' POISSON MIXTURES AND QUASI-INFINITE DIVISIBILITY
OF DISTRIBUTIONS

by
*
Prem S. Puri and Charles M. Goldie

Purdue University, Lafayette, Indiana, and
- University of Sussex, U. K.

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #509

September 1977

*

These investigations got started while working on the project at the Statistics
Laboratory at the University of California, Berkeley, supported by the auspices
of the U.S. Engrgy Research and Development Agency and were completed under the
support of U.S. National Science Foundation Grant No: MCS77-04075, at Purdue

University.



POISSON MIXTURES AND QUASI-INFINITE DIVISIBILITY
OF DISTRIBUTIONS .

by
*
- Prem S. Puri and Charles M. Goldie

Purdue University, Lafayette, Indiana, and
University of Sussex, U. K.

A ANIRORRCTAON.
Let Z be a proper nonnegative integer-valued random variable (r.v.) with
probability generating function (p.g.f.) G(s) defined for Isl <1, as

[+ ]

¢)) 6(s) = Es?) = J s¥p(z=k).

' k=0
For every such r.v;'dealt herewith we assume that P(Z=0) > 0. This is without
loss of generality, for otherwise we can always subtract frdm Z an appropriate
positive integer in order fo satisfy this. The distribution of Z is said to be
-a mixture of Poisson or simply a Poisson mixture, with a miiing distribution

functiqn (d.£.) F concentrated on [0,*), if for k = 0,1,2,...,
. K , _

2 P(z=k) = [ {7 & dF(x),
5 K
so that
(3) G(s) = [ exp[-x(1-s)]dF(x), Is] < 1.
0

* : ;
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Let the Laplace Stieltjes transform (L.T.) of F (or Laplace transform (L.T.)
of the probability density function (p.dff;) of F, whenever F is absolutely

continuous) be given by

(4) CE0) = [ exp(-0x)dF(x),  Re(0) > 0.

0
By an abuse of lenguage, if the d.f. F of a r.v. X has a ceftain property,
‘then we shall say'that the r.v. X df the cofresponding F or'F* or G, as the.
case may be, has such a property.

The Poisson mixture defined by (2) is also known in literature as
compound Poisson with perhaps the only exception being_Fellet‘(1968; 1971),
although in hie 19433peper (Feller, 1943), he too called these asfcompound
Poisson. But what he called than as Generalised Poisson, in (Feller, 1968,
1971} he calls them.as compound Poisson (see also Haight (1967), p. 45).
Anyway without Qorfying about the existing terminology, we shall call these
as Poisson mixtures. .

The Poisson mixtures have arisen many times in the pest in several live
situations. In the well known studies on accident proneness due to Bates and
Neyman (1952a,b), these mixtures, among others, were used as possible models
of the underlying mechanisms there. The reader may also refer to Neyman
(1939) and Feller (1943), for their relevance in the context of Neyman's
contagious distrihutions. Feller (1943) also gives several éexamples as’
special cases of the Poisson mixtures. Basically in any_situatidn, where the
events are rare ahd:een be reasonably considered as Poisson distributed for
each individual member of the population and furthermore if it is believed that
the population is inhomogeneous with respect to the Poisson parameter, then the
Poisson mixture may be considered reasonable as an appropriate model for the

situation.



Again, it is ‘well known (sce Teicher (1961)) that a'PQisson mixture as

given by (2) identifies F, i.e. if

k k

(5) [fre ™ 0 = [ &
5 kI

O\ 8

g‘*dFZ(x),

1

properties of F through those of G and vice versa. 1In particular, we shall

for k = 0,1,2,..., then F, = F,. Thus it is natural to study certain

- be interested herefiﬁ the infinite divisibility properties of F and G. For
this, it is not too difficult to seé tﬂrough examples (sge example (b),
Section 5) that not all Poisson mixtures are infinitely diviSible (i.d.).
On the other hand, it is known (see Maceda (1948)) that if F in (3) is i.d.,
so will be the corresponding p.g.f. G. And since from (3) we have
G(s) = F*(l-s), ]sl.:_l, one might expect the converse also to hold true;
namely if G is i.d.;_so will be F*. 'Unfortunately thisrié false. In fact
in Section 5, we shallldiscuss an example (e) in some detail, where G is i.d.
while the corresponding F is not. Among others, the questibns that are raised
and answered in this paper are as follows: |

 ,(A) Given a_p}g.f. G, obtainrnecessafy and sufficient conditions in order
that it be a PoiSSOh’mixtufe (Section 2).

(B) Given a Poisson mixture G, obtain necessary and sufficient conditions
in order that its miking distribution F be i.d._(Section‘é);

(C) Given a mixing distributibn F, obtain necessaryrénd sufficient
conditions in order that tﬁe corresponding Poisson mixfure be i.d.

