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USE OF THE 27% RULE IN EXPERIMENTAL DESIGN

George P. McCabe, Jr.

Purdue University

ABSTRACT

For a sample of N iid bivariate normal random variables,
upper and lower groups are defined to be all observations with
values above the (1-a)-th percentile and below the a-~th percen-
tile, respectively, on the first variable. A t-type statistic is
used to compare the means of the two groups on the second variable.
 An expression is given for the limiting value, as N appioaches
infinity, of this t-statistic. For any given correlation in the
bivariate normal distribution, the value of o which maximizes the
limiting value of the t-statistic can be found. These optimal
values of o range from 0.27 to 0.14, with the higher values
corresponding to small correlations. For the moderate correlations

frequently encountered in practice, a=0.25 is a reasonable choice.

1. INTRODUCTION

Tn research %fébléﬁé; particularly, although not limited to
the social sciences, where the collection of data is expensive and

or tedious, the following type of sample selection is sometimes used.



A collection of subjects, hopefully a sample in some sense, are
measuréd on a variable, say X. Individuals scoring in the lower
third of the sample are designated low-X and individuals scoring
in the upper third of the sample are designated high-X. No:
further measurements are made on the middle group. For the
low-X and high-X subjects information on the X-variable score

is discarded and only the designations low-X and high-X are kept.
Other variables are measured on these selected subjects in an
experimental design with low-X and high-X being treated as a two-
level factor.

Although this procedure seems reasonable, the consequences of
such selection are by no means obvious. Since the choice of thirds
in breaking down the data seems somewhat arbitrary,cother rules,
such as using the lower and upper fourths may be more efficient
under given circumstances.

In this paper the most elementary version of this problem
is studied. Suppose the experimental design consists of measuring
a variable Y on all subjects in the two selected groups. The
usual two-sample t-statistic is then used to compare the performance
of the high-X and low-X groups on the variable Y. If there is some
sort of monotonic relationship between X and Y, then, given sufficient
observations, one would expect the t-statistic to give reasonable
interpretable results.

In this context, the t-statistic is used as an indicator of
correlation between X and Y. To further simplify this special

case, it is assumed that X and Y follow a joint normal distribution.

2. BACKGROUND
In 1939, Truman Kelley [1] proposed and discussed a 27% rule
in the following context. Suppose that a new item is to be studied
for possible inclusion in a test. The item responses are classified
as correct or incorrect. A normally distributed criterion which is
correlated with a true score can be measured on an initial group.
The true score is assumed to be related to the ability to respond

correctly to a valid item. Kelley states '"twenty-seven percent should



be selected at each extreme to yield upper and lower groups which
are most indubitably different with respect to the trait in
question." He shows that the difference in tail means times the
square root of the number of tail observations is maximized by
using a twenty-seven percent rule. Although the proofs are not
rigorous by current standards, the results are reasonable in the
context given.

In 1946, Frederick Mosteller [2] studied methods for - .-
constucting estimates  of parameters from counts of data falling
into certain categories. He was interested in methods which
could be used with punched cards and a counting sorter. Suppose
we have data from a bivariate normal distribution with known means
and variances and an estimate of the correlation is desired. The
maximum likelihood estimator based on the numbers of observations
falling in the four corners of the plane determined by the lines
x=uX+k0X and y=Hy is to be used. Mosteller showed that the
asymptotic variance of the estimated correlation is minimized by
choosing k=0.6121 when the true correlation (p) is zero. This rule
corresponds to dividing the X sample at the (true) twenty-seventh
(27.02) percentile. |

In 1964, Ross and Weitzman [4] futher studied the variance
of the maximum likelihood estimator when p#0. They found that
the variance is minimzed using about 27%, for p up to about 0.6.
As p increases, the cut-off point increases, reaching 35% at p=.90.
They also note that the variance curve as a function of the cutoff
point is rather flat in the region from 15% to 50% for all values

of p.

3. NOTATION AND BASIC RESULTS

Let (Xi,Yi), i=1,...,N be iid bivariate normal random variables.
In what follows, it can be assumed without loss of generality that
the means are zero and the variances are one. Let X(lst(z)s...sX(N)
denote the order statistics of the X sample. For any n < N/2, let

X..=X_. for j=1,...,n;
i377(3) )



and

X2j=X(n—j¥1) for j=1,...,n.

