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Two theorems are presented on the asymptotic normality of statistics of

n . .
the form Tn = n-1 E J(E%TJX£1) where it is assumed that the underlying
i=1

distribution function F has a finite variance. Theorem 1 is an extension

of Theorem 2 of Stigler (1974) to depending on F possibly unbounded score
functions. Theorem 2 of this paper is analogous to Theorem 1 of Shorack
(1972) as his theorem applies to statistics of the above form, but with

fewer conditions of F_l and J. Under the conditions of Theorem 2, the
variances of /H'Tn are also shown to converge to the variance of the limiting
distribution; a question not considered in Shorack (1972). Finally an
example is given for which Theorem 1 implieé asymptotic normality, but for
which Shorack's Theorem 1 does not apply.” In the construction of  the
example a useful bound for the variance of a transformed uniform order

statistic is obtained.

Keywords and phrases: Order statistics, unbounded score‘function, asymptotic

normality,



0. Introduction, Summary and Preliminaries. We will assume throughout

this paper that X ’Xn are independent, identically distributed random

IEXRE
: ' . 2

variables with common distribution function F, such that Vaer =g < o,
X(l) < vu. < Xén)'will denote their corresponding ordered values., J will
n — —

n . .
be a real valued score function defined on (0,1). Let Tn = Z J(H%T)Xﬁl)/n,

i=1

My ETn and

C(LF) = [TITIFCIFED) [Fx 4 y) - F(x)F(y)]dxdy.

Flowill be the right continuous inverse of F, that is F—l(u) = sup{x: F(x) < u}
for u ¢ [0,1]. |

Theorem 2 Stigler (1974) says that if J is bounded and continuous
a.e. with respect to F_l then /HITH - pn) i N(O,UZ(J,F)). In Section 1,
Stigler's theorem is extended to a more gZZZral class of score functions,
which depending on F can include unbounded score functions. This extension
is Theorem 1 Section 1. In Section 2, Theorem 1 is applied to obtain a
theorem on the asymptotic normality of linear combinations of order statistics
with unbounded score functions, wﬁich is as strong as Shorack's Theorem 1
(1972), as it applies to statistics of this type. Fewer conditions on F_1
and J are required and in addition it is shown that Var(%ﬁTﬁ) - GZ(J,F) < o,
a problem not considered in Shorack (1972). Finally in sectiEZQS, an example
of an unbounded score function and a distribution fuqction is given which
satisfy the conditions of Theorem 1 to imply Vﬁ{Tn—un) eﬁ N(O,oz(J,F)), but which
do not satisfy the>conditions of Theorem 1 Shorack (192;;2 Included is a

bound for the variance of a transformed uniform order statistic, which might

be of separate interest.



Now for some notation and observations.
Let gi?) = cov(Xﬁi), XﬁJ)) for 1 <1i,j <n. Let an)(x) = P(Xﬁl) < x) and
(n) _ (1) (1)
Fij  (oy) = POO™ < x, X770 < ).
We can write g f f [F(n)(x,y) - Fﬁn)(x)F§n)(y)]dxdy > 0. (See Stigler

(n) _ (n) (n) _ (n) - . -
(1974)). Let gOj 10 = Byl gn+lj 0 for 0 < i,j < n+l., Set Vn(u,v)

Im+Dul  Jn+l)
) ) Y'g??’/n for (u,v) ¢ [0,1]x[0,1].
i=0 j=0 1

(fa] = greatést integer < a)

V defines a measure on [0,1] x [0,1] which gives nonnegative mass

( )/n to each point ( n+l) for 0 < i,j < n+l. In particular
n+l n+l (n)
Vn([O,l] x [0,1]) = Vq(l,l) = E X g; /n = . Set V(u,v) =
! i=0 j=0

n+1 ?

I, ! Lo, u) FON Ty qEONFy) - F(X)F(y)]dxdy. V also

o

defines a postive measure on [0,1] x [0,1], which gives measure o2 to .

u v
[0,1] x [0,1]. V(u,v) can also be written: V{u,v) = [ [ (st —st)dF_l(s)dF—l(t}.
0 O

See Proposition 4.6 (Appendix). Proposition 4.2 (Appendix) shows that Vn(u,v) >

-
V(u,v) at every continuity point (u,v) of V.
Observe that if f‘and g are a.e. continuous with respect to_F—l, then f(u)g(v)

is a.e. continuous with respect to V.