In order to study questions such as (C), we call a d;f. F concentrated on
[0,«) as quasi-infinitely divisible (q.i.d.), if when used as a mixing
distribution, it renders the Poisson mixture i.d. In section.S, we generalize
this cbncept of q.i.d. to what we call A-q.i.d. defined fér A > 0, so that the
q.i.d. class becomés_é A-q.i.d. class with X = 1. The c1a$s¢s of A-q.i.d.

distributions for various A have the interesting property, namely that they



prO\\de a nestod famlly of classes of distributions wh1ch partlally to various
extents, fulfil the conditions of infinite divisibility. 1In faCt, as it turns
out, the intersection of all X-q.i.d. classes is precisely the class of i.d.
distributions over [0,«). We label the union of A—q.i.di classes over all

A >0, as *—q.i,d class In section 3, we study some necessary and sufficient f
condltions for an F to be A -q.i.d. It is known that the cumulants of any i.d.
F over [0,=), as far as they exist, are nonnegative (see. Steutel (1970), p. 90)
We show that this property holds more generally for all F's that are *-q.i.d.
In section 4, we study some closure properties of Poisson-niXtures, A-q.i.d.
and *-q.i.d. classes‘with.respect to operations such as translation, change of
scale, convolution,'mixing, convergenoe in law, etc. In-seotion 5, we give
examples of distributions of various types.

Finally, it is appropriate to add that the‘characterization of Poisson
mixtures (see section,Z) and the concept of q.i.d. was first'introduced and
studied by Puri (soerPuri (1976), for an abstract) in an eariier report. The
generalization of o.i}d. concept to A-q.i.d. and *-q.i.d. yas suggested by the
second author, who.refereed that‘report. Both authors are-grateful to the
Editors of the'Applied Probability Journals for their suggastion, which led to
the present collaboration.‘

é. quﬁ.p A INFINITE ’ LITY O MIXIN STRIBUTIONS.
For an arbitrary p.g.f. G as defined in (1), it is evident that

(6) G(1) =1, 0 i-G(s) <1, and 0 < cM(sy < ©, n=1,2,...,

holds for all real O i_s < 1, where G(n)(s) is the nth derivative of G,
which always exists for n>1, and |s| < 1. The following theorem implies
that if the condition (6) holds for all real s < 1, including the negative

values, then G must be a Poisson mixture with some mixing distribution F.



THEOREM 1. A function G is a p.g.f. corresponding to a Poisson mixture if

and only if G(*) is defined, has continuous derivatives 25'311 order and

satisfies (6), for all -» < s < 1, Furthermore under these conditions, the

. . . *
mixing distribution F is characterized uniquely with itS»L:T, F given by

(7 F (6) G(l 8), Re(6) > 0.

PROOF. If G is given to be a Poisson mixture for some F as defined by (3),

then the conditions of the theorem trivially hold. Conversely, let a G satlsfy
these conditions. Then for n = 0,1,2,..., the following equivalent inequalities
hold.

S >0, ¥ real -» < s < 1 e 6™ (1-u) >0,.Vreal u > 0
@ (- —anR(u)'>10- V real u > 0
: du - o

where R(u) = G(i-u). Thus the function R is completely mondtone (c.m.) for

real u > 0. As such by virtue of Bernstein's theorem (See Feller (1971),

© . p. 439), since R(O) G(l) = 1, there exists a probab111ty distribution function

F concentrated on [0 °°) such that for real u > 0.

®
R(w) = £ exp (-ux)dF (x),
which is to say thét_C is a p.g.f. corresponding to a Poisson mixture with
mixing distribution F. That the mixing distribution F is characterized
uniquely through t7), follows from the analytic continuattbh of G from its
domain of analyticity {s: Isl < 1} to that of F*(l-s), namely {s: Re(s) < 1}. E].
| It may be.réharked the conditions of the above theorem»in particular imply
that G is strictly,positive for all real -» < s < 1. Thgs in order to answer
the question (B) raised-in Section 1, we consider such a‘p.g.f. G, so that
log G is well defjned for all real -« < s < 1. .Again it is known (see Feller
(1968), p. 290) that.in order that a p.g.f. G be i.d., it is necessary and
sufficient that for lsl < 1, it has the representation

(8) - -log.G(s) = A(1-H(s)),



for some positive X and a p.g.f. H(s). Here H(s) can be expressed as

H(s) = 1| + {-lnﬁ G(s) and if G is defined and satisfies 6 < G(s) <1,

Vrcal -» - g . l,.thcn using this rclation, the definition of p.g.f.

