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1. Introductjon and Summary

In some industrial processes, ordinarily observations arise from some
Qistribution_function Fl(x;e), say, but occasionally, the process yields
"outliers" which may follow some other distribution Fz(x;w). Accordingly,
if outliers cérry no obvious label, then the proéess produces observations
according to a mixture distribution aFl(x;O) + (l-a)Fz(x;w) for some °
proportion a, 0 < a<l. Also, in marine biology, one-may'be intere;ted'in
studying certain characteristics of a fish. For this purpose, samples. of
fish are taken and the desired trait is measured for each fish. Since many
characteristics vary according to the age of fish, the trait has a distinct
distribution for each age group and the population has a mixture of
distributions. On the other hand, mixtures of distributions occur in the
compound decision problems as proposed by Robbins [8], in which mixing
distributions correspond to some a priori distributions.

It "happens that in many cases, an experimenter is faced with a problem
of choosing one or more "desirable' prccesses (treatnents) from among k

given processes (treatments) which produce observations according to some
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mixture distributions. For his special purpose, the experimenter may
need one or more processes which are associated with the largest (smallest)
proportion in the mixtures of distributions. For instance, he may need
the process which has the least proportion.of occurence of ‘outliers.

The problem for the estimation of these proportions of mlxtures is
not easy. For example, when F (x 6) and F (x,w) both are normal with a
common variance 02 and, with means_u1 and uz, respectively, if oy and
uz are not well separated, i.e. when d = lul -.u2|/a 15'sma11, it is
almost impossible to classify the observations from the mixture distri-
bution into two groups. To be ﬁore precise, let I(a; FIQFZ) denote the
Fisher information for the estimation of q. Hill [ 5 ] pointed out that
for d small, I(a;F),F,) % d°. Therefore, if d is in (1/8,1/4), then
for the maximum likelihood estimate for «With standard deviation 0.1,
the sample size needed is large, as big as 6400. However, so far the
classical efficient method for the estimation of o is the maximum likelihood
estimate. The usual moment estimate is inefficient. However, when the
number of components o% mixture increases, situations become more complicated
even for the makimum likelihodd estimates. This suggests that another
approach should be éonsidered. The so-called minimun .distance method of
Wolfowitz [12] seems reasonable. Large sample properties like consistengy
can be shown to hold. If the distance between two distribution functions
is properly chosen, some other optimal properties may hold. And, if the
- rate of convergence is fair, then this abproach should be right. In the
problems of selection and rank1ng, some statistics are necessary such that
based on these quant1t1es, the criterion of prlorlty of selectlon can be

constructed. Though these statistics may not necessarily be good estlmates



for the unknown paraﬁeters which are under consideration, most of them
may do well for the selection problem. Accordingly, the minimum distance
method seems natural to be one of the approaches to follow for the
problems of selecting the largest (or smallest) proportion of certain
component of mixture. The so-called least squares method will be
applied in this paper for the selection problem.

In section 2 some notation are defined and the problem is formulated.
A class of consisteni selectionr procedures are defined in section 3 and

some asymptotic optimal properties are shown.

2. Notation and Formulation of the Problem

The problem of iden@ifiability should be mentioned, since the selection
problem for the proportion of mixtures is related to the identifiability
problem. This can bevsimply illustrated by an example. Let B(n;p)
denote a binomial distribution with sﬁccess probability p, them, it can
be found some A, &, Bl, 82 and some Pys Py and Py such that a # Bl and
alB(n;pl) + azB(n;pz) + (l-al-az)B(n;ps) and BlB(n;pl) + BZB(n;pZ) +
(I-BI—BZ)B(n;pS) represent the same mixture distribution if n < 5. 1In
this example, it is impossible to identify and select. Necessafy and
sufficient conditions for identifiability of finite mixtures can be
found in [11] and [13]. |

Let & denote the family of distributions such that the associated
convex hull of F is identifiable. Many well-known families of distri-
butions are included in ¥. For example (see [17], [13]), F can be family
of p-variate normal distributions, product of n exponential dlstrlbutlons,

b1nom1a1 dlstrlbutlons with different integral parameters, translation



parameter family induced by a certain univariate cdf, union of the families
of product of n exponential distributions and the p-variate normal
distribution etc.