Finally we record the following representations for Var(/ﬁTn).

n n
Var(/aT)) = § ] IGEDIGIDeovx xUlym
i=1 j=1
n n. ) 1
=1 1 (n+l) (n+1)g /n = f [ I@IWAV_(u,v).
i=1 j=1 00

The last representation of the Var(/ETn) will be exploited extensively in

what follows.



1. The Main Theorem. 4

Theorem 1.
Let J be a real valued function on (0,1), bounded in absolute value

on (é; l-éjfor all a > 2, continuous a.e. with respect to Ffl such that

1
[ 13| ]IW) AV (u,v) < .
0

[

If 1.i. 1lim } }}J(u)||J(v)|dvn(u,v) = } } |3 ) | |3 0v) ]| dv(u,v)
nee 0 0 0 0
then.
1.ii. Var(/E(Tn—un)) > cz(J,F)
Moo
and

... d 2
1.iii. /ﬁ(Tn—un)n+; N(0,c" (J,F))

Corollary 1.

With the same assumptions on J as in Theorem 1, but with 1.i. replaced

by

. 8 . X
1.1 ]l+ an(u,v) is uniformly bounded for some & > 0

O

1
[ lawam
0

and all n > 1, then 1.ii. and 1.iii.

Proof of Corollary 1.

Merely apply Lemma A.4.
Remark 1.1

Theorem 1 yields the standard central limit theorem.

d

n(X - ) N(O,GZJ, where p = EX.

Remark 1.2

If there exists an M > 0 such that for all n > 1 and 1 < i,j < n,g.. <
M/n, and if in addition to the conditions of Theorem 1, J satisfies

J1+6( :
1 n

Nl l-]

" 1468 )
1)/n -+ f‘J1+ (udu < =, then we can conclude 1.iii..

1 no O



Proof. Define J' = JV0 and J~ = -(Jr0)

By Lemma A.3 (Appendix) we have

11
1.1. lim f [ J Tt M)AV, (u,v) = f f J It (v)dv(u,v)
N 0
and
11 o
1.2. tim [ [IT@IT MV _(u,v) = [ [ITWIWdV(u,v) < =
n*> 0 0 n 0 0

1.1. and 1.2. together with Lemma A.2 give

1 1

1.3. lim [ J*(u)J'(v)dvn(u,v) = [ [T I mdv,V) < =
0 - 0 0 |

n>>

f
J
0

Now 1.1., 1.2., and 1.3. imply 1.ii..

n

. + i _ + .. . - -

Define T, = 21 ( l)x( )/n and u = ET . Similarly define T and e
So that T =T - T and u = u - .
n n n n n n

Let a and bm be sequences of constants in (0,1) such that for all

m>1,1>b >b >a >a >0, lima_ =0, 1limb_ = 1 and F—l({a hH =
- m+1 m m m+1 m m m
m—)'OO m—)-oo

F‘l({bm}) -

-, ‘
‘J (u) ifue (a, b ),

Let J; = meem

0 elsewhere s

+ (1) _ +
m(n+1)x /n and u = ETmn‘

~3
+
]
e
N o~13
[

Similarly define J_ , T__ and u_
n mn mn

+ - + -
S T =T - = - .
et mn mn Tmn_ and umn umn umn

Using the inequality, Var(X+Y) j_((VarX)l/2 + (VarY)l/z)z, we have

Var (/AT Ty -y 0) < Var(R(T-1! 90 M2 (Var(/n(T-1 99) %)% =

.1 1 Ty ’
(U@ - @) 6t -y ) 2

¢/ 1 ltJ"(u)-J‘cu)j(J' Y-~ (V))dV_(u,v)) 17 %2
OJ m (V-mV‘vnu,V))v)i'

Lemma A.S5. (Appendix), now gives



1.4. lim 1im Var(/E(Tn—un)-/rT(Tmn—umn)) = 0.

m—re n->o

Now to complete the proof of Theorem 1. For each fixed m we have by

Theorem 2 Stigler (1974),

/Echn-umn)ni N(O,07(3_,F)).

