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1. INTRODUCTION

1.1. Purpose. It is the purpose of this report to detail the methods used to

produce the parameter estimates reported in "Complexity of Branching in

- Dendritic Trees: Dependence on Number of Trees per Cell and Effects of
Branch Loss During Sedtioning” [2]. This report is intended for biolo-
gically oriented readevs of [2]. A briefer description of the statistical
methods is currentiy in preparation for submission to Biometrics.

1.2. The Problem. The problem addressed is the estimation of the topological

properties (branching structure) of a population of trees, some of whose
branches are cut. The model is designed to fit the problem of the cutting of
dendritic branches of neurons by the microtome in the process of preparing
the histological secticn from which the data is obtained.

The following data structure is assumed: There is a population of trees,
homogeneous in the sense that the probabilistic rules governing tree branching
Structure are the same for each tree in the population.l From this population
a random sample of T trees is drawn. Some of the branches of thesé trees are
cut, so that the part of the tree structure lying beyond each cut is missing.

The data consists of T drawings, each showing the branching structure of
the uncut part of a tree, and also showing which branches are cut. Here is a

typical (schematic) drawing:

The slashes indicate cut branches.

lIn the application to dendrites, each '"tree'" is the dendritic arborization

of a single primary dendrite. It is shown in [2] that the dendritic branching
probabilities depend considerably upon the number of trees per neuron. (onse-
quently, in order to satisfy the requirement of homogeneity of probabilistic
rules, it is necessary to group the data according to the number of trees per
neuron, and analyze each group separately. In the data used in [2], the groups
"<4 trees/cell", "5 trees/cell", and ">6 trees/cell” were used. This grouping
reduces, but does not eliminate, heterogeneity; further breakdown of the first
and third categories was not feasible because of the small sample sizes involved.




In this report, each branch-segment between bifurcation nodes will be
termed a "branch". The branches of a tree are ordered as follows: the
primary dendrite (the "trunk" of the tree) is the first-order branch; the
two (if any) arising from it are second-order branches, and so forth.
Branching and cutting probabilities are assumed to be dependent on the

order of the branch.

1.5. OQutline of the Report. In [2], populations of trees are described in

terms of parameters Nk’ defined as:

Nk = expected (population mean) number of
kth—order branches per tree.

Of course, N1 = 1. The primary goal of tﬁe methods of the present report is

the estimation, from cut tree data, of NZ’NS""’ under a reasonable model.

The problem of statistical inference from cut tree datq is discussed
separately for the various orders of branching. In Section 2 estimation of
firsﬁ—order branching and cutting parameters (including N2) is discussed. It
is found that this estimation requires an arbitrary parameter, Al, which
cannot be estimated from the data.

Section 3 is devoted to several models for estimation of second-order
branching and cutting perameters, including NS- These models involve a
parameter A2’ which has a paradoxical property: under a certain submodel,
the BB & BC model, the parameter AZ is non-identifiable, i.e., it cannot be
estimated from topological data; under a largcr model, the MBCXA model, Az can
be estimated (but only very poorly if the data fits the BB § BC submodel at
all well). 1In Section 3.1 the MBC)A model is formulated. In Section 3.2 the
paradoxical "partial non-identifiability" of X, is discussed. Section 3.3

2

deals with the estimation of all second-order branching and cutting parameters,



including A Section 3.4 details procedures for estimating second-order

oL
branching and cutting parameters when Ay is arbitrarily fixed, rather than

estimated from data. The N3 estimates reported in [2] were calculated by the

methods of Section 3.4, since the data available to us allowed only very poor
estimation of AZ' Also in Section 3.4, procedures are described for testing

the goodness of fit of data to the BB & BC model, the MBCX model, and to two

intermediate models.

In Section 4 one of these intermediate models, the BB model, is extended
to cover all orders of branching. Section 4 culminates in equations for
calculating estimates of Nk’ for any k, under the extended BB model. Such
estimates depend upon arbitrarily prespecified parameters Ak.

In Section 5.1, the data collected by Professor P. D. Coleman and used
in [2] is summarized, and some of the results of the analysis of this data
are presented. These results include: goodness-of-fit statistics showing
that Az cannot be well estimated from the data (Table IV); goodness-of-fit
statistics showing that the second-order branching data fits the BB model
fairly well (Table V) and a comparison table showing that the estimates of
N3 under the BB model arc quitce close to those under the full MBCA model
(Table VI); goodness-of-fit statistics showing that (as would be expected)
the other intermediate model, the BC'model, is not well-fit by the second-
order data (Table VII); values of the estimates of N. for selected values of

3

Al and A, (Table VIII}; values of the estimates of Nz’Ng’N4’ and NS’ and also

of WZ’WS’W4’ and W5 (where Wk = mean number of kth—order branches per neuron)
for A, = X, = A, =X, =0,.51,2,4 and . (Tables IX - XIV). In Section 5.2

1 2 3 4

the main results of the cdata analysis are briefly summarized.



2.  FIRST-ORDER BRANCHING

Let B1 be the bifurcation probability for a first-order branch. Also, let

t P{a first-order terminal branch is cut }

1

by

f

P{a first-order bifurcating branch is cut}.
The probability of cutting of a branch is allowed to depend upon the bifurcation
or non-bifurcation of the branch because of the evidence in the literature
(discussed in [2]) that terminal branches tend to be longer than bifurcating
branches. Longer brunches presumably have a greater chance of being cut.

The three distinguishable configurations of the first two orders of
branches (after cutting) are shown in Figure 1,2 togethef with a notation for

the probabilities of occurrence and the observed frequencies of occurrence.

Note that Xp vy 4 z, = T = the total number of trees in the sample.
Configuration ﬁ// / ]
Probabilit ' ¢, -

Tt *1 Y] 164
Observed Frequency X Yy z,
Figure 1

It is easy to see that

1]

and v, (1—81)(1—t1). (2.1)

The probabilities ¢1 and wl can be estimated from Xl’ yl, and z however,

1;
the parameters Bl, bl’ and t, cannot all be estimated because the values of

¢1 and wl do not uniquely determine 81, b1 and t;. In fact, it can be seen
from Equation (2.1) that any given pair (¢1,w1) is equally compatible with

the hypothesis tl = 0 (no terminal branches are cut) and the hypothesis bl =0

(no bifurcating branches are cut). Of course, these two hypotheses imply very

different values of Bl'

2 . . . . . .