For convenience, for someprefixed integer m, we define

, v m
n o
2.1 <0,1>" = {(al,az,...,am)::ai > 0, g @, = 1} (m > 2).

Let A be a real-valued continuous function on <0,13™, Let the functions
Fl(x;el), F2(¥;92)?'7f’gm(x;em)-be in 3F,. where 8, may be.a parameter vector
and Fi(x;ei) and Fj(X;ej) may have different parametric form, for

instance, Fi(x;ei) may be a normal distribution with location-scale
parameter'(ui,ai)‘and Fj(i;ej) may be an ekponential distribution with

location-scale parameter (aj,Bj). For convenience, we denote

(2.2) ' 7 E“:.(Fl(xgel),b.f,Fm(x;em)}
and
(2.3) | Si = (ail,aiz,...,aim).

A finite mixture distribution with m component is defined to be the

inner product of certain o ¢ <O,1>m and F, i.e.

(2.4)  6(x;0) = - F

n
It o~

LooeyF(x39,)
i=1
Let "1; ToseeesTy be k pbpulatinns such thlat,ni has cdf G(x;ai) (defined

by (2.4)) for some_unknown parameter gi.e <0,1>". Let xil?xiz""’xim be n

1



random observations from‘li, i=1,2,...,k. Let Gin(x) denote the
associated empirical distribution function. Let A[l](a) E_A[Zl(a) < e
f-k[k](?) denote the order values of-A(gl), A(gz),...,x(?k).

Based on n independent observations from each population, we are

interested in selecting t (1 <t <k - 1) populations, say, m_ M seeesT
1 2 t

.,A(ar ) are the t largest. We call these

such that A(a_ ), A(
~T1 t

?rz)"'
populations the t best.
We approach the problem by the indifference zone formulation. For

convenience, we introduce the following notation.

For given A, we define

. _ ' . m
(2:5) 2030 = L@y, 00 a5 € <01, A (@) = Mket] @ + 81,

For specified F and A, we consider our problem on the configuration

Q(A;4) for given A for the indifference zone approach. We also define

m m . ] .
(2.6) Q= <0,I> x <0,1>" x.... x<0,1>". (k copies)

Finally, we define, for given P, 0<p<1

oo

(2.7) S(H) = [ (aF-6_(x)) 2aH(x)

-0

where o « F is a mixture distribution for o € <0,1>m and Gm(x) is the

-~ -~

empirical distribution associated with some a F fbr unknown o € <O,1>m.

0. "

And H(x) is a cdf. Hence, S(d;H) is a function on « ¢ <O,1>m.

3. A class of consistent selection procedures

In this section, we consider the cases when F are continuous and

discrete. In each case, we assume the component Fi(xi;ei)of F are completely known.



(A) Continuous case

We assume the parametric form of each component Fi(x;ei) of F
is continuous in x for each 65 and continuous in ei for each x.

For given n observations from a population with cdf G(x;go) =
go . E for some unknown @ and a given cdf H(x), a vector é_ € <0,1->m
at which S(g;H) attains its infimum seems a '"good" estimate for the
real 00 in the sense of least squares method. It is to be noted that
é is a statistic of n observations and also is a function of E and H.
A good ehoice in some sense for the weight function H(x) is not easy.
Bartlett and Macdonald [1] study some special case of m = 2. For m >3,
the situation is complicated.

Choi and Balgren [3] consider the case H(x) = Gin(x) and obtain some
optimal properties like consistency and asymptotical normality.
However, for the case of small samples; Macdonald [7]‘points out that,
using H(k) =a . f, some Monte Carlo results show some improvement of
the Choi and Bulgren's result. And, as a matter of fact, for H(x) =
@ - F, S(?;H) is the von Mises statistic for‘the goodness-of-fit. Let
U1 and U2 denote two random observations from the population with cdf
F(x) and V1 and V2 denote the random observations ffom a population with