H(s) c¢an be extendedvto all values of -« < s < 1. Based on such an H(s)
corresponding to a.given G, the next theorem gives a necessary and sufficient.
condition (9), in order that the mixing distribution Fvbe‘i.d. Evidently, if
one desires the mixing distribution F to be i.d. one must reduire that the
correspbnding mixture G be also i.d. Since our Theorem 2 is essentially an
adaptation of é théofem in Feller ((1971), Theorem 1, p. 450), where we take
G(s) = F*(l-s), Q? < 5 2 1, and also since in part it follows from our

Theorem 1, we shall omit its proof.

THEOREM 2. (a) - Let_g_given p.-8.f. G be defined and satisfy 0 < G(s) <1,

Vreal -= <s <1, and let G be i.d., so that it satisfies (8) for |s| < 1,

for some X > 0O andtg_g.g.f. H. Let the extended definition of H(s) =1 + %log G(s)

—

“for -= < s < 1, have the continuous derivatives H(n)(s) g£ all order, which

satisfy the condition

(9) H(n)(s) 3_0,'Vh > 1, and real -» <5 <1,

Then the G is a Poisson mixture with an i.d. mixing distribution F. Furthermore

for every n > 1, [G‘(s)]l/n is also a Poisson mixture with'gg i.d. mixing

. . . .. * * 1/n
distribution Fn satisfying Fn(e) = [F (8)] .

(b) Conversely, suppose G is a Poisson mixture with an i.d. mixing

distribution F. Then G is i.d. and satisfies (8) for some A > 0 and a p.g.f.

H. Furthermore G and hence H(s) =1 + %-log G(s) ig_defined Vreal -» < s <1,

Also H has the continuous derivatives of all order, satisfying (9).

Remark 1. Note that in the above theorem, the condition (9) is not

e ————— :
required to hold for n = 0. On the other hand, if in addition to (9), we also
have 0 < H(s) < 1,:V_-w <s <1, then from Theorem 1, it would follow that the
p.g.f. H itself is also a Poisson mixture. Consider, for example, the case

where the mixing distribution F is a stable distribution with



. . , |
(10) F (8) = exp(-a8Y), 0 <y <1, a >0, 6>0,

The corresponding mixture is given by the p.g.f. G(s) = exp[-a(l—s)Y],
which is i.d. as expected, and is expressible as exp[-k(l-H(s))], for any

A > a, with the corresponding H(s) given by

(11) CH(s) =1 - %{1-5)Y.

- Clearly H(s) satisfies (9), although not for n = 0, so that H is not a
Poisson mixture.; Or the other hand, consider the case where the mixing
distribution F is negative binomial with
* o -0

(12) ~ F (8) = p[1-q exp(-6)] , a > 0, 0 <p =1-q < 1.
Then for any A > -o logp,the H(s) corresponding to the Poisson mixture

*
G(s) = F (1-s), isﬂgiven by

(13) | H(s) =1+ %-log{p[l—q exp(s—l)]-l},

which satisfies (Qj and also that 0 < H(s) <1, V- <s <1, so that here the
p.g.f. H(s)'itself-is a Poisson mixture and this can be easily verified.

Remark 2. - If we wish to identify all Poisson mixtures with an i.d.
nixing distribution;'one way would be to start with an i.d. mixing distribution
F concentrated 66 [0,«) and thén,simply take the p.g.f. for the corresponding
Poisson mixture as G(s) = F*(1~s). On the other hand being i.d., F* must have
the representation (see Feller (1971), p. 450)

l_e—xe

(14) "~ log F (8) = e &),

O 8

for some nondecreasing K such that

(15) [ xlakeo < -
1

Thus we have shown that g_p.g.f. G i§_g_Poisson mixture with an i.d.

mixing distribution, if and only if




. . o l_e-x('l-s) ‘ o
(16) - log G(s) = [ dK(x), for -» < s <1,

0

for some nondccrcn§iﬁg K satisfving (15). This can also be ¢asi1y obtained
using the condition (9). In fact if H of Theorem 2 has the first moment
Hcl)(l) finite, so that H(l)(s)/H(l)(l) itself is a p.g.f., one can easily
show that G will have for some d.f. F1 the representation _

- -x(1-5)

an - tog o) = My e gp (), =<5 <1,
R , _ 0 o
%
with Fl(e) =.H(l)(1-6)/H(1)(1), so that H(l)(s)/Hcl)(l) is a Poisson mixture
with mixing distribution Fl' |
We close this section with the following corollary, the proof of which,

being rather straightforward, is omitted.

