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Abstract

Multivariate estimation, in which the loss is a weighted sum of component
losses, is considered., A method is given, whereby if "improved" estimators can
be found in subproblems of the original problem, then an ''improved" estimator
can be found for the original problem. Several applications are given to
problems of estimating, under weighted sum of squares error loss, the meén
vectors of multivariate distributions from the exponential family. Of most
importance is an application to the multivariate normal distribution. An
estimator better than the vector of sample means (in 3 or more dimensions)
and able to take significant advantage of (possibly vague) prior information

is developed.



Section 1. Introduction

Let X denote an arbitrary random variable, with a distribution depending
on the vector &6 = (61,62,...,9p)t of interest and (possibly) upon a nuisance
vector of parameters n. The ei could themselves be vectors or matrices. The
loss in estimating O by an estimator §(x) = (61(x),62(x),...,6p(x))t is

assumed to be of the fomm
(1) L(G)e;n) = 1§l qlLl(Gl’el’n)’

where a3 >0, i=1l,...,p. The loss can thus be decomposed into the component
losses of estimating Gi by Gi. Many problems have loss functions of this
nature, or can be transformed so that they do.

As usual, an estimator will be evaluated in terms of its risk function

(expected loss), given by
X
R(S,0,m) = Eg . [L(5(X),0,m].

(E stands for expectation, with subscripts denoting parameter values at which
the expectation is to be taken, and superscripts denoting random variables over
which the expectation is to be taken.)

The goal is to find an estimator offering significant improvement (in
terms of risk) upon.a given estimator, S(X), of 8, & will usually be a
"standard" estimatof, such as the vector of sample means when estimating the
mean of a p-variate normal distribution. Such standard estimators are typically
inadmissible (estimators with smaller risk can be found) in high enough
dimensions (usually 3 or more).

Frequently it is relatively easy to find estimators significantly better

than 6§ for losses which are certain specific linear combinations of the Li'
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For example, when Li(dl,ei,n) = (6i - Gi) , losses of the form A (Gi - ei)

are often much easier to deal with than losses of the form .El qi(éi-ei)z.

Another problem which can frequently arise is that ceri;in Si may not
be suitable for inclusion in the combined estimation problem. If an
"extreme" ei (i.e. one likely to be considerably different from the ofhers
in some sense) is included in the combined estimation problem, great care
must be taken in ensuring that its influence does not destroy the good
effects of combined estimation. As an example, consider the situation in
which X = (Xl,...,Xp)t has a p-variate normal distribution with mean 6 and
covariance matrix Ip (the (p>p) identitylmatrix). Assume the loés is

L(s,8) = (6.-6.)°,
=

The ﬁsual estimator of 6 is, of coursé, S(x) = X. James and Stein (1960)

proposed the estimator

2) 500 = (1 - 222y
X

(]xlz is the Euclidean norm of x), showing it to have smaller risk than & for
P > 3. Assume now that p = 4, with 94 being an extreme coordinate in the sense

that (apriori) nothing is known about 94, while 6., 6, and 6, are (apriori)

1° 72 3

believed to be near zero. It is then quite '"likely'" that 64, and hence lxlz,
will be large. The estimate in (2) that would result would differ little from'
E(X) = X, and no significant improvement in risk would be obtained, In such

a situation the fourth coordinate should essentially be eliminated from the
estimation problem, 'The estimator (2), used only with (and on) the first three

coordinates, would perform quite well compared to S, provided the ei are near

zero as expected,



Similar problems are encountered with all "minimaﬁ” estimators of a multi-
variate normal mean so far discovered. The same type of difficulty also
arises when the covariance matrix of X has "extreme" variances, or the loss
is 'El qi(di—ei)2 with "extreme" q; - The need is for an eétimgtor which
auté&atically removes the influence of extreme coordinates.