cdf G(x). It is known that A(F,G) = P { UlvU2 <. V1AV or VIVV < UlAU }o=

2
1/3 + 1/2 f (Fx) - G(x)) dCELEliELE)) where avb = max(a,b), a"b = min(a,b)
(Lehmann [6]) Note that A(F,G) = 0 if, and only if F = G. Roughly
speaking, taking F(x) to be @ - F and G(x) to be G (x), it is significant

to consider H(x) = 4 (a-F + m(x)) for our case. Accordlngly, in general,

we consider the case H(x) ; a* F + (1 p)G (x) for 0 < p < 1. Note that

~



P = 0 yields the Choi and Bulgren's case and for p =1, we get the Mac-

donald's case. Forour notational convenience, henceforth, we define

(3.1) $; (a;p) = / (a:F ~ G, (X)) d(p aF + (1-p)6; (X))

~

which is obtained by taking H(x) = pa F+ (l-p)Gin(x) where G, (x) is
the empirical distribution associated with the n random observations

from the population1ri. The existence of some éi such that Si(g;p)
attains the infimum can be shown by going through the analogous arguments

as in [3]. Define @, to be such that

inf n Si(g;p).

3.2) S. (a.;p)
¢ -1 a €<0,1>

For a given value of P (0 <p < 1), we define a selection procedure R
as follows.

Take n independent observations from each T and construct the empirical

distribution'Gin(x). Compute al = 0, (X "xin) which is defined

11’x 2’
by (3.1) and (3.2). Let A[l](a) < A[Z](a) <, f}lk](g) denote the
ordered values of A(al), A(az), . A(ak)

Rp: Select . T, if, and only if A(a ) > A[k t+1](oz)
Use a mechanism when a tie occurs.

By a correct selection (CS) we mean 4 set of t populations asssociated

with the t largest values of A(al), A(az), ..,A(ak) is selected.

Definition 3.1 - A selection procedure R is consistent w1th respect to.

(F,2) if lim 1lim  inf P {CS|R} =
4+0 mrw o €0(2;4) &

Definition 3.2 A Selection procedure R is strongly asymptotically monotone

with respect to (F,A) if A(ai) < A(ai) and for any ¢ > 0 implies



a

lim sup P {m. is selected |R} - ¢ < lim P {m. is selected |[R}.
e a go(r s 41 n+e g cQ(r;A) & )

Theorem 3.1 For any value of p, 0 <p <1, Rp is consistent and strongly
asymptotically monotone with respect to (&,1).
Proof: (a) We show that for any p (0 <p <1) and for each i (i=1,2,...,K),

o > oy with probability one. We follow the arguments given in [3] with
appropriate modifications. Now, by the Glivenko-Cantelli theorem, for

€ > 0,3 N(€) such that, whehever n > N(€),

P{lp gi-f+(1—p)Gin(X)-GihCX)l <€l = prlgi'f -6, ()] <¢} =

Replacing an(x) by d(ﬁgi-f + (14p)Gin(x)) and following the same
argument as given in the proof of Theorem 2 in [3], the result follows.
(b) Consistency of Rp

Since A is continuous it is is trﬁe that A(éi) > A(éi) WP1
(i=1,2,...,k). Now, by the Egoroff's theorem, fbr € >0 and § > 0,
there exists N.(G,G), A. and B. such that the sample space is decomposed
to be A. U B, _w1th B the complement of A; and P(B )} > 1-¢ and on B,

|A(a )-A (e, )I < & whenever n > N, (€,8) uniformly in o € <0, 1>" ie, N(€,8) is

independent of a. . Note that,A(ai) depends on n. Set N = Nl(e,a) L
N (G §) and set B = r)B Then, P(B) > 1 - €, and on B, whenever n > N,

i=11 -
max lA(a ) - A(a )] <6 un1form1y for each (al,az,
1<i<k

by (2.6)). Now, for any given P* ¢ (0,1), and for given A > 0, however

-,Otk) € @ (defined

Ra ] § =4 = * g3 :
small, choose 6§ = 3> 0and € =1 - P*, Since on Q(x0), A[k-t+1] -

A[k—t] 2> 4= 36. Hence we conclude that

Pa“(gri) > Mk-t] @ i=1_,2,.-~,tl>\(gri)> Mi-g @3 > P*

~



for every a ¢ Q(A;A). Hence, we have shown that for every A > 0, lim
- o
inf Pa{CSIR } = 1. Hence the consistency is shown.
a €(Ar;a) - P

(c) Suppose A(gi) < A(gj).

