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1. Introduction and Summary

In this paper we treat the topic of incomplete information regarding the
parameter @ of a Difichlet process prior. Ferguson [4] introduced the Dirichlet
process for the inqorporation of prior information into the analysis of
' nonparametric problems. The pfocess can be viewed as a pribr on the set of
all distributions on a measureable space (Z,G). The process is parameterized
by @, a non-negative, non-null finite measure on (Z,G). (In this paper we
restrict to situations whefe X =R, the real line, and G= @, the Borel o-field.)
Typically, to use estimators which are Bayes with respect to a Dirichlet process
- with parameter o, the statistician must provide a complete specification of
the meashre a. Th1s paper develops some estlmators that rely only on partial
information concernlng o,

One approach to incomplete 1nformat10n concerning o is that initiated by

Doksum [3]. Doksum assumes that a(ti,ti+1], i=1,...,k-1, are known with

a(R - (tl,tk]) = 0. That is, the values that a assigns to the k-1 intervals
(tl’t2]""’(tk—1’tk] are known, and a (g) = a(tl,tk]. In Section 3 of this

paper, Doksum's technique for obtaining a mixed rule (Definition 3.1) is considered
and shown also to yield a G-minimax rule (Definition 3.2) for a suitable choice of G.
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Section 4 considers the estimation of A = Pr{X j_Y}, when xl,...,xm is
a sample from a Dirichlet process with parameter a and Yl""’Yn is a sample

from a second, independent Dirichlet process with parameter B. A mixed rule

is found to be

k-1 -
] 121{ St tg] + Mpre oMy + eyt g0+ 0, HBGELt 5] + N
A = == , (1.1)
k (a®)+m) ( BR)+n)

where'MB’and Nj denote the number of X's and Y's, respectively, in the
1nterya1 (tj’tj+1]'

In Section S5 the problem considered is the cstimation of the rank order
(Definition 5.1) of Xl among xl""’xn based on Xl,...,xr(r < n), where
xl,...,xn is a sample of size n from a Dirichlet process on (R,#) with para-
meter a. For thé case where a is completely specified, a Bayes estimator
was developed by Campbell and Hollander [2]. Here a mixed rule is obtained
for the case where a is nof completely known but instead only the a(ti,ti+1]
k-1
;z a(ti,ti+1]), are specified.

: i=1
Section 2 contains some Dirichlet process preliminaries.

valﬁes? i ='1,...,k-1 (with a@®) =

2. Dirichlet Process Preliminaries
Let G (a,B) denote the gamma distribution with shape parameter a > 0 and
scale parameter g > 0. If a = 0, the distribution is degenerate at 0. If

o > 0, it has a density with respect to Lebesgue measure on the real line

given by:
f(z|a,B) = (F(a)e® ™1 271 exp(-Z/B)I(O ;)(z), (2.1)

where IA(-) denotes' the indicator function on the set A.



Definition 2:1. The Dirichlet distribution with parameter (al,...,ak) where
X

aj_i 0 for all j and X aj > 0, denoted §(a
j=1

distribution of (Yl,...,Yk), where

1,...,ak),_is defined as the

k
Y. = Z, Z,, j =1,...,k,

and the Zi's are independent random variables with gamma distributions
q(ai,l), for i = 1"";k',

If aj >0 for all j = 1,...,k, the (k—l)—dimensionalrdistribution of -
1
(Yl,...,Yk_l) is absolutely continuous with respect to Lebesgue measure on

the (k-1)-dimensional Euclidean space with density

f(”1""”'k-1I"‘l""""k)

: (2.2)
) k=1 a.-1 k-1 a, -1
k i : k

= oy, 1- 7 . LY seeasyy 1),
P(a1)°f'r(ak) 421 1 s i S*1 k-1

P(a1+...fa

where S is the simplex

k-1
S = {(yl,...,yk_l): y; 20, i=1,...,k1, 121 y; <1k

For k = 2, (2.2) becomes the densiEy of a beta distribution with parameters

al and az.