In Figure 1, and in subsequent figures in this report, a slash indicates a cut
branch; a dot at the end of a branch indicates that the branch may be cut or
uncut, and may or may not bifurcate. Unmarked branches are terminal.
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In order to estimate Bl’ therefore, it is necessary to make some

assumption about t, and bl’ Let

1

A o= tyb (2.2)

1 1/
Then, as we have seen, any value of Al’ 0 f_kl < », is equally compatible
with a given set of data. If, however, a value of Xl is specified arbitrarily,

then Bl, b1 and t1 can be estimated from the data. If we estimate ¢1 and wl by

~

by = /T
- (2.3)
wl = YI/T:
(which are the maximum likelihood estimates), then the estimates Bl, bl’ and t1
of 81, b1 and t1 are determined from the equations
~n -
- - - - = 2.4
81(1 AI)T Bl[xl * 2 Al(x1+T)] AIXI 0 ( )
t; = 1 - x ,/é T
Al ) 1771 (2.5)
tl = Albl.

Equations (2.4) and (2.5) are easily obtained from Equations (2.1), (2.2) and
(2.3). It is easy to show that, if X4 and y; are both nonzero, then for each

value of Al, 0 5'A1 < o, (2.4) has a unique solution 81 between 0 and 1. In

the ‘extreme case Al = o (i,e., b1 = 0), Equations (2.4) and (2.5) must be
replaced by
~ Xl
- L ) 2.4
B, = 1 (2.47)
“ Z
t1 = " (2.5")
1'%

In [2] we consider the quantity N_, defined as the expected (population mean)

2)
number of the second-order branches per tree. In terms of the present notation,

N2 = 251, so that N. may be estimated by

~

v - 2.6
N, 281. (2.6)
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In summary, we have seen in this section that the estimation of 81, the
branching probability for first-order branches, requires the arbitrary parameter
Al, whose value must be guessed. If terminal branches have the same chance of
being cut as bifurcating branches, then Al = 1. If terminal branches are
longer and hence more prone to cutting, then Al > 1. We shall see in the next

section that the cstimation of second-order branching probabilities may require

an arbitrary parameter A,, Or it may not, depending upon the nature of the data

set.




3. SECOND-ORDER BRANCHING

. 3.1. Formulation of the MBCX Model

In order to estimate the frequency with which second-order branches
bifurcate to producz third-order branches, we first avoid cdnsideration of
first-order branches by conditioning on the event E, defined as follow53:

L = {first-order branch bifurcates and is not cut}.
A1l probabilities and stochastic assumptions in this scction arce conditioned
on the event E; for the sake of brevity, this conditioning will not be
explicitly mentioned in the definitions.

Given thet the first-order branch bifurcates, we can define branching

probabilities for the two sccond-order branches that arise from it. Lct4

Py P{ncither second-order branch bifurcates}

Zpl) = P{exactly onc sccond-order branch bifurcates}

Py, = P{both sccond-order branches bifurcate}.

Note that we do not make the assumption that the two second-order branches
bifurcate independently of cach other. It turns out that this assumption can
be tested from data; therefore we state it here as a hypothesis for future
reference:

%inomial %{%Q%Q%Q%mﬁxRQEQCSiS HBB: The two second-order branches bifurcate

AN AT

independently of each other; i.e., there is a second-order "branching

3Since all the estimates considered in this report are maximum likelihood .
estimetes, this conditioning poses no difficulties. The unconditional likelihood
function rfactors suitably, so that the estimation of the conditional.secopd-
order parameters by maximization of the conditional likelihood fgnctlon gives
estimates which are independent of the first-order parameter estimates, and the
estimates so obtained maximize the unconditional likelihood function.

4The meanings of the pij are different from their meanings in [1]. In [1], the

P, were not conditional on E.
J



probability" B, , such that

2
pll - (]- - 82)
2
Par = %

Next we consider the cutting of the two second-order branches. It seems
likely that cutting of a second-order branch 1s not independent of the cutting
of its sister second-order branch; rather, since there is only one cutting plane
(the plane of section)s, there is positive correlation between the two branches
with respect to cutting. Motivated by this consideration, we have constructed
the %g%%ﬁ%ggmg%ggm%%%%gEE%amgwégkglmm%%%l, which takes the cutting plane into
account.

The basic assumption of the MBC model is that there is a vector random

variable R such tha*, conditional on the value r of R, the two sister branches

are cut or not cut independently of each other. The motivating idea is that

T is some description of the position of the entire dendritic tree with respect
to the plane of section. For example, 1 could be the vector originating at
the node where the first-order branch bifurcates and orthogonal to the cutting

plane, as indicated in Figure 2. .

. [~ 1 L 1
cell N Fl(u . ot Sechow,
P -

boxj

5 . .
The chance of the two parallel planes of section both cutting the same den-
dritic tree is considered to be vanishingly small.
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The strength of the MBC model, however, is that r nced not be defined

precisely. Tt is sufficient to assume the existence of the following functions:

P{a ¢econd-order terminal branch is cut[g}

t, (1)

bz(g) P{a second-order bifurcating branch is cutlg}

F(x) = probability distribution function6 of R = P{R < 1}

The forms of the functions tz(‘), bz(-), and F(+) arc determined by such factors
as the type of neuron, the method of preparing the section, and (probably
most important) the method of selecting a particular dendritic tree to be in-
cluded in the data.

We shall find it relevant later to consider the hypothesis that two

sister second-order branches are cut independently ot cach other. This can be

realized as a special case of the MBC model by assuming that
t({) z t2 and b(r) = b,. For future reference, we state here this hypothesis

2
Z

and the hypothesis obtained by conjoining it with the Binomial Branching

Hypothesis,

Blnom%%%mCuggiagm XR%%&E%&%L BC' The two second-order branches are cut or not
cut independently of each other, with cutting probabilities t, for terminal
branches and b, for bifurcating branches.

B-. i ) ¢ i " C .
RN AR LA RS SRS T pgpe e POTh Hyp and Hpe hold

Armed with the MBC assumptions, we can consider the probabilities of
various transitions from third-order branch configurations before cutting to

configurations after cutting. The following transition probability

6 . . . .
The vector inequality R < r means coordinate-wise inequality.
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. o . . 7 . . ..
matrix summarizes these configurations ; the interior of the matrix is

left blank except for zeros indicating impossible transitions.

