely continuous (with respect to Lebesque measure) measure on the Borel
subsets of ® with density m(®). We assume m(6) > 0 in @ and non-negative
continuously differentiable in R". Let Gw denote the generalized Bayes
estimator of I,

Also, let Ee and Ei denote the expectations with respect to fe(x) and the
formal posterion distribution with respect to II. The formal po;teriori
distribution has density with respect to the Lebesgue measure and it will be
denoted by p(6/x). Let E denote the expectation with respect to the

marginal of x.

We will need the following notion of almost admissibility. Let R(n,8) be
the risk of § (note that n is a function of 9 ie n(8), but we will drop 6 for
notational convenience). We say § is almost admissible Qith respect to n if
61 is an estimator dfln satisfying R(n,§,) < R(n,8) then R(n,§1) = R(n,8) é.e. .
The results of this paper will be consequence of the following result due to
Stein [ 8 ].

Let Sr be the sphere of radius r with origin as centre; Let Jr denote
the class of all non-negative real valued functions j definéd'on R" satisfying
j(®) > 1 on S and [j(8)R(6,8m)T(6)dE < w,

.Theorem 1.1 (Stein): The estimator Gﬂ is almost admissible with respect to Il

if for ever € > 0 and r > 0, there exists j€ Jr such that

T yipX . 2
E[ |1EX 50) (n-s ) ||

X, .
E(3)



Proof: See Stein [ 8 ].

2. Admissibility of linear estimators of the mean.

In this section we consider the admissibility of estimators of the form
§(x) = X§T for A > O.V This estimator was considered by Karlin [ 7 ] (also
see Zidek) in 1-dimensional case and he gave a sufficient condition for its
admissibility. We geneéralize his result to higher dimensions in fhis section.

We need the following exterior boundary value problem. Lét L, be the
differential operator L u = Au + Z%JVU where A is the Laplacian. The only
non-negative solution of L;u = 0 in the exterior domain Rm-S1 is the constant
functions u = 1 then we say Boundary Problem (BP) is solvablg for L. The

following result about BP is known (See Brown [ 7 1], Srinivasan [1e 1).

Theorem 2.1: The Boundary Problem for L is solvable if and only if

. 2

inf fl]Vu(y)II w(y)dy = Q.
u >0

u =1 on S1

us0as |fyl] >«
We will use this;theorem in proving the main theorem of this section.
Let us make some observations before we state our assUmffions. Note
that the mapping © + n(8) is one-one and the range of n(ej i;lRm. Let q(n) =
q(n(e)) = N(8). Then a(n) > 0 for all n. Moreover q(n) is differentiable

continuously,

AssumEtions:

(I) The Jacobian of the transformation 0 - n(6) is bounded away from 0 and
in @. ‘
(1) [80)e® 8 (6)d6 < w a.e. [u(dx)], A > 0

(111 8(e) e*®s*(6) > 0 as 6] + =, A > 0.
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The assumption (I) is easy to verify. It is equivaleht to the condition

that the detérminant of.the variance covariance matrix of fe(x) is boundgd
away from 0 and «. The assumptions (II) and (III) ensure that the estimator

§(x) = X§T is generalized Bayes with respect to the prior I(8) = BA(G).

Thedrem 2.2: Assume I, II § III. Then &(x) - X:T is generalized Bayes with

respect to II(0) = BA(B). Moreover 6 (x) = X§T is admissible if BP is solvable
. \

for the equation Lqu(n) = du(n) + du(n) q(g) =0

Proof: Observe that it follows from assumptions II § III

V(B8 (@) = mIGET - - EEh1eTel (2.1)

for any x, where the derivatives are taken with respect to 6. Now, for any

piecewise differentiable function j€ Jr

X, . VB (6) _ .2 9 x A+l
Enoy Gt - - —geey?) = Enlitey (e "Big))]
[y
= 6x k+1 (2.2)
f e (e)d

Integrating. the numerator of (2.2) by parts and using assumption III and

the fact B(6) vanishes on the boundary of‘® we have

v I Vj2 GX )\+1 de
X,.2 X V8(0)\y _ (8)° (6)
ETI'(J (e) (m- - (- B(e))) = OX _A+1

f e B(a)de

Therefore, by Schwartz inequality,

1 I3 ¥kt

x (42 °(0) (2.3)

||EX VB(B))HZ X (52

v e O LA I I feexsx(+)1
6

de

Now taking expectation with respect to the marginal of x on both sides of

(2.3) we have

NG @ Gy - B

PP RILTONE | 2.4
EX(5%(0)) e

Thus §(x) = XIT is almost admissible if for every r > 0,



inf - 2 3
[ 11vie ] Brgyde = 0 (2.5)
jed ‘
Switching from the variable g to n and using the fact the assumption I
it is easy to see that (2.5) holds if
inf ’ 2 _
[ |lvatn) [|“a(nydn = 0 (2.6)
uey
where U= {u: u >0, u>1onC Su(n)q(n)dn < =} and C is a fixed compact
set in Rm. Now by Theorem 2.1 we have (2.6) if BP II is solvable for Lqu = 0.
Therefore §(x) = X§T is almost admissible if BP is solvable for Lqu = 0,