Proposition 2.2. (Wilks [6],p. 179). The r -»T, moment of the Dirichlet

17"

distribution s(al,...,ak) is, for £ < k and r;, a nonnegative integer

such that T, positive implies a, positive, for i = 1,...,%:

- F(a1+rl)...r(a2+r£)r(d)

n
rl,...,rz r(al)...r(az)r(a+r) s ) (2.3)

where a =

a. and r =
. i
i

1 j
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It~
i~



For k a positive integer, let y[k] denote the ascending factorial
y(y+1)...(y+k-1) and define y[o] = 1., Then it is convenient to rewrite

(2.3) as

[r,] [r,] ’
url,-..,rz= *1 ' % * /a[r]' | (2.4)

For a more complete treatment of the Dirichlet distribution, the reader
is referred to Wilks [6].
Let (¥%,G) denote a measurable space. A particular stochastic process

{P(A): A€ g} is defined.

) o v e ’
Definition 2.3. (Ferguson [4]). Let a denote a non-negative, mon-null,

finite measure on (},G). P is a Dirichlet process on>Cz,G) with parameter

a if, for every k=1,2,..., and every measurable-partitibn (Bl"f'?Bk) of X%,
the distribution of (P(Bl),..,,P(Bk))_is'Dirichlet with parameter
(a(Bl),...,a(Bk)).

Ferguson [4] shows, using the Kolmogorov extension theorem, that there
exists a probability méasure, call it Qa’ on ([O,I]G, Bja) yielding the above
finite-dimensional marginal Dirichlet distributions.b Here [0,1]G represents
 the space of all functions from @ intov[O,i] (which thus includes P, the set
of all probability measures on £,q)) and BJG the dffield generated by fields

of cylinder sets.

Definition 2.4. (Ferguson [4]). The collection of random &ariables

xl,...,xn is said to be a sample of size n from the Dirichlet prbcess P on
(%,G) with parameter o if, for any m=1,2,..., and measurable sets

*Al,...,Am, Cl,...,Cn;‘

. n
Pr{X; € Cy,...,X; € Co|P(A)),..,P(A)),P(Cy),...,P(C)} = j£1 P(C;),  (2.5)

where Pr denotes probability.



Intuitively, xl,...,xn is a sample'of size n from a Dirichlet process if P
is randomly selected according to Qa and then, given P, Xl""’xn is a
sample from the probability measure P.

Using Kolmogorov's extension theorem once again, Ferguson shows that
there exists e probability measure on Cznx[o,l]a,anaaga) with marginal
probabilitf on ([0,1]6,330) given by the above Qa' Since this probability
also depends on o, it also will be called,Qa. It can be shown (cf. Berk and
Savage [1]) that Qa concentrates all its mass on (xpnp,anonD)), where o(p)
is the inherited o-field fbr.P from B&q._ Thus, P is a random probability

measure. If F(x) = P(?m,x], then F is a randem distribution function, a

sample path of the Dirichlet process.

Theorem 2.5. (Ferguson [4]): If P is a Dirichlet process on (Z, Q) with
parameter a, and if Xl,...,xn‘is a sample of size n fioﬁ P, then the
conditional distribution of P given Xl;...,Xn is also a Pirichlet process on
(#4.G) with parameter o + _% GX;’ where_GZ denotes fhe‘measure with mass one
at z, zero elsewhere. = * . -
3. Mixed Rules and (j-Minimax Rules

Doksum [3] considered the problem of partial prior information in the
decision theoretic framework, in particular, as applied te nonparametrie
problems with Dirichlet paramefers incompletely specified. It is assumed
throughout this section that a(ti, ti+1]’ i=1,...,k-1, are known and that
a®-(ty,t, 1) = 0. '

Let @ be a class of distribution functions of (§,3), where g is the
real line and g the Borel o-field. Suppose that Q, the pro5abi1ity on Q,

is not completely specified but that, for fixed real numbers tl""’tk’ the



distribution of (F(tl),...,F(tk)) is known, where F is a random distri-
bution function from Q. Let L(F,a) denote the loss function for action a
for distribution function F é 2 and d a decision rule from the observation
space R to the action space Q. - Then the risk function R(F,d), associated
with distribution function F € Q when decision rule d is taken, is defined
by

R(F,d) = EL(F,d(X)),

‘where the expectation is over X, where X has distribution F. The maximum
risk, R(d), is given by

R(d) = sup R(F,d).
Feq

A rule (if one exists) which minimizes the maximum risk over all decision
rules is called a minimax rule. The average risk, R(Q,d), for completely

specified probability Q on @, is given by

R(Q,d) = fQR(F',d).dQ(F)-

A rule (if one exists) is called a Bayes rule if it minimizes the average

risk over all decision rules.

