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SUMMARY

UNIVERSAL BAYES ESTIMATORS

Let XpseeesXy be i.i.d. random variables with a distribution depending
on the real parameter 6. Under what conditions is a generalized Bayes
estimator of 6 independent of the choice of the even loss function? The
known answer to this question is that this independence holds if the pos-
terior density is symmetric and unimodal. This paper presents the descrip-
_tion of distributions and corresponding generalized prior densities on the
real line for which the posterior density is symmetric and unimodal. These
families form an important subclass of all exponential laws with two-dimen-

sional sufficient statistics.
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1. Introduction
Let PB,GER1 be a family of probability measures given on ‘an abstract

space X and such that each distribution P, is absolutely continuous with

9

respect to some o-finite measure p on X. We assume throughout the paper

that the coincidence of distributions P6 and Pe implies 6 Let A

1 2
be a generalized prior density on Rl. Suppose that the posterior density is

1=62.

defined almost everywhere (ux...xu) and is given by

n © 1
-1
I(8) = (W p(x;,0)A(0)[ [ plx;,0))2(8)de] ™,
1 - 1
dpe ' n 1
where p(u,d) = aﬁ—-(u), u € X, x=(xl,...,xn) € X7, 6€R",
Also, let W(6,6) = W(8-8) be the loss function depending only on the diff-
erence betweeen the estimator & and the true value of the parameter 6 .
This function is assumed to be nonincreasing on the negative half-line and
nondecreasing on the positive half-line. The gemeralized Bayes estimator

§(x) of 6 based on the random sample x satisfies the equation

(N [ W -8)m_(0)do=inf / W(t-6)m (6)de .
-00 1 -0

t€R

In general this estimator depends on the choice of the loss function W.
However, the exact form of this function is rarely known to the practical
statistician. Therefore, it seems rather natural to investigate the situation
where the estimator §(x) is the same for every loss from a certain set of loés

functions under consideration.
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The abéve problem was solved by the author (Rukhin (1974)) for the
case of a location parameter family and a constant density A. A descrip-
tion was obtained of the distributions for which the best equivariant
estimator of the location parameter is independent of the choice of the even
loss function, for which integrals in (1) converge (cf. also.Kagan; Linnigk,
Rao (1973) pp. 255-258).

The following result is well known and often discussed in the literature
" (Britney, Winkler (1974), Sakrigon (1970), Sherman (1958), Van Trees (1968)
and Viterbi (1966)). If the continuous (in 6) posterior density nx(e) is
unimodal and symmetrical with respect to the point §(x) then §(x) is optimal
relative to every even loss function W, for which integrals in (1) converge.
We call such estimators universal, |

If a generalized Bayes estimator is the same for every even loss func-
tion from a sufficiently large set # and, say, is the uniquely detérmined
generalized maximum likelihood estimator, then the posterior density
(assumed continous) is unimodal and symmetrical. More precisely let y 4
be some set of even differentiab1¢ loss functions W for which the integfals i
in (1) are finite and the differentiation in t on the right side of (1) is
allowed under the integral sign. Suppose also that the set SV possesses

the following property: if for some continuous function g

[ wi(t)g(t)dt = 0
0

for all W€¥ , then g(t) = 0,
Then (1) implies

[ wrn) T (8(x) - t)dt = 0

or

[ Wr(e) [r_ (8 (x)-t) C o (8(x) + t)]dt = 0.
0 X X
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Thus if the Bayes estimator §(x) does not depend on W from §

ﬂx(G(x)-t) = nx(d(x) + 1)

i.e. the posterior density is symmetric. The unimodality follows from the
uniqueness of the géneralized maximum likelihood estimator. This property
can be deduced also from the uniqueness of the Bayes estimator for some loss
functions, for examble, these corresponding to the problem of confidence
.estimation of 6,

In this paper we describe, under mild regularity restrictions, the
densities p(u,8) and generalized priors A(6) for which the posterior density
is symmetrical and unimodal. Hence in these and practically only in these

cases is the best estimator universal.