By the Dominated Convergence Theorem

02(Jm,F) > 02(J,F). Hence by Theorem 4.2, pége 25 Billingsley
m>oo ‘

(1968) and 1.4., we have 1.iii. [ |

2. Unbounded Scores.

Theorem 2.
Let J be continuous a.e. with respect to F_l. If there exist.

constants 0 < € €, <1, § > 0 and M, >0 such that

N>

-€ -€
2.1, [J(U)ll+& f-Mlu l(l-u) 2 for all u ¢ (0,1)
and
1 1/2- 1/2-¢
2,1i. f u El(l-u) . 2dF_1(u) <
0
then
s 2.
2.iii. g (J,F) < »
2.iv. Var(/a(T - )) -+ o2(J,F)
e
and
| d 2 |
2.v. /E(Tn'un) -> N(O:U (J’F))



Remark 2.1.
Compare Theorem 2 with Theorem 1 Shorack (1972) and Corollary 4.1
Stigler (1969). 1In each, a bounding function for,F ﬁ is réquired of the
_1/2+61 —1/2+62
form M2u (1-u) where 61 > g and 62 > €,- Whether 2.iv. holds
is not investigated in Shorack (1972). 1In Stigler (1969),F is also required
to have a density function which satisfies some smoothness conditions near

the tails. For other related smoothness conditions see Theorem 3 of

Chernoff, Gastwirth and Johns (1967).

Proof
U €1 €2 2 11
To prove 2.iii., set M(u) = M,u (1 u) “. Now ¢“(J,F) < [ / lJ(u)llJ(v)]
1 0 0
(uAv- uv)dF lwarlg< ( j M(w) w(l-ud’2dF ()2, Which by 2.ii. is finite.

To prove 2 iv. and 2.v, by Corollary'l we need only show that

1 .1
1+
f f lJ(u)J(v)] 6d‘J (u,v) is uniformly bounded for n > 1.

1 1+6
‘Note by 2.i. f f |J(u)J(v)] dv_(u,v) is <

.11
(2.1) f f M(u)M(v)dv (u,v). So it is sufficient to prove that (2.1) is
uniformly bounded for n’> 1.
It is easy to show that we can pick a K > 0 such that for all u e (o, 1/2]

(resp. u € (1/2, 1))iM(u)| <Ku “1 (resp. IMCu)| < K(1-u). 2); Let M_(u)
a
(resp. Mb(u)) = { M(u) u € (0,1/2] (resp. u € (1,2, 1)

“ 0 ~ elsewhere



Also set T* =
n

IllMﬂ

(i) rf
M(— DX/ T M (—~
= i=1

i=]

Note that (2.1) = Var(/E'T;) < ((Var(/ﬁ-Ti))l/2

+ (Var(V”'T N
So that we need only uniformly bound‘Var(/ﬁ-Ti), and Var(VE'Tn).
We will show that Var(Vﬁ_Ti) is uniformly bounded; that Var(/ﬁ_TE) is

uniformly bounded follows by an analogous argument.

. n n
Set M’ (x,y) = ) Z

M, G D ey - B or (™ )3/

a n+1

a
Note that Véll‘(‘/_-"I ) = f f Mn(X,y)dxdy. It is easy to show that Mz(x,y) <

-0

(Mﬁ(x,x))l/z(Ma(y,y)) / " So to verify that Var(/;'Ti) is uniformly bounded it

is sufficient to show that f (Mi(x,x))l/zdx is uniformly bounded for n > 1.

-0

Let A = {x: 0 < F(x) <1/2}. We will first show that

(2.2) f (Mi(x,x))l/zdx is uniformly bounded.
A

For x € A, let An(x) = {&: L f_E%El}. Now by Minkowski's inequality

n+l
™ x,0) 17
@3 1) oMol P eon - ™ aor™ o)y /m /2
1,j A (x) ’
@o (LD GG P o0 - M eor™ o)/m 2
i:jEAn X) J .
) n
Note that (2.3) is < (X)) § 7 (F(n)(x x) - 0 )(x)F§n)(x))/n)l/2
: i=1l j=1

€

which by definition ofM_is < 2 L) %ey (1-rx)) 172,

Now since

0< PP xx - anigx)p§“)(x) < Y00 -F 00N ™ 09 1k M ) V2,

@4 is < [ oG E™ oa-r™ )V -
ieAn(x) am



[(n+1%F(x)/2|

(2.5) ™ ) a-r™ N R

a n+1)(F

(If [(n+1)F(x)/2] = 0, (2.5)is set equal to 0)

Claim 2.1.

There exists a C > 0 independent of n and x ¢ A such that (2.5) <

1/2-¢

C(F(x)) 1(1-F(x)) /2,

Proof

n
Let §_(x) = 2 Itg ](x ) and S*(x) = ) (1-1[€3x](x2)).