Definition 3.1. -(Doksum [3]). Let Q(q,k) = {F ¢ F(ti) = qi} for

q = (ql,...,qk) € Rk. Let the measure A on.ak, dependent on Q, be given by

AMa; k) = QfF € @: F(t)) <q,, i=1,...,kh

A is then the‘distributiOn»of F(t ) A F(tk) under the probablllty measure
Q. The average max1mum risk, rk(Q,d), associated w1th probab111ty Q and

-dec151on rule d, is



1,(Qd) = [ | [sup R(F,d)]dA(q) -
R FeQ(q,k)

A rule is said to be mixed (or mixed Bayes-minimax) if it minimizes the

average maximum risk over all decision rules.

Definition 3.2. Let G denote a set of probability measures on 9. Define the

G-maximum risk for rule d as sup R(Q,d). A rule (if it exists) is said to be
G-minimax if' the rule minimizes the G-maximum risk over all decision rules.
If'QF denotes the'probability_on Q which is the distribution function F
with probability one, then a G-minimax rule is minimai if G contains QF for
‘all F € 9.‘ o
A natural question is what are the relationships between these various

risks and their associated rules. Doksum [3] provides a partial answer.

Lemma 3.3 '(Dok$um [3]). For any decision rule d and prior Q on 2, the

following hold:

(i) R > 1, (Q,d) > R(Q,d) (k > 1);

o0
ii i o <...< i iti
(ii) if { n tm’l tm,km}m=1 1s a sequence of partitions such that

each partition is a refinement of the previous one, then’

rk (Q,d) 3_rk (Q,d)‘ . for m < g.
m L ‘

Definition 3.4. The carrier of a given distribution is the smallest compact

set whose probability under the given distribution is one. For example, for
F € Q, the carrier of F, denoted C(F), is the smallest compact set on R’whose

probability under distribution F is one.



Definition 3.5. The support of @, S(Q), is given by

S = y cm.
FeQ

‘A

Proposition 3.6. If Q ¢ G, then, for every d,

R(d) > sup R(Q',d) > R(Q,d).

Q'eG »
Proof. Clearly, sup R(Q',d) > R(Q,d) since Q € G. But also, for QF as
_ Q'eq
defined Previously, if G* = G {QF: F € 9}, then sup “R(Q',d) = ”

. Qleq’*
R(d) > sup R(Q',d).]|
. QG

_ Doksum defines a rule, which, in some cases, is a mixed rule. Let

tl = inf{t: t ¢ S(Q)} and let,tk = sup{t: t ¢ S} and assume

-° < t < te <= Let Fq,k denote the.polygonal distributipn function with
F(ti),= qa; for i = 1,...,k and Fq,k linear on [t.,t +1]rf'or i=1,...,k-1.
Let Fk denote the random distribution function obtained by letting q in
q,k haye distribution A = AC; Q, k), for Q a prior on Q Assume Fk
measurable. Let Qk denote the distribution of Fk and dk the Bayes rule for

Qk (if it exists).

Theorem 3.7. (Doksum [3]). 1f Fq x € Q for almost all q in C(A), if such
‘a dk exists, and if rk(Q dk) R(Qk, k), then dk is a mixed procedure.
Theorem 3.7 provides a method for obta1n1ng a mixed rule, i.e., one finds
the Bayes rule for prior Qk’ and, if the hypotheses are satisfied, the Bayes
fule is é mixed rule.

Let G, = {Q a probability on : (F(t)), F(t,) - F(tlj,...,F(tk)-F(tk_ll))
has a fixed, known distribution}.