Finally, since the underlying family of distributions is exponential and the

risk function of §(x) = 7§T is a Laplace transform of a function, it is
continuous and hence almost admissibility of Afl is equivalent to admissibility.

Hence the proof.
The above theorem can be used to obtain verifiable sufficient conditions

on d(n) and hence N(8) for the admissibility of T§7 sufficient conditions for

the solvability oquu=Oare available (See Brown [ 1 ],'Srinivasin [10 D).

We list a couple of them below without pay.

Corollary 2.3: Suppose q(n) :_b]|n]| 2-m for all |[n|] » b0 for some bO’

Then BP for Lqu = 0 is solvable and hence XéT is admissible.

The next result is for spherically symmetric p. Observe that if u-is
spherically symmetric then so is B(8)ie 8(8) = 8(||e|]|) and 8(|]|6|])
exists and possitive for all ||e]].

X

>‘+1_1s admissible if

Corollary 2.4: Suppose p is spherically symmetric. Then

[ — 1 1 — dllell _ .. 2.7)
18 m
(telh el




Proof: It is well known that (2.7) implies that BP is solvable for Lqu =0

and hence by Theorem 2.2.)\1(1 is admissible.

The Corollary 2.4 is a generalization of a result of Karlin [ 7] to
m-dimensions. He obtained a similar condition for the admissibility of X§T
for one dimensional case. Cheng Ping [ 3 ] has studied admissibility of
estimators of the form a + bx, b > 0, in the one dimensional case and obtained
sufficient conditions similar to Karlins. We can generalize his results to
m-dimensions along the same lines as in Theorem 2.2,

One of the major assumptions in proving Theorem 2.2 is that 6ﬂ is
generalized Bayes. ‘This assumption does not hold always. Indeed, it is easy
to construct examples of exponential distribution where x is an admissible
estimator of n(6), but it is not generalized Bayes. However, for dimension
m =1 it is possible to show that admissible estimators of n(0) are generalized

Bayes under some conditions. We prove this in the next section.

3. Generalized Bayes Estimators,

3.1 In this Sﬁbseetion we prove, for dimension m = 1 that every admissible
estimator of n(8) is generalized Bayes with respect to some o-finite measure
under mild conditions. The proof is similar to the one given By Farrell [ 5 ].
so we only sketch the proof often referrring to Farrell's paper.

Since the dimensien m =1, it is clear that ® is an interval. We assume
throughout this secfion that @ is an open interval ie the upper and lower end
points, eay ® and 8, do not belong to © Moreover we assume that the support
of u is (-o,),

We will need the following result of Farrell [ 4 ]. We state in our set up.
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Theorem 3.1: A decision procedure & is admissible if and only if there exists
a sequence of procedures Gn Bayes with respect to finite ﬁeasures An having
compact supports Dn+w satisfying

v(i) for every compact set E, sup An(E) < o

(ii) there exists a compact sezzéo such that inf An(EO) 1.1
(iii) [(R(n(9),68) - R(n(8),6 ))A_(d8) + 0 as n 5 >, |
Proof: See Farrell [ 4 ].

We now state the main theorem of this section.

Theorem 3.2: An estimator &§(x) is admissible only if it is generalized Bayes

ie. there exists a o-finite measure F on @ = (9353 such that

8(x) = [ n(®)8(8)e”™ F (de)
[ 8(8)e°*F (d0)

we present the proof of the theorem after a series.of lemmas.
Let V(8) = ||n(6)]|+1 and V,(8,t) = (n(8)-t). It is easy to see that if
E € (-»,»)is a compact set then Vl(e’t)/V(e) is uniformly continuous in 6 and t

on @E. This follows from the fact that n(8) is monotone in 6 and lim n(6) = =

Vl(e,t) Vl(e,t) 80
and lim n(6) = -« and hence 1lim — = 1 and 1lim — = -1 for every
60 - 9+ V(O grg V(O
t in E, -

Suppose now §(x) is admissible. Then by Theoren 3.1 there exists a
sequence of finite meQSurés {Aﬁ} satisfying (i), (ii) § (iii) of the theorem.
Define a sequence of probability measures on ® by setting

: | i _

vn(x,E) = Wé V(8 £, (x)2_(d6)

where E is a Borel subset of ® Note that the normalizing function Kn(x) is

defined and finite for every x since An has compact support.