Distinguishable Configurations after Cutting

fe)
e
/\
.
-
|
_ﬁ/
he
1

Figure 3. Transition Matrix

Configurations before Cutting

The missing transition probabilities in Figure 3 can all be easily

expressed 1n terms of the MBC model. For example, the transition

—

has probability

Je (it - b, (x) JdF (1)

where the bar - indicates integration with Trespect to the distribution F(r).
In a similar way, all the transition probabilities can be expressed in terms

of the 5 parameters

ot
t

, / t, (r)dF(r)

It

by = [ by )aF()

———— e

7See Footnote 2 for explanation of tree drawings.
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= f [t 1% (3.2)
s )
5 = [ by (m]7dF(x)

and tyb, = f t, (£)b, (r)dF (z).

The estimation problem for second-order branching can now be
explicitly presented. Figurc 4 shows the 6 distinguishable configurations
of third-order branches after cutting, together with a notation for the

observed frequencies ard the probabilities.

Configuration ‘7/> ‘7// AW;X//. \r/ \r>’/' '\\(r)//'

Probability v 2 v, M1y Hio u22
Observed Frequency k ny n, m m, 5 m),
Figure 4.

We shall refer to the probabilities of the observable tree categories
as the {xvu} parameters. Referring to Figures 3 and 4, it is easy to see
that the {xvu} parameters can be written in terms of the parameters of the

MBC model as8

K]

8The five parameters E}, tg, Eé, bg, and t2b2 are subject to two sets of
constraints. The first set, namelzi
oiﬁ_bjil-g,oiz-zi'il_@,

_ ) —
0 <t, - t2 <l-t 2 5 Ll

2

0 f.bz - t2b2 <1 - t2,
suffice to guarantee that the transition probabilities (the coefficients of the
pij in (3.3)) are nonnegative. A second set of constraints, namely,

22 7 2 — . T — 2
By 2 (8 by > (b))%, t b, > (£)(h,), t, -ty <1/4, b, - by < 1/4,
is implied by the interpretation of the five parameters in terms of t (r), b, (1),
and F(r). Since the probabilities (3.3) are meaningful without the seécond set of
constraints, we will broaden the model by dropping the second set of constraints.



2 —— 2
“OT Pty fePpptyby Py,
o 2y (g -t by - b))
2.
v, = 2[P17(t2 t2b7) + p72(b2 bz)} (3.3)

_ 3
Hyy = Pll(l 2t2 + t2)

Wis = 2p12(l - fé - Bé + ot bz)
Moy = ]‘)22(1 - sz + bZ)

The statistical problem, then, is estimation of the parameters of the

model from the observed frequencies k, n., n., m m and m__ . However,

27 1 122 22

the model as it stands contains too many parameters to he estimated from
these six observed frequencies. 1t is necessary to make some additional
assumption.

The additional assumption we shall make is the

int -R ion: There is a ¢ ¢ S i ¢
(onsgamm%k%t%gmgiégmktkgg There is a constant, Az, such that, for all r,

t, (1)
—— = AL . (3.4)
b, (r) ‘

Note that the Constant-Ratio Assumption is unrealistic, since presumably
both tz(y) and bz(g) approach unity as r » 0. It is to be hoped that this
difficulty has relatively little cffect on the {xvu} parameters. The author
intends in a future report to consider another version of the MBC model with
(3.4) replaced by another assumption. In the present feport, the MBC model

incorporating (3.4) will be used; for brevity, we shall call this_the MBCAX

model .
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The Constant-Ratio Assumption implies that

> (3.5)

2.2
2b2
t. b = A ;?
272 272

From (3.3), then, the {xup} parameters can be written under the MBCA model
as:

K oo= bg(

037 1o

Pip * 23015 * Pyy)

- 5
= 2 _
v = 20hPyp F )by - A,b0)

2.
v, = ?(Azplz p72)(b7 - b2)

3.6
o= p, (1 - 2ab_ + Azbz) ( )
11 11 2 2

—

o = Zplz(l - Azbz - b2 + A2b2)
- YN —2—
Moo = Py ll = 2by + b))

3.2. The Partial Non-Identifiability of Ay

In the MBCX model, the number of parameters appears to be under

. - 2
control. There are 5§ independent parameters in the model: Ay, b2’ bZ’ Pia»

ra

and Py (recall that P1y < - 2y The distribution of the

12 7 o)
observed frequencies (k, P My My m27) is 6-nomial; i.e., multinomial
with 5 degrees of freedom. It would appear, then, that all the parameters
can be estimated. Uafcrtunately, the situation is not that simple. A

problem of identifiability, similar to that observed in Section 2, still

lurks in the shadows.



In Section 2, the parameter Al was seen to be non-identifiable; that is,
given values of ¢1 and vy do not détermine a unique value of Al, so that
estimation of ¢4 and vy does not provide an estimate of Al. For second-order
branching, the identifiability situation is more complicated. We shall
see that, while some configurations of the {xvu} probabilities. are compatible
with any value of k7 from 0 to «, other configurations restrict, or even
uniquely determine, the value of AZ.

In order to describe the identifiability situation for second-order
branching, let us consider the submodel specified by the hypothesis

HBB&BC stated earlier in this section. HBBGBC implies the Constant-Ratio

Assumption and alsc that

|

bz = bz

. (3.7)
2 2

by = b,

Using (3.6) and (3.7), it follows readily that under the hypothesis HBB&BC
all of the {«vul}probabilitics (3.3) can be written in terms of the

quantities

b, = B,(1 - b))
2 = By 2 (3.8)
u)z = (1 - Bz)(l - Asz)'
In fact, we have
2
K = (1 - ¢2 - wz)
v = 20,00 - b - b))
Vo = 20,01 - by - 0,)
2
by = 0 (3.9)
Mg = 2050
2
M2 = ¥
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Moreover, it can easily be shown by analysis of (3.8) that any given non-
negative pair (¢2,w2) such that ¢2 * U, < 1 is compatible with any
nonnegative value of Xz by suitable choice of 82 and b2. Thus, under the

submodel H Az is non-identifiable in the same way as Al, namely:

BB&BC’

A, can take any value from 0 to = while the values of the {xuu} probabilities
are kept fixed.
On the other hand, some sets of {xvp} probabilities are clearly not

compatible with all vualues of Az. An interesting example of this is

related to the submodels specified by the hypothesis H: Xz = 1. It is

easy to see that this hypothesis implies thatg

v + ;u
1 i1 T oEHy (3.10)

Vv + 1 + U U

Conéequently, any set of {kvu} parameters disagreeing with (3.10) is
incompatible with the value AZ = 1. (Note that HBBGBC implies, but is not
implied by, the relationship (3.10)).