Proposition 3.8. For any decision rule d and for Q € qk,

'rk(Q,d)_i sup R(Q',d).
U
Proof. For Q', Q" € Qk,uk(q; Q',k) = x(q; Q",k) for all q € RF, in that

A depends on F at tl""’tk’ for F a random distribution function. Therefore,

rk(Q',d) = rk(Q",d) for all rules d. Taking sups over Q' € Qk on both sides of

the inequality
1 @,d >REQ",D,

obtained by Pioposition 3.6, yields, for any Q" ¢ qk,

r (Q",d) > sup R(Q',d).
Q' €6

In particular, € and the proof is complete.
p p

Corollary 3.9, If Proposition 3.8 holds and if, for distribution Q on 9, the

Bayes risk equals the mixed risk associated with mixed rule d, then d is also.

a qk-m1n1max Tule.

Proof. For a Bayes rule §,

R(d) >1,(Q,d) >sup R(Q',d) >R(Q,d) >R(Q,8),
: ’ Q'eik,. : o

by Lemma 3.3 and Propositions 3.6 and 3.8. Now note by assumption, rk(Q,d)

= R(Q,6), so sup R(Q',d) = R(Q,9). Therefore, d is qk—minimax.ll

The significance of Corollary 3.9 is that, in certain special instances,

a Qk-minimax rule can be found by finding a Bayes rule.

-+

n . << e of iti t ea
Let { m tm,l tm,km}m=1 be a sequence partitions such that each

partition is a refinement of the preceding one and such that Itm -t l + 0

,i+1 m,i

as m * ®.  Further, suppose the t's are from the space [0,1]. Let C[0,1]
denote the continuou§ distribution functions defined on [0,1]. For“partition

Hk’ let dk denote a mixed rule for the given probability Q on C[0,1].
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Theorem 3.10. (Doksum [3]). Let Fq K denote the polygonal distribution

f . Py \ . = . . . .
unction with F(tk,l) qa and Fq,k linear on [t ] for

k,i® Tk,i+1 |
i = 1,...,2k. If Fq K € @ for almost all q in C(A), if dk denotes the mixed
rule for probability Q on Q associated with partition k, and if d is a Bayes
rule such that d has continuous bounded risk R(Q,d), then, for @< C[0,1],

lim rk(Q d ) = lim R(Q, dk) = R(Q,d).

koo koo

Theorem 3.11. Under the conditions of Theorem 3.10, if(}k-minimax rules
6k exist for k =_1,2,..., then, for Q € gk for k = 1,2,...,

lim sup R(Q',6,) = R(Q,d).
k» Q' e;k

Proof. It follows from Prop051t10ns 3.6 and 3.8 and the def1n1t10n of a
qk-mlnlmax rule that
RQd) SRQE) < sup RQ,8) < sup RQ,dy) < 1, (Qudy).

'@k - ey
Thus, by Theorem 3.10,

lim sup _R(Q',5k) = R(Q,d). |]
ko Qg

. The importance of Theotem 3.11 is that, if’qk—minimax rules exist and
the conditions of the theorem are satisfied, the associated qk—minimax risk
approaches the Bayes risk. |

The application of this development to the Dirichlet situation will
become apparent immediately. Let'.qk = {Q a probability measure on Q:
(F(tz) = F(t)),.. Bt - F(t,_;)) has a Dirichlet distribution with
pafameters ta(tl,tz],.;.;a(tr 1,ti(]} “Then qk—mlnlmax rules are. exactly
those rules fbr wh1ch o 1s known only on (k 1) intervals. The search for

'Qk—mlnlmax rules w111 be conducted by means of Corollary 3. 9 The behavior
of such rules as k -+ >, under the conditions enumerated, is .given 1n

‘Theorem 3.11.
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The remaining two sections contain applications of this development.
Section 4 treats estimation of Pr(X < Y) under incomplete Dirichlet prior
information. Section 5 considers estimation of a rank order under Dirichlet

