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ABSTRACT

This paper d1scusses the following problem of select1on.
Given a set of k (k>2) populations, select a subset which contains
all populations 'close' to a given control population. A Bayes
rule for the case of normal populations and Gupta-type rules for
normal and gamma populations are investigated. Applications to
problems involving tolerance regions in quality control are

described.

1. INTRODUCTION

Let HO,HI,...,Hk be k+1 independent populations with densities
f(x,eo), f(x,el),...,f(x,ek), respectively, where ei € ©CIR, the
real line, and HO is the control population. Let E = [a(eo) b(eo)]
be a given interval in IR. The subset of populations nl,...,nk

w1th parameters in E is of interest in many practical situations.



The choice of E of course depends on the problem in hand. For
instance, the problem of selection of all populations better than
Ho corresponds to E = (eo,m). Gupta and Sobel (1958) have
considered this problem for normal, gamma and binomial populations
and have investigated procedures for selecting a subset which
contains all populations better than a standard with probability at
least P*, where 0 < P* < 1 is a preassigned constant. Huang (1975)
has derived a Bayes rule for partitioning a set of k(k:}) normal
populations with respect to control. In the present paper we have
considered the case E = [a(eo),b(eo)], where a and b are known
functions of 00, -® < a(eo) <;B(eo) < », We give two examples to
show how the above problem arises in practice. Both of these
examples are adapted from Burr (1976). _

In the first example, a diesel engine plant had to maké_plunger
rods for forcing fuel through small holds. The diameter of the !
plunger rods was to meet certain specification limits. In this
situation, given several plunger rods, one may wish to select'a
subset of the given rods which meets the specification limits.

For the second example, suppose bearings and shafts are being
produced for assembly. In this situation it is important to insure
that the shafts will be capable of assembly at random into a
bearing and hence the diametral clearance, which is the difference
between the inside diameter of bearing and the outside diameter of
shaft, should be within some specification limits. Here,one may be
interested in the subset of pairs of bearings and shafts fdr which
diametral clearance meets the specification limits. - B

In Section 2 the problem of selecting a subset confaining all
normal populations with means in [A+90,B+60] has been investigated
from Bayes approach. In Section 3 the problem has been considered
in the subset selection framework of Gupta_(1965); For normal and
gamma populations, procedures have been proposed and investigated
which select a subset containing all populations 'close' to control
with probability of correct selection at least P*(O < P* :_1).



l2. A BAYES RULE FOR SELECTING
ALL NORMAL POPULATIONS 'CLOSE' TO CONTROL

| Let nb,nl,...,nk be k+1 independent normal populations with
means 60,61,.;.,9k; respectively, (ei € & C IR, i=0,l,...,k,k3})
and a common known variance ¢, We will say that Hi is 'close' to
no if A+ 80 5_ei <B+ eo, where A and B (-» < A < B < «) are
given constants. The goal is to select a subset containing all

populations close to no.

The action space G consists of all subsets S of {1,...,k},
including the null set. Assume that the loss function
L: GFXI x G- fR is given by

L(8,S) = igs 1[A+90’B+00] (6;) + igs I[A+90,B+BO]C(ei) (2.1)

where Ip(+) is the indicator function of a set D <{1,...,k}, and
D° = {1,...,k} ~ D. |

The mean 60 of the control population HO may or may not_be

known. We consider the two cases separately.

(1) 60 known..