It is not clear at present how to precisely characterize those {xvp}

configurations which determine AZ uniquely. It can be shown that if HBB

is true and HBC is not, then AZ is determined uniquely by {xvul}-

Also, ), is determined uniquely by {xvu} if H is true and Hpp is not. - It

BC B

is not known what the situation is when HBB and HBC are both false.

9With the MBCXA model broadened as indicated in Footnote g, the hypothesis
H: AZ = 1 is equivalent to the hypothesis H6 of McCabe and Samuels [1],
while Equation (3.10) is the hypothesis Hy for which McCabe and Samuels derive

the likelihood ratio test and the minimum modified X2 test.
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[t is not uncommon in parametric modeling to find that a parameter
which is non-identifiable under a certain model may be identifiable under
a more restrictive submodel. We have seen that the situation with the
present model is just the reverse: it is under a submodcl that the

parameter AZ is not identifiable!

The practical consecquence of this strange ''partial non-identifiability"

of As is that while some data sets may provide a great dcal of information

for cstimating A,, other data sets (for example, those fitting H brovide

BBEBC) |
no information whatsoever about Xx,. It should be noted that this difficulty
is not peculiar to the MBCX model--any model which contains ”BB&BC as a
submodel (and any reascnablc model would) will face the same kind of

identifiability paradox.

3.3 Maximum Likelihood Estimation of all Parameters.

Because of the uncertainty in estimability of AZ’ we start by con-

sidering A, to be an arbitrary (preassigned) parameter, and derive estimates

of the remaining parameters Py2s Popo BE) and bg as functions of AZ. The
likelihood function for the observations (k, Ny n2, mll’ UPPY mzz) is
1
- (Kemp+ny sy rmy, +myy)! koM e M Mz ™22
- Vi Y2 M Mz Moz
k! n!n,Im  !'"m_ ! m,! :

- The maximum likelihood estimates of the parameters under the MBCA model

are determined by substituting (3.6) into (3.11) and maximizing L with
respect to the parameters Pior Pyy (recalling that Pyy = 1—2p12 - p72),

b, and bg. Note that, with

4

7 fixed, L factors into a part depending only on

the branching parameters pjj’ and a part depending only on the cutting

; 2 .
parameters b, and b,. Conscquently, when A

7 p is preassigned, the branching

2

(3.11)
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parameters and the cutting parameters are estimated independently of each
other.

The maximization of L for fixed Az may be carried out directly, using a
suitable computer programlo, or it may be done by setting thé‘derivatives
of log L with respect to the parameters equal to zero. The computations
reported in Section 5 were done in the latter manner, using a computer
subroutine to solve the resulting pairs of simuitanoous nonlinear equations.
These cquations are given in the Appendix.

The amount of information about A2 present in a given data set can be

judged by evaluating, for various preassigned values of AZ, the maximum

b. and b;.

of the likelihood function (3.11) with respect to Pios Pyys Dy

It is convenient to consider this maximum likelihood as a fraction of the
unrestricted maximum L*. L* is the maximum of the likelihood function
with respect to variation of the {xvu} parameters, subject only to the
constraint « + Evi + Lu.. = 1; it is easy to show that this maximum

1]
L* is achieved by the values

cF o= * = * =
K k/xl’ Vi ni/xl’ ”ij mij/xl.
(Recall from Section 2 that X, = k + ngo+on, Myp * My * m22.) The relative

likelihood for a preassigned AZ value is, thenll,

— ,2
max L(plZ’ PP b2, b2)

R(X,) =
L*

10, . S s e _ . .
OWlth this approach it is most efficient to maximize L/L* (L* is defined

below) in order to avoid working with very small numbers.

11
R(Az) should not be confused with the vector R introduced earlier in this

section.
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R(Az) is most conveniently computed as

kv ) v, n Mg ™ u12m12 u22m22
RO = D @ @ = G G 6a)
1 11 12 22

where «, Vs and uii—are evaluated by substituting the maximumllikelihood
estimates of B;, bg and the pij into (3.6),and k*, v; and ﬂ{j are as
given above.
The maximum likelihood estimate of AZ is the value of AZ for which
R(AZ) is maximum. The precision of this estimate is reflected in the rate
at which R(Az) declines away from the maximum. The asymptotic theory of

maximum likelihood estimation (see,e.g., Wilks [4]) provides a guide to

. . . .. . .o, . 12
interpreting this precision, through the goodness-of-fit statistic

Xz(xz) = -2 log R(L,). (3.14)
According to this theory, the interval of A, values for which

,
X" (h,) < 3.84

13

1s an approximate (for large samples) 95% confidence interval for A

[AS]

l

o

Approximate confidence intervals for the parameters Pyys Py Dy and

f
o
[N ]

can also Le derived. However, these intervals will be broad if the .
interval  fer A, is broad., Since this was the case for the data treated in

Section 5, these computations have not been carried out.

12 . . . .
All logarithms used in this report are natural logarithms.

13The reason for this is that, if A°2 is the true value of X,, then the
stafistic Xz(x;) has asymptotically {as the sample size goes to infinity) a
chi-square distribution with 1 degree of freedom (d.f.) The value 3.84 is the
95th percentile of this chi-square distribution. If a confidence level other

than 95% is desired, the percentile value must be adjusted accordingly.

L
]
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3.4. Estimation and Testing for Fixed AZ.

When a given data set provides confidence intervals for Az which

are very broad or infinite, the only reasonable course is tq treat AZ as an
arbitrary parameter. The dependence of the other parameter estimates on
the preassigned value of Az can then be studied; the more cut brahches
there are in the datz, the greater will be this dependence.