In Section 2, a general method of dealing with the above difficulties is
developed. The basic idea is to decompose the original problem into manageable

subproblems. To save on notation when talking about subproblems, when z is a

vector and B is a matrix, let

i t
AN (21’22”"’Zj)

and Bj be the (jxj) upper left corner matrix of B. The subproblems which

can be considered are those of estimating the Bj. In these subproblems it is
possible to choose for loss functions linear combinations of the Li other
than that given by (1). Indeed it is usually possible to choose a desired
linear combination

. . i :
(3 LD 0T m = ] el 50050

(ti > 0), as the loss for the jth subproblem of estimating ej. This choice
can Be made in a manner which makes the subproblem easy to analyze. If,
for each subproblem, an estimator G(j) can be found which is better than 5j for
estimating ej under L(j), then it will be seen how to construct an estimator
better than § for the original problem. This idea of decbmposition into
subproblems was firgt'used in a special case of the following theory by
Bhattacharya (1966). See also Hudson (1974). |

Section 2 contains the basic theory and a number of applications. Several

of these applications deal with estimating the mean vector of an bbservation



from a distribution in the multivariate exponential family. Several papers
have appeared (Clevenson and Zidek (1975), Peng (1976), Hudson (1977)) in which
estimators better than the usual maximum liklihood estimator were found for

losses of the form

h(ei) (Gi—ei)z.

Il &1

i=1

Dealing with weighted losses ®

f q, h(6.)(8;-0.)°

j2p 1 7M1 i
by the methods used in those papers appears very difficult. Such a
generalization is easily obtained in Section 2, however.

The most important multivariate estimation problem is, of course, that
ofestimating @ multivariate normal mean. Wide classes of estimators better
than the usual estimator 3(X) = X have been found. Unfortunately, they do
not properly deal with the problem mentioned earlier of "extreme" coordinates.

The greatest difficulty is caused by the necessity to deal with prior

information. The reason prior information must be considered is that the
*

estimators better than § offer significant improvement in only a limited

region of the parameter space, with risks being nearly equal to the risk of 5 else-
where. For example, the estimator (2) has risk significantly smaller than

g only for le] near zero. An improved estimator should thus be chosen whose
region of significant improvement coincides with where 6 is thought "likely"

to be. If there is no such prior information about 8, little can be gained

by using estimators other than &o

The above idea was developed in Berger (1977), wherein for quadratic

loss a robust generalized Bayes estimator for 8 was found. The estimator easily



allowed the incorporation of prior information, performing considerably better
than 6 when the prior information was approximately correct, and yet was
seldom worse than 3, even when the prior information was drastically wrong.
Unfortunately, the egtimator was uniformly better than 5(in terms of R(§,0))
only for certain quadratic losses,

In Section 3 an estimator is developed which incorporates prior information,
is better than § for any given quadratic loss, and automatically handlés the
problem of extreme coordinates. The estimator is developed by the decomposition
technique mentioned earlier. Subproblems are considered in which the losses
(3) are chosen so that the appropriate generalized Bayes estimators of ej
uniformly dominate Sj. The theory then leads to the desired estimator in the

original problem.

Section 2. Decomposition to Subproblems

It is desired to find an estimator 6 (x) such that
A(e,n) = R(6,e,n) - R(G:e,n) i_os

- with strict inequality for some 6 and n. To :do this, consider the p sub-

problems of estimating o’ under loss

Digod o b o
(4) L (6,6 ,n) - izl ai qiLi(Gi,ei)n),

where the ag satisfy the following condition.

Condition 1, 0 i_ag <1, ai =0 for j <-i, and E ai = 1.
—_— . i=1

Assume that in the subproblems, estimators G(J) can be found which are as

good as or better than the estimators §7. Thus

(5) b (60 = R, 63,09 0y - R, 63,63 0y > 0,



where R(s,00,m =k . O s00,60,m7.
J . GJ,I’]

Two overall estimators of 6 will be considered. First, the randomized

estimator §*(x) defined componentwise by
" () i
* - —
(6) Pr(67(x) = ;77 (x)) = 55
and second the nonrandomized estimator §'(x) whose ith component is given by
() = ) ads()
(7) 6, = ) azd 7l (x).

j=1

The following theorem gives the basic result.