Let ®* be a metrizable compactification of @& such thaf:G is borel
subset of ®* and extend the probability measures Vn(x,E) io @*. We will
denote the extended measures also by Vn(x,E). From now on we will be using
these extended measures.

Let Fn(E) = f V(e)kn(de). Since i:? An(E) < «» for every compact set
EC®, there exists a subsequence {Fn} converging weakly to a o-finite measure
F' on, the weak convergence being with respect to the class of continuous

functions on ® vanishing outside compact sets. Assume, without loss of

generality that Fn + F' weakly in the above sense.

Lemma 3.3: There exists a subsequence {ni} of {n} such that

N {x,+)> v(x,*) weekly for almost all x[u]
i
. *

Proof: Observe that vn(x,-) are continuous bilinear functionals on L, (R,B,u)xC(& )

* : - .
where C(6 ) is the Banach Space of continuous functions with supremum norm and
Ll(R,B,u) is the Banach Space of absolutely integreble functions with respect to
u. Since Ll(R,B,u) is separable, the unit ball of bilinear functionals is

sequentially compact. Now a standard diagonalization argument along with the

fact that u is o-finite gives the result.

Lemma 3.4: For almost all x,y[u]

K, (x)
lim inf m > Q.
n>1 n Y

Proof: Observe that

K, (x)
n _ ‘
NI RTINS

Therefore if @ is a finite interval the result is trivial and if @ is an

infinite interval it follows from Lemma 4.2 of Farrell [ 5 ].

Lemma 3.5: v(x,8) > 0 for almost all x[u].



~ Proof: The proof is divided into two cases, @ is finite and infinite interval,

Case (ii) © is a finite interval.

Suppose'v(x,GD = 0 on an x-set of positive u measure. Then, for x in that

set,
= M v(x,d6) = IM (x,d8) +
o V(O | eV
V. (6,35(x)) V. (6,8(x))
1 1 :
+ [ ——<r— v(x,d8) + [ = v(x,d8)
vis,t) vV, (8,1)
Therefore, since IO = +1 and —VTET——-= -1,

We have v(x,8) = v(x,8) on a set of positive u measure. It follows from

Step (4.9) of Farrell [ 5 ] that this is not possible in our set up.

Case (ii) @ is an infinite interval.
It follows from Lemma 4.3 of Farrell [ 5 ] that v(x,9) =0 if § is = and
v(x,8) = 0 if § = -» for almost all x. Assume one of the end points, say 9,

is infinity. Then

0- | v, (8,8(x)) e8] = v(8) & oxe o ] V1 (8,8(x)) o)
U= ——m——— y (X,d0) = -v(X,0) + v(xX,®) + ——— Vv (X,
.®* V(e) - ® V.(G)
= =V (X,_e_) 'l

But'v(x,gj = 1 and therefore we have a contradiction.

Lemma 3.6: For almost all x[u], lim sup Kn(x) < o,
n>1
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Proof: It follows from Theorem 3.1 that there exists a subsequence {6n } of
o : i
{Gn} converging to §: This fact follows from condition (iii) of Theorem 3.1.

Assume without loss of generality Gn converges to 6. Now, using Lemmas 3.3,
3.4, 3.5 and Lemma 3.2 of Farrell [ 5 ] it follows that there ixists an open

set U © ® having compact closure in ® such that

A (U) A, (U)
0 < 1im inf K TN eIl < 1im sup K (x)

n-—+> n > o

for almost all x[u]. Since lim sup An(ﬁj < », we have 11m sup K (x) < = for
n > o© n>1

almost all x[u].

Lemma 3.7: For almost all x[p] and all t€(~-«,=),

(1) lim [ £ (x)F_(d6) = [ £,(x)F' (d8)
nre @ e

v, (6,1) v, (8,t)

C(11)  lim [ —e— £ (0F_(d0) = | e

£ . (x)F'(de)
n>e g V() ® ®

and the limits are finite.