incomplete prior information.
4. Estimation of Pri{X <Y}

Under Partial Prior Information

Consider the problem of estimating Pr{X < Y} in the two-sample situation
under incomplete Dirichlet prior information. In particular, assume
xl,.;.,xm is a_sample of size m from a Dirichlet process on (R,3) with
pa;ameter a énd Yl“"’Yn a sample of size n from a secpnd Dirichlet'process
(independent of the first process) on (®,8) w%th parameter B. Further, assuhe
that tl"'f’tk are fixed such that a(ti,—ti+1] and B(ti, ti+1] are known for
i=1,...,k-1 and that a® - (tl,tk]) = RlR - (tl,tk]) = 0. The parameter
of interest is A(F,G) = Pr{X.i Y} = deG where F is the random distribution
function from the first Dirichlet process and G the random distribution
functioﬁ from the secbnd process. Let Fk and Gk denote the polygonal random
distribution functions with Fk(ti) = F(ti), Gk(ti) = G(ti).for i=1,...,k

and F and Gy linear on [t.,t. .] for i = 1,...,k-1. Then

Ti+l
k-1

A(Fk;Gk) =‘IdeGk =1 121 [F(ti) + F(ti+1)][G(ti+1) - G(t;)]. For squared

error loss function, the Bayes estimate Bk of A(Fk,Gk) is

A

Ay = E“(A(Fk,Gk)IXl,...,Xm,Yl,...,Yn),
where 1rdenotes.that F(t) is a Dirichlet process with updated parameter

n -
a + Z .8, and G(t) is a Dirichlet process with updated parameter

\

n :
B+ Z' 8y Let p, = F(t; .) - F(t;) and P} = G(t;,,) - G(t,) for

1

i=1,...,k-1. By Theorem 2.5 and Definition 2.4, p = (p,,...,pk_l) has

a Dirichlet distribution with parameters {a(ti’ti+1] + M.}k_1

17i=1 and

p' = (pi;..,,pi_l) hasra Dirichlet distribution with parameters
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k-1 ' '
{B(ti, ti+1] + Ni}i=1’ where Mi and Ni denote the number of X's and Y's,
respectively, which fall into (ti’ ti+1] for i = 1,...,k-1. It is easy to
see by independence of the processes, therefore, that Ak is given by the

right-hand-side of (1.1). The estimator Ak may be rewritten as

- 1 )
B = a8 kZI a(t),t5] + ety t, 01 B(e;,t ]
DL = S B®)
k=1 M +...+M, + M. B(t.,t. .1
¢ (1o )8 SR i - S L 2 @“.1)
i=1 m BR)
k-1 at,,t.] + %o(t.,t. -] N,
+ am(l'Bn) ‘z 1’74 1’ 7i+1 i

i=1 @) n -

k-1 M. +...+M. + ¥M, N.

1 i i+l i

(1-a)(1-8) ] .=
: i=1 m n

+

>

where o = a®)/(e¢®) + m) and B, = BR)/(B®R) + n). Note that this
estimator with the squared error loss function is both a mixed rule (by
Theorem 3.7) and a qk-minimax rule (by Corollary 3.9) for Q = {(F,G): p and
p' are independent Dirichlet distributions with parameters (a(tl,tz],
..,a(tk_l,tk]) and (B(tl,tz],...,B(tk_l,tk]j, respectively}.

As the ti's become gense, Zk is seen to approach Ferguson's [4] estimator
fér Pr(X < Y) for complete Dirichlet prior information. As a(®) and B@R) ~» O,
ak approaches the Mann-Whitney U' statistic for groupedvdata (as giVen‘in

Putter [5]):

As a®) and BG@)get large,

. ) 5 .
~ k-1 a(tl’ti] + za(ti’ti"'l] B(ti’ti*‘l]

A YA - .
ki a®) B®)
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The estimator Bk would be useful, for example, in the following
situation. Suppose there are two middle-sized towns for which one wishes
to compare the cholesterol rates, in particular to estimate Pr(X <Y)
where X is the cholesterol level of a randomly selected person from town A
and Y is the cholesterol level of a randomly selected person in town B.
Town B could be undergoing a program designed to lower cholesterol rates with
Town A serving as a control. There is prior knowledge about the cholesterol
levels in the two towns. The prior kihowledge is qualified by specifying the
weights a(ti,ti+1]and B(ti,ti+1] for i = 1,...,k-1. Thervalues.aGg) and BR)

reflect the degrees of confidence held in‘tﬁéie weights. The estimator Ak

is then a combination of the priors and the actual data tabulated by intervals.