.. COROLLARY 1._;Lét F be a distribution concentrated on [0,») and let

. .
G(s) = F (1-s) be -the corresponding Poisson mixture. Then F is i.d. if and

only if for every positive'integer n, [G(s)]l/n is a p.g.f. and is a Poisson
mixture. - |

As mentioned eariier, a Poisson ﬁixture is i.d. whenever'fhe mixing
distribution F is i;d. The converse however is not always true (see exampie
(e), section 5).,'Thﬁs in order to answer fhe questions such as (C) raised in
section 1, we ihtfdece the notions of quasi-infinite diviSibility as follows.

DEFINITION 1. A distribution F concentrated on [0,») is said to be

'quasi-infinitely-divisible (q.i.d.),'if when used in (3)'as.a mixing
distribution, it renders the Poisson mixture i.d. (see also_Puri (1976))

DEFINITION 2. For a given A > 0 and a d.f. F on [0,=), the p.g.f. G defined by

>}

(18) G(s) = [ exp[-Ax(1-5)JdF(x), |s| < 1,
_ _ 5

will be called as A-Poisson mixture, mixed by F.



DEFINITION 3. A distribution F on [0,©) is said to be A-q.i.d. for a given

A > 0, if the corresponding A-Poisson mixture is i.d. It'will be called
*Qq.i.d. if it is A-q.i.d. for some A > 0.

Thus a q.i.d. law is A-q.i.d. with A=1. For a givenfk > 0, let 3& denote -
the class of A-q;i.d. distributions over [0,»), so that 31 is the class of all
q.i.d. laws. The”class d, of *-q.i.d. laws.is then simply U &. Also let ix7

>
be the class of those distributions on [0,«) which are A—q.;.g. for every A > 0,

F 3 R
so that &, = N 3&. Let X > 0 have d.f. F, with L.T. F . Consider a Poisson

process with izge i>0, which is independent of X. 'Let-NA(X)'denote the number
of e?ents of theiPoiSson process occurring during the random time interval
[O,X].i Then the distribution of NA(X) is A-Poisson mixture, mixed by F. Also
F is A-q.i.d. if énd only if NA(X) is i.d. Again, it is evident that every i.d.
distribution F is’A;q.i.d. for all A > 0. In fact as we shall see. later, the
set & is precisé1y ;he set of all i.d. laws on [0,®). However first we shall
give a characteriiétion of A-q.i.d. distributions. It is known (see Feller
(1971)) that F* is i.d. if and only if -F*(l)(e)/F*(e) is completely monotone
(com.), i.e. iff | | |
(19) , » t:gdn[-F*(l)(e)/F* _ E

» T 'F (6)] > 0, n=0,1,2,...,
holds for all real 6 > 0. The following theorem shows that for any F*,
condition (19):holding Eﬂll for 8 = A, is necessary as wéll as sufficient,

* .
in order that F ‘be A-q.i.d. for a given A > 0.

THEOREM 3. For a given A > 0, F ¢ 3, iff (19) holds for 6 = A.

. B -
PROOF. F is A-q.i.d. if and only if G(s) = [ exp[-Ax(1-s)]dF(x), Is| <1,
—_— . 0 |

be i.d. On the other hand, it is well known (see Feller (1968), p. 290) that

p-g.f. G will be i.d. if and only if
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3

L G(s) . k
(20) ogf==-l = ) as, 0<s <1,
607 2

with a, > 0, Vk > 1, or equivalently
(21)

1)
) L) G((s) | '0 20, n=0,1,2,... .

- | .
Replacing A(1-s) by 6 and using the fact that F (8) = G(1-§b, (21) becomes
equivalent to (19) holding only for 6=A. ' : 0

REMARK 3. ‘ Note that (20) and hence (21) are also equivaleﬁt to

(22) "M s)/6(91 > o, n=0,.,2,...;,¥0 <s < 1.

This in turn implies an equivalence between (19) holding for 6 = A and it
holding V0 < 8 < A. In view of theorem 3 it therefore follows that for

0 <A <X, we have & < & . Thus the A-q.i.d. classes & for various
1 2 _ : Az Al A

A > 0, provide a nested family of collections of distributidns which partially,
to various extents, fulfil the conditions (such as (19)) of infinite divisibility,
This is formally stated in the following theorem, part (b) of which follows, in
part, from the fact that i.d. F satisfies (19),,V e >0.

THEOREM . 4. (a) ‘The.familx {3&; A >0} is a nested family in the sense that

for 0 < Al < )\2,-': J)‘Z c 311.

(b) A nonnegative r.v. is i.d. iff it is A-q.i.d. for an unbounded set of

A >0,

(c) The set J = N 3 is precisely the set of all i.d. laws on [0,).
A>0
The following corollary easily follows from the definition of

A-quasi-infinite d1V151b111ty and theorem 3.