2=1 g

Note that F(z)(x) = P(Sn(x) > 1) and 1 - an)(x) =

P(S (x) < 1) =P(S¥(x) > n-i) = P(Sy(x) - n(1-F(x)) > - i+n(F(x)),

. i .
which when =15 F(x)/2 is

< P(SX() - n(1-F(x)) > nF(x)/3) , (2.6) .
Applying Chebychev's inequality to (2.6), we have
(2.6) 5_9(F(xj)‘1(1-F(x))/n.
Hence for 511 i€ An(x),
(F§“’(x)(1-F§“)(x)))1/2 5_scF(x))‘1/2(1-F(xi)1’2//5¢

It is ea511y checked that there exists a constant K. > 0 independent of xg A

0

and n such that

- i -el -e 1-¢
X '(n+1)§(x)/2] " F(X) u tdu = k(e Ee)
=1 no T 05

-1
Now let C = SKO(l-el) e

Then (2.5) < C(F(x))/%%1 (1-r )y /2, []
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€1 ® 1/2-¢ 1/2
Hence (2.2) < (2 "K+C) [ (F(x)) (1-F(x)) "/ “dx, which by 2.ii. is
finite.

Now to show that (2.7) f (Mi(x,x))l/zdx is uniformly bounded.

AC

' g -1/8
Let B_(x) = {g: |F(x) - ETfl-i n }.

Now by Minkowski's inequality

M (x,x)) /2

(2.8) (L3 MG Ep P o0 - 5™ eoE™ )y/m /2
i,jeBy (x) )

(2.9) (LT EPM G 6 o0 - B eort™ oy
i,jeB, (x) !

We will assume without loss of generality that n is sufficiently large so

-1/8 1/4.

that n
C e . c c i
Hence if i ¢ Bn(x) and x ¢ A7, Y >1/4.

Therefore (2.8) < M(1/4) (F(0) (1-F(x))) 2. Now to bound (2.9).

Claim 2.2
If i or j¢ Bn(x), there exists a constant C > 0 independent of n and x

such that Fi§“)(x,x),- an)(x)F§n)(i) < CF(x) (1-F(x))/n’ 2,

Proof Assume i ¢ Bﬁ(xl

-1/8

Note that if i ¢ Bn(x), either i > (n+1)F(x) + n (n+l) or i <

(ntl)F(x)—n—1/8(n+l).

Case I. i 5_(n+l)F(x)+n-1/8(n+l)

Then M (x) = p(s_ () > 1) < P(S_(x) - nFG0)| > n"YBmeny).

Case II. i 5_(n+j)F(X)—n'1/8(n+1)

Then 1—F£n)(x) = P(SA(x) > n-1) < P(SX(x) > n-(n+1)F(x) +n /¥ me1))

-1/8

§;P(S;(x) > n-l-nF(X) +n (n+1)) =
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P(SE(x) 20 - o) + 0 B me1)) < P(IS*00 - n(1-FE) | > 078 nen))

Now by taking 4th moments and applying Chebychev's inequality in both cases,

. 2 .
we have Fin)(x) in Case I and 1 - Fin)(x) in Case II :_C(l—F(xﬁF(x)/ns/ . Where C
is a constant independent of n and x.

The fact that

i 00 - B @M 0 < mine ™ 0o -5 00y, 7 0 (1-E5™ ()

ij i J

completes the proof. [:]

SR
MS&T () a-F0)) Y2
n 1/4

which is < C*(F(x) (1-F(x))) /2
1 n '

Hence (2'9).i
i

I o~

for some constant C* > 0. We easily see now that there exists a constant C

independent of n and x such that
] 0P ax < ¢ f oo 1-F0) Y x < - .
c I Tw ,
A
a . . b, . .
Therefore Var(v/n Tn) is uniformly bounded. That the Var(/Han) is uniformly

bounded follows by an argument similar to the above with F(x) replaced by

1-F(x). [ |

3. An Examgle.

Proposition 3.14£A Variance Bound).

