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Abstract

The technique of ridge regression, first proposed by Hoerl and
Kennard (1970), has become a popular tool for data analysts faced with
a high degree of mu]ticol]inearity in their data. By using a ridge
estimator, it was hoped that one could both stabilize his estimates
(Tower the condition number of the design matrix) and improve upon the
squared error loss of the Teast squares estimator.

Recently, much attent1on has been focused on the latter ocbjective.
Building onlthe work of Stein (1955) and others, Strawderman (1976) and
Thisted (1976) have devé]oped classes of ridge regression estimators
which dominate the usual estimator in risk, and hence are minimax. The
uneieldy form of the risk function, however, has lead these authors
£o minimax conditioﬁs,which.are stronger than needed.

In this paper, using an entirely new method of proof, we derive
conditions that are necessary and sufficient for minimaxity of a large
class of ridge regressioh estimators. The conditions derived here are
very similar to those derived for minimaxity of some Stein—typé estimators.

We also show, héwevér, that if one forces a ridge regression estimator
to satisfy the minimax. conditions, it is quite likely that the other goa1

of Hoer] and Kennard (stability of the estimates) cannot be rea11zed.



1. Introduction

Beginning with the work of Stein (1955), which showed that in higher
dimensional problens, the sample mean of a multivariate normal distribution
is inadmissible against squared error loss, much research has been aimed
at developing estimators whose risk functions dominate that of the sample
mean. More ;ecentIy, a new estimation procedure, ridge regression, has
been developed to improve upon the numerical stability of the Teast
squares estimator in linear regression. Although the original purpose
of the ridge regression estimator was not to dominate the risk of the
least squares estimator, recent research has gone in that direction.

In the present paper we develop a class of ridge regression estimators
and, utilizing a new method of proof, derive necessary and sufficient
conditions for these estimators to be minimax, and thus dominate the
least squares estimator in risk. We also point out that "forcing" ridge
regression estimators to be minimax makes it nearly impossible for them
to provide the numerical stability for which they were originally
intended.

We start with the familiar linear model
Y=128 + ¢, (1.1)

where Y is an nx1 vector of observations, Z is the known nxp design matrix
of rank p, B is the pxl vector of unknown regression coefficients, and e is
nxl vector of experimental errors. We assume that e has a multivariate

normatl distribution with mean vector zero and covariance matrix oZIn. (1

n
denotes the nxn identity matrix.)



The usual estimator of g in (1.1) is the least squares estimator
8= (2'2) 120y, (1.2)
é minimizes the residual sum of squares of the regression, i.e.,

min  (Y-28)'(Y-Zg8) = (Y-Z8)'(V-Zp), (1.3)
B

and thus is the estimate which best "fits" the data. Two different
lines of research, however, pointed out deficiencies in é.
The first deficiency in é is its inadmissibility. If we measure

the Toss of an estimator & of g by
2, _ 1 Ver |
L(8,8,07) = —E'(G-B) Q(s-8) (1.4)
0’ .

where Q is an arbitrary positive definite matrix, ahd let the risk of

6§ be given by

R(S,8,02) = E L(5,8, ), s

rthen the resu]ts}of'Brown (1966) show that é is inadmissible. Several
authors (e.q. Bhattacharya (1966), Berger (1976b)) have exhibited large
classes of estimators whose risk function dominates that of é. Since é

is a minimax estimator of B8 with constant risk

R(8,8,0%) = tr Q(2'27)7), : (1.6)

this search for estimators better than B is a search for minimax estimators.