The Y observation paired with Xij will be denoted by Yij for
i=1,2 and j=1,...,n.

In this section, we let o be a fixed number (ae(0,.5]) re-
presenting the fraction of the N observations in the upper (i=2)
and lower (i=1) groups. Thus, we set n=[oN] where [-] denotes the
greatest integer function. Let

1 _.n

Yi(a)=n Zj=1 Yij’ i=1,2; (3.1)
and
2 -1 .n o A2 o
si(a)—n Zj=1(Yij'Yi)“’ i=1,2. (3.2)

In Section 4, the choice of o is investigated. To this end,
we now study the asymptotic behavior (as N+=) of the expected values
of Yi and si for fixed values of a.

Let ¢(x) and @(x) denote the standard normal density and
distribution function, respectively. For x>0, the Mills ratio is
defined by

M(x)=(1-2(x))/¢(x).
Also, let a be defined by

a=1-0(a).
Theorem.
(a) - lim EYl(u)= lim EYz(a) = u(a,p) (3.3)
>0 n-e
and
. 2 . 2 2
(b) 1lim Es1 (¢} = lim E32 (a) = 0" (a,p) (3.4)
n->o N>
where
-1
u(a,p)=pM "(a),
and

2 2 -1 -2
6" (a,p)=1+p" [aM "(a)-M "(a)]
Proof. First, note that

Y 570X, ey s (3.5)



where the X and the Elj are independent and the Eij are iid

normal w1th mean zero and variance (1-p ). Therefore,

-1.n
EY (a)=En ZJ 1Y2J
-1.n
=pEn ZJ -1 ij (3.6)
Reverting to the order statistic notation, we have
S Ty z J ()X (3.7)
j=1 2 N+1 )
where
0 if Z < 1-a.
J(z) =

1 if Zz > 1l-oa.

Results pertaining to quantities such as those in (3.7) can
be found in the literature on linear combinations of order statistics.
Applying Stigler's [5] Theorem 3, we obtain

. -1 N 1 -1
Lim B N™° I, J(N+1) x( = fo Jw ¢ (wdu (3.8)
Here Q_l(-) denotes the inverse of the standard normal distribution
function. The conditions required for the validity of (3.8) are
the existence of a first moment for Xi and that J(-) is bounded and
continuous almost everywhere. Substituting the above choice for
J(-) and letting
V=0, (u l+a)
gives
Je Tme ™t @ydu=f]_ ¢ w)du

=afé ®-1(av+l—a)dv. (3.9)

Now, let G(x) denote the distribution function of a random
variable from the upper o tail of a standard normal distribution,
i.e.

0 if xsa
6x) = { ‘
a " (2(x)-1+a) if X>a.

Since

1(V)=®—1(av+l—a)



it follows that the last expression in (3.9) is equal to
ofy 67 (vyav,

which is simply o times the expression that would be obtained
from Stigler's Theorem if the underlying distribution had been

G(x) and the funétion J(-) was identically one. Therefore,

afé G_l(v)dv=uf: xdG ()

=fi xdd(x)

=M (a)
So,
1

Box. . = oM L(a) (3.10)

lin B N 25X

N->oo
Combining the above and noting that N/n - a_1 gives the desired
result for Yz(a). By symmetry, the result for Yl(a) follows:.

The proof of part (b) is similar. Since

2_ -1.n 2 22
E 52—E n Zj=1 Y2j - EYZ(u) (3.11)
and, by virtue of (3.5),
-1 .n 2 _ 2. -1 _n 2 -1 .n 2
En Zj=1 Y2h = p En Zj=1 ij + En Zj=1 sj
_ 2 -1 _.n 2 2
=p~ En Zj=l ij + (1-p7) (3.12)
it is sufficient to consider
-1 n 2
En Zj=1 ij.