For fixed AZ’ then, the maximum likelihood estimates of P2 Pyys
B;'and ;g-can be computed as described in the preceding subsection. Approximate
confidence intervals for these parameters could be obtained,'but because of
their dependence on the arbitrary value of KZ, this has not been done.

The maximum likelihood estimates 512 and §22 can be used to estimate the
quantity NS’ defined ir [2] as the expected number of third-order branches per
tree. In terms of the parametrization of Sections 2 and 3,

Ny = N2 . Z(p12 + plz) = 481(p12 * Pyy), s0 that the maximum likelihood

estimate of N3 for given values of Al and AZ is

~ ~

Ny = 481 (Pyp * Pyy) (515

~

where Bl is determined from Equation (2.4) or (2.4").
. An approximate test for the goodness of fit of the data to the MBC) model
for a given Az'can be based on the statistic xz(kz) defined above. The fit is
rejected as inadequate at the 5% significance level if XZ(A ) > 3.84 (See foot-
2
note 13). This test is valid asymptotically for large samples, so that its

applicability to a given data set may be questionable. 'In this connection, it is

worth noting that if, for a given data set, there is no value of AZ for which the

o 4 2
fit is perfect (so that ¥ (AZ) = 0), doubt is cast upon the applicability of

the goodness-of-fit test. This is because, with AZ varying, the MBCA model has §

.
. . o
£
£i
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independenf parameters, and hence the same dimensionality aé.the unrestricted
model under which the maximum L* is achieved. Specifically, the parameter
point (x, Vis Vo My Hyoo u22) is confined to a S5-dimensional hyperplane
under the unrestricted model and to a S-dimensional curvilinear subset of
this hyperplane under the MBC) model. For small samples, the point

{k*, v, *, vz*, ”11*’ ulz*, ”22*) may not lie in this curvilinear subset,

75 .
by, by) < L¥;

max L(KZ, plZ’ p22, L

for samples large enough that the asymptotic theory is applicable, this
situation cannot occur (unless the MBCA model is in fact invalid for'all
values of xz).

In addition to estimating the parameters of the MBC) model, it might

be desired to estimate the branching probability B, under HBB and the

cutting probability b, under H If X, is treated as an arbitrary

BC*

parameter, then these two hypotheses are independent, and consequently the
maximum likelihood estimates of 8., under HBB and b2 under ”BC are the same
L

as the maximum likelihool estimates of these parameters under HBB&BC' These

latter are easily derived from Equations (3.8), (3.9), and (3.11). The
resulting simple equations for estimating 82 and b2 will not be stated here,
as they are given in more generality in Section 4.

The relative likelihood of ”BB is

max L(8,, b,b2)

Ryn (M) =
BR'"2 L*

RBB(AZ) may be computed from an expression like (3.13), with the parameters
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Ky Vi and’”ij evaluated by substituting the maximum likelihood estimates of

Bys B;'and bg into (3.1) and then into (3.6). The goodness of fit of the

data to HBB for a fixed AZ can be measured by

2 “ —_
XBB‘AZ) = - 2 log RBB(AZ). (3.16)
In a similar way, we may define for HBC

max L(plz, Prss bz)

Rpc(hp) =

[L*
and

2
W = - 2
ABC(AZ) 2 log RBC(AZ). (3.17)

Again, RBC may be computed from an expression like (3.13), with the
parameters g, vy and “ij evaluated by substituting the maximum likelihood
estimates of P15 Doy and b2 into (3.7) and then into (3.6).

Since HBB and ”BC are independent for fixed Ays the relative likelihood
is

of the joint hypothesis HBBGBC

max L(B?,jb

R = 2)
BBEBC L*

Rpp(Ay) = Rp(hy)

R(x,)
and, correspondingly,

2 _ 2 2 2
XBB&BC ~ Xp{A2) * xpe(Ay) - xT(A,)

Note that, because of the non-identifiability of AZ under HBB&BC’ the goodness-
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of-fit statistic XgB&BC does not depend on Az.

BB’ HBC and HBB&BC against the unrestricted model

can be based on these x2 statistics. XéB(AZ) has (asymptotically for large

Approximate tests of H

samples) a chi-square distribution with 2 d.f. if HBB is true for the

2

is true, XBB&BC

. .. 2
specified value of A2. Similarly for XBC(AZJ' If HBBGBC
has (asymptotically for large samples) a chi-square distribution with 3 d.f.
For a fixed vaiue of AZ’ HBB’,HBC’ and HBB&BC can be approximately

tested against the MBCA model with the statistics
2 . 2 2
Xpp-Mpc () = xp(A) - xT (), | (3.18)

2

2 2
Xgoompe (P2) = Xpe(A) - X7 (), (3.19)

) 2 2 S 2 (3.20)
and XgagBc-Mc (M) = Xppgpe X (A,)s

respectively. These statistics have (asymptotically for large Samples) X2
distributions with 1, 1, and 2 d.f., respectively, if the corresponding
null hypotheses are true. In interpreting these tests, it is necessary to keep
in mind that the value of AZ is forced to remain the same under the null and
alternative hypotheses. The results may not be exactly the same as if Az
were allowed to vary during the maximization process.

All of the above x2 tests, both against the unrestricted model and
against the MBCx mod=l, are only approximately valid for large samples;
the cautions mentioned above in connection with testing the fit of the

MBC ) model should be observed.
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4. EXTENSION OF THE MODELS TO ALL ORDERS OF BRANCHING

In order to estimate the branching parameters for branches of érder 3
and higher, we consider the cxtension of the MBCA model of Section 3 to an
arbitrary order k of branching. Attempts to extend the full MBCA model have
led to intractable cquations. lHowever, the equations simplify very considerbly
if a binomial branching assumption — analogous to “BB’ is made. In this
section we derive the equations for estimating thé kth—ordor branching
probabilitics under an extended MBCA model with a binomial branching
assumption incorporated. Estimation of the cutting probabilities will be
considered only under the additional hypothesis of binomial cutting.

The models will first be formulated for each of the T trees separately.

.th .. . . .
For the i -tree, define the following random variables:

i L . th
Xﬁ ) . number of bifurcating uncut k= -order branches
(i) . th
Yy = number of terminal uncut k  -order branches
<
i th
Zﬁ ) - number of cut k™ -order branches.