A second deficiehcy in é was first noted by Hoerl and Keﬂnard
(1970). If the matrix Z arises from observation rather than  from a
designed experiment, it is possible that there will be high correlation
among the Z variables. This will lead to a Z'7 matrix that is "nearly
singular", i.e. Z'Z will have a wide eigenvalue spectrum. If this is the

case, Hoerl and Kennard point out that the least squares estimator é will
be "unstable" in the sense that a nearly singular Z'Z will produee an
inverse with inflated diagonal values, and (see (1.2)) small changes 1in
the observations might produce large changes in é. To cokrect this

problem, they propcsed the ridge estimator
B(k) = (1'Z + klp)"z'v | (1.7)

where k is a positive number. Adding the number k before inverting amounts
to increasing each eigenvalue of 7'7 by k. This can be made clear as

follows: Let P be the matrix of orthonormal eigenvectors Of_Z'Z,‘and

let A > Ao 2 ... 3_Ap‘be its eigenvalues. It follows that."

.P.zezp= Dy. PP =1, (1.8)7
where‘DA = diag(A],...;Aé). Then (1.7) can be written as

6, = (P'(Dx + k1 ))P) 12y | _,_:;._ (1.9)

To see how the ridge estimator is more stable than B, we note that the
cond1t10n number of the matrlx belng inverted in (1. 9) is decreased The

condition number of a matrix is a measure of its ill1-conditioning, given by



c(a) = 2max(y). . o

where amax(-) and Xmin(-) denote the largest and smallest roots of

a matrix. Large values of «(A) mean that A is i1l conditioned. Since

Ay + A : '
1 1 .

X T <A__ | ) (].1])
p p |

o

x..

for k > 0, the ridge estimator is relieving the i]]—cohditioning problem
of Z'Z. A straightforward generalization of (1.9) is the generalized

ridge estimator
BIK) = (P'(D, + KJP) 120y (1.12)

where K = diag(k],;.;;kp). Here, we allow each_eigenvaIUé- of 7'7 to
be increased by a diffefent amount. |
Hoerl and Kennard list many properties df the ridge esfimétor, and

prove the "Ridge Existence Theorem®. This theorem asSerts~that for a fixed
‘parameter point_eo,-there exists a ya]ue of k (or'va]ues_of'ki,_i=1,2;...,p)
depending on Bgs for which the risk of é(k) is smé]]er than the risk. of
é. This theorem, together with results arising from the work of Stein,
has lead fo the search for minimax ridge estimators.

| In Section 2, we-discdss the canonical form 6f the proﬁ]em, and
develop the neceSsary hotation. Section 3 contains the_asymptotié (as the
parameter value.increases) results needed as a pre]iminary.étep in

developing the main theorem. Section 4 contains the mafh.theorem,rthe



 sufficient conditions for minimaxity of the estimators, while in Section
5 we show that for a smaller class of estimators these conditions are
necessary and sufficient. Section 6 contains a discussion about the

relationship between minimaxity and the conditioning problem.



2. The Canonical Problem

The technique of simultaneous diagonalization has found frequent
use in proving minimaxity of classes of estimators (see, for example,
Berger (1976b) or Strawderman (1976)). The problem is rotated into
@ space where both the covariance matrix and the loss matr1x are
‘d1agona], whlch great]y simplifies calculations while preserving minimaxity.
However, with estimators of the form (1.12) it is necessary to
simultaneously diagonéiize three matrices (2'Z,P'KP,Q) which, in
general, is.not poséibfé. A sufficient condition for the simultaneous
diagonalization of these three métrices is that Q and 7'Z have common
'eigenvectors. In the absen¢e of any prior knowledge, an experimenter
will usually chooser =JorQ-= (Z‘Z)-l and the simultaneous diagonalization
can be carried out. Howevef, it is often the case that an experimentor
has some knowledge of the losses he is w1]11ng to incur in the individual
components, poss1b1y from cost cons1deratlons or prlor know]edge
For this purpose, it is worthwhllg for the estimator to perform well
against an arbitrary chdice of Q. |

Since Hoerl and Kennardfs eﬁtimafor was probosed only with the
choice Q = I in mind; we canﬁqt_expect it to perform well when Q is
arbitrary. A'slight_genera]ization, however, will handle any choice of