Theorem 1.,

(1) Ax*(8,n) =.R(S,e,n) - R(8*,6,n) > 0, with strict inequality for any
(9,n) for which Aj(Gj,n) > 0 for some j. Thus §* is as good as
or better than §.

(ii) 4*(®,n) = R(5,6,n) - R(6',0,n) >0 if L(-,6,n) is convex. The
inequality is strict
(a) fbr.any (8,n) for which Aj(Gj,n) >0 for some j; or
(b) if L(-,0,n) is strictly convex and §'(x) is not, with

probability one, equal to §*(x).

Proof. Clearly

X §* E
8 R(&* = L. (8%
( ) (6 »6,n) _Ee,T] E 21 qlLl(Gl(X),ei,n)
X E E j (J)
= E a olL. (6:77(X),0, ,n}.
0,1 jop 1 24 1it7i Ui

Since

I o~1g
[

ay = 1, it is also clear that



(9) R(8,8,n) = Eg q; ( g ai)Li(Gi(X),ei,n)-
S R |

Combining (8) and (9) and performing a summation by parts gives

we(em = ) (15 (8,0, 0,,m - L 697 (x),0,,m]

j =X
.ﬁ. q;e% Ee
i -

1 j=1i 1 >

- E I ol By o[L;(8500,0,m - 1,697 00,0,,m)]

1l
I ~~10

The conclusions in part (i) follow immediately from this and (5). Part (ii)

*
is a direct application of Jensen's <inequality, in that &'(x) = E<S [6*(x)].l]

Application 1. Without loss of generality assume that q; 2.9y --- z_qp,

and define

. 0 if j < i
(10) of = e
(qj'qj+1)/qi if J z_l
where qp+1 is defined to be zero. Clearly Condition 1 is satisfiedo The

interest in this choice of ag is that for L(J) as in (4),
(11) L9 5,07 ,m) = (q:-q. ) % L, (5, (x),0, ,n)
3 sN qj qj+1 = i'91 P i,n .

“As an example of application, assume X = (Xl,...,Xp)t, where the Xi
are independently distributed with distributions Fi from an exponential family.

It is desired to estimate © = E[X] under a loss



(12) L(s,0) = b q; h(0,)(6,-0.)°.
i=1

For q; = 1, the following improvements upon S(x) = x have been found:

1. James and Stein (1960):

§(x) = (1 - (JT—T%— )x,
X

when the Fi are normal with unit variances, h(Gi) =1, and p > 3,
2. Clevenson and Zidek (1975):
}x.,

£ 1

8(x) = (1 -

il

when the Fi are Poisson, h(ei) l/ei, and p > 2.

3. Peng (1976):

t
§(x) = x + (gl(X),---,gp(X))
. X,
L+ | 2

where g.(x) = - (p - N, - 2) 2(x.)/S, 2(x.) = z , S = 2(x.)°, N

i 0 i i £k . i 0

k=1 i=1

‘is the number of Xs equal to zero, and '"+'" stands for the positive part,

when the Fi are Poisson, h(Gi) =1, and p > 3,

4. Hudson (1977):

where B. = log x. and S = E B? , when the F, are Gamma (6.,1) and p > 3.
i i jo1 & i i —

To obtain impfovements upon § in these cases for a loss of the form (12)

with the a3 unequal, simply choose ai as in (10). The éubproblem~losses in



(11) are then constant multiples of the losses -i h(ei)(Si—ei)z. In these
subproblems, the estimators G(j) can be chosen t;—ée the estimators in #1
through #4 above (depending on the problem), with p replaced by j and x
replaced by xj. (For j = 1, 6(1)(x) = Xy must be chosen since Xy is admissible
for 91, meaning no better estimator exists. Likewise for j = 2, 6(2)(x) =
(xl,xz)t needs to be used, except for problem #2.,) Theorem 1 (ii) then

implies that the estimator &' 1is uniformly better than § in the original

problem, Bhattacharya (1966) proved this result for problem #1 and the

ag as in (10).