Proof: We shall give the proof of (ii). Proof of (i) is 51m11ar

If @ = (6 e) is a finite 1nterva1 then f (x) is a bounded contlnuous function
V. (8,t)
V(8)

from the fact that Fh+F' weakly. Suppose now @ is an infinite interval.

of 8 for every x. Since is bounded continuous, the result follows

Let us assume @ = (~»,»), Then for any 0 < A < o,

AV (6,1) AV (8,1)
iﬂ J, e £, (X)F (d6) = j ey o (XIF(d0)

we shall complete the proof by showing
o V (e,t)
lim lim sup fl "v‘('eT_ | £4(x)F_(d8) = o (3.1)

Ade n >
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for almost all x[u]. Suppose (3.1) does not hold on a set of positive u measure.

Then there exists x' such that

v, (8,t)
lim lim sup [ "TTG?T"' | £, (x')F_(d8) > 0 (3.2)

Ado n > @
and p(x',~) > 0 since the support of u is the entire real line (-=,«»)}, Now the
_ PP

monotomicity of fe(x) as a function of x implies for y > x!'

7 e V8 eryel]
| v | £ (I, 0) < sup [l o (x y)e]ife(y)Fn(dG).(S.S)

A 6>A

Therefore taking lim sup and letting A»e in (3.3) we find, that

V,(8,1)

lim sup [| =
Avo o> V(O

e(X"Y)e] = 0

and hence it follows from (3.2) that
lim sup [ £, (Y)F_(d8) = . ] (3.4)
n > ® o~ - n ’
But this contradicts the fact lim sup Kn(x) < = for almost all x[u] of
. ) n > <« )
Lemma 3.6.  Therefore, (3.1) holds. The cases @ = (-=,8) or (8,~) are similar

and we omit the proofs.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2:

We already observed that there exists a sequence {Gn } Bayes with respect
' i

to A, given by Theorem 3.1 such that anx)converges to G(Xj for almost every x.
i i
Also for almost ali n,

18, VL (8,8(x)

Vo) - 0 uniformly in 8.




12

Therefore by lemma 3.7

Vl(e,ﬁni(X)) V,1(e"5(x)-)‘
0 =n112 i NiO) fe(x)Fni(de) = —vrey Lo (VF' d6 (3.5)
i .
Now let F(d6) = V%?T F'(d ). Then it follows from (3.5)
[n(8)£,(x)F(de)

B NI CD)

3.2. The main result of the previous section does not generaiize to higher
dimensions easily. So we adopt a different approach using a recent result of
Brown [ 2 ] for the care of general dimension m. In what follows, lim inf
u(8) = sup {inf {u(8) = 6fS}: SC ®, S compact} for any real valued f3::tion
u(6). Recall that our loss function L(6,t) = (nle)—tlz and ﬁ= {n(e) : BE‘®}

is an unbounded set.

Theorem 3.2.1 (Brown): Let 8§(X) be any admissible estimator of n. Suppose

there exists another procedure §'(x) and a positive real vaiﬁed function g(n)
such that

lim inf g(n) (R(n,8)-R(n,6")) = ¢ > 0.

oo
Then §(x) is generalizéd Bayes for almost all x[pu] on the set S = {x:
1im g(n)L(n,t)fe(x) = 0 Yt and lim g(n)R(n,cS)fe(x) = 0},
ne _ n>e
Proof: See Brown [J2 1.

As a consequeﬁce of the above result we have the followiﬁg. Assume in whaf
follows |

(a) lim fe(k) = 0 for almost all x[u].
n-Ho
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Theorem 3.2.2: Suppose -Alog B(8) < K, ¥8. Then any estimator GA(X) =

T%X'A > 0, is generalized Bayes if it is admissible.

Proof: Observe that =AlogR(®) < K is equivalent to the fact that Go(x) = X

has bounded risk. 'Now, for any estimator 6A(x) = T§X” x>0, we have
2

1 A 2
R(n,6,) = 5 R(n,80) + 5 Inl”.
(1+)) (1+2)
Therefore
1 Az
lim inf — (R(n,GA) - R(n,éo)) = 5 > 0.
noe 1+|n[ 1+
Now setting g(n) = T |2 it follows from Theorem 3.2.1 and assumption (A) that
1+|n

ék(x) is generalized Bayes.
As an example to illustrate the above theorem consider the following
11012
distribution. Let u(dx) = e-?lnl In|dx o > 1. Then B(8) is approximately
a —‘1‘|9l2 » o _llelz .
lo]™ e™® for large |6| and (]6]™+c) e % in a neighborhood of the

origin. Using this fact it is not difficult to show that -Alog B(8) < K, V6.
a

o] -
n(8) > 0 as 8 > 0. Moreover by Theorem 2.2 §,(x) = T3y is admissible.

Moreover assumption {(A) holds because n(8) I ( 5 -1)6 for large |6[ and

Therefore Theorem 3.2.2 implies T§T is a generalized Bayes . estimator.
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