Q. As an extention of (1.12) we define
) éQ(K) = (27 w7y, - (2.1)

where M is a non- 51ngu1ar matrix which s1mu1taneous]y diagonalizes
Z'7 and Q. If Q and 7'7 have common eigenvectors, (2.1) is the original
r1dge estimator. If D is the diagonal matrix of elgenvalues of

: (Q‘(Z Z)Qd) -1 LM satl fies



MD 'M=72'7

M'M = q,

and showing that é (K)-is minimax against the loss
Q

L(B,8.0%) = 15(8-8)'0(8-6)

(o

can be reduced as follows. éQ(K) can be written

éQ(K) (M (0~ V+k)M) T p Tg

M o +k) o Ty,

Let X = Mg, 6 = Mg. Since g  N(g,02(2'2)"1), it follows that
X ~ N(6,0°D). Also, from (2.2),

L(B,Bsoz)

i

15 (MB-Mg) " (MB-Hg)

g

L (#8-0)" (MB-s)
ag
If we let GQ(K) = MéQ(K), we have
3(K) = (07 1+k) Ty,
where the ithcomponent can be written
s '(K)=(1-kii )X
Y kydy#T

and the loss of (2.3)1becomes

(2.2)

(2.3)

(2.4)

(2.5)



LoqlKDoue) = 7 (sq(K-0)'(sqK)-0). (o)

It then follows that éQ(K) s minimax against loss (2.3) if and only if
GQ(K) is minimax against the loss (2.6).

In the: fo]]ow1ng we will surpress the dependence of the est1mator
on Q, and since K will be a function of X and s, the var1ance estlmate,
we will denote the ridge estimators by 6R(X,s). |

Finally, we rote that since X is minimax with constant risk
R(X,8,0%) = E L(X,6,0%) = trD,

where “tr" denotes the trace operator, an estimator §(X,s) is minimax
if and only if
2)

A(8.6.0%) = R(X,e,oz) - R(a,e,oz) <0, vo.



10

3. Tail Minimax Conditions

The form of Hoerl and_Kennard's ridge estimator, while intuitively
pleasing, leads to a father complicated risk function. ff.One tries to
apply Stein's integfation by parts technique (Efron and Mérris (1976))
in which an unbiased estimate of the risk is obtained and bo&ﬁded above
for all X, it seems.that_one is lead to either bounds that are not sharp
(Thisted (1976)) or additional conditions on the estimatbrf(Strawderman
(1976)). The proof in this paperavoids these complications by obtaining
an upper bound on the risk of 6R(X,s) by an indirect method.

4We begin with the concept of tail minimaxity introduﬁed by Berger
(1976a) to deal wifh losses other than quadratic. We use taiT

minimaxity here to obtain a simplified expression for the risk of.éR(X,s).

Definition 3.1: An estimator 8(X,s) is tail minimax if a M > 0 such that

W satisfying 6'6 > M, A{s(X,s),6,0%) <0.

Since GR(X;S) shfinks X toward zefo, (as can be seen-fkom (2.5)),
it should perform well against quadrat1c ]oss for sma]] va]ues of 8. Thus,
we begin our lnvestlgat1on for minimax rldge est1mators by exam1n1ng con-
ditions under which the risk of the ridge estimators dominates that of
X for iarge ya]ues_of 6, i.e., those that are tail minimax. ,Wé first
develop conditions under which, for ]afge values of o, therduantity
Ef(X) tan be approximatéd by f(e) with error small enough to be ignored.
We then use this appdeimation on the risk fUnction of GR(X,S) to
derive conditions for tail minimaxity.

