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ABSTRACT

Let X be an observation from a p-variate normal distribution:fﬁ > 3)
with mean vector © and unknown positive definite covariance matrix I. We
wish to estimate 6 under the quadratic loss L(§;6,%) = [tr(QZ)]-1
(6-6)'Q(8-6), where Q is a known positive definite matrix, Estimators of
the following form are considered: _

_ n
-1 l -1 -1
Gk h(x,W) = [T - kh(X'W X)Al(%V/n*)Q W "1X,
S

{
\
where W: pXp is observed independently\of X and has a Wishart distribution
%

\
with n degrees of. freedom and parameter Ehikl(A) denotes the minimum
\l B
characteristic root of A, and h(t): [o, m)%* [0)°) is absolutely continuous

with respect to Lebesgue measure, is non1nLreasn1g, and satisfies the

additional requirements that th(t) is nondecrea51ﬁﬁ and sup th(t) =
t>0

With h(t) = 1, the class Gk h specializes to that §on51dered by Berger

\

Bock Brown, Casella, and Gleser (1977). For the mor\ general class considered
in the present paper, it is shown that there is an 1ntxrva1 [0, k ] of
’

values of k (which may be degenerate for small values o. \n-p) for which

Gk h is minimax and domlnates the usual est1mator )




Minimax Estimation of a Normal Mean Vector
When the Covariance Matrix is Unknown*

by

Leon Jay Gleser
Purdue University

1. Introduction. Assume that X is a p-dimensional random column vector which

is normally distributed with mean vector 6 and unknown positive definite
covariance matrix I. We observe X, and also independently observe the pxp
random matrix W, which has a Wishart distribution with n degrees of freedom
and parameter L = n-IE(W). It is desired to estimate 6 by an estimator

8(X,W) under the quadratic loss
(1.1) L(8(K,W)36,5) = grpray [(8(X,M)-6) 1Q(8(X,W)-6)]

where Q is a known pxp positive definite matrix. For this problem it is well
known that the classical least squares, maximum likelihood, best equivariant .
estimator GO(X,W) =-X is minimax, but inadmissible if P > 3. Recently Berger,
Bock, Brown, Casella, and Gleser (1977) provided the first explicit examples
of estimators which dominatg GO(X,W) in risk inthis context.',These estimators
have the form

cA, (QW/n*)

—)Q
xw Ix

3 . - 1.-1
(1.2) 8w = [ - WX

where n* = n - p - i, Al(A) denotes the minimum characteristic root of a matrix

A, and O

I A

¢ <c¢c_ . The constants ¢ are described analytically in Berger
- n,p n,p . )

et al (1977), but.their actual values for various choices of n and p had to be

obtained by simulation.
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As noted in Berger et al (1977), the class (1.2) contains no admissible
procedures, since every member of the class (except 6O(X,W) = X) has a
singularity at X = 0. Both for analytic reasons and based on risk simulations,
they conjectured that an estimator of the form

min(c,n*X'W-lx)Al(QW/n*) 1

1 Q w'l]x

1.3) §*(X,W) = [I_ -
(1.8) x( [ T
would dominate 6C(X,W) in risk. However, they were not able to prove that
Gc*(X,W) is minimax.

In an earlier paper, the present author [Gleser (1976)] showed that when

a lower bound, K, for AI(QZ) is known, estimators of the form
: _ wrg=Llysa-1~1
(1.49) Gh(X,W) = [Ip -¢ h(X'W "X)Q "W “]X,

where h(t): [0,*) » [0,») is absolutely continuous with respect to Lebesgue
measure, th(t) is nondecreasing in t, sup th(t) =1, and .0 <c f_2(p-2)(n-p)K/(n-1)
dominate GO(X,W) = X in risk. In thatt%gper it was also shown that if no lower-
bound to Al(Qz) is known, then no estimator of the form (1.3) can dominate
60(X,W) = X in risk.

In the present paper, the methods of Gleser (1976) and Berger et al (1977)

are combined to prove the following result:

Theorem 1.1. Consider the class of estimators
_ vl -1.-1
(1.5) Gk h(x,W) = [Ip - kh(X'w X)AI(QW/n*)Q Wwolx

where h(t): [0,*) » [0,«) is absolutely continuous with respect to Lebesgue

measure, and



~

(i) th(t) is nondecreasing in t,

(i1) sup th(t) =1,
t>0

(iii) h(t) is nonincreasing in t.

If 0 <k f-kn,p’ where kn,p is defined by Equation (2.7) and taﬁled for
selected values of n and p in Table 1, then Gk,h(X,W) doﬁinétes GO(X,W) in
risk, and hence is minimax. |

It is not difficult to show that the class of rules (1.5) includes both
the class of rules (1.2) and the class (1.3). .