2, The Main Result. We prove the following

THEOREM. Let {p(u,6), 8 € R', u € X} be a family of probability den-
sities given on the pathwise connected topological space X. Assume that
p(u,8) is continuous in u for every fixed 6 and continuous in 6 for fixed u,
the function A(6) is continuous, and both-these functions are positive;
Suppose further that the posterior density nx(e) is defined for gll x € X"
for some n 2 3, except for x from some nowhere dense set N, and that nx(e) is
symmetrical with respect to the point §(x), x € Xn—N, and unimodal (i.e. incre-
asing for 8 < §(x))., If G(XH—N) = R1 then. either |

1% 1og p(u,8) + n7 1log A(6) = AL e+ A e s A W)
and

- n n
8(xseeasx) = (207" log ( % Ay(x)/ § ERY



<y,

or

0 -1 2

2" log p(u,6) + n = log A(D) = Bl(u)e - 2Bz(u)6 + Bs(u)
and

n n

8(XpseensX) = g By(x) / g By (x4).
Proof. I. The conditions of the theorem imply that for x € XQ—N, B € R1
ﬂx(ﬁ(x) - B) = ﬂx(6(x) + B).
Moreover,if for some real B and t ﬂx(t—B)=ﬂx(t+B), it follows from the
unimodality and symmetry assumption that t = §(x).

It is also clear that if the inequality ﬂx(t—B) < ﬂx(t + B) is valid
for some B > 0, then &(x) 2 t.
Let

@(u,B) = log p(u,B) + 0" log A(B)

so that
n © n
-1
T (t) = exp (L o(x,t))[ [ exp (] (x.,B))dB]
x 1 - 1
Define for a fixed t the function
R, (u,B) = ¢(u,t+B) - (u,t-B).

The relation §(x) = t signifies thatr
n
(2) % Ry (x;,B8) = 0

for all B, x ¢ N. The unimodality of nx(t) implies that if (2) holds for

some B # 0 then this relation is valid for all B.
n

Note that if x ¢ N then the sum z Rt(xj,B) is positive for some B > 0
1

if and only if §(x) > t. This remark shows that since G(Xn-N) = R1

’

'ut(B) = iﬁf Rt(u,B) <0,



and that
Bt(B) = sup Rt(u,B) > 0.
The connectednesz of X and continuity in u of the function Rt(u,B) for
every fixed B show that the image Rt(X,B) of X under the mapping Rt(-,B) forms
an interval (closed or not) with boundary points at(B) and Bth). |

2. If the inequality
(3) (-1 8, ) £ | o B < (18, (B)

holds for some B + 0, then for every u there exist Xgsenes X with the prop-
erty
n
R (u,B) + g Rt(xj,B) = 0,
Thus if (3) is valid for some B + 0, the set
Et = {u; 4 XpsenesX s 5(u,x2,...,xn) =t}
coincides with X and (3) holds for all B + 0.

We next show that the set:T, = {t: u € Et} contains an open interval
except for u from a nowhere dense set, ' This remains to be proven only if
(3) fails. Thus assume, for instance, that (n-l)lat(b)] < Bt(B) for some
B > 0 and o (B) EvRt(X,B). Then

E

{u: R, (u,B)

1A

(n-l)lat(B)I} and

(n-1) [o, (B) [ 3.

f

T
u

A

{t: Rt(u,B)
Suppose that there exists u, for which (u,xz,...,xn) € N for some XoseeasX
and_such that the set Tu does not contain a nonempty interval. Then because
of continuity of Rt(u,B) in t for fixed u one deduces that .
F = {t: R, (u,B) = (n—l)[at(B)]}, and for all t the inequality
R, (u,B) > (n-l)lat(B)I holds. This inequality implies that