(1) If A(@)) f_x[k_t](g) and A(gj).z A Then, - take P* > 2/3

[k—t+1](g)'

and go through the arguments given in (b), we conclude that inf P {m.
. a j
a €Q(A;A) 2

is selected |R } > inf Pa{CSIR P> 2/3 whenever n > Ny = NO(A)
o e(A;a) <
- for some Ny On the other hand, for each n > Nys {ni is selected IRP}

clSelection is not correct IRP}. Hence P {7, is selected lRp} <1 -

Pa{CSIRp} S 1/3 yag g, ie.

sup = P {=. is selected [R_}< 1/3 for each n > N
A0 o001 P T
a Ea(s

-~

0

(ii) Suppose both A(ai) and A(aj) are no larger than A[k—t](a)'

Then, for € > 0 and by the arguments in (b), there exists a subset of
- _€
| 0 sgch that P{B} > 1 > and for n Z.No
and on B, max {|a, - a,|} < 2. Let E denote the event {m. is
1<ick -4 <1 3 - '
selected Ii'TZ Then E = EN B + E BC. Hence, sup Pa{E} < suppa{E n B}
. o - a -

~ -~

sample space B and an integer N

+ sup P. {E n B} < sup P {ENn B} + —u
- a

since P {E n B%} < P {B } < v o € Q(x;4). Noting that for any

Q A -2
a € (A ), P, {En B} 0 since on B, @, < ?[k—t+l] 3.

B>

~

(iii) 1f A(gi) and A(gj) both are no less than A[k-t+1](g)' The proof
is analogous to the case of (ii).

The proof is thus complete.
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Remark 3.1. If tl’ t2_,...,tm are some positive integers such that each
ti is no larger than k - 1. Let Q(tl, t2,...,tm) = {(gl, gZ"‘f’?k):
a%izti+1] > a%izti+1] i=1,2,...,m} where a%?% denotes the j-th largest
value of the i-th component of ?1’ gz,...,g and we denote @, = (aﬁl), aﬁz),...
aﬁm)). If for each i we are desired to select the ti largest in the i-th
component simultaneously, then, using the statistics {él’ éZ""’ék}’

which are defined by (3.2), associated with the i-th component, we

select these populations which have the ts largest values in the i-th
component of {afi), agi),...,a(i)} (i=1,2,...,m). It can be shown that

the simultaneous selections are also consistent and strongly asymptotically

monotone on the configuration Q(tl, tz,...,tk).

~ -

Remark 3.2. For m = 2 and a given n, let di, a; and &i denote respectively,
the least square estimates associated with Pp=20, p=1 and some p(0 < p < 1).

Then, it can be obtained

. . N £ (F,-F.)
- - i RY: =gt e 1 22717
4 = BFyF (P T(F)-F )7, aff = af + o 2P P2
2771
and
A A Z(F -F )
where
_ n ' . o
L(F,~F)) = 121 (cmxm;ez)-Fl(x[i];el)) and X.[l]f_x[z]i---ix[n]

are the order statistics from “i' As a convention we take a{ =0 if

~

ai < 0and =1 if ai * ] and use the same convention for other two cases.

It can be seen that'ai is always between a{ and ag for-all n. 1If F1 and
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. . ~ -~ _1+
F2 are '"smooth" in some sense, we see that Iai - a;l = 0(n E)

for ¢ > 0.

Definition 3.3 A selection procedure R is consistent of order 0(A(A))

(o(A(A)) with respect to (F,A) if

lim inf P {CS|R} =1 (lim inf P {CS|R} = 1).

A0 o« €Q(rza) © 50 og(A;0) 2
n=0(A(4)) 7 n=o(A(A))

-2

' . . 1-2§
Theorem 3.2 For given p, 0 <p<l1, Rp 1s consistent of order 0(A ),

0 < § <1/2.