S. Rank Order Estimation Under Partial Prior Information

Let X ,xn be a sample of size n from the distribution F. Assuming

177
F is a random distribution function chosen according to the Dirichlet process
prior with parameter q, Campbell and Hollander [2] derive the Bayes estimator

of the rank order G of X1 among Xl,...,Xn based on knowledge of r(<n) observed

sX... In this Dirichlet model, care must be taken in the

values Xl,... r

definition of a rank order since the distribution chosen by a Dlrlchlet process

is discrete with probablllty one (cf Berk and Savage [1]D. To resolve the 1ssue

of ties with regard to the rank order, average ranks are used.

Definition 5,1. Let K, L, and M denote the number’of observations of

X, X

Then the rank order ¢ of X

2,...,Xn that are less than, equal to, and greater than Xl’ respectively.

among X;» X +-.,X is the average value of the

1 2°

ranks that would be assigned to the L values tied at Xi, in a joint ranking
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from least td greatest, if those values could be distinguished; namely,
= {(K+1) + (K+2)+...+(K+L)}/L = K + (L+1)/2.

Similarly, for K', L', and M' defined, respectively, to be the number
of observations of xl,xz,...,xr less than, equal to, and greater than Xl,
the rank order G! of X among X Xz, Xr is given by G' = K’ + (L'+1)/2

For squared error loss,. the Bayes estimator is (see equatlon (1.2) of.

21

G =6+ -r){ar(-=,X) + ' (G H/a' @), (5.1)

A\

where § is the real line and o' = a + GX , Where SZ is that measure

1

1 g

i
which concentrates its entire mass of one at the point z.
In this section it is assumed that « is not complefely known; instead
a is specified only on k-1 1ntervals (tl,t1+1] for i=1,. ..,k 1 w1th
a®) = #zl a(ti,ti+1]; Let Fk denote the polygonal random distribution
functio:_érom the'Dirichlet.prOCess. Whaf:is the Bayes estimate for the
true rank order g if F is known and Xl,._..,Xr have been observed? It is
easy to appeal to equation (3.3) of [2] for Pr{(K,L,M) ='(k,2,m)|X1,...,Xr,F}.

The mean,GF of G, given Xl,...,Xr and F, is obtained from the mean of a multi-

nomial. We find

Gp = G+ (-T)F(X]) + B[F(X)) - F(X)I}.

‘Restricting justdtb'polygonal distribution functions, it is clear that Gp
u51ng squared error loss function depends -on Fk not just at Fk(t ), i=1,...,k.

ThlS makes f1nd1ng a mixed rule for the rank order problem most d1ff1cu1t
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Suppose the observations have simply been grouped into intervals where .
the values o assigns to these intervals are known. Rather than take the loss
function L(g,d)'= (g4d) , we use the following modified loss function. For
g(F:xl’--"’xr) = ' + (n I‘)F(t ) + !V(n"r) [F(t1+1) - F(t]_)] if xl € (ti,ti+1]:
the loss is given by [g(F,Xl,...,Xr)-d] . The mixed Bayes minimax rule is

then easily shown to be
=G mem) (et ) s et (et 51170 R) (5.2)

if Xl'ey(ti,ti+1] for i=1,...,k-1. Note that this rule is really just -
the Dirichlet estimator with complete informatiox concerning the parameter.a,
but where a is concentrated at (k-1) atoms {t } j=2 SO that %2 a({t. }) = a@R).
An example in which such an estimator could be of use is as follows. An
automobile driver is passing through a town in-need of regular gas. The driver
knows there arern'statiOns in town and all n clearly post their prices for
gas. From past expefience at the gas pump, the driver has some idea of the
distribution of prices in the region. The model tends %o be contagious in that
if one station advertises a particular price, competition (or lack of it) will
cause others to be more 11ke1y to adopt that price also. Hence the Dirichlet
model is not unreasonable here. The problem is for the driver to estimate, as
he passes the rzh-station, the rank of that station's gas price among all n
stations, on the basis of the prices at the first r stations and his prior
information. Then, the estimator 6 could be used, with the parameter ()

reflecting the weight or confidence attached to the driver's prior knowledge

of regional gasoline prices.
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