Let i} be the mean of n independent observations from

Hi(i=1,...,k). Suppose the a priori distribution g(8) of

0 = (61,...,9k) is given by g(8) = 1 [¢ 1¢(r l(ei-u))]. where ()
i=1

is the density function of a standard normal random variablé. Then

the posterior distribution of 8 given the observations is

- k
g (gj;i:'--’;.) = .H

-1
i=1 [V"l ¢(V (ei-mi))]

where

(ucz/nJ* 5372
m, = 3 5 » i=1,...,k
(c"/n) + <

Nfre

azYz/n
(ozln) + 12



Let a = * 0 b = B+ 0° and let (-) denote the cumlative
distribut1on,function of a standard normal random variable. ;
Set Sy = {i: a<m <b, ¥(m) > 3 ‘ (2.2)

where

v = e -0y @

Let d1 be the rule which selects S1 with probability one. We show
that the rule d1 is a Bayes rule for the problem. As only Bayes
rules are being considered, it is sufficient to show that

r(dl,z) < r(d,x) for any nonrandomized rule d (2.4)
where r(d,x) is the Bayes posterior risk in using the rule d. Let d
select a subset S ¢ G with probability one. Then

rd,0 = [...[ Le,9)e (8, ,eklil,...,i‘k)del.f.dek
= g ¥(m.) + T [1-¥(m, 1 . ©(2.5)
i¢S ieS

We show that, if S+Sl, then r(d,x) > r(d;,x). The follow1ng cases
need to be considered:
(1) There exist i and j (1 < 1i,j <k) such that
iescnsl,jesns‘; - |
Let S' = (j,i)S, where (j,i)S denotes the subset obtained from
S by replacing j by i. Letting d' denote the rule which selects the
set S' with probability one, we have
r(d,x)-r(d',x) = Z(W(m-)-w(hj)) o <

where ¥(-) is given by (2.3). ‘
a+b

It is easy to see that the function ¥(y) is symmetric about 5
and strictly decreases with ly - E%E . Then by (2.2) we have

m, e[a,b] and ¥(m) > 3
m ¢[a,b] or W(m ) < &
a+by ‘ a+b
If mj é[a,bl, then Imi - == < Imj - 5

and hence
W(mi) > W(mj).



It is clear then that r(d, x) > r(d',x). Since S1 can be obtained
from S by the operation used above, the inequality (2.4) follows.
(ii) SCcs

It is e;sily seen from (2.5) that
r(dx-r(d),0 = ] [2¢(m)-1] > 0
1es°Ms,
by (2.2).
(iii) s =5,
In this case we have
T(dx)-r(d,0) = ] [1-2¥(m)] > 0.
ieSf’S‘l:

It follows that d1 is a Bayes rule for the problem.

(2) 90 unknown. | ‘ : _

Here we are given sample means §& from all k+1 normal
populations Hi(i=0,1,;..,k). Suppose that the a priori
distribution of (60,91,...,6n) is

ko a1, -1 )
g(.eo:els"':en) = I [T ¢(T (ei'U))] (206)
i=0
Then the peterior distribution of (90,61,...,6k) is

. . .
*(60, 1,..., K O,xl,...,x ) = Ho[v ¢(v (9 ~m. ))] 2.7

where mi(i=0,1,...,k) and v are given by (2.2).

. , .
Let S, = {i: A < m-my £ B, ¥ (m,-m)) > £} (2.8)

where W is obtained from ¥ by replacing v by vv/2. Also, let d be
the rule which selects the subset S2 with probability one. Then
using the fact that the posterior distribution of 8,-65 is normal
with mean m, -my and variance 2v2 we can show, as in case (1), that

d2 is a Bayes rule for the problem.



3. SELECTION OF ALL THE POPULATIONS
CLOSE TO CONTROL FROM SUBSET SELECTION APPROACH

In this section we investigate procedures to relect a subset
which contains all populatlons H which are 'close' to Ho with
probability at least p' » where P €(0,1) is a prea551gned constant.
Gupta and Sobel (1958) have used this approach for the problem of

~selecting a subset conta1n1ng all populations better than a
standard. ' '

1. Location parameter - normal populat1ons w1th common known
variance.

Let H be normal w1th mean 9 and varlance o (1 0 1,....k)
The mean 90 of the control populat1on Ho may or may not be known.
The two cases will be considered separately. ‘ : -

Let E = [eo-a,eo+a], where a > 0 is a_given constant.