All the branches mentioned in this definition are assumed not to have been

excised by cuts on branches of order (k-1) or lower. Thus

(i) _ (1) (1) | (1)
Vk = kk + Yk + Zk

. th .th
is the total number of 9ﬁﬁﬁflﬂﬁig.k -order branches on the i tree.

We treat the various orders of branching separately by conditioning, at

cach level, on Vﬁl). For each fixed k and i, then, consider the following

. L i i
assumptions, conditional on the event V( ) v( ):
k k
. . . . . i . .
1. Binomial Branchln%%Assumkglon. [he v( ) branches bifurcate independently
LAVANNAANNANANUAAN NANNAAANAAN, k

of cach other, each with bifurcation probability Bk'
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1 CRtt&E%%QEEEQQE%QR' There is a vector random variable

R(i), such that conditional on Bﬁl) = 1T, the vﬁl)

of each other, with cutting probabilities tk(z) for terminal branches and

branches are cut independently

bk(g) for bifurcating branches. The random variable R, has distribution
function'? F() = P{Bk <r}.

3. QQR%E%Q%&%%E%Q%Q@@H@RE&QR‘ There is a constant, Ak’ such that, for all

T,

. . . i .
4, nomial Cuttln%‘AssumEtlon. The v( ) branches are cut or not cut inde-
NANNTANAT ANANAAN k

Bi
AAAAAANAN,

pendently of cach other, with cutting probabilities tk for terminal branches

and bk for bifurcating branches. This is a special case of assumption (2)

1

K bk.

For brevity, we will call the model defined by assumptions (1), (2), and

with tk(f) = t, and bk(?]
(3) the binomial branching (BB) mbdel. The submodel defined by adding
assumption (4) will be called the binomial branching and cutting (BB§BC) model.

For reasons perfectly analogous to those discussed in Section 3, the
parameter Ak is not identifiable under the BBEBC model, and consequently %t may
or may not be estimable under the BB model. Throughout this section, we shall
treat A, @S an arbitrary pre-specified parameter.

Under assumptions (1) and (2), the probability distribution Péi) for the

. . t . .
configuration of the k h—order branches of the 1th tree is

4 . . . . . .
The inequality Rk < T mecans coordinate-wise inequality.
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IO IS RN O NN O NP OIS

_o (i), _
K Koo Ty v o=

él), (1) y(i) (1)

k -
G0 ERENEIE (g ) 0ot 15 (8b (1) + (-8, ()} © aF (r
fy Yz !

(4.1)
Upon incorporating assumption (3), Equation (4.1) reduces to the form
(10 (1) , (1)
(i) _ (1), Tk oo ; “K
R - . 7 _f ; - \ .2
R S [Fy + (1800 ] : (4.2)

1)

where C (which includes the integral with respect to FP) does not depend
on .
By

We now assume that the T trees comprising the data are independent

realizations of the model, so that the joint conditional distribution Pk

. . ) t .
of the configuration of all the k h—order branches are all the trees is, under

the BB model,

- (1) _ (i) (L) (1) (1) (1) (1) (1)
» - = = J
P =P ﬂ (X X, =Y s 4=z )] Q U vy }
- (1)
= TP
i
X y Z
k ko k
= Ck Bk (1~Bk) {bk+(1-ﬁk)Ak] (4.3)
where Xy = ; xél), Yy = ? yél), 4y = ? zél), and Ck = ﬁ Cil) does not depend
- 1
on Bk

Equation (4.3) reveals two facts about the estimation of Bk under the BB

model. First, the statistics X Yo and z) are sufficient for the ecstimation
of Bk - that is, the distribution of the bifurcating, terminal and cut

branches among the T trees need not be specified. Second, since the dependence

of Pk upon Bk is of the same form with or without the incorporation of the
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~

inomial Cutting Assumption (4), the maximum likelihood estimator Bk is the

same under the BB model as under the BB&BC model.

We proceed, then, to estimate Bk and bk under the BB§BC model.

Incorporating assumption (4) into Equations (4.1), (4.2) and (4.3), Pk can

be written

X Y. Z,

= k k 13
pk - Ck (t’}\ l"’k (l' q)k—]"bk) (4'4)
where
{(4.5)
and Cﬁ does not depend on Sk or on bk. The maximum likelihood estimates of
¢k and Wk are easily seen to be
(NN
(4.96)
and wk B yk/vk’

where vy = Zvﬁl) =Xt Yt Z) Combining (4.5) and (4.6) gives the
i N

following equations for the maximum 1ikelihood15 estimates Bk’ bk’ and t::

~ ~ ~

k

8;(1 - )\k)vk - gk[xk T Ak(xk + vk)] - Akxk = 0 (4.7)
Oy = 1 - x /B vy (4.8)
e T Ak Y (4.9)

1

5 . - . . .
The fact that P, is conditioned on Vk does not affect the maximum likelihood

. <
estimators; sece Footnote 3.
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It is easy to show that if both Xy and Y, are nonzero, then for each Ak’
0 < Ak < =, Equation (4.7) has a uniquel6 solution By between 0 and 1.

In the case Ak = @, 1t can be scen by obvious modifications of the

derivation that (4.7), (4.8), and (4.9) must be replaced by:

By = Xk/vk (4.7")
t;k 0 (4.8")
~ Zl\'

L, = == S (4.9")
Kooyp ey

We note in passing that the correction forcutting proposed by Smit,
Uylings, and Veldmaat-Wansink [3] is equivalent to applving Equations (4.7),

(4.8), and (4.9) with » = 2.

