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Minimax Subset Selection for

Loss Measured by Subset Size
1. INTRODUCTION. A subset selection problem may be formulated as a multiple
decision problem. The distinguishing feature of a subset selection problem is
the goal of determining in which of k partition sets of the parameter space
the true parameter lies. In subset selection problems, attention is usually
restricted to rules which insure a certain minimum probability, P*, of making
a correct decision. Restricting attention to these rules, minimaxity is
investigated for loss measured by subset size and number of non-best populations
selected. The minimax values are found to be kP* and (k-l)P*, respectively,
under general conditions involving only the topological structure of the
parameter space and the continuity of certain functions of the parameter.
These results include problems involving nuisance parameters and (possibly
unequal) sample sizes greater than one. Using these results, rules proposed
by Gupta (1965) are found to be minimax in location and scale parameter
problems when the populations are independent and the densities have monotone
likelihood ratio. Other rules, proposed for selection in terms of binomial and
multinomial probabilities and multivariate non-centrality parameters, are
shown to be not minimax. A class of rules, proposed by Seal (1955) for the
location parameter problem, is also investigated. For certain values of k

*
and P , rules in this class are shown to be not minimax.

2. MULTIPLE DECISION THEORY FORMULATION. A subset selection problem may be
formulated as a multiple decision theory problem. The specific choice of the
action space sets the subset selection problem apart from other multiple

decision theory problems.



The sample space % is a subset of g-dimensional Euclidean space m®4.

1,...,Xq)

is a random vector with cumulative distribution function (c.d.f.) F(x;6).

The parameter space @ is a subset of TR". The observation X = (X

It is assumed that there exists a partition of © denoted by'{®i: i=1,...,k}

(k > 2). Often this partition is determined by the largest or smallest
coordinate of (some subset of) the parameter. If a particular parameter point
could be placed in more than one set of this partition, e.g., two coordinates
of the parameter are tied as largest, then the point is arbitrarily put in one
of the sets. This is done so the partition is well defined and, in some
problems, this insures the continuity of the risk functions. The general goal
of a subset selection problem is to determine, based on the observation,

which of the k partition sets contains the true parameter. The action space. G
consists of the 2k—1 non-empty subsets Ofl{ﬂl,...,ﬂk} where . is the statement
8c@;. So the action {ﬂl,wz}.corresponds to the decision_§;®1Q®2. The w.'s
correspond: to what have been called populations in the earlier subset selection
literature. In this terminology, for a given 33 the '"best population' is the
one true m. and the other (k-1) ﬂi's are the 'non-best populations." So a
statement like,"the best population is the one associated with the largest

parameter value,'" means ®i = {6: ei = max 6.} (with the exception that if ei is
‘ - 1<j<r

tied with other ej's as the largest, that parameter point may not be in‘®i).

By not assuming equality of k, q and r, this formulation covers problems
involving nuisance parameters and (possibly unequal) sample sizes greater

than one. The o-field associated with the sets ng®_and‘ﬁ will be the discrete

oc-field if the set is countable and the Borel o-field if the set is uncountable.



A measurable function, §: X x G- [0,1], is called a selection rule

provided that, for each x ¢ &, I8(x,a) = 1. 6(§3a) is the probability of
G
selecting subset a having observed x. The k functions defined by q&(z) =

2 §(x,a) are the individual selection probabilities. qﬁ(i) is the
{ain ea}

. probability of including ™. in the selected subset having observed x. A
selection rule is not, in general, completely determined by its individual
selection probabilities (see Nagel (1970), Example 1.2.1). But the risk of
any rule, for losses defined in terms of the quantities (2.3), can be computed
in terms of the individual selection probabilities. For this reason, any two
rules which have the same individual selection probabilities shall be considered
equivalent.

The selection of any subset which contains the best population is called
a correct selection, denoted by CS. Let P* be any pre-assigned fixed number

*
such that 1/k < P < 1. It has been traditional in the literature to consider

- , ,
only selection rules which satisfy the P -condition, viz.,

*
(2.1) inf P, (CS|¢@ > P .
3] -_
e —
This is obviously equivalent to the following k inequalities being satisfied,

*
(2.2) inf E ¢, (X) = inf P_(select ﬂ.lqﬁ >P , i=1,...,k.
SIS ) 1 -
e, ®
i i
*
The set of all selection rules which satisfy the P -condition is denoted by 55*.
Having insured a high probability of correct selection through the

*
P -condition, one would prefer a rule which selects small subsets, that is,
a rule which rejects non-best populations effectively. To reflect this, the

loss in a subset selection problem might be measured in several ways. The

criteria used in this paper are the following,



(2.3) i} Number of populations selected (S)
ii) Number of non-best populations selected (S5').
So the risk of a selection rule, R(8,¢), is given by i) the expected subset

size, EG(S[qD, or ii) the expected number of non-best populations selected,

By (S |9 .