Rt(u,B) + z Rt(xj,B) >0

for all t, i.e. G(u,xz,...,xn) >t for all t, which is impossible, However

the set u for which (u,xz,...,xn) ¢ N for some xz,..o,xn is dense in X,



Hence Tu contains an interval except for u from a nowhere dense set.
If (n-l)lat(B)] < Bt(B) for some B > 0 but o (B) ¢ R, (X,B), then
Tu = {t: Rt(u,B) < (nml)[at(Bj} and the nonempty set Tu is open and
contains interval. The cases (n—l)lat(B)] < Bt(B), B < 0 and
(n-l)Bt(B) < Iat(B)|, B + 0 are treated analogously. (Note that
Bt(nB) = —at(B));
Thus Tu always contains an interval except for u from a nowhere dense
set.
B, +0
3. For u € E, and fixed t,“BL the relation R, (u,B)) = R, (uy,B,)

implies Rt(u,B) = Rt(uO,B) for all B. 1In fact, since for some XopsevesX

n
R (u,B)) = - g R (x;,B) = R (u,B,),

one gets :
Wo

n
Re(uB) = - ReGxy,B) = R (§,B).

Thus for every B there exists a function g (dependent on t) defined on
Rt(X,Bl) and taking values in Rt(X,B) such that
If Rt(ul,Bl) + Réuz,Bl) for some Upsu, and S in the path connecting uy
and Uy, then the set Rt(S,B ) is a nondegenerate interval. The contin-
. uous function Rt(°,B) is bounded on the compact set S, and the function
g is bounded on the interval Rt(S,Bl).

ow
The function g satisfies the follweing functional equation

g(zy) + oou # g(z) =0,
Tlruls_ ej watoen ©s af’@wcoeem't fo  the Runowin ("cza(_c/yyfs
win et onal aqwa4¢mL/an&,sumce LS Qowndzd,OT;gg/q
”wl—e/r’\/a,@ @\ tlere excsts « Feal. wicedber »ﬁc‘-r whoek
3(2.):-m2 (4 Clgj«,a (4966) P};BY—ES). [ hws we

-
ﬁ;wz/ o@{vou‘,o\gol | .

Ro(w B)=m (&,8) Ry («,8,)



In other words, for all t,B € R! and u € E, the following equation holds
P(u,t+B) - ¢(u,t-B) = m(B,t) [@(u,t+B;) - ¢(u,t-B;)] = m(B,t)k(u,t).
Here the set Tu = {t: u€ Et} contains a nonempty interval except for u

from a nowhere dense set, and the functions ¢ and k are continuous., It

n _ n
is clear that z k(xj,ﬁ(x)) = 0 and that the relation Z k(xj,t) = 0 implies

1 » 1
t = §(X). '

4, For any fixed to there exists u* € E@@{FUCh that the set
.{t: k(u*,t) ¥ 0} is dense in Tu*' (If this wer; not true, then for all
u € E&@{fhe set {t: k(u,t) = 0} would contain a nonempty interval; contra-
dicting §$e property of the function k established in 3). Therefore, for
all u € E, one obtains with some u* |
(4)  @(u,t+B) - ¢(u,t-B) = L(u,t) [e(u*,t+B) - ¢(u*,t-B)],
where 2(u,t) = k(u,t)[k(u*,t)]-l.
Let We(B) be an infinitely differentiable function such that
/ W_(B)dB = 1 and wecé) = 0 for |B| > e, multiplying both sides of (4)
—by WE(Bés) and integrating out B gives
(5) 9 (u,trs) = ¢_(u,t=5) = 2(u,t) [p_(u*,t+s) - ¢_(u*,t-5)]
with
¢, (u,s) = i ©(u,B+s)W (B)dB.

Note that me(u,s) is an infinitely differentiable function of 5.
Therefore 2(u,t) is infinitely differentiable in t within the interval
where @e(u*,t+s) + me(u*,t—s), e arbitrary positive, i.e. is infinitely
differentiable in t outside some nowhere dense set,

Differentiating twice by s on both sides of (5) we obtain

CPg"(u,t’i‘S) - (‘PE"(u’t"s) = ,Q,(U.,t) [CPE"(U*,'C"'S) - (PE"(U*,t_S)]"



Differentiating (5) twice by t gives
¢ (u,t+s) = @ "(u,t-s) = 2"(u,t) [ "(u*,t+s) - ¢ (u*,t-s)]
* 280 (u,t) [p ' (u*,tes) - @ '(u*,t-s)] + 2(u,t) [p (u*,t+s) - @ (u*,t-s)].
Here ¢, (u,t) = g @, (u,8), 2'(u,0) = 3= 2(u,1)
and the same notation holds for second derivatives.
The last two-relations imply that
2,6 [0, (0%, 145) - @_(u%,-5)] = <207 (u,8) [9_ (%, £45) - ' (u¥,t-5)].
‘We can assume that 2'(u,t) does not vanish within some interval,
If it did, then 2(u,t) = 2(u) for t taking values in some interval, and
- u € Et‘ It would follow that k(u,t) = 2£(u)k(u*,t) what contadicts the

properties of the function k established in 3.