COROLLARY 2. In order that an F be A-q.i.d., it is necessary and sufficient

that for every n. > 1, [F (A (1-s))] /n |s] <1, be ap. g f. However if a

A-q.i.d. F is not i. d ‘then there must exist an integer n > 1, such that the

p-g.f [F (a(1- s))] / is not a A-Poisson mixture.



11

Comparing"cofoilaries 1 and 2, it is interesting to note that in order
that F be i.d., one must require for every n not only that -[F*(l-s)']l/n be a
p.g.f., but also that it be a Poisson mixture. On the othéf hand for it to‘he
q.i.d., it is onlY'éufficient that for eVery_n, [F*(l-s)]'l/n be a p.g.f. .Same
comﬁent also holds fof A-q.i.d. laws. Again it is now evident (see theorem 3
and remark 3) that any known condition for infinite divisibility of F (8)
required for all 6 > 0, when restricted only to 6 = A, will typically become
a cbnditioﬁ for its A-quasi-infinite divisibility. Of céurse, in view of
remark 3, this in general will also be equivalent to holdihg VO <o <A
Thus foflinstancé, fdllowing qudie (1967) (see also Stéutéll(1970), P- 81),.
in theorem 5 bel@w,”we give without proof another necessary énd sufficient
condition for an'Ff to be A-q.i.d. For this, we define forbe > 0, the sequence

(23) b, (8) = 17 [ <X exp(-0x)dF(x), k=0,1,2, ...,

"O‘ﬁB

and the quantities ak(e) determined successively for k i 1, from the relations

(24)

I~

bk a = (n+1)bn+1,(n > 0).

k=0

* ' ‘
THEOREM 5. An F is x-q.i.d. iff the quantities ak(e) defined by (23) and (24)

are all nonnegative for 6 = A and hence. V0 < 6 < A in view of remark 3. A

sufficient condition_for this Eg_hqld is that the sequence {bk(e)} satisfy

2
(25) Pe1 Prog 2 By

for k > 1 and for 0 = A,

The condition in the above theorem of requiring ak(ej-for 8 = X and hence
for all 0 < é.i X{jto be nonnegative, can be shown_(see'Steutel (1970),
pp. 90-91) to be équivalent to requiring the cumulants Kn(e), n=1,2,..., of
the distribution |

(26) exp(-0x)dF(x) /F (8), x > 0,
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to be nonnegative for 6 = A and hence for all 0 < 6 < A, Note that as long as
8 > 0, the cumulénts of (26) always exist. Hoﬁever lettihg-e + 0, it follows
that the cumulanfs of any *-q.i.d. distribution F, as faf as.they exist, are
noﬁnegative. That'they are nonnegative for i.d. F is well known (see Steutel.

(1970), p. 90). Thus we have

COROLLARY 3. (a) Ad.f. F is r-q.i.d. iff the cumulants.Kn(e) of the

d.
diStfibution‘defiﬁed'gx (26) are all nonnegative for n=1,2,..., and for 6 = A

and hence, V0 < @ <AL

(b) The cumulanté of any F e &, gi far as they exist, are nonnegative.
Part (b) of fhe abové corollary raises the natural question about the
existence of distributions concentrated on [O;m), but-nof bgionging to &,
and yet having all their cumulants existing and nonnegative. The answer to
this is that such-aiStributions do exist; see example (f) of section 5.
Finally, the folloQing theorem gives another ﬁecessary ahd suffiéient
cqndition, which is easier to use in order to establish'the A-quasi-infinite

divisibility of a given d.f. F over [0,«).

. . .
THEOREM 6. A d.f. F concentrated on [0,«) is A-q.i.d. iff log F (8), when

restricted to 0 < 8 < A, has the representation
. ' . * e
(27) - log F (8) = u[H(1-p)-11,

for some y > 0 and ap.g.f. H.

. ) . . * . .
PROOF. It follows by noticing that the A-Poisson mixture G(s) = F (2 (1-s))

is i.d. iff
(28) log F (A(1-5)) = u(H(s)-1), 0 <5 < 1,

for some u > 0 and a p.g.f. H. - | O
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4 SROSHRERRUURRTIES.OE % and .-
In the following subsections we study some of the closure properties of
Poisson mixtures and the classes & and d,, with respect to change of scale,

A

translation, convolution, mixing and convergence in law.
Ak SHOBEE AL VR TRANSHATIEN

The following theorem can be easily established by using the definitions
of X-q.i.d. and *-q.i.d. laws, theorem 3, remark 3 and the nested property of

the family {d,, 1 > 0}.

THEOREM 7. (a) -If a nonnegative r.v. X belongs to &,, then ¢ X ¢ &,, for

every ¢ > 0.