Proof: We note that, by the Glivenko-Cantelli theorem that

sup |Gi(x)-Gin(x) + o(l)| +~ O WPl as n » o vy, where o(1) is independent
X ‘ .

of x. For any fixed i (1 < i<k), let S(ai;p) denote the m-1 equations

for which each equation is differentiated with respect to aij’ i=1,2,...
m-1
1 - Z a..). Then, the first

m-1, where a, = (ail, o it i

. ¢ an .
i2? > im-1°

element of é(ai;p) for j=1 becomes

n - m A
1 B o , 1-
o J.lel'(xi[j]’el){’rzlairFr(xi[j]’er)_};lf + b

| Ln |
< SUp[6; (-G, ) +o (1) |7 jzl F1%157500)

where X, .., < ... < X. are order statistics from w.. Follow the
ilj] = — "i[n] i

analogous arguments of the proof of Theorem 4 of [3], we conclude that

~ -1 ‘
Iai - ail < O(n ?ta) for all but finite n with prob. 1 where 0 5 § <.

-1 )
Now, if we take A/2 = 0(n.2+6) for large n, we see that n = O(Alfzé)
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and for this n it can be sure that the selection is correct with
probability one as A + 0. The proof is thus complete.

Let E; denote the arithmetic mean of r independent estimates of s

where r is some integer. This means rn samples are drawn from each

population. And for each subgroups of n samples, we obtain an estimate

~

a. for the population T If n is large, A(ai) = a0, and t = 1, we

~

propose the following rule Rﬁ.

t. ‘ 3 o >_ - 3
Rp. Select’vri if % —-gjl for all j # 1.

where 5;1 is the first component of E;.
Theorem 3.3 If n is large, t = 1, and A(ai) =0, the projection
function, then we have

k
inf P {CS|R'} > [ 1 e¢s.z +
ac(r;A) 2 p

T840
= j=2 ) 3]

where 2 (x) denotes the standard normal distribution and

2 = » -
o =2 [Mx{m G () [1 G; (v)1ds, (x)dB; (y)

where
B, (x) = F1(x;61)Gj(x) _'{m Flcx;el)gcj(x)
for j=1,2,...,k.

and 0[1] 5_0[2] 5—"',§-°[k]’ Gj = a[l]/c[j].

Proof: It has been shown in [2] that @, is asymptotically normal and
hence, the first component of a,, say, @ is asymptoticélly normal with
mean a.. and variance o2 = 2 [ f 'G.(x)[l-G.(y)]dB.(x)dBL(y)
il 1 < i i i i
~00 x<y<m
where
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-]

B;(x) = F (x;0,)G, (x) - {w F) (x;6,)d6, (x)
Hence, when n is large, t = 1, we have for acQ(A; A)

. 1) = o = i - =
pafcslnp} Pg{akl > o5 §=1,2,..,k 1lak1 = max o, }

1<k It
@ -a, ) @, -a.) % e /p
= P, Kk, ©j17%51) 3+ g )
J - ’ ag.
~ k j % %
o. /‘
3y _Yr b
z_Pa{Zk 3_Zj(ok) 5, j=1,2,...,k} (where 21,22,...,2k are

iid standard normal)

I}
—
=]
o
]
N
+

v
—

*® k-1
I &(8.z + xiiéh—jdé(z) (by a lemma in [4])
. j o,.
-* j=1 [i+1]
where Gj = 0[1]/o[j+1]’ 0[1] 5_0[2] < ... 5-0[k]'

This completes the proof.

-Asymptotic relative efficiency of Rp with respect to a procedure RB
We assume m=2, t=1, and X is a projection function. In this case
we have Gi(x) = GiFl(x;el) * (l-ai)Fz(x;Bz) for i=1,2,...,k.and we denote
@, instead of e.. Suppose Fl(x;G ) and Fz(x;ez) are not specified,
however, we assume there exists some point Xy known, such that Fl(xo;el) #

Fz(x;ez). Assume Fl(xo;el) > FZ(XO;GZ). Then, we see that a; > o

if, and only if Gi(xd) > Gj(xo). Hence, selecting best is equivalent
to selecting the population associated with the largest G(xo;ai)

value.
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For a given i, 1 <i <k, and j, 1 < j <n, define
1 if X,. <X
ij — "o

1) 0 otherwise

and define

Y.

