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ABSTRACT

In the past decade.a number of methods have been deve]opéd for
selecting the "best" or at least a "good" subset of variables in regression
analysis. For various reasons, we may be interested in including only a
subset say, of size r < p, the number of independent variab]es. Varidus
authors have considered this problem and a variety of techhiques are
presently being used to construct such subsets. Most of these seem to
lack justificatioﬁ'in terms of statistica] theory.

In this paper, we are interested in deriving a se]ectibn procedure
to select a random size optimal subset such thét all inferidr independent
variables are excluded. Some results on the efficiency of the procedure

are also discussed.
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In the past decade a number of methods have been deve]oped for
selecting the "best" or at least a "good" subset of variebles in re-
gression analysis. For various reasons, we may be interested in including
only a subset say, of size r < P, the number of independenfivariab]es. Various
authors have considered this problem and a variety of technfques are
presently being used to construct such subsets. They seem fo lack just-
ification by statistical theory (see e.g. [2], [6]).

Arvesen and McCabe [1] propose a procedure for se]eeting}a subset
within a class of’subsets with t (fixed) independent variables, taking
into account the statistical variation of the residual sum of squares.

An algorithm for determining the necessary constant ¢ given the
design matrix X is presented in [4].

In this paper, we are interested in deriving a se]ectﬁon“procedure
to select a random size subset excluding all inferior independent var-
iables (defined lafer). Some results on the efficiency of the procedure

are also discussed. It should be pointed out that our approach is different
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from Arvesen and McCabe [1] and the approaches used by others.

Let Tos s k denote k+1 normal populations with var1ances
2 2 2
0g» O1»---50,- Let 0[]] < e 5_o[k] denote the ordered variances.

A population s is said to be

superior (or good) if Og.i 570§,
L N
1nfer10r (or bad) if o < 8305

where 6?, 5§ are specified constants such that 0 < 65 < §f>< 1.

We are interested in devising a proéedure which selects a random
size subset, that excludes all the inferior populations witﬁ a
probability not less that P*, a specified constant.

Let o be the parameter space which is the collection of all possible
paramater vecotor ¢ = (GS, 0%,...,ci)i Let t; and t, denote, respectively,
the unknown number of inferior and superior popualtions in the given

collection of k+1 populations. We have t] > 0, t, > 1 and f] + t2 < k+1.

For specified 6? and 65, let.

- (a. 2 2
Q(t] ,tz) = {9- 0[]] i eoes < O'[tz] <

I A

< 02 < — <'02 ' <. | < 02 }
STkt ] C S OTkety 1] S o SOk
Then

Q= U Q(t
t1’2
Let CD stand for a correct dec1s1on which is defined to be selection

of the subset wh1ch excludes all the inferior populations.

Assume the fo]]owing standard linear. model



(1) Y=Xg+¢e, X = (1,51,...,5p_]), g' = (BO,B],---,BP_]),

where X is an Nxp known matrix of rank p<N, B is a pxl parémeter
vector, and € - N(O,oSIN), and 1' = (1, 1,....,1). | |

In what follows, (1) which has k(=p-1) independent variables, will
be viewed as the “tfue" model.

Consider the models

(2) | R AR OLURE

where XaF (ToXg5enuXs 15X
and € i N(O,cflk), i=1,...,k. Xﬁ)associated with model (2) is called
population . (](1§j§k). The goal is to reject mis T.e. to reject Xs

associated with of; |, j = k-t;#1,...,k, for any fixed t.

Note that
= 1 fy 1 -1 1 = !

where Q; = [I-X(i)§X£i)X(i))'1Xi], then following Searle-[5, p. 57],
55,/% o r(Qy), (x8)"0; (Xg)/(262)),

where r(Qi) = N-k=v. Note that the noncentrality parameter, in

general, is not zero and that

(3) ':0§'= o5 + (X8)'Q, (XB)/v.

-i+]s---9¥k) and §(ﬂ= (BOsB]’-f-sBi_ls---aBi+]s--

. ’Bk)’



Assume that 03 is known. Since the problem is invariantVWith respect

to the scaling by qg > 0, we assume without loss of generality that
2 ’ '

00=1. |
To obtain the joint distribution of SSyse 5SS, we can write
Y = Ujuss
where
(4) U; = B;Y and B.B: = I, BiB, = Q;

B; is an vxN matrix.

1

The joint distribution of U* (U‘,...,Ui) is mu]tivéfiate
normal-in kv dimensions with mean vector n' = (D],...,gk),-g% =

B.Xg, and covariance matrix : = (Zij) where ¢ = B;Bs. Note that

the kvxkv covariance matrix : is possibly singular. Let ZV?

FF' where F is of fﬁ]] column rank r (r = rank(x)), and let U = n + FA

where A ~ N(Q,Ir). Thus, the joint characteristic functibh of

SS SS
1 _p - ETTT
7 s is (since SSi Uiui)’

k .
¢(t1,...,tk) = E{exp(i 321 tj(Uj) Uj/2}

1
|T - iF'TF| "2

. expi[g'{iT—TF(I—iF'TF)-]F'T}g]

- -
|1-15T| "Zexp(n ' T(1-12T) '},



where T = diag(t],...,tk) el,.

We propose the rejection rule of the form:

R: Reject ¥ (or reject Xi) is and only if

<
(g}

$S; >

>
N %

where 65 <c <.