2. Proof of Theorem 1. Let

2.1) sz, = [ er@IECVLE, | (xW;6,5) - Lee,D)].

As in Berger et al (1977), superscriptg’On the expected value operator indicate
the random variable with respect to which the expectation is to be computed.
The quantity A = A(6,£) iS the difference in risks between Gk’h(X,W)'and
GO(X,W) = X, weighted by the positive quantity tr(Q). 1If Al= A(6,Z) < 0 for
all & and I, then Sk’h(X,W) dominates GO(X,W),in Tisk.

The initial steps of our proqf closely follow those of Berger et al (1977).
We expand the quadratic loss of Gk,h’ take expected values in the order
W_X

E'E", and use the familiar technique of integration by parts. [Berger (1976)] to

obtain

Ex[h(x'w'IX)(x-e)'w‘lx] = Ex[h(x'w'lxnr'zw'1

1

« 20 Iy xw w1y,

where»h(l)(t) = dh(t)/dt exists almost surely. These steps yield the result:



A = Ex’w{kxl[Alhz(x'w'IX)wi'lQ'lw'lx - 2hex'w Xy eraw?

(2.2)

1

) 4;\1}1(1) axw Iyxw o ixg s,

where Al = ll(QW/n*). Next we note that

xw iy

Iy < n*x (QW/n*) °

(2.3) x'w'IQ'lw’
and thus, since th(t) <1,
kA (QW/n*)h? (x'w'IX) x'w"lq'lw'lx < kh(x'w'lx) In*,

Also, since th(t) is nondecreasing,

0 < Sttty = h(e) + @y,
so that
. T |
(2.4) R oty > MWD
x'w 1x

Substituting these results into (2.2), we conclude that

: ' - k _ S B |
(2.5) a < V0o (@i/n*yheew Iy [, - trzwt . g ﬁ:’_—fw-&]}.
‘X'W X

. N
For any square root © 2 of %, let

s
o

<
(1]

o~
W~

~<

-

<
[

™

(2.6)

and

=
It
™~
)
[«»]
-
=g
]
%]H
o)
%n—*



Then Y and U are statistically independent, Y has a p-variate normal

distribution with mean vector n and covariance matrix Ip’ and U has a
Wishart distribution with n degrees of freedom and parameter Ip. In

termsrof Y and U,

Yoy

Y'U—lY

(2.7) A < E'BY n—ljxlwmh(wu‘ly) X - 2trul 4 4 13.

Finally, let.I‘Y be an orthogonal pxp matrix satisfying

L .
(2.8) Y'P% = ((Y'Y)?, 0, 0,...,0)
and let

- ' : - '
(2.9) \' FYUPY, , ¢Y PY¢PY.

Then the conditional distribution of V-given Y is a Wishart distribution with

n degrees of freedom and paramefer Ip, independent of Y. Also

(2.10) tru™d = erv! s yruly = Y'Y(v'l)u, Yy ly = Y'Y(V'Z)H,
Let
(2.11) v, = vl v, = (v
: : 1 11 ’ 2 11°
It follows that
Y.V, k . k -1 V2 )
(2.12) A <E lE {772 (4yVIR(Y le)[n* - 2trv " 4+ 471— 1.

Let r(t) = th(t). Then from (2.12), we obtain

‘ . ' A (e V) : _ v
(2.13) A in—]fEY{ (Y—ylv)Ev[r(Yv'le) —lviy (n—l,f - 2ervl o »4V—i_)]}.
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Let

B = Ay (0y) = A (TydTy) = A () = A, (QD),

and let
= 1
= B ¢YR
Then X, (I*) = 1, and
A (ZH) _ v
(2.14) 4 < - I]:—E- EY{(,—(%—Y—)EV[r(Y'YVI) 1 (2txv) - 4;/—?— - ::—* )1}
1

Hence to show that A = A(8,I) < 0 for all 6, Z, it suffices to show that
for all I* with 11(2*) = 1 and all values of Y'Y the following inequality
holds: -

ALY v
1 erv! - g V_z ky1 s,

(2.15) t = Ev{r(Y'le)
1 1
Except for the term r(Y'le), this inequality is precisely the inequality
in Equation (2}7) of Berger et al (1977). [For the class of estimators
considered in Berger et al (1977), r(t) = 1 for all t.] Our problem is to
account for the r(Y'le) term in (2:.15). To do so, we make use of a
distributional representation previously utilized in Gleser (1976).

