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Summary
Estimation of ‘location with unknown scale

The problem of est1mat1ng the location parameter & with unknown scale ¢

in the family {0~ p@ -E)p), £ €R?, o > 0} is considered, It is shown that

if pu) = (2#)-2 exp{ - (u-b) /2} then the best equivariant estlmator of £

for quadratlc loss is admissible if and only if b = 0,
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I. INTRODUCTION. Suppose that the statistician wishesvto measure an
unknown quantity g with measuréments subject to additive random érrors, the
variance of which is unknown, In other words the observations Xj havelthe
following form

1.1 | X. = £ + ge. i =1,...,n,
()v JE 3 j K

where £ and ¢ are unknown and 81""’€n are i.i.d. random variables. The
Classical theory of measurement assumes that the distribution of these
variables is‘normal with zero mean and variancé Qné. The present paper deals
with the more general case where ej is normél with known mean b and known
variance 1, j=1,,..n. If b > 0 this is an attempt to model a commonly observed
situation where‘inability to measure preciSely (without bias) is related to
inability to measure reliably (with small error variation).

In the above situation, Xl,...,Xn, n > 2, are i.i.d. random variébles
each with the density 0-1 p((--g)/b); where ¢ and ¢ are unknown location and

scale parameters and p is the normal density

(1.2) pw) = 21)7F +! exp(-(u-b)Y2e?.
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The problem of estimating £ is invariant under the aff1ne group, and when
b = 0, the best equivariant estimator (c01nc1d1ng, of course, with the sample
mean) is known to be admissible if the loss is quadratic. Moreover
admissibility of the sample mean in this situation is a characteristical
property of the normal law (cf. Kagan and Zinger (1973)). The situation is
~quite different if b $ 0. We will give in this paper for each b$+0a class
of ‘minimax estimators of £ for quadratic loss which improve upon the best
equivariant estimator.

The problem of admissibility of the best equivariant estimator nf the
scale paramefer o with unknown £ and b = 0 has been studied by several authors.
Stein (1964) showed that the best equivariant estinator for 02 is inadmissible.
Brown (1968) proved in a more general setting that the best équivariant
estimator of the ath power of ¢ in the presence of an unknown location parameter
is ‘inadmissible for a large class of loss functions. . Similar results were
obtained by Brewster and Zidek (1974) and Strawderman (1974).. . We will indicate
the connection of the problem of estimating o with 3 unknown to that of

est1mat1ng € with unknown o and b { 0.

2. A CLASS OF MINIMAX ESTIMATORS OF £. In this section we produce a
class of minimax est1mators of £ when ¢ is unknown and b $ 0. Let

n
X =n! ) Xj and Y? = Z (X X) be sufficient statistics for £ and o.
1

1
If 6(X,Y) is an equivariant estimator of € under the afflne group based. on
X and Y, then §(cX + d, cY) = c8(X,Y) + d for all d-and c > 0. This implies
that & has the form S(X,Y) = X-2 Y for some constant A. If the loss is
measured by (6-5)2/02, an eXamination of the risk of & reveals that the best

choice for ) is



1_.(171+1

L
In®
= *--*-fr- b = ab.
0 P(n+2)22 i

This estimator & (X Y) = X - AOY has a ‘constant risk and is known to be minimax.

We consider estimators of the form

(2.1) §(X,Y) = X-by ¢ (X/Y)

for some measurable function $.

THEOREM. Assume that b $ 0 and that it is desired to estimate

€ using
the loss (§- -£) /c .

If ¢(z) satisfies the inequality

> (ubz) —2(n+1)a]bz] + 4(n+1)
22 ¢(2) 2(n* 1) bz

(v = nz/r), when |bz + 2a(n+1)u”

N{l—l

2] < 2(m+)w” 212y 2(n+1)" Lz,

and ¢(z) = a otherwise, then the estimator (2 1) is minimax.

PROOF. The risk of the estimator (2. 1) clearly depends only on the

parameter n = g/g + b, so that without loss of generality we can take o=1.

Note that

(2:2) R(,8) = E X-bys (/1)-n + 1)? =

B, 0-m? + b7 (vo0u/n)-n2
-ZbEn(X4n)(Y¢(X/Y)-1)-

Since E X n and X and Y are independent we see that the minimaxity of the

‘estimator (2. 1) is equivalent to the follow1ng inequality
(2 3) A "R(U,GO)‘R(W,G) =

2 2 2
= b7[E_(ay-1) -E (Yo (X/Y)-1)7] +

+ 2b E (Xx-n)Y¢(x/Y) > o.



From (2.3) it follows that

(2.4) 5= E Ta-s (VD167 (a + ¢(x/1))-2b%y-2bY (x-n)] =
22/,,,n41 o k 2k w :
- exp{-u™m™ 2} ML f Ta-¢(z)]zKdzx

k!

oo -

n,. -1
(2n)%r("/2)2 /2 " k=0

[ b2 + ¢(z))-2b2y-2by(zy-n)]yn+kexp{-u2(1 + 28)y?/2}dy =
0 : o
2.2 o kk o _
_ expl-u“n“/2} nkv f [a-¢(z)]zk(1 R Zz)_(n+k+3)/2dzx

n,, -1
(@mEr(Y2)2 /2,2 k0

1
2

© 2,
f [bzyz(a + ¢(z)—22b_1)—2b2uy(1+22) + 2bk(z + z—l)]ym'ke-y /zdy.