By a small modification of the proof of Stigler's Theorem, it
follows that
,éiz.EN-l z?=1 J(N%TJ x%j) = L swe (w)du (3.13)
with the previously mentioned conditions on J(-). Using the change of
variables as given for part (a), it follows that

1
1-o

e wydu = [7 x*de(x)

S(1+0%aM 1 (a)), (3.14)



and hence from (3.12),

1im En 22 v2 = oZselaml(a)) + (1-02). (3.15)
oo j=1 "2j

Consider now the last term in (3.11). Using (3.5), it
follows that

52 _ -l.n 2
EYZ(a)—E(n Zj=1(pX2j+e,))

j.
-1 2.n 2 -1.n 2
=E(n I, X,. + E(n "I, €.
(%2 Xy (2l e))
_ 2 -1.n 2 -1 2
=p~ E(n Zj=lx2j) +n  (1-p7) (3.16)
Now,
-l.n L 82_ =l.n 2. . -ln- .
E(n Zj=1 ij) =(En Zj=1 ij)) +var (n Zj=lx2j)' ;(3.17)

The last term in (3.17) approaches zero as N»x since

Lin N var 3V 2]_;X,0) = 7, [T 3(000)I (00 [0(xhy)-0(x)8(y) ]dxdy

N>

< [0 17, le(xay)-e(x)e(y)] dxdy
= N hvar (V2] X))

= 1.
The first equality is a consequence of Stigler's [5] Theorem l:and
the inequality is valid since the integrand is nonnegative. There-
fore, from (3.10) and (3.17), it follows that

tim B 2R X..) = M2 (a) (3.18)
=1 2]
N>

Combining the above with (3.11), (3.15) and (3.16) gives

1in BsS(a)=p” LipPaM  (a) * (1-07)-0% M % (a)
Lid ” a4

2 - -2
= 1o (aM ™ (2)-M(a)),
the desired result. By symmetry, the result for si(u), follows.Q.E.D.

4. THE CHOICE OF o

Suppose now that one wanted to compare the two sample means
Yl(u) and Yz(u). Although these random variables are not inde-

pendent and the variance of their difference is not necessarily well



approximated by (sf(a)+s§(a))/n, the seemingly natural comparison
statistic is .

-ptv v

‘n (;lﬁu) sz(u))

. L
(52 (@) rs2(a))?

&) = (4.1)

Finding the large sample distribution of t(a) is beyond the
scope of the present study. It should be noted, however, that
Stigler's [5] Theorem 1 can be used to find the variance of the
‘difference for large samples and that asymptotic normality follows
from his Theorem 2.

It is reasonable to prefer values of a which will make t(a) as
far from zero as possible. Note that in practice, o is chosen
beforé the observations are taken. To this end, we let

g(a) = 1im ' t% ()
N
and note that as a consequence of the theorem of the previous section,
2ap2M;2(a)
L+ (aM (2)-M ? (a))

g(a)

2
_ 207 (1-2(a)) . (4.2)
2 2
M™(a) + o (aM(a)-1))
Differentiating (4.2) with respect to o and setting the result

equal to zero gives
22 M (a) (1-2aM(a))
(1+a%) M%(a) - 1

Although an explicit formula for o in terms of p would be more

(4.3)

convenient, (4.2) is adequate for present purposes. Note that
g(0)=p2/(ﬂ/2—p2), g'(0)>0 for ¢ 2 0, and g(a) approaches zero as a
gets large. By selecting values of a and evaluating (4.3), we obtain
the values of p2 for which those particular choices of a are optimal.
For a < 0.61 and a > 1.10, (4.3) yields values outside the interval

[0,1]. Some selected values are presented in Table 1.



TABLE 1

Optimal Values of a:for Selected Squared Correlations

pz a 0. (100%)
0.063 0.62 26.7
0.135 0.63 26.4
0.259 0.65 25.8
0.519 0.71 23.9
0.789 0.83 20.3
0.904 0.93 17.6
0.955 1.00 15.9
0.999 1.09 13.8



5. CONCLUSIONS

For very small values of p2, a 27% rule appears to be
reasonable. However, for the moderately small values often
encountered in practice 25% is a more convenient choice. Of
course, these figures are based upon normality assumptions and
limiting expressions for the sample statistics. The results
given above are useful then, only in the sense that they give
a rough indication of what one might expect to occur in practice.

The results do indicate that the current practice of using
the upper and lower thirds of the sample (a 33 1/3% rule) could
probably be improved upon by using the upper and lower fourths
(a 25% rule.)

Generalizations to more complex situations, such as those
involving several factors, are conceptually similar but also
involve other considerations. As noted by Pearson [3] in a
biological context, "If it be advantageous for a species to have
a certain group of its organs of definite size, falling within a
definite range and related to each other in a definite manner,
then these changes cannot take place without modifying not only
the'size but the variability and correlation of all other organs
correlated with these, although these organs themselves be not

directly selected."
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