Case A. 90 known.

A sample of size n, is taken from I, (i= 1,...,k). For selecting
a subset containing all populations w1th means in [6 -A,0 +A],

consider the following rule:

R,: select I, iff 6.-a- -92'< X. <0, 4+ a+ —22 (3.1)
A i 0 N i1~ "0 N~
i : B W

where the constant d > 0 is chosen to satisfy

p(csln ) > p ,0<P <1, '
Here CS stands for correct selection, i.e., the selection of all H
with Ie -0 | 2 a. Let k; and k, denote the true number of
populatlons with [e -0 | < a and |6 -8 | > a, respectively, so that
k1 + k = k. If we let prlmes refer to values associated with the
k p0pu1at10ns with Ie -6 I < a, then N

=

1
P(CSI )- I P(e-a-Ldix'_f_eo+a+Ld)
i=1 v"' 1 Vﬁ;'

ky (8)-61)/AT  a/aT
. n1 [o( 0oLl (3.2)




where (eo-ei)/ﬂ? aﬁq

L= ‘b( g - ) "d).‘
Now consider the function
(©p-wYAT  a/aT (9p-u) /AT av/aT
h(u) = &( - L4 01 + d)-0(— - —=-d) (3.3)

It is easily verified that the fhnction h(u) is symmetric about 90,
and is increasing (decreasing) if u < 0 (u >80 ) It follows that

inf h(u) = h(e -a) = h(® +a)
u-90

0_
Hence k1 2a/5;'
inf P(CSIRA) = I [o( + d)-9(-d)] (3.4)
16-0,]<a i=1

If k is known, then the constant d is obtained by equat1ng the
right hand side of (3.4) to P . In many situations k is not known
and a lower bound for P(CS|R R,) can be obtained by settlng k;=k.

Then the equatlon for d is given by

ZaﬁTT

n [o(
i=1

For unequal sample sizes, computation of d is difficult. If

+ d)-0(-)] =

n,=n for all i=1,...,%, the equation for d becomes

Za/-

v d) ro(@)-1 = /K | C(3.5)

aln

o(

For selected values of k, P » d-values satisfying (3.5)

have been computed and are given in Tables I and II.
TABLE 1

Values of d satisfying (3.5) for P = .90

\\\:F- .05 .1 .2 .4 .5

1.91 1.85 - 1.79 1.70 1.69
3 2.06 2.02 1.95 1.88 1.84
4 2.18 2.13 2.07 - 1.99 1.97
5 .

2.28 2.22 2.16 - 2.08 2.06



TABLE II

*

Values of d satisfying (3.5) for P = .95

a/n/o 05 1 2 .4 ST
. . :
2 2.19 2.15 2,08 2.00 1.98
3 2.34 2.30 2.23 2.16 2.15
4 2.45 2.40 2.34 2.27 2.25
5 2.54 2.50 2.44 2.37 2.35

Expected subset size for RA

The size of the subset selected by the procedure RA is a
random variable which can take values 0,1,...,k. Gupta (1965)
has proposed the expected size of the selected subset as a

measure of performance for a selection rule. We have,

E(S|R Ry)= Z P{H is selected in the subset}

i=1 .
k (e -0, )/" aln, . (8,-0,)/m, .a/m,
-1 =2 poa—t 2. L9 (3.6)

Specific Example

Given five normal population ni(i=l,...,5) with unknown means
and a common variance 1, we wish to select all the populations which
are 'close' to a standard normal control population with a = .1.
Observe that the problem is equivalent to selection of all )
populations with means in the internal [-.1,.1]. Using a program

for generating normal random variables with means el = -.1, ez'= .25,

8, = -.40, 64 = .15, 65 = .50 and variances 1, the following sample
means based on n=25 were observed:
xl = -,225, xz = ,278, .x3 = -,582, x4,= .246,_ xS = 705"

Here a/n/o = .5. For P* = .90, we have, from Table I,

= d(k,a/ﬁ?c,P*) = 2.06 and hence the rule R, selects all
populations with means in [-.51, .51]. Thus nl,nz and H4 are
selected in the subset. It can be seen from Table II that for
P = .95, the same three populations get selected.