Since for all integer k

o 2 w 2 © 2

+k . - 2 +k+2 - 2 +k - 2

k f yn eV / dy = f yn e / dy—(n+1)f yn eV / dy,
0 0o 0 ‘

the relation (2.4) can be rewritten in the following way

o k k «

] = [ [a-e(2)]12%

= -~ 0O

exp{-u®n?/21b2

(2.5) A = 7 -
()7 (/22 12 2

Yy D20, 1 L) 2/b2)y%-21 (1422 By-2 (me1) (227 L) o]
0 ' ‘

. 2
Yn+ke—y /Zdy =

22,..2 © | N-N
_ ggp{;u n /2}2 ~ [ [a-¢(z)]exp{zynu/(1+22)2}x
(2m)r("/2y2 /2 72 = 0

(1+225(n+3)/2yn[(a+¢(Z)+2/b2)y2—2u(1+22)%Y-

‘ 2
2(n+1)(z+z_l)/b]e-y /zdy dz.



From (2.5) it is evident that A is nonnegatlve if.

[a- ¢(2)][(a+¢(2) + 2/bZJy 2u(1+z )= y-2(n+l)(z+z )/b]
= [2-0(2)1[(a+4(2)+2/b2) (y-u(1+22) 2 (avg (2) +2/b2) "1y 2.

- w2 (142%) (avo(2)+2/b2) o2 (me1) (1+22) Jba] > 0.

| A

Now it is clear that if ¢ is chosen in such a way that $(z) a, and on the

set where ¢(z) < a
(2.6) -2+ 1) d2) ™" > wP(a + $(2) 42062y )] >0,
then the estimator (2.1) is minimax. |

The inequalitieé (2.5) can be échieved 6n the set {z: ,bz + Za(n+1)uf2,
< 2(n+1)u_2(a2— 2(n+1)-1)%} with any function ¢ such that
2.7) a2 ¢(2) > u’|bz|/20041) + 2/[bz] -a.
Note that all ménipulations in (2.4) and (2.5) are legitimate for such
functions ¢. The theorem is proven.ll

Remark: 1If the inequalities in (2.6) are strict, then the corresponding
minimax estimators do not have constant risk, and are hence better than the
best equivariant estimator 60.
The estimator belonging to the class described in the theorem and max1m1z1ng

the quantity A in (2.5) for n = Ny has the form

. L
yn+1exp{n0uzy(l+22) 2-y2/2}dy

. s ]
0o(2) = £+ - u(1+z2).2(1-n0b 1
yn+2e><p{nouzy(1+zz)E |

O 8|O~ 38

-y2/2}dy

if the inequality (2.7) holds. (¢ (z) must of course be truncated at a or

[u lbz]/2(n+1) + 2/|bz| -a] if (2.7) is violated.)



3.  HEURISTIC RATIONALE. The formula (2.3) explains why thé best
equivariant estimator GO(X,Y) = X - abY is inadmissiblé; at least for large b.
To see this, note thaf aY is the best scale equivariant estimator of ¢
for the loss function (§/0 - 1)2. This estimator is known to be
inadmissible if & is unknown and theré exist functions ¢ such that

2 2
E (@Y - D° > B GoKA) - 1)

for all n. Thus the first term in (2.3) is positive if ¢ corresponds to the
estimator improving upon aY. The second term cannot be large if ¢ varies
slowly enough, and for sufficiently large b is neéligible comparea to the first
term. It can indéed be. proven that for sufficiently large b estimators of the
form X - aby ¢(X/Y) improve upon GO(X,Y)‘when ¢ corresponds to the Stein |
estimator [3] or some of Strawderman's estimators [4].' The fact that all known
scale estimatorsvimproving upon aY have the form Y. ¢(X/Y) motivates the
considerétion of the estimators (2.1). Moreover for large b the relative
improvement of the estimator X-abY ¢ (X/Y) upon G(X Y) is approximately equal
to the relative 1mprovement of y ¢(X/Y) upon aYy:

R(n,8,) i E(ar-1)2 ,+ °Top-
| 1

The formula (2.2) can be used to prove admissibility of GO(X,Y) in the

class of all location equivariant estimators of the form X - y(Y). Indeed
2
s X-Y(0)-8) 7 =
B, (Xey(Y)-E-0b + ob)? =
£,0
(X-£-0b)% + E, _(y(y)-ob)? -
g ? ,E,G v

-2 EE,G(X-E-Gb) (Y(Y)-Ub)‘ .



7
The lastvterm in this relation is equal fo zero because of the independence of
X and Y. Thus inadmissibility of the estimator X.- abY among estimators of the
form X - y(Y) would imply inadmissibility of the estimator aY for the scale
parameter o of the normal law with zero mean within the class of aii estimators
depending only en Y. But thié is not the case, so that 60>is adhissible in the

class of location equivariant estimators.
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