Application Z.

The choice of the a given in (10) is simple, but is not always
suitable. Often, one would like to work with subproblems where

L(j)(a,ej,n) = % t L; (8, 6.5n),

the tJ being convenlent nonidentical nonnegative numbers. Unfortunately,

it rarely works to identify the al with the tJ/q , because of Condition 1.
()

This difficulty can usually be resolved by noting that each L can be

multiplied by a nonnegative constant Bj, without affecting the subproblem.
(An estimator as good as 83 under L(J) is also as good as 87 under BjL(J).)

Hence it is only necessary to find nonnegative constants Bl”"’Bp such

that the a;, defined by

0 if§ o< i

(13) ui = ;
Bjti/qi if j > i
satisfy Condition 1. These ai are clearly nonnegative, so Condition 1 will

be satisfied if
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) . ) .
(14) | = &-aJ =L iﬂ.ti TS P

This is a simple set of linear equations in Bl""’Bp' The solution is most

easily found iteratively, starting with Bp. Indeed

g . = EB )/tp?.
p-i j=i+1 j p i -i

If these solutions do not exist or are negative, we are out of luck and the
ti must be altered. If they do exist, the a given in (13) satisfy Condition
1 and Theorem 1 can be used. The next section gives an important example

of this type of application of Theorem 1.

Section 3. Estimating a Multivariate Normal Mean.

Assume X = (Xl,...',xp)t has a p-variate normal distribution with mean
6 and known positive definite covariance matrix f. (The situation of
unknown § will be discussed at the end of the section.) The loss function

is assumed to be
L(5,8) = (5-8)%Q(s-90),

where Q is a positive definite (pxp) matrix. The standard estimator of
8 is, of course, 5(x) = X,

As mentioned in the introduction, it is necessary to make use of prior
1nformat10n in order to construct an estimator significantly better than 5.
A reasonable way of summarizing prior information is in terms of a prior

t . . . .
mean u = (ul,...,up) , and a prior covariance matrix A. The vector H can be

thought of as a best guess for 8, and A as a measure of the believed accuracy
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of this guess. Only rarely will additional prior information (such as

knowledge of the téil of the prior) be available. See Berger (1977) for

discussion of the development of u and A in various standard situations.
In Berger (1977) the following generalized Bayes estimator for 6 was

proposed when p > 3:
1

5 v lxnf 127008 (hen)”
(15) () = (L - P >
[Ix-ul]

where ||x-ul1% = (x-m)t(F+a) "t (x-m),

) (X-H) +u,

(v/2)P/?
(p-2)/2 3
Byt fexplv/2- ) (v/2)

if p is even

]

i=0 i
r (v} =
P (/2?2 £ p is odd
©-3)72 17y PO
.1"(1_5) [exp{v/Z}erf{'(V/Z)l/z}— %

i=0

min{1,max{2x,.6}}

where erf(z) = (2/w1/2) fé exp(—tz)dt, and p

where X = ch {$($+A)_l}, "ch__ " denoting maximum characteristic root.
max max ‘
This estimator was shown to have a number of very attractive properties.

Unfortunafely, R(éB,e)_i R(5,0) for all o if and only if

| -1
(16) (p+2) < 2LEIQECEA) j]
- ch [T

max
where "tr'' stands for trace. .(This was established by Corollafy 2.2.2 Of‘
Berger (1977).) The ideas discussed in Application 2 of Section 2 will be used:
to develop an estimator felated to GB and better than 3 for all o.
As a first step,'it is necessary to linearly transform the problem so

that the loss is of the form (1).' (Linearly transforming all elements of the
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problem (X, 8, u, Q, i,'and A) gives an equivalent decision problem.) Indeed,
it is convenient to consider the transformed problem of estimating & =

1/2 /2

® by an estimator based on the observation Y =(}Q1 X, where@ is an

oQ

orthogonal (pxXp) matrix chosen so that

D =ot(d+n) et

is diagonal, with diagonal elements

It is easy to check that Q*, i* and A* din the transformed problem (corresponding
. .. . -1

to Q, {, and A in the original problem) satisfy Q* = Ip and *(f*+A*) " f* = D.