-



PROBABILITY THAT EXACTLY ONE POPULATION IS SELECTED

Assume that the k unknown parameters are 6,...,0, 61, where 0
~and 6, satisfy Ie1 eol <ac<|e-8 | In this configuration it is
meaningful to compute the probab111ty that the rule RA selects
. exactly one population. We will consider only the equal sample size
case. ' '

We have

P{Rule R, selects exactly one population}

k

o i o — _
=i£1p{xie[60'a' =% rar ,/;]'XJ 07 : 90+a+/_,;]}
(84-8;+a)/n (6,-8.-a) v/ ‘ -
= [oc 0 1 + d)-ep(__o_%___ 0]
(6 'e+a)¢5 (6,-6-a)/n
10 (— rd) s (e -y
(90-8+a) (eo_e_a)/ﬁ'
+ (k 1) [o( + d)-@( -d)]
(8 -e#a) n (e e_a)
10— o (e -a) ]2,
(90-9 +a)v/n (eo-e+a)/;
[1-9(

)l _ O (3.7)

It should be noted that the constant d in this case is ebta1ned
by taking kl-l in (3.4) and equat1ng the resulting expression to P .

For selected values of k, P . a/’]o,(e -8)/n/g and (8,-8 )«"yo
the expected subset size given by (3.6) and the probab111ty of
selecting exactly one population given by (3.7) have been computed.
These values are shown in Tables III and IV. For example, if
P = .90, k=3, a’n/g = .4, (89=0,)/n/c = 0.32 and (8, e)/‘/g_345
then the expected size of the selected subset is 1. 21 and the
probability that only one population is selected is .76. It appears
from Tables IIT and IV that the expected subset size and the

probability of selecting only one population do not change



significantly as 91, the mean of the population close to control

varies inside [e -a,h +a]

Remarks: _ N . :

(i) It can easily be seen from expressioﬁ 3.7) thaé if ‘a and
|9-60| are large and lel-eol is small then the probability of
selecting exactly one population is close to 1. It should be
observed that the probability of selecting the populat1on close'
to control, i.e., the population with mean 91, is at least P .

(ii) It is also clear from (3.7) that the probability of
selecting exactly one population approaches unify as noe,



TABLE III

*
For P = .90 This Table Shows the Values of the Expected Subset Size
(top entry) and the Probability of Selecting Exactly One Population
(bottom entry) When the Unknown Means of the k Normal Populations

are 0,...,0,0,, Wiere |eo-61| <a<|o,-8]. '

0

/o .

a n/o .1 -2 .4

(eo'ep /!-1-/0'

0 0.08 0 .16 0 32

(89-8)/n/o (89-6)/n/o (8,-8) /o
1.74 1.74 1,72 1.72 . .. 1Q71 1.70
kLIS T o4 T 125 T Tlae 1445 Tag Tlog
1.06 1.06 1.06 1.05 1.05 1.04

2 . . 3 .

3.15 "'gs  Tlgs 325 e ige 345 gz .87
.95 .95 95 .95 ..96 .96
>15 95 95 525 o5 95 545 g6 95
2.63  2.63 2.60 2.60 2,57 2.56
1.15° "0a 04 125 o4 Tloa 145 o5 los
1.27  1.27 1.24 1.24 1.22 1.21
30315 oy Tl3p 325 i3z Tlgp 3450 ol o
97 .97 97 .97 .98 .97
.15 96 96 2 97 97 5% 98 .97
3.55  3.55 3.51 3.51 3.46  3.46
.1 "2 .0 2% "1 1 }Y o1 .m
1.51 1.51 . 1.47 1.47 1.42 1.41
4 315 Tlge Tz 325 Tgg gy 345 T e 62
.98 .98 .58 .98 99 .98
5.15. 97 97 525 g7 97 >4 98 .97
4.49  4.49 4.45  4.45 4.38 4.38
LIS "90 00 125 00 .00 % 00 .00
1.79  1.79 1.73  1.73 1.65 1.65
5 3.5 Ta a0 325 an as 345 T agas
.99 .99 .99 .99 99 .99
515 g7 g7 325 97 97 5% 93 .98