(b) If Xe o, then cX ¢ SR/C for ¢ > 0 and hence cX ¢ &, for all 0 < ¢ < 1.

X?
() Xe 3 iff A Xe 3.

Again if a nonnegative r.v. X is A-q.i.d., then so is X+c for every ¢ > 0.
This follows from the fact that if NA(X) is i.d., then so will be NA(X+C).
Also let for some ¢ > 0, P(X >c¢) =1 and X be A-q.i.d. . Let F* and F; be the
L.T. of the r.v.é. X énd X-c respectively. Then since F:(e)_= exp(cB)F*(e),
we have

- Fe Doy /ple) = ek oy /8" o),

(29) P . . .
(-a/a0)"[-F (D (01 /p ()1 = (-a/a0)"[-F" D (6) /7" (0)7, n > 1.

Note since P(X >c) =1,
(30) - P Doy’ o) -k (o),

where £ has the d.f. Fe given by

(31) dF (x) = exp(-8x)dF(x)/F (8), x > c, and 8 > 0.

Again since Ec(g) >.c, it follows from the A-quasi-infinite divisibility of X
that

(32) -d/a0)"[-F D 6)E* (11| >0, n=0,12,....
C C 8=) -_
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and hence in view of thecorem 3, that X-c is also A-q.i.d. Thus we have shown
that all translations of mixing r.v.s. which keep them nonnegative preserve the
X-q.i.d. property. -Consequently, by normalizing each such r.v. through
apprqpriate translation, one may achieve the infima of their support és zero.
Furthermhre, in view of theorem 7(c),'one could further sténdardize the *-q.i.d.
random variables by multiplying them by suitable constantsto that they beiong

to 31. -Thus we have established.

THEOREM 8. 1t is possible to normalize through appropriate change of scale and

translation any r.v. belonging to &,, so that the resulting r.v. belongs to bl'

and has zero as the infima of its support.

Q&g. ggﬁxgkgllgﬂt‘hConsider the class of A-Poisson mixtures defined by (18)
(see definition 2, section 3) and generated by varying the mixing distribution
F over [0,«). Since-tonvolution of mixing distributions_coftesponds to the
convolution of théir‘Poisson‘mixtures, it follows that the class of A-Poisson
mixtures is closed'under convolution. In fact, since Poisson mixtures are
'power mixture' in- the sense of Keilson and Steutel (1974), it also follows
from their results. A s1m11ar argument leads to_the conclusion that for every
A > 0 the class 33 of A-q.i.d. distributions over [O,m)his_also closed under
convolution. Same holds also for the larger class 4,. Thu$ we have

THEOREM 9. (a) For each X > 0, the class of X-Poisson mixtures and the class

3& are both closed under convolution.

(b) IfF e d and F, € 3& , then F *F_ ¢ & W where A AXA, = min(}

s25)
1 Al-——z 5 172 7 T M, 1772 1°72

and Ai > 0,i=1,2, . It follows that the class d&, ig_closéd under convolution.

45 M&é&ﬁg. It is immediate from the definition that the Poisson mixtures
are closed under hikihg. However neither 3A for any A > O'hor the class 4,
of q.i.d. laws is closed under finite mixing. This follows from the fact

that a simple miﬁture of two different Poiséon distributions can never be i.d.
(see theorem II of Tortrat (1969), Keilson and Steutel (1972) and also

example (b), section 5).
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Let a sequénCe of d.f. Fn concentrated over [0,~) converge weakly to a

properbd.f. F, as n»», It follows that

o0

(33) - liﬁ f exp[-x(l-s)]an(x) = f exp[-x(l-s)]dF(x), |s| < 1.
, « 0 '

n+ 0
On the other hand, for each n let Zn be a r.v. having a Poisson mixture
distribution with miking d.f. Fn over [0,~) and suppose Zn converges in law

to some proper r’v"Z Let F be a subsequence of F converging to a
k .
possibly’ defect1ve d. f F, then for |s| <1,

[+

(34) [ exp[-x(1-s)dF(x)
0 : .

lim f exp[—x(l-s)]an (x)
0 7 k

n
lim E(s k),

E(sz) R

, . . .
so that F has to be a proper d.f. and F (1-s) is uniquely determined for

Isl < 1. By analyfic continuation F*(B) is uniquely determined for all
Re(é) > 0. As sﬁch, F converges weakly to F, and the distribution of Z

is a Poisson mixture with mixing d.f. F. Thus we have showﬁ that Poisson
mixtures can conﬁérge to a Poisson mixture only and this happens if and

only if the correspondlng mixing distributions converge weakly to the mixing
d1str1but1on of the limit. The same closure property w1th respect to
convergence in law holds for thé class of distributions FA for fixed A > 0.
This in part folloys from a similar well known closure property of i.d. laws.
Finally the class F;'Qf q.i.d. laws is not closed under convergence in
distribution, as is exhibited through a counter example (see example (g))
given in the nexf_gection. Thus we have

THEOREM 10. (a) -Poisson mixtures can converge to a Poisson mixture only and
e — —_——— —— —

this happens iff the mixing distributions converge»weakly'zgithe mixing

distribution of the limit.
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(b) For every fixed A > 0, the class JA ig_closed‘under convergence in

distribution. However the class &, is not closed under the same operation.