*
3. MINIMAX VALUES FOR LOSSES S AND S'. A selection rule ¢ 85%# is minimax

with respect to S if

(3.1) sup B (S|¢) = inf sup B (S| 9.
o 2 or @ 2

The value on the right side of (3.1) is called the minimax value with respect

to S of the selection problem. Minimaxity with respect to S' is defined by
replacing S with S' in (3.1).

Schaafsma (1969) considered minimaiity in multiple decision problems in a
very general setting. But he did not restrict attention to rules which satisfy
the P*—condition. In this unrestricted problem he found that a minimax rule
(with respect to S or S') never selects a subset consisting of more than one
population. This will certainly not be the case in the restricted minimaxity
of (3.1).

The following subset of the parameter space will be of interest in finding

the minimax values. Let @, = {6e@: ee@; for all i=1,...,k} where A denotes the

0

closure of A.

Theorem 3.1. Suppose €, is non-empty. Suppose there exists_goe®0 such that - |

Ré@éeléctinfﬂqgigyupﬁersemicontinuous at-EO for all qeﬁi* and all i=1,...,k.

P

* .
Then the minimax value with respect to S is kP and the minimax value with

*
respect to S' is (k-1)P .



Proof. Let w(1),...,w(k_1) denote the k-1 non-best populations and w the

(k)

best population at 20. Then the risks at 90 are
k
(3.2) E, S| = ] P, (select 7,..|¢
%o i=1 20 1)
9 -1 |
(3.3) E, (S'|p = P, (select m,..,|9).
% i=1 2o (1)

*

. * *
The '"no data rule'" defined by qﬁ(§) =P, i=1l,...,k, has Pe (select w(i)|¢ )

* * * * *
= P for all“§ and all i. So E (S|¢) = kP and Eg(S'[¢) = (k-1)P for all g

* *
and the minimax values can be no greater than kP and (k-1)P respectively.

On the other hand, let ®(i) be the subset of & where ﬂ(i) is best. Since
90;®(i),‘and Pg-(select ﬂ(ij]qﬂ is uppér semicontinuous at EO’
Py (select ﬂ(i)lqa > inf Pg-(select w(i)lqa
-0 e,.
(1) ,
*
= inf Pe(CSIcp) > P
o ) Z
(1)
for any dp*. So
*
(3.4) sup E_ (S|®) > E. (S|@ > kP

-0

and

sup E(S'|@) > By (S'|9) > (k-1)P
@ < Ay

* *
for any qESP*. Thus the minimax values can be no less than kP and (k-1)P

respectively.ll

Remark 3.1. The hypothesis that Cb is non-empty is usually satisfied. If
@ = IXIx...xI (k times) where I is an interval on the real line and if the
best is defined in terms of the largest or smallest coordinate of the parameter,
then.Cb
© = {(0),...,8

=.{§_= (6,6,...,8): 6elI}. IfX has a multinomial distribution,

W8 >0, ) 6, = 1}. If the best population is the coordinate
i=1

associated with the largest or smallest coordinate of the parameter, then ®0 is

the single point (1/k,.:.,1/k). It should be noted that in both of these



6
examples, thé determination Of.®0 did not depend on which population was tagged
as best in those cases where two or more of the coordinates were equal and
largest (or smallest). It may be argued that in problems like the above, any
action is acceptable to the experimenter if_g;cb. In this case, one would set
R(6,¢) =0 for_Qer. But, even allowing this, Theorem 3.1 remains true, in the

usual (see Remark 3.2) case where Pe (select niqu"is continuous in 6, for (3.4)

can be replaced by

sup By (S| @ > lim B (S| > kp"
®

- .Efgo

and similarly for S'.