From the work of Brown (1971) and Berger (1976a), it is ré'a_sonab]e

to choose ki so that the gquantity
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?(X,s) =X - 8(X,s), | o (3.1)

~is, for large values of X'X, approximately c/X'X for some constant

c, i.e.,
Y{X,8) ~ ¢/X'X. 2 (3.2)

To this end, we consider ki of the form

aisr(X‘D'1X/s),
ki'z _] (3.3)
X' 'y o

where a; is a pos1t1ve constant and r(-) is a bounded funct1on sat1sfy1ng
certain regu]ar1ty cond1t1ons While the_quadrat1c form in the
denominator may contain ‘any positive definite matrix andlétill
satisfy (3.2), it will be important later in this paper for the quadratic
form to follow a non- centra] chi- square dlstrlbut1on

For k; as in (3 3), the ridge estimator of (2,9) can be written

componentwise as

(der(x'07x/s) | |
a1dir(X'D X/s)+X'D” 'X/s _ '

fons) = (1 -

We start with the fo]]ow1ng 1emma wh1ch gives conditions on a functlon
f(x) under which, for large values. of 6, Ef(X) can be approx:mated

by f(e) with small grror,



Lemma 3.1: Let X ~ N(eo, I), and let the function f: RP + R satisfy

i) f has all second order partial derivatives

ii) E(f(X) —'f(e))2 §_K|e|q for some constants q and K

i) osup o |F9(y) - £9(0)| = o(]e]T8) 1<, 5 <p
y>|e|/2 |
ij 5
where f'J(X) = axav— f(X)
, i%%
Then

‘ : -2
|Ef(X) - f(e)]= o(]e]™%).
Proof: Define the regions W and W by

W

{X: -[X—e|§;|e|/2}
{X: .[Xfe|§‘|e|/2}.

WC
The Taylor expansion of f about o (up to second order terms) is

) p i
£(X) = £(p) + z_](x,--e].) (8) + o(X,0)
_ - =l - .

where

o1 d
f_-,(e_) E(T f(X) s

X=6

o v 2 : .. i . ..
p(x,0) = L5E- 5 (x 2o ) (7Y (ovt (x-6))- £
o ' 1,J ‘ ,

for some t, 0 <t < 1. Letting ¢(*) denote the cumulative normal

distribution with mean 0 and covariance matrix I we have

12

(3.6)

8)) -
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Ef(X) - [ (f(e) + E (xi-ei)fi(e) + 0(X,0)) de(X-0)
U .

+ f(X)de(X-0)
NC

From the definition of W, a simple sign invariance argument will show

£ (xi-ei)¢(x-e) =0, 1i=1,...,p,

therefore,
EF(X) = f(8) + [ o(X,0)de(X-0)
-0 i
_ (3.7)
[ (F(X) - f(e))da(X-s), |
W : |
and hence,
[EF(X) - f(o)] < £ {o(X,0)|de(X-0)
| (3.8)

+ IR - (o) |de(X-0)
W

Noting that X €W = |0+ t(Xx-6)| > |e]/2 for 0 <t <1, we have

sup [£19(e+t(x-0)) - F1(e)] < sup  [£H(y) - £1(g)].
X"E_N_“ ‘ Tyl >lel/s2 v

' It}thén follows fEQm (3.6) and condition (iii) that
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2 .
1-t :
J lotxo)jastx-o) < [ L3th RN

x  sup |Fi(y)- f‘J(e)|} do(X-0)
|y|>|el/2 (3.9)

]A

] max  sup |f13(y) f’J(e)l L EIX -9, ||X J|

® iilylo]/2 i,

Nmax  sup |fiI(y)- 1J(e)l
i3 lyl>lel/2

o(le]™%),

where N = (1/6) X E|X;-0;11X;-0;| <=. Also, from the definition
i,
of wc,

wf lf(X) - f(6)|d¢(x 6) E!f f(e),ll(lel/Z,m)(|x'el)

iya1/2
< {E(f(X) - f(e)) EI(M/2 )(Ix-el)}

by Holder's ihequélity,_ Using the well known fact (see, e.g.; Chung
(1968)) that if a > 0 then

o -x? _1a2
I- e dz < e ,
a Vor - a

we have

P(IX-e| > |e]/2)

L (Jo)72,#) (1X-01)

P A

p 1
P(_u]{lxi-eil > |ef/2p*} )
1:
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< 2p P(n(0,1) > [o|/2p?)