R+ EXAMPLES. In this section, we consider examples of‘p;g.f.'s of the types
{(a)~(e) listed below, some briefly others in detail. Somevof these are well
known, but are touched here for compléteness sake only. The types (a)-(e) are
mutually exclusive‘as well as exhaustive over all p.g.f.'s. Again'examples (H)
and (g) serve-as‘éountefexamples (see sections 3 and 4.4). In particular,
example (g) shows'thé existence of a sequence Fn convergihg-weakly to an F,
with F e g, Vn 3_1; but with F ¢ 3&,.

(a) Ap.g.f. G, which is neither i.d. nor a Poissonimixfuré.

(b) A p.g.f. G, which is a Poisson mixture, but is not.i.d.

{c) A p.g.f. G, which is i.d. but is not a Poisson mixture.

(d) A Poisson mi#ture G generated by an i.d. mixing distribution.

(e) A Poisson mixture G generated by a mixing distribution F, which is
*-q.i.d. but is not i.d. o

(f) A d.f. F concentrated on [0,), which does not belong to F, and yet has
all its cumulants.existing and positive. »

(g) A sequeﬁce of d.f. Fn 5.3; converging weakly to a d.f. F not belonging to
F,.

(a) Examples of this type are easy to construct. Any.nonnegative integef
valued nondegeneraﬁe r.v. which is bounded, has to be of this type, since being
bounded,‘it cannot either be i.d. (see Lukacs (1960)) or a Pdisson mixture.
Thus binomial and hypergeoﬁetric distributions would fall under this type.
Again an example of the unbounded case corresponds to tﬁe p.g.£. given by (11),
which by virtue of Theorem 1 clearly is not a Poisson mixture. That it is also
not i.d. follows:from the fact that H(l)(s)/H(S) does'not.haye the desired power

series expansion.
(b) All Poisson mixtures with mixing distributions concentrated on two

arbitrary points in [0,«) are not i.d. This result is due to Tortrat (1969).
Thus no distribution concentrated on two points in [0,») belongs to », (see

also section 4.3).
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(c) Let.H(s) be a p.g.f. of r.v., which takes only honnegative even
integer values. Then for some X > 0, the p.g.f. given by G(s) = exp[~A(1-H(s))],"
is i;d.; but cannot be a Poisson mixture, since the condition 0 < G(s) <1,
for all -= < 515;1, is not satisfied (see Theoreﬁ 1).

(d) The exémples of this type are plenty in the literature. The most
common is the onézﬁhére the mixing distribution F is a Gamma distribution,
-“yielding negatiye bigomial as the Poisson mixture. This arises in the theory
of accident proneness (see Bates and Neyman (1952a,b)). “Another less known
example touched briefly in Remark 1, Section 2, is where the mixing distribution

F»corresponds to a stable law with F*'given by (10).

(e) Examples_qf Poisson mixtures, where fhe mixing distribution is
*-q.i.d. but is not i.d., do not appear in literature so offen. We discuss
one in the folloﬁihg in some detail. It is well known that éll the 'proper’
‘mixtures (with positive coefficients) of exponential distributions are i.d.
(see Goldie (1967)). However there are mixtures of exponential distributions
with some coefficients negative and yet valid p.d.f.'s that are not i.d. (see
Steutel‘f1970)).. then such mixtures turn out to be *-q.ifd, More
specifically considef a mixing distribution, with
(35) F (8) = [abc + 62][(6+a) (8+b) (8+c)] ™},
where without loss of generality 0 < a < b < c, and are asSumed to be such
that the p.d.f. corresponding to F*, given by
(36) £(x) = Ao~ - Be™PX 4 ce™CX,
is nonnegative fdr all x > 0. The reader may refer to Bartholomew (1969) for
the desired conditions for this to hold. Since the characteristic function

/2

corresponding to F has real roots i-(abc)1 , it cannot be i.d. (see Luckacs
(1960)). However, we shall show that for every fixed A > 0, it is possible to
choose the constants a, b and ¢ appropriately so that it is A-q.i.d. From (35)

we easily have
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61 F D@/ e = [0+ i@aT T + [e-iabeyd !
B (L R (I RN (TSRl

so that for n=0,1,2,...,

(38 )" F D@/ @] = ey D L gy
f=A S
+ (A+c)7(ﬁ+1)-2r'cn+1)co$[(n+1)B];
where
; 2 Y 4 _
(39) r = (A"+abc)® and tan B = (abc)?/a.