G.(X ) = ..
i o 1 1ij

j

Il o~

A

Then,‘it is obvious that Gi(Xo) is binomial random variable with cdf .
B(n;G(xo)).
We define a selection procedure RB as follows:
RB: Select the population TS which is associated with the
largest Gi(xo).

When n is large, we use the normal approximation. Let F (X ;é ) -

F2(Xo;0 ) = do > 0. Then, by theé- result of [10], we have, asymptotlcally
nkc (p*)(l ~a%d? J)/28 d s when A+ 0, and p* + ,1.  Again, by
the Feller's 1nequa11ty, we see that ¢(z) % i e TT' We obtain
2 2 2z

thus C (p*) = (1 ;*) Let n1 and n, denote, respectively, the sample sizes associated

with R and Ry when inf {CS}=P* is satisfied for both rules. We define the asymp
aGQ(A A) n]_ (p* ,'A)
totic relative efficiency of Rp-with respect to R by ARE(R 'RB)= EETB;TZT as p* » 1

and then A + 0. It follows from the previous result and Theorem 3.2. We have

=2
a1-28
ARE (R ;RB) = lim lim —T =0.
P A0 P*»] :

ngAZ(l-P*)Z

However, if we take 1-P* = a = A + 0, we have our another kind of effieiency ;

given by
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= 1im 8278 o for 0 < § < 1/2.

A0

ARE(RP;RB)

This shows .that Rp is good compared to RB' Also Rp holds for any general

m and t. We should note that the case m = 2 and m > 2 are quite different

and RB is useful only for m = 2.

(B) Discrete Case

In this case, we dénote Fl’ Fz,...,Fm as discrete distribution such
that the outcomes from eéch distribution with cdf Fi’ for some i, can be
classified into s (> 2) statés. Let the probability that an outcome from
Fi belongs to state & be denoted by Psy- We assume Fl, FZ""’Fm are all
specified and p;, are all given.

For @, € <O,1>mlwe define a mixture distribution Gi by

Gi(x) = ailFl(x) + “iZFZ(X) + ool + uimFm(x).

Then,Gi(x) is also a discrete distribution such that the probability of

an outcome belonging to state j is given by

gij = ailplj + aiZPZj + .. # aimpmj’ for j=1,2,...,s.
We assume there exists a lower bound g5 such that gij 28, > 0 for all
i=1,2,...,k, j=1,2,...,s. Let n samples be drawn from wi'and let nj
denote the number of outcomes which belong to state j. For any o =y

(al,...,am), we define the Matusita distance (see [8]) as follows.

n. 2.1
(/E; J/—L)

m
where gj = Z o.P... Si(a) is thus a function on <O,1>m.

(3.3) §;(a) = {j

LR Saree 1971

1
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Let &i denote a value in-<0,1>m such that Si(&i) attains its infimum,
i.e. et &i be such shat

(3.4) S.(8.) = inf _ S. (a).
-1 7 4 g<0,1>™

™

For given n and A, to select the t best with respect to A, we-propose the

following selection procedure.

R: Select ﬂrl’ “rz’.f:’ ﬂrt if, and only if,

2 2 2 ' 2
A(@ ), A(e_),...,A(a_ ) are the t largest values of A(a.),
~T; ~T, R ~1

t
A(az),...,l(&k) which are defined by (3.3) and (3.4). If there are

ties, use a random mechanism.

Theorem 3.4 The selection procedure R is consistent and strongly

asymptotically monotone, with respect to (&,A).

Proof: It has béen shown in Matusita [8] that fbr_our case %i >, with
probability one in the usual sense of convergence of a sequence of
vectors. Therefore, l(gi) > A(gi) WP1 for A is continuous.: Using the
analogous arguments given in the proofs of Theorem 3.1, we can conclude

the same results.  This completes the proof.
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