TABLE IV

For P* = .95 This Table Shows the Values of the Expected Subset
Size (top entry) and the Probability of Selecting Exactly One
Population (bottom entry) When the Unknown Means of the k Normal.
Populations are 0,...6,6,, Whete |eo-91| <ac« IeO-eI. : .

a’n/c 1 T, s 4

0 0.08 ) 32

(eo-e)lﬁyo (eo-e)vﬁvo (eo-e)vﬁyo
1.04 1.84 1.83  1.82 1.81  1.81
1157y Tlgs 125 Ty7 0 Tz nas o e lg
1.16  1.16 1.14  1.14 1.13  1.12
20 %15 T g 325 iy Tlpp 3445 g g
.98 .08 .98 .98 .98 .98
15 g7 lg7 525 lgg 197 5.45 oo og
2.77  2.77 . 2,75 2.75 2.72  2.72
LIS "1 Tlon 125 Tl Tloz L5 T Y0
1.44 1.44 1.40 1.40 C1.36 1.36
3315 Tlsg Tlsg 328 Tlgp lez 345 Tl Tlee
99 .99 .99 .99 99 .99
S5 les les 525 Tgg leg 545 g9 log
3.72  3.72 3.69 3.69 . 3.66 3.66
LIS o0 00 225 o0 o0 Y% oo oo
1,76 1.76 171 1.70 1.65 1.64
435 Ty T 3% Ty Tlap 3450 T Ui
1.00 1.00 1.00 1.00 1.00  1.00
15 98 los 55 “log lgg 545 g5 log
4.70 4.70 4.66 4.66 4.62  4.62
115 "00  loo 125 o0 oo 145 o0 oo
216 2.16 2.08  2.07 1.99 1.98
>35S Tog Ty 325 T Tiag 345 L o
sgs 101 101 o0 101 101 ... 10l 1.01

.97 .97 > .97 .97 .98 .98



Case B. 60 Unknown.

 In this case observations are taken from all of‘tﬁe (k#i)
populations. Let i} denote the sample mean of n, obseivations-'
from Hi(i=0,l,...,k). Consider the following selection rule:

Do Do

Ro: select NI, iff X,-a-—— < X, < X, + 2 + —> (3.8)
B 1 0 %FT- i-"0 /;T
R 1 i
Simple calculation gives
o k1
P(CS|Ry) = [ [ 1 H(e},y)]e(y)dy - (3.9)
- =] . )

where 6!,n!(i=1,...,k) and k, are as in Case A, and H(8!,y) is
defined by S

H(O!,y) = ¢(—= [Ty + 0 _-0!] + + D) B
i g 0 "i ‘
/.
| o _ (3.10)
/E; o a/H;r
"o =y + 8poil- 5= - D)
0

We can easily verify that, for each fixed y ¢ IR
(i) H(ei,y) is a continuous function of 9{ and hence attains its
minimum in the compact set [eo-a,e +a], ‘
g

(ii) H(ei,y) is symmetric about 8 = :E::y + 60, i.e.
0
H(L y + 8y + 81,y) = H(%y + eo-ei,y)" -
/E; n, .