Rather than using the more cumbersome notation of the transformed problem, it

will just be assumed that in the original problem

(17) Q = IP and D = i($+A)—l$ is diagonal with diagonal elements

d1 3_d2 oo z_dp > 0.

F‘The above transformation has imposed a particular ordering on tbe ei
(corresponding to the order of the di). It is essential to aéhieve a
proper ordering, in that the only subproblems which can be considered are those
of estimating the ordered sequence ej = (91,...,6j). Essentially 61 should
be the '"most important" coordinate, 62 the next most important, etc. The
meaning of "impdrtant coordinate'" is here somewhat vague. It can best be
interpreted as a reflection of the amount of improvement in risk that is likely
to be obtained by including that coordinate in the combined estimation problem.
If the estimator GB in (15) were used, it can be shown (see Berger (1977)) that

the improvement in risk AB(G) = R(@,e) - R(GB,G) is given (when Q = Ip) by
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2
Ilj(l [x-ull“/0)

(18)  8,00) = [ — {2 tr[f(hen) T )
[ x=ul| |
4+r () _
L e O e F e TR e T (e )
[ X-u{| P

where rﬁ(-) is the derivative of rp(-). The improvement in Béyes risk obtained
by using 6B is E[AB(B)], where the expectation is taken with respect to the
prior distribution of 8. This is the same as the expectation of the integrand
in (18) over both X and 8, or equivalently over the marginal (unconditicnal)
distribution of X. Marginally, X has mean ¥ and covariance matrix (I+A).

This makes plausible the rough approximations IIX-UIIZ gvp and

-1y erf(den) M.

ne

-0 den) A dea) T xem

Hence, roughly

r_(p/P) 4+r_(p/p) | _
B[y ()] = P {[2 - —E—— v a1 p/0)] exlbchen) ML
Since rp < (p-2) and ré > 0 (see Berger (1977)), the expected improvement
appears to be an increasing function of tr[i(i+A)—1t] = E di’ with the
- i=1. '

larger di giving rise to more improvement then the smaller di' This suggests
measuring the importance of ei by the corresponding di'
In the subproblems of estimating the 63, it is appealing to use the
. . S IS B 3
estimators (15) with p, §, A, x, and u replaced by j, $J, A%, x?, and u’.
For technical ease in the ensuing calculations, the following slightly
different estimator will be used:
o I sy
, G) rj(lli—qulj/pj)DJ(ij)
(19) 8 x) = (Ij - T332
]lx ~H llj

) oI-wdy

wherevllxj-ujlli = (xJ-UJ)($J)—IDJ($J)—l(x3—uj), T is given in (15) for j > 3
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and equals zero otherwise, pj = min{l,max{ZAj,.6}}, and Aj = chma*{Dj(ij)_l}.
This estimator is the subproblem version of (15) when and A are diagonal.
Note that rj = 0 when j = 1 or 2, so that d(j) = Sj for j = 1 or 2. This is
forced, since in one and two dimensions the usual estimatof is admissible for
any quadratic loss.

Having decided.on the estimators to use in the subproblems, it is

necessary to choose the losses,

136,60y = ) t)s.-8)7,
i=1

so that Rj(G(J),eJ)_i Rj(éJ,eJ) for all 67, (See Application 2 of Section 2.)

Using Berger (1976), it can be shown that this will be true (for j > 3) if and

only if
2 i tld, -
jop 11
(20) (G+2) < —= :
T max {tld.}
1<i<j *

In choosing the ti, it seems desirable to keep them as close as possible to
one, the coefficients for the original loss. (Recall Q =>Ip.) Noting that

t; = dl/di is always a solution to (20), a reasonable way of choosing the t;

is, therefore,
' J o
(21) te = Tj + (l-rj)dl/di,
where if j > 3,
(22) T = sup{r: 0 << < 1 and (20} is satisfied by (21)}.