3/2 _ -
< B expi-10)2/8py,
o |
| | e |
and combining this with condition (i1) and the fact that 1im y'e Y = ovn

v Y
we have '

[ 1£(X) - £(o)|de(X-8) = o(]8]™)
WC-

¥n, and hence the result follows.

The extension of Lemma 3.] to the case X ~ N(e,x), za knoWnrpositive
definite matrix, proceeds in the usual manner (i.e., diagonalizing ),

and is stated without broof.

Lemma 3.2: Let X « N(0,5), and Tet f: RP - R satisfy conditions

i) - iii) of Lemma 3.1. Then
[EF(X) - f(0)]= o(]e]™?).

We now der1ve the asymptot1c express1on for the r1sk of ‘the
est1mator ) (X s), given by (3.4), and the condltlons_under which it

is tail minimax.

Theorem 3.1: Let X ~ N(s.02D), D = dag(d;.....d ), and Tet s o 622
be independent of X. Let the loss of an estimator G(X s) of 6 be
given by (2.5), and let & (x s) be the rldge estimator g1ven by (3 4)

where r(t): R~ [0, w) satisfies
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i)t (t) = o(1)
i) t3/2r(t) = o(1)
iii) r(t) is bounded and non-decreasing
iv) r(t)/t is non-increasing.

If a €] > 0 and €5 > 0 such that

ey < r(t) < [2(m2)” (£rAD%-2amaxAD?)/amaxh?D%]-c,  (3.10)

where A = diag(a],...,ap), a; >0, 1 <1i<p, then 3 K> 0 such that

vVe's > K,
R(GR(X,S),B,OZ) i_R(X,e,cz).

Proof: Define
8(6%,6.6%) = R(6R(X,5),0,0%) - R(Xi0.0D).

From (2.5) and (3.4) stkaightforward calculation yields

(aid].r'(t)xi).2

g )
06R002) = (168 T & S
i=1 (a;d;r(t)+t)

(3.11)

2Xi(Xi-ei)aidir(t)}
aidir(t) +t e

Where t = X'D']X/s. Integrating the last term in (3.11) by parts and

defining
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. 2 . e
W = 5/g ’ Z,’ = Xi/”' v =10'D Z,

yields

(a1d1r(v/w ))2 2 2 2a dzr(v/w )w

A((SR’e'sO',Z) E 2
S 1 (a d, r(v/w w +v) ; .r(v/w )w +y

1] L\’J‘U

i

4a d. r(v/w )w Z -~ 4a, d Z (v/w r (v/w )

(a d. r(v/w )w +v)2 o2 (a d. r(v/w v +v)
Since r is non- dec"eas1ng, the last term 1s bounded above by zero. Note
that t X'D” X/s = 7‘D Z/w s and app]ylng Lemma 4, Append1x to the
-funct1on q(t) = t h(t) we have

E{xﬁh(z'n"z.x,ﬁ)} = meth(z'0712,8, 1 - (3.13)

Using (3.13)on each of the f1rst three terms of (3. 12), bound1ng the

last by zero, and rearrang1ng terms 91ves

E a;d, r(v/w md (a4, r(v/w 2) +2+4)Z

A(s (x, s) 850" ) <m 2
, | (aidir(v/wm+2)w +2 V)€

i
(3.14)

2a ds r(v/w +2)
(a d. r(v/w +2)wm+2 )}

It follows from conditiqhs (i) and (ii) that r(v/w) is non{increasing in

w, and wr(v/w) is'nonsdecreasing,in:w, and'hence the functioh _
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aidir(v/w)Zi )2
aidiwr(v/w)+v

(w) = (
is non-increasing in w. Applying Lemma 5, Appendix shows
] 2 2
E{qi(xm+2)(xm+2 - m+2)} i 09
so that (3.14) is bounded above by

R a, d r v/w)(a.d.r v/w)(m+2)+4)2?
A(8 (X,5),6,0 !