Let Uél) 1 < i< n be the ith order statistic from a sampie of n independent
uniform (0,1) random variables and -1/2 < o < 0.
Then there exists a CB > .0 independent of n > 1 and 1 < i < n such that

for all -1/2 < g 5_5.’
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. C A
(3.1.1) Var((l—uél))a) j._g_(l_ E%TJZa—l

Proof.
First a lemma.
Lemma 3.1

Let -1/2 < 8 < 0. There exists a K, > 0 independent of n > 1 and 1 <j <n

B —_— —
such that for all -1/2 < a <8
n 20, n-i+1, 2a
I 1/(1+ =) < KB(—:—I-—) .
j=n-i+l J &
Proof.
n .
. 20 20, .
Since Z (-3n(1+-30 + ~30 converges uniformly for a ¢ [-1/2,8], there

j=1

exists a y > 0 dependent. only on B such that

N :
Z (=gn(1+ 239 + 329 <y for alln>1, 1<4i<nand -1/2 < a < B,
jen-isl o - - =

Hence for all -1/2 <.a < B

n n

o 2a 2
- L VaeEN < L -,
j=n-i+l J j=n-i+l
L 20
But, Z - — < =2a(gp(n+1) - p(n-2+1)).
j=n-i+l J ’
- 3 2 41,2
Therefore I  1/(l+ 2 < eY(E:%T—O o
j=n-i+1 J n

Let K, = e Y]

(1) ,a (i), 20 (i).a.2
Now Var(1l-t = - - -
| (-4 %) E(1-U"7) (E(1-U-")7)
tt 2 1 2
D S Ve U R A Vs C
j=n-i+l 3 jen-i+l J
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n 20 x2
Set f(x) = il 1/(1 + — + =5 ).
j=n-i+l J j

We see that Var(l- U(l) %= £(0) - f(a).
2 2 2a x2
Now £1(x) = - )} /0 +%+ 5
O jen-isl T

Observe that for x € [w,0],

n
l£real < 2ja] ¥ 15207 ae20))£00).

j=n-i+1
~ which by Lemma 3.1 is

Ik .
s2el )15t/ e2e)k, @ 20

j=n-i+l’

which in turn is

2a

= 2lel /280K, (1/ (0-101)) 5D

Let C = (2/(1+23))K g The Mean Value Theorem completes the proof. [:]
We are now able to give an example of a dlstrlbutlon functlon F and

an unbounded fhnctlon J which satisfy the cond1t10ns of Corollary 1 to give

AT[TH un) a—N(O,o (J,F)), but for which Theorem 1, Shorack (1972) is

not -applicable.

ExamEIe

B -1
Fla - z 202" (1w VY2l o
e ,
-1

Let q(u)

and (J(u))h(S = () 2 " (u(l-u))2 )_1/2 for some § > 0. Observe that q'(w) =
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8

1
}J- It is easy to see that for all

-1 -
-3/2+4 . u—3/2 + 2

27 (1)
3

Il [~

2

Ml >0 and 0 <6< 1/2 there exists a u ¢ (0,1) such that

~1/2+8"

IF-l(u)l > Ml(u(l—u)) We also see that J is unbounded on (0,1), but for

all e > 0 there exists an N% > 0 such that Mt,‘:(u(l—u))—E > J(u) for all
ug (0,1). With these remarks it is a simple matter to check that F_1 and
J do not satisfy the boundedness conditions of Theorem 1, Shorack (1972),

which would require that J be a bounded function.

We will apply Corollary 1. First we must verify that the variance of F
1

is finite. It is sufficient to show that /| (F (u))2du < .
0
Claim 3.,1.
1
[ )i <«
0
Proof.
1 -1 2 : . :
f (F "(u))"du < by Schwarz's inequality and the qr-ineqUality
O N
© ' o 1 -1 1 -1
(I /el oy 278 i Ty, [oue gy
2=3 | k=3 0 0
N T oot
= K, } 227" < » for some Ky > 0. [:]

To verify 1.i of Corollary 1, we will get suitable bounds for the

(n)

covariances gij » 1 <i,j < n.

Claim 3,2,

There exists a € > 0 independent of n >1and 1 <i < n such that

Var(F_l(Uéi)))_i
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o] : _l
C((n+1)(ﬂii11 —2( Z 2-2((n+1)(nni11))22 )/n.
Proof.
(i).-1/2+871 (i),-1/2 + 21
Let B = E((1- U ). (U ) and
B = 1 (22/(2;2))2_28£= EF;I(Uéi)).