Thus the equation

_]__ L(u,t) CPS'(u*,t+s) = (PE'(U*;t"S)
2 27(u,t) @e(u*,t+s) - me(u*,t—s)

is established. It implies, for some t that
_'% [10g 2‘(u,t) = log 2'(U,to)] =
log [ (u*,t+s) - @ (u*,t-5)] - logle (u*,t +3) - g_(u*,t _-s)].
Hence the following equation holds:

(6) @E(U*’t+s) - @e(U*:t"s) = h(u,t)[@e(u*,to+s) - QECU*:tO—S)]

’ 1
with h(u,t) = [2'(u,to)/2(u,t)]2. From (6) it is clear that h(u,t) does
not depend on u.

The equation of type (6) is treated in the book of Aczel (1966) p. 176,

Its solutions having probabilistic sense are of the form

jf‘ D cosh(os + F ) + C
€ e €

D 52 + F s + C
€ € €

* g} =
<P€(U »S)

where o, as seen from (6), is independent of ¢, From (5) it follows that



D (u) cosh(as + Fe(u)) + Ce(u)
¢ (u,s) =
2
\\ De(u)s + Fe(u)s + Ce(u)
Letting € go to zero shows that
as -0
Al(u)e + Az(u)e + As(u)
P(u,s) =
2 .
Bl(u)s - ZBz(u)s + BS(L)
" The form of the corresponding estimators follows easily and this completes
the proof.
th

Remark, The same mé{gglcan be used in the case when the parameter space
is an open interval,

3. DISCUSSION. It is worthwhile noting that the function @(u,6) in
2° of the theorem can be considered as a limiting case of the solution 1°
as o tends to zero. Therefore, we will speak here mostly about distributions
corresponding to 1°. The density in this case can be represented in the
form

- ad ~-ab
p(u,6) = C(G)B(u)exp{Al(u)e * A, (u)e T}
where C(0) = [A(e)]l/n, B(u) ={exp As(u)}; Distributions of this form are
of exponential type and they have a two dimensional sufficient statistic
n n
for the parameter 6 (namely z Al(xj) and z Az(xj))
1 , 1
With the prior density

-ue}

€ >

A(e) = [C(e)1 ™ exp{aleOLe +a,
the Bayes estimator based on the sample of size n is a universal one. This
density belongs to the class of conjugate prior distributions,

If 6 is a location parameter, then the distributions in 1° have the form

(7) p(u,8) = p(u-0) = C exp{-Bcosh a(u-0)} .
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In this case the prior density

A(8) = exp {-ycosh a(6-6_)}
can be chosen in such a way that the universal estimator exists for all
sample sizes, Statistical properties of the distribution in (7) were in-
vestigated by the author (Rukhin (1974)).

The author is not aware of nonlocation parameter distributions for which
the universal estimator exists for all sample sizes, However, it seems that
the estimators given in the theorem may be of use in other estimation prob-
lems. Because of the relatively simple form of these estimators their
distribufion can be calcﬁlated but resulting formulas can be very messy.

The asymptotical distribution can be derived from Rao (1965), p. 321.

Note that fhe equation (6) has a solution of the form Dscos(as + Fg) + CEo
This solution corresponds to the case of-estimating the parameter 6 with
values in the circle. The analogue of the distributions (7) is the known von

'

Mises distribution with the density proportional to exp {D cos a(u-0)1},
0 gu, 6 < 2wa-l. With the conjugate prior demsity XA also corresponding to
the von Mises distribution, the universal estimator exists for all sample

sizes,

&

=y
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