IIM‘O

(a d. r(v/w)w+v)
(3.15)

2a d r(v/w)
(a d r(v/w)w+vf by

where, from here on, w = w v X$+2- Divide the region of integration

m+2
of w into the two intervals

=
i

{w: w <M}

=
1]

17 {w: w > M},

where M is a positive constant. The exact method of choosing M will
be detailed later in the proof. Let gi(w,Z) denote the quantity in
braces in expression (3.15) and let F(-) denote the cumulative x2

distribution with m*2 degrees of freedom. Then

dsR(X.5)16.02) < m d E E;(g;(w,Z))dF(w)
. 0 1=

en [ B egleynanar)

i=1
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Consider first the integral over W,. Since aidir(v/w)w >0 and

-1 2
2'D "7 > Zi/di’

E : {(aidir(v/w))

/ zaz(g W2dF) < [ ] B

p = 1

x(a ds r(v/w)(m+2)+2d ) }1dF(w)
(3.16)

a1d]r* 2 i
/ z E,{( )(a;djr*(m+2)+2d. ) }dF (w)

w] i=1

| A

A%D3+2r*a0%) 1] P(w > M)

[Ez{v-1tr(m+2)r*

where r* = sup r(t). Since
. t

v = (207707 = o200 le + (o0t o)
the last expression.in (3.16) is equal to

2,3

(5%/6'0 Vo) (tr (mr2)r*2A2D3 + 2r*AD2])p (w > M) + 0(0 /6'6). (3.17)

Consider next the ihtegra] over wo. It is Straightforward to verify that,

or fixed w, g.(w, satis ies the conditions of Lemma 3.1. Thus
for fixed 1( Z) satisf h d fL 3.1. Th

/ E E;9:(w,Z)dF(w) = | E 9;(w,8/0)dF (w)
wo i=1 ”o i=1 :

+ o(oz/e'e)dF(w)
NO
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2

{ aidir(v/w)(aidir(v/w)(m+2)+4)ei

p
-7 7
£O i=] oz(aidir(v/w)w + v)2
(3.18)

2a.d?r(v/w)
- L }dF (w)
(aidir(v/w)w+v)

+ [ 0(02/8'6)dF(w),
“o
where v = 8'0-18/02, Straightforward calculation will show that the
individual terms comprising the 0(02/6'6) term in (3.18), which are
the higher order derivatives of gi(w,Z), can each be bounded by a
function which is indepéndent of w and of order 0(02/6'6). Now

writing

(aidir(v/w)w+v)-] v—](1—(aidir(v/w)w/(aidir(v/w)w+v))

fl

\)-](]'Yi(\)aw)) >
and

si(v,w) = aidi(aidir(v/w)(m+2)+4)e§/c%

we can write (3.18) as.

f 5 e ndrn - [ ¢ r(v/w) § (v W) Lo (v ow))s, (v ) /o
WO i=] WO i=1

- 2a,d313dF(w)

+ 0(02/9'05

p .
é { ££§1ﬂl ) (si(v,w)/v-Zaidf)}dF(w)
0 'i=]



- f {P(v/w} E

W Voo

[Y.i (\),W) (S](\),W)/V-Za]df)
0

(3.19)
- V5 (va)s, (v,m) /v 1dF ()

+ 0(o%/6'0)

Recall r* = Sup r(t). Then for w ¢ NO
t

v; (vsw) < a;d;rM(a.d, r*M+v)" 1<i<p

S-i(‘V,W)/\) < aidZU (a d. r‘*(m+2)+4), i ' <p

and thus it is clear that the second integral in (3.19) is o(v 1)