=3

Now by continuity of F_l, we can pick an o ¢ (0,1) such that F-l(a) =

Hence Var(F—l(Uii)))=-

o)
n . ~
B/ awaw® = s - p? -
a
R (i).-1/2+87 1 (i).-1/2 + ¢} 2
E(C L uve-227 [-u ) - (U - 8,1
=3 -
which by Schwarz's inequality is
o ’ o ® Xk . _ -1 . Ll
< Do@eay®t §ooeanu{Py AT L @)1/ 2
2=3 k=3
Note E((l-uﬁi)))‘l/z*k_ (u(l))‘l/z+k - 8% by definition of 8, and
Minkowski's inequality is
. -1 - -1
. ((var(l_uﬁl)_)—l/2+k )1/2 . (Varcué*))'1/2+k 122,

which by application of Proposition 3.1 is

. -1 -1
B _ 1 -1+k -1+k 7|2

< (- 5P (n+1 )

where B = -1/2 + I/3;

which in turn is

<— ((1- 5%30(n+1)) f+2k . for some CE > 0.
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-1
Hence Var (F~ (u(l))) <c Z 2 Y- l)(n+1) IR
=3
for some constant C > 0. [:]
Therefore gg?) <
ij —
o . . -1 w
-1 -0 i i.,,2% -k . j
HUEPQ - S dpa - Jo (Rgs (G A - ) kgsz (G-
|
1 - I 2

To verify 1.i', it is sufficient to show that there exists a nonnegative Riemann

integrable function H on (0,1) such that for all n>1,1<1i,j<n

H(-r

1

- > GEDICE e W,

-1

-%/2 i i L
(P - =7

o . -1 -
Note that ( § 2 (( 1)(1 - 5%70)22 12 oy

2=3 T =3

2

Hence by the above-prnd on gi?) and definition of J, there exists a C > 0 such ths:

(J(n+1)J(n+1))1*5g§??/n <

-1

cEpa - ! - Lo

-1 1 1/2, 2

dpa - Ik M

1l ~18

(7 ¥ (o BV I
2=3 170 el k=3

which is < HGIDH(ID) /%,

o . -1
Where H(u) = /C } 2-2/4(u(1-u))'1+(22)
. C =3

1 .
Now [ H(u)du = /C
0

1 -1
‘ ,-%/4 f (u(l-u)y 1+ (227
L 0

3

0 rg
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oo

1 -1 o
<o/ § M Y Tau =20 ) 22 <w
2=3 0 23

Hence by the above remarks 1.i' is satisfied, which by Corollary 1 implies

A ) 8 N(0,02(J,F)) -

) g Satd

4, AEEendix.

In Section 0, we defined F1 to be F_l(u) = sup{x: F(x) < u} for
ug¢ (0,1), Some easily verifiable properties of F_l are: For u ¢ (0;1),

4.i. - If F_l is continuous at u then F(x) < F(F_l(u)) < F(y) whenever

X < F_l(u) < Y.

4.1ii. JF_l(u+) = F—l(u) (right continuity on (0,1)})

4.iii. If F ! is constant on [0,u], then F(x) = O whenever x i_F_l(u).
4.1v. F_l(u) can aiso be written: F_l(u) = inf{x: F(x) > u}.

Proposition 4.1

V may be written V(u,v) = (sat - st)dF_l(s)dF_l(t).

[enhan Y =4
O <

~ Proof.

Let y be Lebesque measure on g (RxR), Tl(x) = F(x), and:TZ(x,y) =
(F(#),F(y)). Notg'thaf T2 is a measurable function from RgR to [0,1]x[0,1].
For B e»B({O,l]x[O,l]j. Set p*(B) = u(T51 (B)) = { dxdy. 1In particular,

- T, (B)
wé have for B = CxD, where C, D ¢ g ([0,1]), |
B = (TN = [ dxdy = [ dx [ gy

T, (CxD) TII(C) T13(D)



18

Observation 4.1

Let C = (Cl’c2]2 0 < c < ¢y < 1and D = (dl,dz], 0 < d1 < d2 < 1.

Then f dx

1 sup{x: F(x) < cz} - inf{x: F(x) > cl}
Tl(C) ’

Flee,) - Fle),

and similarly [i -1, dy - Fl(d,) - F‘l(dl).
1

Thus for C and D of the form in Observation 4.1,

f { dxdy = f f du*(s,t) =
T

; (C x D) CxD

(Fhey) - Flhe)) Fhay -l = [ [ artes)ar .
CxD :

Let g(s,t) = I[O’u](s)I[O,u](t)(sAt-st). By Lemma 2, page 38 Lehmann

(1959), we have:

V(u,v) = fHfg0s,t)dur(s,t) = [ f g(s,t)du*(s,t) +
00 {0} x [0,1]
g(s,t)du*(s,t) + - [ g(s,t)du*(s,t). The first two
[0,1] x {0} (0,1] x (0,1]

integrals are zero and the third equals

[ (sit-st)dp*(s,t).
(0,u] x (0,V]