In words, convex combinations of the "sure'" choice ti = dl/d' and the "wishful"
i

choice t; = 1 are considered, the final choice being that convex combination



15

which satisfies (20) and is closest to ti = 1. For ti as in (21), it is

clear that
ch  {tdd.} = tla =4
ax 11 171

m
1<i<]

1°

An easy calculation using (20), (21), and (22) then shows that (for j > 3)

(23) T, = min{ 0-2) 1 , 1},
. . - i
2(j - i T
i=1 "1
(Tj =1 if di = d1 for 1 <i <j.,) Forj =1 or 2, it is reasonable to set °
Tj = 1, since 6(1) and 6(2) are the same as Sl and 62, and it is hence

reasonable to use the original loss in these subproblems.

To apply Theorem 1, it remains only to find the a; corresponding to the
ti. (See Application 2 of Section 2.) It is first necessary to find the
solutions Bl,...,sp of the equations in (14), which here are simply
(24) § B.t] =1, 1<i<p,

PR I 1 -7 -
JJ=1
A tedious induction argument (starting with i = p and working backwards) shows

that for t% defined by (21) and (23), the solutions of (24) are

(p; - p;"’l) _E [1_Tk(l—p]t+1)]
(25) B = Z k=j+l ,
E_ [l—Tk(l_pi)]
k=j
where
. dk/dl if k <p
pk N

0 ifk>p
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Since 0 < p* < 1, pﬁ Z.pﬁ+1’ and 0 < Tk-i 1, it is clear from (25) that

k —

the B. are nonnegative, as was required of the solutions to (14).
]

Using (25), (23), and (13), the desired ai are

0

J

(p?-9§+1)[1—rj(1-p;)] E

if j < i

[1-7, (1-p* )]
k=3+1 k k+1

pr Y
i

k=j
where for 1 < j j:p,
1
T. =
J
min{ (J‘?)
~ 2(j - i p})
: i=1

ifj > i

[l"Tk(l—pf:)]

if j <2, or d = d for k <j

1} otherwise

As in Application 2 of Section 2, it can be concluded from Theorem 1 that

(27) R(5',8) < R(S,0)
where

YN B G
(28) IERHE jgi ;8.7 (),

for all 8,

ai defined bfh(26) and s(3) by (19). Indeed if P > 3, it can be shown that -

Ap(e) > 0 for all ®. 'Hence by Theorem 1 the inequality in (27) is strict.

of course;‘if the original problem had been transformed so that (17) was

satisfied, the‘estimator in (28) must be transformed back to the original

coordinate system.

Comments.

1. When Tp =1, it is easy to check, using (26), that ag =1 for 1 <1ic<p,
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and a; = 0 otherwise. Hence the estimator &' is simply the estimator GB
in (15). This is as would be desired, since by definition of Tp = 1 the

(p)

estimator § (which is the same as GB) is uniformly better than § for the

original loss,

2. The estimator is clearly somewhat messy. This poses no great calculational '
hardship, as most multivariate analyses are done on the cdmpUter,anyway. More
serious is the fact that the estimator, due to its complexity, is hard to
examine for good or bad features. The fact that it uniformly dominates g in
terms of risk helps greatly in eliminating fears that there might be some
serious hidden fault, The main‘concern, therefore, is whether or not it makes
good use of the prior information and eliminates the probleﬁs of "extreme"
coordinates. The following special case indicates that it does so.
Assume p = 5, Q = i =1, us= O,_énd A is diagonal with diagonal elements
i

A, =1 (i=1, 2, 3), and A, =c >3 (i=4,5). Calculation using (19), (26),

and (28) gives that
(e-1) (e=3)x5 (1% ser(|[x] 1P

1 .