K

Lquations (4.7) through (4.9') are valid under the BB&BC model. Equations
(4.7) and (4.7') are valid under the BB model as well. For k = 1, the
BBGEC model is trivially valid; in this case, Equations (4.7) through (4.9")
are equivalent to (2.4) through (2.5'). For k = 2, as was mentioned in
Section 3, the estimators (4.8), (4.9), (4.8") and (4.9") of the cutting

parameters are valid under ”BC’ regardless of whether “BB is true. Of course,
if HBB is false, the quantity B, of (4.7) cannot be interpreted as a bifurcation

probability; nevertheless, substitution of the solution B, into (4.8) gives

the maximum likelihood estimate of AP

The reader will recall that the notation for observed frequencies used in

Section 3 is morc complicated than that of the present section.  This is because

the statistics Xos Yoo and 2, are not sufficient for estimation of cutting and

i

16
4 ~ - - . . . . .
[f either X, or Yy 1S zero, the maximum likclihood estimates are not unique

for certain values of Ap.
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branching parameters under the full MBCA model of Section 3. The relationship

between the two notations is

X2 = n2 + m12 + 2m22
Y, =1, f 2mll tm, . (4.10)
22 = 2k + n, + n2
bl 2 <
Y2 (Kemp ey empy vmp, 4 my)

In [2], we consider the quantity Nk’ defined as the mean number of kth—

order branches per tree. Of course, N1 = 1. Under the BB or BB&BC model,

50 that the maximum likelihood estimates of the Nk under these models are

obtained from the ék as

Ny = 28
Ny = 48,8,
. | R S T

Np =20 BBy By
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5. ANALYSIS OF DATA

5.1 Numerical Results.

In this section we present the data used in [2], and some of the
results of applying the methods of the previous sections to this data. The
main results are presented in [2].

The data was collected by Professor Paul D. Coleman, as‘described in
[2]. Observations werz made on tour sets of nerve cells. Because the
branching parameters appeared to depend upon the number of dendritic trees
borne on the same ncrvé cell, cach of the sets of cells was divided into
three groups: cells bearing 4 or fewer trees, cells bearing 5 trees, and cells
bearing 6 or more trees. Thus it is to be hoped that each group of trees re-
presents approximately a sample from a homogencous population, as required by
the models of the previcus sections.

Table T gives an abbreviated name for and brief description of cach of
the 12 groups, together with the numbers of dendritic trees and of nerve cells
in ecach group. Table [I gives, for each group, the obscrved frequencies of the
tree types defined by first- and sccond-order branching patterns; the notation
is that of Sections 2 and 3 of this report.  Table ITI gives the observed
frequencies of bifurcating, terminal, and cut branches of orders 3 and 4:
the notation is that of section 4 of this report.  The frequencies Xg were
zero for all groups; the frequencies Y and Zg were small and are not
reported here.

Table TV shows values of the statistic X2(A7), which measures (see

2
Equation (3.14)) the goodness of £it of the MBC) model , for selected values
of x,. It can be scen that the shape of the function xz(Aq), as i, varies

“

from 0 to «, is not the same for all the groups: for some groups 1t is
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monotone; for some groups it appears to have a single local minimum for some
intermediate value of KZ; for some groups it appears to have a single local
maximum. Note also that, for several of the groups, the minimum value of

2 ) '
X (Az) 1$ not zero, so that there is no value of Az for which the MBCX model

fits perfectly. On the other hand, the model fits moderately well for almost

all values of AZ; the fit is rejected by the asymptotic test at the 5%
significance level (x2 > 5.84) only for one data group (SC > 6), and only

for a rather small range of AZ' As was mentioned in Section 3, the fact that
the minimum x2 value 1s not zero suggests that the asymptotic theory may not

be very accurate for this data; nevertheless, it appears safe to conclude

. 2
from the flatness of the x“(hz) functions (and also from the fact that they

have various shapes) that this data contains little or no information about the

value of AZ.

Table V shows selected values of the statistic xéB_MBC(Az)(defined in Equation
(3.18)), which measures the goodness-of-fit of the data to the binomial branching
hypothesis HBB' The direction of deviation from HBB is also indicated--cases where

the dependence between bifurcation of sister branches is negative, so that

Py < (pl2 + pzz)z, are marked by an asterisk (%) in Table V; in the remaining cases

the inequality is reversed, showing positive dependence. Note that the only cases
. . . .. . 17

of substantial deviations (recall that the asymptotic critical value is 2.84)7 ,

are associated with positive dependence. Furthermore, these cases occur largely in

the somewhat heterogeneous groups--i.e., those having <4 or >6 trees per cell. It

is well known that the effect of heterogeneity within a group is a tendency toward

17Of course, HBB should not be tested within the MBCA model for the data

group SC > 6 in the range of A2 values for which the MBC X\ model was rejected
by XZ(AZ). However, this has no effect on the general conclusions drawn

about H The same remark applies to the test of HBC considered below.

BB’
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apparent positive dependence. On balance, it appears that the data are quite
consistent with the hypothesis HBB’ with any apparent tendency'toward positive
dependence being an artifact caused by the heterogeneity.

In any case, a slight dependence (real or spurious) between sister branches
with respect to bifurcation would not be expected to have much effect on the
estimation of NS’ since this is a mean. From Equation (3.15) we see that the
effect would be felt through the cstimation of the quantity (pl-2 + p22). Under
HBB’ this quantity would be replaced by 62. It can be seen from Equation (4.7) and
Equation (Al) and (A2) of the Appendix that 512 + 522 = éz if Az = 0; analogo;sly,
these estimates are equal if Az = ®. Table VI shows the comparison between the
cstimates for several intermediate values of AZ. The differences are seen to be
relatively quite small. Tt appears likely, therefore, that use of the BB assumption
for estimation of N4, NS’ etc.  (as in Section 4) is not unreasonable.

Table VII provides an informative companion to Table V. 1In Table VII are
presented selected values of X§C~MBC(A2) (defined in Equation (3.19)), which may be
used to test the binomial cutting hypothesis HBC within the MBCA model. Because of
the nature of the experiment, ?EQ is very likely a priori to be false in the direction
of positive dependence: i.c., b; > (55)2. The entries in Table VII for which'the
corresponding estimates do not satisfy this inequality are marked with an asterisk (*).
Note that there are very few such entries, and that they are associated with smallJ
xz values. 1In testing ”BC’ it is appropriate to use a one-sided alternative of
positive dependence because of the a priori considération mentioned above; thus,

the asymptotic test will reject HBC at the 5% significance level if the entry 1is not

marked by an asterisk and if the XZ value exceeds 2.71
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A, .5 1 2
Group Pipg *Pyy By Pyp *Py By P12 tpryy By
SC < 4 612 .608 .573 .570 .528 .526
sc s .526 .525 486 .485 446 446
SC > 6 463 445 381 368 .315 311
SD < 4 613 616 560 .567 .504 511
sD s .478 478 411 412 .357 .358
SD > 6 .476 466 .369 .361 .290 .288
Pl < 4 .435 432 .409 .405 .385 .382
Pl " 5 433 434 .382 .380 .339 .337
P1 > 6 436 436 .392 .393 357 .358
P3 < 4 .490 487 467 466 446 445
P3 S .375 375 .341 .339 .315 .313
(P3 > 6 347 347 309 311 284 285
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(the 90th percentile of the chi-square distribution with 1 d.f.) With this
criterion, HBC is rejected by 5 of the 12 data groups for almost all values
Az > 1 (there is a minor exception in P3 2 6). It is reassuring to thus
demonstrate that the statistic XéC—MBC is sufficiently sensitive to detect,
at least for some of the data groups, the departure from HBC which we know
must exist.
In [2] the dependence of &3 on the number of trees per cell is

discussed. Table VIII shows values of &3 (calculated from Equation (3.15))