Now, by using the continuity of sAt-st, taking partitions of (0Q,u] x
(0,v] of the form (cl,cz] X (dl’dZ]’ and applying Observafiqn 4.1.
standard arguments complete the proof. [:]

Proposition 4.2 |

v $v
n

Rroof

We need only show that

flfl f(u,v)dvn(u,v) == flfl £(u,v)dV(u,v) for all bounded continuous
00 ) 00 '

functions on [0,1} x [0,1].
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Let f be any'bbunded continuous function on [0,1] x [0,1]. It is

sufficient to show that

o .o oD i ( )(x y)-F, (n)(X)F (n )(y)

(4.2.1) T D D N d e n+1) ( = ydxdy -
—-00 =00 i:l j:l

(4.2.2) [ 7 £F(0),F()) (FGay) -F(X)F(y) ) dxdy

—00 =00

Let Hn(x,y) be the integrand in (4.2.1) and H(x,y) be the integrand in
(4.2.2).
Claim 4.2

For each (x,y), Hn(x,y) .+ H{x,y).

N>

proof

Let Bn(x) be as in Claim 2.2.
It can be shown that there exists a ny> 0 independent of 'n > 1 such that

if i¢ B (x) or j € B (y)
g M
ij

(modify proof of Claim 2.2).

oo = F M eor, ey < ¢ 2,

Now
| H (x,y) -.H(x,y)l < B »
n Fos ™ oon-r, M eor, Wy
(4.2.3) I L e n+1 , H%T ) - FFEE),FONI—E——o .
(i,3) € Bo(x) x BC(y) "
+ . |
(n) () oy p (1)
1 o (733 0o-F F™ ()
(4.2.4) : ) )é_c(z) ‘. Jf(ﬁ%iaﬁ%ia -£(F(), Fy)) |—2H n
‘ i,j)¢B (x)xB [67
Now n n
) '
(4.2.3) < 0" max R G ORI T TR
, max (4.2.5)
» ci,j)eB°(x)xB§(y) WD
(4.2.4) < 2MC )/nl/z (4.2.6),

where M = max]fl}'



20

By continuity of f,(4.2.5) + 0 and obviously (4.2.6) - 0. [:]

n->co n-o

Now by application of the Bounded Convergence Theorem

H (x,y)dxdy - H(x,y)dxdy
[oo {oo n(‘ y yn-—)co {co _o{ y D

This proof is merely a modification of a proof given by Stigler (1974) page 682,

In the following ¢, = {u: [£)] > m}.
Lemma A.1. »
Let £ be a ndnnegative function on (0,1), bounded on (éyl—iﬂ for all a > 2,

continuous a.e. with respect to F ' such that

f)f(v)dv(u,v) < o, then

1
/
0

O

1 1 11
Alcic lim [ f f)FE)AY (u,v) ={ [ ffmavi,v)
me 0 0 n 0 0 ‘
iff
- 1 1 ;
A.l.ii. lim f f 1C (u)f(u)lC WEW)dv_(u,v) =0 uniformly in n > 1.
W 0 0 m m n . N

Lemma A.2.
Let f and g be nonnegative functions on (0,1), bounded on (i,l—iﬂ for
all a > 2, continuous a.e. with respect to F—1 such that |

11
A.2.1, lim £V (u,v) = [ f@Ef)dv(u,v) <
oo n 0 0 '

Oy
Ot

and

1 1
A.2.1ii, 1im j f g(ﬁ)g(v)dv (q,v) =
0 0 n

N>

O =
O -

g(u) g(v)dv(u,v) < =

then
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11 1 1
A.2.iii. lim [ | £(u) gV)dV_(u,v) = [ [ f(u) g(v)dV(u,v) <
0 0 0 0

n-co

Lemma A.3.
Let £ be a real valued function on (0,1), bounded in absolute value on
(= 1——9 for all a > 2, continuous a.e. with respect to F -1 such that

1 1 e
[ £ | [£(v)]dV(u,v) < =, then
0 0

A.3.i.  1lim f flf(u)”f(v)ldv (u,v) = f [ [£(u) || £(v) [dV(u,v)

n+*>» 0

iff
I . 11, .

A3.ii. lim [ [ £ ) (v)dv (u,v) = [ [ v,y

e 0 0 n 0 0
and

1 1 1 1
A.3.iii. lim j f £ (u) £ (V)av_ (u,v) = [ [ £ ()£ (v)dv(u,v)
N 0 0 L

Lemma A.4.