Lemma 2.1. Let V have a Wishart distribution with degrees of freedom n and

parameter Ip’ and let V be partitioned as

(2.16) V= V-. v s Vypf Ixlro, Voo (p-1)x(p-1).
12 22

1 v L -1
= 2 2 =
Let 2 V12V22 .fo; any:squgre root V22 of V22. Then vy ' )11, £ and

.o . -1 2 i
V,, are mutually statistically 1ndep§ndent, v,  has a Xn—p+1 distribution,

% has a (p-1)-variate standard multivariate normal distribution, aﬁd\/22 has



a Wishart distribution with n degrees of freedom and parameter Ip—l'

Proof. This is a well-known result easily proved by making the indicated
changes of variables in the density of Vim

Let V! be partitioned as

: 12\
" AL 12 V) v

V = =
wi?ye 22

Wiz 22

similar to V in (2.16). Using the well known relationships between the

block elements of V and of V_1 it can be shown that

(2.17) v, = vf(1+z'v£;z), trv ! = trvgé + v1(1+2'V£;£)
and that
-1 1
Vi +2'9 _R.'\Fzz

(2.18) _V = X

(F'V5)" Vy
Note from (2.18),that for fixed values of % and V22, V is decreasing in v1
in the sense of positive definiteness, and that v1V is increasing in vy
Thus, for fixed values of ¢ and V22,
(2.19) . Al(Z*V) is decreasing in Vis VIAI(Z*V) is increasing in v

1°

It follows from (2.15), (2.17), (2.18) and Lemma 2.1 that

LV v A, (V) _
= 722,71 g i Dl -1 oyl k.
(2.20) T =E E “{r(Y le) v, [2 trV22 2v1(1+£ vzzl)- n*]}.

Since r(Y'le) is an increasing function of vy, we could try to use the
] v ,
following well-known lemma to pull E 1[r(Y'le)] out of the expected value

in (2.20).



Lemma 2.2. Let gl(s) and gz(s) map [0,«) into [0,») and let S be a
nonnegative random variable. Then if gl(s) and gz(s) are either both

nonincreasing in s or both nondecreasing in s,

E°[g, (5)g,(8)] > E[g, ()1E%[g,(9)].

Unfortunately AI(Z*V)/V1 times the quantity in square brackets in
(2.20) is neither a nondecreasing nor a nonincreasing funétion of vy- We
thus try a more indirect attack, attempting to pull Evl[h(Y'le)] out of the
expected value in (2.20). [Note that neither r(Y'le) nor h(Y'le) debend
upon % and V22.] |

‘ Using Lemma 2.2, (2.19), and the fact that h(t) is nonincreasing in t,

while r(t) is nondecreasing in t,

V1 AI(Z*V)
E {r(Y'Yv,) ——— [2 trV
1 v1

-1

2z - 2v (1+2'V, z)]}

| 1{Y'Y h(Y'YV )R, (E4) [2 trv2§-2v (1+z'v 20
(2.21)
-1

22"

Yy 1 1 V2

= E “{y'Yy h(Y'Yv,)}E {Al(Z*V)(Z trV- -4-9)}
: 1

=2v (1+z'v z)]}

v

E l{Y'Yh(Y'le)}E Y0, W) [2 oy

and
vi- A
E "{r(Y'Yv.)
1 1

vy v kA (Z*V) -
> E {r(Y'le)}E {- ——— 1}

v vy kA (ERV)
= {Y'Yh(Y'Yv v, JE

12V
A"

(- -0 1

n*
(2.22)

{———}'_

vy vy vy 'kAl(Z*V)

E {Y'Yh(Y'le)}E {vl}E 1 — 1,
n*

v .

vy vy kAI(Z*V)
= E {Y'Yh(Y'le}E {- — },
‘ (n*)



since
\'
1 _ , 2 - 11
Elvy] = E[l/xn-p+1] " n-p-1 n* °
Hence,
v Y'Wh(Y'Yv.) &,V__ v A, (Z*V)
1 1 22 1 1 k -
(2.23) T>E { —~ JE E { ———V—l—-—-[R(V) - o}
where
(2.24) R(V) = n*(2v, trv! . 4v2j.

It now follows from (2.15), (2.20), and (2.23) that A < 0 if for all I* with
A E¥) =1,

A, (Z*V) -
(2.25) gVl (REV) = 5;9} > 0.