SRR CTHICHE RIE + TIL Dxg if1<3

= rg(1xI[%) ” "
(1 - = )x. ifi=a4, s, '

x| [Zee) 1

xt(I+A)—1x. Note that the '"bad" coordinates'64 and 6,

estimated as in (15) which is fine. For large ¢ the "good" coordinates

I

wheré llxllz get

61, 62, and 93 get estimated essentially by
3,2
' r (|x7]%
51()() = (1 - ——f-zz—)xi.
- |x”]

In other words, when 64'and 65 get too extreme they essentiaily have no effect

upon the estimation of 63. This good behavior is in marked contrast to the be-

havior of the estimator (2), discussed in the introduction,
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3. Usually the covariance matrix i is not known. Frequently, however, it

is assumed to be of the form { = ozio, where $0 is known but 02 is unknown.

In such a situation, assume a random variable 82 can be obserVed, where

82/02 has a chi square distribution with m degrees of freedom (independent of
X). It is then quite reasonable to use the estimator §' for 6, with I replaced
by [Sz/(m+2)]$0 in the derivation. This estimator is probably still uniformly
better than 5, but a general proof becomes very hard. The difficulty lies in
the fact that the_di will, in general, be functions of 82, so the decomposition
to subproblems will vary as 82 varies.

A result can be obtained in the special case when A = cio for some con-
stant c¢. It can then be checked that the di are of the form di(SZ) = h(Sz)di,
the constants di not depending on Sz. Hence the decomposition to subproblems
will be the same for all SZ. Likewise, the ai given in‘(26) do not depend
on Sz, as they are functions only of.the p; = di(Sz)/dl(Sz)_= di/di. Theorem
1 can thus be used (02 is n) to show that §' is better than 5 (for all 6 and
02) provided the estimators G(j) are better than Ej in the subproblems.

2
S
m+2)$0’

This last fact can be established for 6(3) as in (19).with i‘replaced by (

using Theorem?5.1 of Berger (1977).

4. It bears repeating that if one hopes to significantly improve upoh §,it is
necessary to make use of prior information. One is then faéed with én option,
however. Either the uniformly better estimator §' could be used, or the more
truly Bayesian estimator GB in (15) could be used. When the two differ, GB
will naturaily perform better when the prior information is reasonably
accurate, while §' will be safer if the prior information is wrong. There is

no clear way of deciding between the two estimators. Someone with Bayesian
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inclinations will probably prefer GB, while a more classical statistician
might favor §',

To aid in understanding the difference between the two estimators, the
following special case is considered. Assume p = 3, § = Q=1I, u=0, and A
is diagonal with diagonal elements A1 = A2 =1, A, = ¢ > 3, ‘Calculation
using (19), (26), and (28) gives that

2r. (| Ix[ 1% o
- —————-—————_2~in ifi=1,2

(1+cy | [x]]
St (x) =
1 2

r ([1x]1% '
[1 - — 1x, if i =3,
(1+c) | [x] ] *

where 'fxl]z = xt(I+A)_1x. If ¢ is large, §'(x) ¥ x)(rs(l}x]lz)/,]xllz < 1),

so little improvement upon § is obtained. Indeed no estimator uniformly
better than 6 could offer much improvement in this rather nasty situation,

In contrast, the estimator

ro(xl 1% (e

B
§ (x) = (I -
[1x]]?

)x

will be significantly better than § if the prior information is reasonably
accurate. The penalty (compared to R(S,e) = 3) if the prior information
is inaccurate will never be more than 5% in this example. In higher dimensional
examples, however, R(aB?e) can be considerably mere than 5% worse than R(g,e)
if the prior information is quite wrong. See Berger (1977) for further discussion
of this. |

An interesting poésibility exists for compromising between GB and §'. The

idea is to choose the di as in (26), with the Tj replaced by
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™ = (1 - + YT.,
J(wr)wrJ

where y is a number between zero and one. y = 1 would give the estimators ',
while v = 0 would give the estimator GB (see comment 1). Ideally, one could
perhaps_dedide on the largest acceptable value of sup R(6,6) and theﬁ use the
smailest Yy for which the compromise estimator has r?sk within this bound.

. Unfortunately, the risks would have to be calculated numerically, making

the approach perhaps unfeasible.
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