Remark 3.2. The upper semicontinuity assumption of Theorem 3.1 is much less
formidable than it appears. For example, Chung (1970) (problem 10, page 100)
can be generalized to state that if X has é density f(§3é) with respect to a
sigma finite measure u and if f(x;6) is continuous at 20 (as a function of g)’
for almost all (u) x, then Eew(z) is continuous at 9q for any bounded y. Since
Be (select ﬂilqa = Eeq&(z) and 0 hAN < 1, this shows that Pé (Select~nijqﬂ will
gg‘a continuous funé;ion of 8 on @ for any ¢ in any problem.;ith densities
which are (almost everywhere) continuous in the parameter.

Theorem 3.1 indicates a relationship between ﬁinimakity with respect to

S and S'. Theorem 3.2 shows that minimaxity with respect to S' is more easily

achieved than minimaxity with respect to S.

Theorem 3.2. Under the assumptions of Theorem 3.1, if ¢ ¢ &P* is minimax with

respect to S, then ¢ is minimax with respect to S'.



Proof.

sup E¢(S'[¢) = sup{E (S|g)-P,(CS| 9}
® - (@] - =~

| A

sup{E'e ('sl o) P’}
@ —

= kP P = (k-1)P .||

Theorems 3.1 and 3.2 can be used to show that in location and scale
parameter problems, two rules proposed by Gupta (1965) are minimax. In the
following, we will consider the case in which the population associated with
the largest parameter value is best. With the appropriate modifications,
analogous results could be obtained if the population associated with the
smallest parameter value is best.

Gupta (1965) proposed and studied the following two rules. For a
location parameter problem, define the rule R1 by

(3.5) Rl: select w, if x, > max x, -d i=1,...,k
i i 1<j<k j

*
where d > 0 is the smallest constant such that the P -condition is satisfied.
For a scale parameter problem, define the rule R2 by

(3.6) R2: select m. if XL > c- ma& X. i=1,...,k
1 1 1<j<k

*
where 0 < ¢ < 1 is the largest constant such that the P -condition is satisfied.

Theorem 3.3. Suppose Xl,...,Xk are independent. Suppose 6 is a location
(scale) parameter and Xi has density fei(xi) = f(xi—ei)(f(xi/ei)/ei) with
respect to Lebesgue measure, u, on the real line ((0,%’)). Suppose fer)
has monotone likelihood ratio. Then Rl(RZ) is minimax with respect to S

and S'.

Proof. Gupta (1965) proved that under the assumptions of independence and

monotone likelihood ratio,

*
sup Ee(S]Rl(RZ)) = sup Ee(S|R1(R2)) = kP .
) — ® —
20



The continuity assumption of Theorem 3.1 is satisfied for any location (scale)
parameter density with respect to Lebesgue measure (see Royden.(1968) problem 17,
chapter 4). The result follows from Theorems 3.1 and 3.2.||

Theorem 3.3 generalizes a result of Gupta and Studden (1966). They proved
that Rl(Rz) is minimax among all permutation invariant rules in £bf. Theorem

3.3 proves minimaxity among all rules in SP*.

4. NECESSARY CONDITIONS FOR MINIMAXITY. Any minimai selection rule must

satisfy certain equalities on the set @ These necessary conditions are

0
principally of use in proving that certain rules, in violating these conditions,
are not minimax. Theorem 4.1 provides the necessary conditions for minimaxity

with respect to S and Theorem 4.2 the analogous conditions for S'.

Theorem 4.1. Let ¢ be a minimax rule with respect to S. Suppose

.Pe(Séléét7ﬁ£f¢D?i§“upper“semicéﬁfiﬁﬁ6us’fer ali.i:i,,gyk;at'§5§®v. Then

0

a) P, (select m,|q = P = inf P,(CS|q) for all i=l,...,k

0 1 0

20 e -
b) Py (CS|@ =P = inf Py (CS|)

=0 @ -

*

c) Eq (S|9) = kP = sup E (S]q).

=0 e -

Remark 4.1. Condition (a) of Theorem 4.1 implies condition (b) and the first
equality in (c) as well as (a) and the first equality in (b) of Theorem 4.2.
If one wishes to verify these conditions for a given rule to check if it might

be minimax, only 4.1(a) need be verified.