(iii)i H(ei,y) increases (decreases) with 9{ if

[s) o

Mg My

It follows from (i) to (iii) above that, for each fixed Y,

. M6 g*a,y) if y< 0
] 'lnf, H(e{:Y) =
6.-6,)<a
i 0l=
H(eo-a,y) ify>ao



Hence k ‘ - ‘
0 N /nt n! 2a/n?
P(cSiry) > [ 1 [o¢/ =y + D)- c/——ly - == ~D)14(y)dy

- i=1 n, N ¢

= X AT 2afAT B (3.11)
« fLT [o =Yt —5 1+sp) .

0 i=1 0o L

n!
~o(/ ;;— y - D)1}e(y)dy

If ky. is unknown a lower bound for P(CSIRB) can be obtained by
replacing k1 by k in (3.11).

2. SCALE PARAMETER-GAMMA POPULATIONS
WITH KNOWN SHAPE PARAMETERS

Here Hi(i=0,1,.;.,k) has density g ' '._ —
- g2 . |
g(x‘e a) = = X
M B T(e, )
i/2
where @, are known positive constants. Let Gl(x;ei,ai) denote the

cunulative distribution function (cdf) of Hi. In this case we say

-x/ei .
" x,ei >0

s po
1/2-1 e

that Hi is 'close' to HO if

6
0
B 2% 2B

where B > 1 is . a given constant.

Case A. eo Known.

Let Xij(j=1,...,ni) be an independent sample of size n, from

i
X.. and consider the rule

nes1 3

M, (i=1,...,k). Define T, =

j=1 M
BO, Ti‘
.RA: ;elect IIi iff Ti'{o;:- Beoc (3.12)
where v, = n,a., i=1,...,k, and ¢ > 1 is chosen so as to satisfy

the basic P*-condition.



T, _ -
Using the fact that the cdf of —3-is-G1(t;1,vi) we obtain
: . ,i T

K se cvi o Bogv!
P(CSI A = 1 [eC 31,9;)-6) (7= s 1L,vp)]  (3.13)
i=1 1 i 8

where, as before, k; is the number of populations H with -§-< 8, <

890. and the primes refer to values correspondlng to the populat1ons
close to HO
It is easily verified that each term in the product on the right

hand side of (3.13) is increasing in ei if ei :.860, and . hence

k ' Bzv""
o  inf p(cslnA) = I [G (82 cv!;31,91)-6(— 2, v{)1(3.14)
0 i=1

. |
B9 289

If k; is unknown, a conservative value of ¢ can be obtained by
*
taking k1=k in (3.14) and equating the expression to P .

Case B. 60 Unknown.

In this case, consider the rule R': select I. iff_'
B i
BTO T. BT.C -
i 0
Vo€

.vo .“:(3'.15)

where T and vy (i=0,1,...,k) are defined as 1n Case A, and C > 1 is
a constant to be determlned from the ba51c p -cond1t1on.

2
k B Cv
H [Gif-—-—— u;l,v.)- ‘iftr"“ 1,v,)] ~

.g(u;l.vo)du : (3.16)

P(CS|RY) >

0h~8

A conservative C can be obtained by equating the right hand side of
(3.16) to P".

APPLICATION TO SELECTING VARIANCES OF NORMAL POPULATIONS

Let n; be a normal population with mean 3 and variance

o5 (1 0 1,...,k) We will say that n, is close to I, 1f

5_9 X 648, where 6, = Zoi and 8>1 is a given constant. Assume

i
s known.



When the means ui(i=0,1,...,k) are known, the statistic

ny
Si = ) (x

.-u.)Z/n. is sufficient for a?.
5=1 i i i

ij

For selécting a subset containing all populations with
variances lying in [60/8,908] consider the following rule:
2

0 2

280 2
§.Si f_ZBdoO, d>1,i=1,...,k.

d
Using the fact that niSiz/ai is distributed as 3 xi random
- i
variable, we can show that the equation for d is the same as that

Select IIi iff

~ obtained from (3.14) with v, =n,. If the means ui(i=0,1,,..,k) are
unknown and n, > 1(i=1,...,k), then we use §; in place of uy and

n.-1 for n..
i i
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