Now in view of theorem 3, it is sufficient to choose a, b and ¢ so that (36)

is a p.d.f. and that (38) is nonnegative for all n > 0. Tﬁié is always possible.
For instance, if b=a+o,c=a+2q with o > 0, it turns out tﬁaf ? > 1 is sufficient
to make (36) a p.d.f. and in addition taking o > 2A sufficeéito make (38)
nonnegative fof all n > 0. Thus the family (35) of distributions»so obtained

is such that each member is not i.d. and yet it is A—q,i.d.vfor the given A,

Here the p.d.f. is given by (36) with

3a2 a.2
A = %[2a ot (&') (1+a)]

(40) B=(1+ 31+ 2a+ Ellgélq
C=30B+3+ 23
2 o’ "
(f) Consider the d.f. F with

| . 3.2
(41) F) =238 _ ..,
. (ova) 3 z

This is a special case of (35) with a = b = c. Its p.d.f. ‘is given by

: ’ 2
(42) f(x) = [1-2ax + E_L%Iil x2] exp(-ax),
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_1which can be,éasily'shOWn to be positive for all x > 0 by'ﬁsing the fact that
abi 1. As hefore, if is not i.d. Morcover, we shall show that therc exists
no positive » for which it is A-q.i.d. Suppose on the tontrary, there cxists
one such A. Then bx.virtue of theorem 3 and remark 3, (19) must hold for a;l
0 <6 <2, and n=0,.,2,... Following the lines of example (e), this can be

shown to be equivalent to the inequalities

o 62_1‘613/2 el
(43) -2 Z i'g' cos[(n+1)B], n=0,1,2,...,
(6+a)”

v 3
holding, V0 < 6 < A, where tan 8 = a /2/6. Now there must exist 6e(0,x] for:

which

v = lim sup cos[(n+1)8]
N>

is positive. On the other hand, since a > 1, the left side of (43) tends to

ZET0 as n-=o, contfadicting (43). Thus there exists no interval (0,)2] with
o - .

A > 0, in which -log F is completely monotone and hence (41) must not belong

to d4, and yet it can be easily shown that

(44)  (-d/d®)"[log F (8)1] >0, n=1,2,...,
| , o0

so that all its cumulants exist and are positive.
k(g) 'Considef again for each n=1,2,..., the F* of example (e)lﬁith b = a+a,
c = a+2a, a > 1, aﬁd a = 2/n, and call it F;. Evidently for each n, F:e &,
and yet as now, szconverges to the F* of example (), which was shown to be
not belonging to J,. ‘Thus the class J, is not closed under convergence in
distribution, as'waé'claimed in theorem 10.
8 RN SRNCHURING REMARKS

(i) The notion of quasi-infinite divisibility as introduced in Section 3,
strictly speaking,bmay be called as quasi-infinite divisibility with respect to
Poisson mixtures. It can therefore be generalized to quasi-infinite
divisibility with réépect to mixtures of an arbitrary family of distributions

suitably chosen.
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(iij Again, for the prescnt results, we were concefned only with the
univariate case, both with respect to the mixture itself.aé well as the mixing
distribﬁtion. Some of these, including the notion of quasi-infinite
divisibility, are easily generalizable td the multivariate case to cover, for

instance, ‘the multivariate Poisson mixture with p.g.f.,

. . © o k ‘
(45) G(sl,sz,...,sk) = f...fexp[ Z xi(si-l)]dF(xl,...,xk),
| 0 0 =1 |

with 0 <'s. <1, i = 1,2,...,k.

(iii) Finally one may also consider the more géneral question of
infinite divisibility of mixtures of ""Generalized Poisson" distributions.
The c.f. ¢ of a genéralized Poisson distribution is defined for an arbitrary
c.f. p and A > 0, as |
(46) O e@) = exp[-A(L-b )],

where u is a real (dUmmy) variable. The c.f. op for the generalized Poisson

mixture with mixing distribution F is then given by
(47) pp(uw) = 6(¥(W) = [ exp[x(¥(u)-1)]dF(x),
' 0
where G is the p;g;f. for the corresponding (simple) Poisson mixture,
consideréd earlier. For a given ¥ one may, as before, attempt to‘characterize

all the mixing distributions, which render (47) i.d. As a partial answer to

this, based on the results presented here, it is easy to show that for any

arbitrary vy, every'q,i.d. mixing distribution F renders the corresponding

generalized Poisson mixture i.d.
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