Y1

This requirement closely resembles Equation (2.7) of Berger gg al (1977},
except that in place of their p(V) = 2 trV“1 -4 vz/vl, we have R(V) = n*vlp(V).
Using the arguments above, or by direct application of Lemma 2.2, it can be

shown that for every r*,

A, (Z*V) . AL (Z*V)
vV 1 kK V., 1 k
(2.26) E'{ _—‘. vl.l (p(V) - F)-} kd E {—-‘V—l——— (R(V? - n—*)},

so that kn obtained from (2.25) will be less than or equal to the value

>

of <, p obtained in Berger et al (1977).
s £ as

Since R(V) shares withp(V) the necessary invariance proﬁérties under

orthogonal rotation of V by a matrix of the form

, A (p-1)x(p-1) orthogonal,
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the arguments of Berger ot al (1977) can be applied to show that (2.25)

holds if 0 <k <k , where k is the solution to
- — n,p n,

Td(k) + 7 (K) 7, (K)

)+ Tk k)

(2.27) k = min { }

and where

T, (k) = EV{R(V)yII[VZZIQk(V) . Al(V)IQk W1},

Vo oo -1 ' .
T, (k) = BRIV (v “sz)IQk(V)}’
T (k) = Ev{vil[vzzlgk(V) + AI(V)Iﬁk(V) + Al(V)Iﬁk(V)]},
ri(k) = Ev{vil(vll - v22)IQk(V)},

Vyy is the first diagonal element of V22, and

1 if R(V) < k/n*,
IQ V) =1 - Iﬁ V) ={
k k 0 otherwise,

With the help of Dr. George Casella, the identical computer program, modified
only by replacing p(V) by R(V), used in Berger et al (1977) to calculate

the values of their c was used to calculate values of kn p by means of

2 L]

simulation. The reshlting values of kn‘p appeari in Table 1.
3

3. Remarks ‘ _ » _ -

When compared with‘the corresponding values of < p in Berger et al (1977},
3

. t
the values of kn p are admittedly disappointingly small (being &t best

’

90% of the values of <, ).  However, these values, even when applied in
td

connection with rules of the form (1.2) or (1.3), produce substantial
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improvements in risk when compared to CO(X,W) = X, especially when 6'6 is
small. In addition, since (1.5) is a far broader class than (1.2) or (1.3),
these constants allow for flexibility in the form of the estimator of 0.
In the case when I is known, certain rules of the form (1.5) with & reﬁlacing
(n*)-lw are known fo be generalized Bayes and admissible. It is doubtful
whether the same assertion can be made about the rules (1.5) when I is
unknown, largely because of the use of Al(QW/n*) in the formula for the
estimator.

Several very gross inequalities were used to obtain the results of this
paper. The use qf inequality (2.3) probably does not lose us much, particularly
since the inequaiity is also used in Berger et al (1977). The inequality (2.4)

is more sefious,‘amounting to adding the quantity
(3.1) 48[ Qu/m*y e @ oIy xwLowyg

to the risk of § h(X,W). Note that rcl)(t) = dr(t)/dt is positive, so that
there is a chance that a substantial improvement in risk for Gk h(X,W) over
) (X W) has been 1gnored in using the inequality (2. 4), F1na11y, the
inequalities leading from (2,20) to (2%25) add an additional inaccuracy to the
assessment of risk of Gk,h(x,W), as can be seen from (2.263. However, unless
we want to make use of more detailed information about therform of h(t), these
inequalities are unavoidable.

The principal accomplishment of this paper lies in deﬁonstrating that a
wide and functionally flexible class of estimators can bé used to dominate
the usual estimator GO(X,W) = X in risk when I is unknown (and p > 3), Whether
any particular»one of thesé rules, or any other rule, can be recommended for

practical application is still an open question,



[1]

2]

[3]

12

REFERENCES

Berger, J. (1976). Minimax estimation of a multivariate normal mean
under arbitrary quadratic loss, J. Multivariate Analysis 6, 256-264.

Berger, J., Bock, M. E., Brown, L., Casella, G., and Gléser, L. (1977).
Minimax estimation of a normal mean vector for arbitrary quadratic loss
and unknown covariance matrix. Ann. Statist. 4, 763-771,

Gleser, Leon Jay (1976). Minimax estimation of a multivariate normal
mean with unknown covariance matrix. Technical Report #460, Purdue
University,



TABLE 1

Values of k
n

]
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n

P 10. 12 14 16 18 20 25 30
- .07 .41 .58 .75 .87  1.20 1.2
-- 1.00 1.45 1.79 2.02 2.25 2.78 2.85
.21 1.46 2.11 2.78 3.10 3.39  4.15 4.28
-- 1.38 2,58 3.47 3.98 4.37  5.25 5.58
.36 2,87 3.93 4.70 5.27  6.51 6.92
wm--  2.44 4,19 5.12 5.74 7.41 8.14
1.22 3.86 5.56 6.28 8.64 9.16
———— 3,66 5.17 6.80 9.07 10.22
1.28 5.18 7.10 9.95 11.34
- 4,21 6.52 10.44 12.06

.94  6.25 10.94 13.11
meee 4,58 11.14 13.62
-mm= 10,73 14.19

——--  10.91 14.71
10.45 14,23
9.30 15.29
14.84

B b bt bt et el b bl et e
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14,52