N

for selected values of Al and AZ. Because N3 is a non-increasing function of Al’
the behavior of &3 for values of Al between 0 and « can easily be inferred '
from Table VIII. It can be seen that the value of Xl has relatively little
effect upon §3 (this is because only a few first-order branches were cut).

For the SC, SD, and P3 data sets, the monotone decreasing pattern of

dependence of &3 on the number of trees per cell can be seen to hold for

all Al and AZ such that 0 < Al < = and .5 ¢ AZ < w.lg This conclusion holds

even if the Al and AZ values depend upon the number of trees per cell, as

long as the dependence is not too strong. For the Pl data set, the monotone

decreasing pattern is less pronounced, and disappears as AZ drops a little

below 1.0.
In [2], we present the estimates N2, NS’ N4, and NS’ calculated with all
Xk = 2. We also discuss in [2] the quantities Wk = Nk(T/C), where T/C is

the mean number of trees per cell in a given data group. Thus Wk is the
estimated number of kth—order branches per cell for the data group. Tables

IX through XIV show the values of the Nk and the Wk for'x1 = AZ = AS = A4 = 0,

Recall that there is strong presumptive evidence that AZ > 1.
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.5, 1, 2, 4, and ». 1In addition, these tables show a quantity denoted ”wsum"'

This quantity is equal to W2 + W3 + W4 + W5 for the SC and SD data sets, but

is equal to W3 + W4 + WS for the Pl and P3 data sets. The following

phenomena are noted in [2]: as the number of trees per cell increases, (i)
ﬁS’ §4, and ﬁS decrease monptonely within each data set (with a few minor
exceptions); and (ii) WSum is approximately constant within each data set
except Pl. The extent to which these phenomena persist as tire assumed common
value of the Ak varies may be judged by the reader. As an aid to perusal

of the tables, data sets for which the monotonicity of ﬁk fails are marked

by an asterisk, and the maximum percentage variation of Wsum within each

data set is given in parentheses.
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TABLE XIII. I\’k and hk for >\1 = A, = AS = )\4 = 4.
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5.2. Summary of Data Analysis

Tables IV-XIV indicate the following general features of dendritic
’ branching for the data sets analyzed on layer IV stellate cells from
cats and layer V pyramidal cells from rats:

a) The data fit the MBCXA model fairly well; howeVer, the
parameter Az, which measures the likelihood of cutting
for terminal second-order branches relative to that for
bifurcating second-order branches, cannot be usefully
estimated from the data. Consequently, the parameter
A2 is treated in all subsequent analysis as an abitrarily
pre-specified parameter,

b) The data on second-order branching is consistent with the
hypothesis HBB that the two sister second-order branches
bifurcate independently of each other; in any event, this
assunption has little effect on estimation of N3 within

the MBCA model. Consequently, the estimation of N. and NS

4
is carried out under the binomial branching -assumption, with
parameters AS and A4 arbitarily pre-specified.

c) As would be expected, the second-order branching data is not
consistent with the hypothesis HBC that the two sister second-
order branches are cut independently of each other.

d) The main conclusion of (2] is that the dendritic branching

pattern tends to compensate for disparate numbers of trees

per neuron in such & way as to maintain constancy of
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wsum’ the mean number of higher-order branches per neuron.
From Tables VIII-XIV, this phenomenon is seen to hold for
the SC, SD and P3 data sets over a wide range of possible

values of the unknown parameters Ak' The P1 data set shows

a less pronounced tendency toward this same phenomenon.
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APPENDIX

In this appendix we present the equations for determining the maximum
likelihood estimates‘of the second-order branching parameters (pij) and
cutting parameters (Eg'and b;) under the MBCA model through differentiation
of the log likelihood function. See Equations (3.6) and (3.11) for the
definition of the likelihood function L. To simplify the typography of the
formulas, the subscripts will be omitted fromvxz, Bé and ;31

The branching parameters pij are estimated from the equations

7
Vi - - - 2
3 log L Ko(2h - 229 n (1 - 2))
= 5 + _——
9Py, Pygh * 2pph + by, A1yt Pps
(A1)
nzk zmll m12
+ - + = 0
APia * Py Py Pys
k(1 - 29 AN n ~
9 log L _ .- 27 ' ] 1 L2 (A2)
Py, R T U S N T 1ot Poo
m m
i
.._.____11 _.:_2:0
Py P22
and Py =1 - 2p12 - Doy, (A3)

~ ~ ~

The maximum likelihood estimates Pi1> Pios p,, are the simultaneous solutions

of Al, A2 and A3.

qNI

The cutting parameters L. and b

5 are estimated from the equations

t
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3 log L _ ™ . Ny
25 b - ab? b - b’
(Ad)
] 2hm) _ (O + Dy,
1 - 205 + 2%p2 1 - O+ DB + ab°
2m.
Y -
_ 5
1 - 2b + b~
3 log L _ N ) g T
32 b? b -Ab> B - b
(A5)
2
Ay Ay + M
+ + :
e = =
1 - 2xb + Azbz I -(x + )b + ) b” 1 - 2b + b2
= 0

Computational difficulties
be avoided by using the natural
1/X instead of X, interchanging

. = — .2
on output reading b as t, b~ as

caused by large or infinite values of X can
symmetry of the problem: usiﬁg as input

fl_and n,, interchanging my and M,y thep
2 S

t, Pyy @5 Pyyo and Pyp @5 Pyyg-
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