Note that SSi is associated with Ui or, equivalently, with
population s and.dégregs of freedom v, whereas SS[i] is the
i-th smallest sum of squares and SS(i) is the sum of sqyares
corresponding to the (unknown) j-th smallest expected sum of

squares OEij and degrees of freedom v. Thus

i

. . . Ve,
inf PQ(CD[R) inf Pe{ min SS(i) > =}

k-tq+1<i<k 83

S, .
inf P min U, v 1,

. 2 = : 2

(4) _ : SS(i) _
‘ min inf P{ min _ 5 > vcl
Ofﬁ]fk B k-t]+1§J§k O[i]

It is clear that the bound in (4) approaches a minimum value
as the parameterso%i], k-t]+]5j§k for any t,, approach %;—.» Since

this Timiting probability does not depend on the value of '6%11,

k-t]+]§j§k for any t], We can assume that they are all equal tngén

2



Thus
inf P(CD|[R)

= P{ min SS, > X,
1<i<k

= 2 - - n'n.
Let Zj Z(SSJ Vo= ongn;
ss.
P( ! > Ve ’ ]<1<k)
2 = 265
- P{Z N vC (\))—‘—2L DJDJ 1< <k}
TP gy @R 2O s
2 (5)

2P oy - (3)E 1<kl

| v

That is, the worst configuration (asymptotically) is when B =0.
From the multivariate central limit theorem, it follows that for
large v, the joiht'distributiOn of Z],...,Zk does not depend on
Dys-- sl (see []j); Now the problem is the same as to'compute

the joint distribution of $S1s--+555,. Note that here I = (%45)

-1
= &%
Zij 52

» - N . oA ']
H . =%
BiBj 1s-vxv as given in (4), and L.y =6% If
Following the discussion in [1], we have the joint cumulant

: SS.
generating function of —?%-lfjjk, is (see [5]).

(5) log|I-i2T| = 3 T i tr(zT)"/r
. r=1

[> ]

LTy |
= Ergl j Cr(t],...,tk)/r.



Thus, the joint cumulant K_, . of total order r = r
SR TRR 1
rys can be obtained from the rth term of (5) by multiplying the

2

coefficient of ir(tri)...(tik) by r,!

1 =
1 ]....rk. Note that for r 1,2,3,

Lk
C,=D27 t.
1T 2 A
©) 2. n ; S+25  t.t5ltr(sBB.B)
=Dy e+ 5tr
2353 iy J LIRS
and
¢3-2ny ; t3+3 J tit.5%r(B,B!8 B! 1
3 *
P 3 gy T
-3
+6 ] tptiti5itr(8 8188, BJBh)}
h<1<j

Expression (6) would determine an Edgeworth approximation of order
3 .

v “[3]. To compute some constant C to satisfy

(7) inf P(CD|R) = PZ; > “ 263 —)a 1<j<k} =

where Zj = -féz (SS.—V), T<j<k, and the covaraince matrix of the
V2v ’

{Z;} is given by r (p]J), Pij = tY‘(ZJ1 13), i#j.

The Fortran program as in [4] can be modifed to cdmpute (7).

Note that when GS s unknown, we can use the same method

as above to construct a rule as follows:

R': Reject s (or reject X ) if and only if —- N P

N*I

tr, b



where 65 < ¢ <1 and

= y! - |']| = vyt
$5p = YT - X(X'X)T'X'}Y = ¥'QpY.

o 2
Here 55y is XN-p.

Expected number of inferior populations included in the selected subset
and its supremum.

For the proposed procedure the number T] of inferior populations.
that enter into the selected subset is a random variab]e.v.FOr fixed
values of k and P*, the expected value of Ty is a function of 6.

For o ¢ Q(t],tz),'and large v,

R k _
E (T [R) = TP {SS,., < Xy
e i=k-t,+1 2 (1) = &
k SS,.
< Y P{——Z(-l—L.< ve}
E. ' | vC
= , P{SS,., < ==}
isk-t+1 (1) 783
k 1 T]lv- Ny s
- vC Vy % - -(3)
Tk Py <3 - (F - UEHL,
1—k—t]+1 2 (2)
E vC gk
< CPZ Ly <5 - (3)B, 1<i<k}
i=k-t,41 (1) 7265 772 -

where Z(i) and D) are associated with T(§)e 1<ic<k. Thus the worst

configuration is 8 = 0. Hence



sup Ee(T]IR) = max  sup sup Ee(T]IR)
- tot, 8 €a(t,t)) -
= sup sup E,(T;IR)
8 e€a(k,1) -
k
= Z P{ZJ. < _65 - ( ).::}

Expected number of super1or populations that enter the selected subset

and its infimum.
Let T2 denote the random number of superior populations that enter

the selected subset. For o G‘Q(t],tz) and for large v,

t
2 |
— . vC ’
EQ(TZIR) = 121 PQ{SS(i).j_—ET} :
t, s
i 1
= I et < ] 35
B ST T
L2 ss,,
> 1 Pi—L < )
i=] O[i]
5
ve )

© I PSSy <

Hence



inf Ee(TZIR) = min  inf inf
: tyst, 8 gedty,ty)
= Pz, <ok - (P
1 —-26? 20
where
C 1 s - u). s
Z] = - (SS] v), 6]SS

with v degrees of freedom.

Eo(T,IR)

1 has chi-square
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