Proof. As in the proof of Theorem 3.1, it follows that

*
(4.1) Py (select ﬂilcp) > P for all i=1,...,k.
-0



o w . -

By considering the 'no.data.rule" .o (x) = P:;sit follows that the minimax value
* .

is no greater than kP so, since ¢ is minimax and (4.1) is true,

kP~ > sup Po(S|q) > By, (519

I~ ©

)
Py (select m.|¢) > kP .
. i -
i=l —
All the inequalities are equalities and (a) and (¢) are true. (b) follows from

802€; - 11

(a) since Pe(Cslﬁﬂ = Pe (select wi]qa were
20 20
Nagel (1970) found that a condition related to 4.1(b), viz.,

inf P (CS|¢) = inf P (CS|q),
0

was an important property of just selection rules. Conditions 4.1(a) and (b)
have long been recognized (cf. Gupta and Studden (1966)) as intuitively
appealing properties of selection rules. This is especially true for those
problems in which»Cb consists of those.parameter points at which one of the k
populations has arbitrarily been tagged as best, e.g., a location or scale
Parameter problem in which best has been defined in terms of the largest or
smallest parameter. Theorem 4.1 verifies that, in terms of minimaxity

considerations, the intuition is justified.

Theorem 4.2. Let @ be a minimax rule with respect to S'. Suppose

®.. Then

Pe(selectqnilqﬂ is upper semicontinudus,forﬁall,i=1i5.§§“atigoa 0

*
a) P, (select m.|¢) =P = inf P (cS|¢ for all i=1,...,k, i#j, where 6,.e®,
90 i ® 6 —0775

D) By (8']9) =(k-DP = sup Eg(S'|9).
20 e -

Proof. Similar to Theorem 4.1.||



10

Remark 4.2. For those problems in which the random variables Xl""’xk are

exchangeable for 0e¢®, and the rule ¢ is invariant under permutations (symmetric),

0

the following is true for any §§®0:
Pg_(select W1|¢D = Pg_(select w2]¢9 =...= Pg.(select ﬂqua.

In such a problem, then, 4.2(a) implies 4.1(a) and (b). So for these problems,
the necessary conditions in Theorem 4.1 and those in Theorem 4.2 are essentially

. the same.

Remark 4.3. Santner (1975) gives conditions under which sup Ee(S|qD =
e

sup B (S| (sup E-e(S'lcp) = sup Ee(S'Icp)) which from Theorem 4.1(c) (4.2(b))
& = © = %
is a necessary condition for minimaxity.

In the following three examples, rules which have been proposed by other
authors for various problems will be‘examined. In all cases, the best
population is the one associated with the largest parameter value. In all cases
the continuity assumptions of Theorems 4.1 and 4.2 are satisfied for all go§®
since the densities (or probability mass functions) are continuous functions of

the parameter (see Remark 3.2).

Example 4.1. Consider the multinomial selection problem in which the cell
associated with the largest cell probability is best. Here‘@)O = (1/k,...,1/k).
Gupta and Nagel (1967) proposed using the rule R1 (see (3.5)) for this problem,
They found fhat for some values of k and P*, the inf Pe(CSIRl) did not occur at
(1/k;...,1/k). So 4.i(b) and 4.2(a) are violated'gnd R1 is not minimax with

- *
respect to S or S' for these values of k and P .
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Example 4.2. Consider the binomial selection problem in which Xl,...,Xk are
independent binomial random variables with success probabilities 61,...,9k.

@, = {(el,...,ek)lel =...= 6, =6, 0<0 <1} Gupta and Sobel (1960) proposed
using the rule R1 (see (3.5)) to select a subset including the population
associated with the largest ei. These authors réalized that Ee(S]Rl) was not
constant on>Cb, as required by 4.1(c) if R1 were to be minimax. Indeed,
Ee(isl) +~kas 6~ (1,...,1) and Ee(S'IRl) + (k-1). The same is true for

the arcsin transformation proposed by these authors.

Example 4.3. The following general problem has been considered by Gupta and

Panchapakesan (1972). Suppose 7. are independent populations with

1200

absolutely continuous distributions Fe (xi) where eisI (an interval on the real’
line). The family {Fe: fel} is assumed to be stochastically increasing in 6.
Gupta and Panchapakesan investigated a class of procedures for selecting a

subset containing the population associated with the largest ei defined by:

(4.2) : select w. iff h(x.) > max X.
Rh i i —-1:j:k

where h is a real valued function satisfying certain regularity conditionms.