Let f be as in Lemma A.1, if

1

BEOHG IR
0

=

S~

[
Ot

an(u,V) is uniformly bounded for‘some § > 0 and

I 1 1 ,
A.4.ii.  lim f j f(u)f(v)dv w,v) = [ [ ff)dv(u,v)
nre 0 0 0
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Lemma A.S5.
. | 1 1
Let £ and g be nonnegative functions on (0,1), bounded on (53 1-50 for

. -1
all a > 2, contiruous a.e. with respect to T such that

1 1 1 1
lim f f f(u)g(v)dv {u,v) = f f f(u) g(v)dv(u,v) < =
n*> 0 0 0 0

Let a and bm be‘sequences of constants in (0,1) such that for all m>1,

1>b >b >a >a __ >0, lima =0, 1im b =1 and F *({a_}) =
m+1 m m m+1 o m oo m m

1 -
({bm}) = 0.

f(u) (resp. g(u)) ifue¢ (a_,b )
Let fm(resp. gm) = 0

elsewhere,

then

A.5.1.  lim lim f f (f(w)-f (u))(g(v)-g (V))Av_(u, v) =0
m»>» qn> G 0

Proof of Lemma A.1l

That A.1.i. implies A.l.ii. is trivial.

1 1
Now assume A.2.ii.. Observe that [ [ f(u)f(v)dvn(u,v) =
0 0 '
, 1 1
(A.1.D) [ [ f@)l (@E) AV (u,v) +
0 0 C c.
: m m
1 1 :
(a.1.2) f f f(u)l, WEW1, (VIdV_(u,v) +
0 0 m m n
1 1 _
(A.1.3) 2f [ fm)1 cWEMILL (VAV_(u,v).
0 0 C m n

m
‘Since f is a.e. continuous with respect to F—l, for every m > 0 there

exists an m' > m suéh that 1 (u)f(u) is bounded and contlnuous a.e. with
C 1

respect to F—l.' Applying themHelly—Bray Theorem Loeve (1963) page 187, we get



23

1 o {u)f(u)l c (v)f(v)an(u,v) -

co, c, o
m m

Q=
O =

1 . (WEWL . (M EWAV(u,v).

le Cm|

O =
O =

Now by A.1.ii.,  1lim (A.1.2) = 0 uniformly in n > 1.

m->oe

By Schwarz's inequality (A.1.3) <

~

1 1 ‘ 1/2 1 1 1/2
20 JEW1 (WEWL AV @,v) 0] [EW1, @EM1 ()Y, (V)
0 0 0 0 m

C C m
m m

So that lim (A.1.2) = 0 implies that lim (A.1.3) = 0. . Now it is a simple
m>e m->oo '
matter to show

1 1 1 1
lim lim [ [ f@EfMav_(u,v)- [ [ £@EE)dV(u,v) = 0. D
Mm% Qb 0 0 n 0 0 '

Proof of Lemma A.5

1

/
0

O =

(EW £, (W) @(V)-g V))AV_(u,v) =

11
(A.5.1) £ ,é £ (VAV_(u,v) -

11
(A.5.2) é g £, (we (VIAV_(u,v) -
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1.1

(A.5.3) [ [ £(u)g, (VIAV_(u,v) +
0 0
1 1

(A.5.4) £ é £, (Wg (V)AV_(u,v).

So that we need only show that

Iim lim (A.5.1) = lim 1lim (A.5.2) = lim 1lim (A.5.3) =
Mo noo ' . Mo o mreo norw

1 1
lim 1lim (A.5.4) = [ [ f)g(v)dv(u,v).
nme o 0 0

Note that (A.5.1) > (A.5.2) V (A.5.3) > (A.5.2) A (A.5.3) > (A.5.4)

Thus it is sufficient to show:

fw)f(v)dv(u,v).

O =

o 1
A.5.ii. 1lim 1im (A.5.4) = f

ma>e nrow 0
Observe that for each fixed m > 2, fm(u)gm(v)' is bounded and continuous

a.e. with respect to V. Thus by the Helly-Bray Theorem lim (A.5.4) =

noo

11 - ,
g é fﬁ(u)gm(v)dY{g,v). Note f (wg_(v) * f(u)g(v) as m > = a.e., with

respect to V. ‘Hence by the Monotone Convergence Theorem, A.5.ii. holds.
This completes the proof. [:]
The proof of Lemma A.2 follows from steps analogous to Lemma A.l.

The proofs of Lemmas A.3 and A.4 are merely applications of Lemma A.1.
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