®0:=‘{(6,...,8): 0el}. For any 8 = (6,...,6)5Cb and i=1,...,k,
4.3) P (select m, |R) = [ FX\lx))dF, x)
. 3 il%h 6 o' X)

By Theorems 4.1 and 4.2, if the procedure Rh is to be minimax with respect to
S or S', (4.3) must be constant on‘Cb. But Gupta and Panchapakesan have
found conditions under which (4.3) will be stfictly increasing in 6. Gupta
and Studden (1970) have established the strict monotonicity of (4.3) for the
non-central x2 and non-central F distributions when Rh is R2 (see (3.6)).

This is of interest in the problem of selection in terms of Mahalanobis

distance for multivariate normal distributions. Gupta and Panchapakesan (1969)
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have established the strict monotonicity of (4.3) in the problem of selection
in terms of the largest (or smallest) multiple correlation coefficient when Rh
is R2 (or an analogous rule). Both the conditional and unconditional cases
were considered as well as two different statistics, R2, the sample multiple

2

l *
correlation coefficient, and R © = R2/(1-R2). In violating Theorems 4.1(a)

and 4.2(a), all of the above rules are not minimax with respect to S or S'.

Remark 4.3. The fact that the above rules are not minimax was previously
reported in some cases. But the interesting point is that one need not
always examine Ee(SIqﬂ or Ee(S'lqa to determine that a rule is not minimax.

Often in investigating the least favorable configuration, i.e., that gb for

which Pe (CS|@ = inf Pe(CSlqﬂ, one can reduce the problem to investigating
% ,

inf Pe(Cslqa. This, for example, is the case for just rules as defined by

@0 -

Nagel (1970) and Gupta and Nagel (1971). If one finds that Pe(CSIqﬁ is not
constant on Cb (and some mild continuity assumptions are satisfied), then R

is not minimax.- Thus, the only analysis required, to show that a proposal rule

is not minimax, may be the analysis used to find the least favorable

configuration.

5. MINIMAXITY CONSIDERATIONS FOR SEAL'S CLASS. Seal (1955) proposed a class
of rules for the location parameter problem. The rules were proposed for the
independent normal populations problem but might reasonably be used in any

location problem. In this section, a lower bound is obtained for sup Ee(Slqa

and sup Ee(sﬂqﬂ for rules in this class. ~This lower bound. is then used to
A ;

prove that, -in certain: cases, the rules in: this class: are net minimax.
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Definition 5.1. Let ¥ denote the class of selection rules having the form:

. k-1 .
P,: select ™ iff Xs z'jzl ajx[j]-d

where x[l] 53..§‘x[k_1] are the ordered observations excluding Xs s ai are
k-1

non-negative constants with z a. =1, and d is the smallest positive constant
=1’
for which the P*-condition is satisfied.

R1 (see (3.5)) is in ¥ and corresponds to setting ak_1=1, aj=0,j=1,...,k—2.
Comparisons between Eé(SIRl) and Eé(SIqD for certain other rules, %, have
previously been made by Seal (1957) and Deely and Gupta (1968). These authors
considered specific parameter configurations (e.g., slippage configurations)

and specific alternatives to R In the following results, the sup over all

1
parameter configurations and all rules in % are considered. But, as have the
previous authors' works, these results shed some favorable light on Rl’

Throughout this section, it will be assumed that ® =]Rk. The c.d.f. of X
is F(f;g). The following notation will be used. 6[1] 5,..§‘e[k] will denote
the ordered coordinates of 6§ = (61,...,ek) so that the best population is the
(unknown) one associated with e[k]. Sometimes, a sequence of parameter points
<Qn> will be considered in which case en[l] MEER en[k] will denote the

ordered coordinates of Qn = (enl""’enk)'

Theorem 5.1 will be used to obtain a lower bound on the expected subset
size. As stated, it also points out an intuitively undesirable property of all
rules in %, except Rl’ namely, there exist parameter points such that
e[k]-e[k_l] is arbitrarily large but the probability of including the

population associated with 6 in the selected subset is arbitrarily near

[k-1]

one.

Theorem 5.1. Let 9, € 2?\{R1}. Let r=min {i: a; > 0}. Then there exists a
sequence of parameter points <gn> and a subset K&{1,...,k} of size k-r-1 such

that for i i - _.=w i =
at for i ¢ K, 1im en[k] eni and lim Pe {(select ﬂi]q%) 1.
n->eo n>e - -
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Remark 6.1. For 9, = Rl’ k-r-1=0 so the theorem is vacuously true for R1 also.

For any P $ Rl’ r < k-2 so K will be non-empty.

k-1
Proof. Let S, = {x: x, > Z a.xr.,-d} be the selection region for m. using
- 1 - 1—j_1 J [J] » 1

¢ . Define a sequence of subsets of Z by
a

(5.1) A ={x: 2n>x_>mn,n>x, >-d, j=r+l,r+2,...,k-1,
n = k - 73 J

c > X, i=1,2,...,r}

where c, = (—n—2n'ak_1)/ar.

Let K = {r+1,...,k-1}. First it will be shown that AnCSj for all jeK,
for éll large n. Since 2 1 > 0 and a, >0, < _<__—n/ar < -d for all large n.
Fix such an n and jeK. Let E_E.An. Then X[k—l] = X {X[r+1]""x[k-2]} =
{

xr+1,...,xk_1f\{xj} (this set is empty if r=k-2) and {X[l]""’x[r]} =
{xl,...,xr}. Using these facts and (5.1), (5.2) and (5.3) are obvious.
(5.2) a1 *1k-11 © % *Ir] S gtin app =1
kEZ . o . . )
(5.3) - a X < maxix seeesX <n
n=ps] [m] — [r+1] [k-2]

Using (5.2), (5.3) and the fact that a_ = 0 m=1,...,r-1 it follows that

k_l k—l .

(5.4) le amX[m]_d = mzr amx[m] —_(1 ._<___-_n+n_.dl = -d.

But xj > -d by (5.1) so Epsj. This is true for any X ¢ A.n SO An C:Sj for all
j € K.

Define a sequence of parameter points gn = (enl""’enk) by

3n/2 j=k
(5.5) enﬁ = (n/2 j =r+l,...,k-1
c -1 j=1, »T

For any j ¢ K, 1lim 6 - 6 . = lim (3n/2-n/2) = .
n+® n[k] M e
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Pe (An) - POCAh_En)
—Tl —
(5.6) = P(n/2 z-Yk > -n/2, n/2 i.Yj.> -n/2-d,
j=r+tl,...,k-1, n i_Yi > -, i=1,...,T)
where Y = (Yl,...,Yk) has c.d.f. F(y). (5.6) converges to 1 as n>» since all

the limits converge to « or -« as appropriate. Since An CISj for all j ¢ K,

(5.7) lim Pe (select wjlq%) = lim Pe (Sj) > lim PQ (Ah) =1
nHo  -n = n>o©  -q n> =n

for all j e K.|]

Theorem 5.2, Let ® € ¥. Let r=min {i: a, > 0}. Then

a) sup Eq (Slqa) > k-r
® —_—

b) SEP Ee (S'lqég > k-r-1,

k-r=1 and k-r=0 so (a) and (b) are obviously true.

Proof, If 9, = Rl’

For any ¢ e jf\{Rl}, using the notation defined in the proof of

Theorem 5.1 we have

sup E; (S|g) > lim B, (S|g)
@ —

- = nre  -q
k
(5.8) > lim Z Pe (select ﬂmjﬁé?

n>e m=r+l -
Theorem 5.1 proved the first k-r-1 terms converge to one in the limit. For

every X € An’ X, is the largest coordinate so An C:Sk for every n. Thus (5.7)

k
holds with j=k. Hence the bound k-r for (a).

From (5.5), m,_ 1is the best population for all gn' Thus using the same

k

reasoning as above, excluding the term Pe (select ﬂqu%) in (5.8), yields the
-, — "

bound k-r-1 for (b).|]|

Corollary 5.1. Let g e if\{Rl}. Let r = min{i: a; > 0}. Then

.
(a) if P < (k-1)/k, P, is not minimax with respect to S

*
(b) if P < (k-r-1)/(k-1), ¢ is not minimax with respect to S'.
n P
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* * * *
Proof. The "no data rule", ¢ (x) = P, has sup E, (Sle) = kP < k-1 < sup
® - . (¢)

Ee (Slqh). Hence (a) is true. (b) is analogous.ll

*
Corollary 5.2. (a) If P < 2/k, no rule in ifX{Rl} is minimax with respect

*® .
toS. (b) If P < 1/(k-1), no rule in ij{Rl} is minimax with respect to S'.

Proof. Any rule in ﬁfﬁ{Rl} has r < k-2. So the smallest upper bound in

Corollary 5.1(a) is 2/k. Hence (a) is true. (b) is analogous.[|
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