0(0 /6'8). Hence, summing the first term in (3.19) yields

/ E 9; (w,Z)dF(w) < f rixiyl_[;!v/w)(m+2)e A2D%0+r0 ' AD
Wp =1 Ea Wy 6'D g

- 2trAD?1dF (w)

+ 0(02/6'_9)
' (3.20)
<J{ r(v/w, (AmaxA D3)(m+2)
Wy | |
2(m+2)'](trADZ-2AmaxADZ)
x[r*- AmaxAzD3 . ] dF(w)

+ 0(02/6'6),

since
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o'A’D% _ . 2.3 e'ADo
o'b T -

By assumption, the qﬁantity in square brackets in (3.20) fs bounded

above by -e,, r{v/w) > e and since AmaxAzD3 > 0,

p 2 '
[ L B9 dF(W) < —Zy [ecienn  A2D3(me2)P(w < M)] (3.21)
wo i=] 8'D ‘o
+ 0(02/6'6)

Combining (3.17) and (3.21) yields

' 2 . -
Aﬁﬁag)ilfr (= eyepn APD3(me2)P(w < M)
6'D o

+ (e[ (m2)r*2A2D3+20%AD2])P(w > M)} (3.22)

+ 0(02/6'6).

Now M is chosen large enough so that

-e1ephnn AXD3(MH2)P(w < M)

+ tr (m2)r*2A%D3+2r a0 TP (w > M) < ~eq < 0,

for some €y > 0, and thus from (3.22),
A(GR,G,GZ) < - eBmozkrD']e + 0(02/6'6)
< -_e3mAminDcz/e'e + 0(02/6'9),

and for sufficiently large o's, A(GR,G,oz) <0 and so GR(X;S) is tail

minimax. | |



While Theorem 3.1 does not guarantee that the risk of GR(X,S) will
lie below that of X for any specified values of 8, it does provide a
bound on the tail behavior of the risk function of GR(X,s)._ In the

next section we show that this bound is, in fact, a global bound.
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4. Sufficient Conditions fqr Minimaxity

The main theorem of this'section, Theorem 4.1, extends the tail
miniméx bound of Théorem 3.1 to a global bound. We introduce a new
method of proof, which differs sharply from the techniques previously
used to prové minimaxity. Rather than bounding the risk function
pointwise by a function which lies below R(X,e,oz), we identify the
extrema of R(GR,e,oz); and show _that'at these points the risk

function of GR(X,S) is below that of X.
Theorem 4.1: Let GR(X,S) be the ridge estimator of (3.4) where
r(t): R - [0,) satisfies conditions i) - iv) of Theorem 3.1. If

2 2.3 :
AD ]/xmaxA D°, | (4.1)

0 < r(t) < 2(m2) ' [tran®- 21

vt >0, then GR(X,S)_is minimax against the loss (2.5).

Proof: Assume that thebound in (4.1) is strict, i.e., @ £ and €95

both positive, such_thaf.v—t >0
O (20m+2) 1T £ran2-; 2 253 4.2
ey < r(t) < (2(mv2)""[trAD®-22  ADI/2_ A%DY) - 52.(_ )

Then from Theorem 3.1 @M > 0 such that. v ¢'e 3_M_A(6R,e,o) < 0.
Consider the set § =”fe: 8'6 < M}, a compact sphere in RP. We will
bound A(GR,e,oz) by a continuous function y(bR,e 02), which must have
a maximum on S. We will then show that, with the except1on of the
point ¢ = 0, y(d (X) 8) does not have an extreme point in the

interior of S and thus achleves its maximum either at 6 = 0 or 6's = M.
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If 6% = M, it will follow from Theorem 3.1 that v(6%,0,0%) < 0.

We then show that y(GR,O,oz) <0. A simple argument, usihg'Fafou5s
Lemma, then allows the result to be extended to the case when the -
inequality in condition (4.1) is not strict.

Using the notation of Theorem 3.1, from (3.15) we have

A

a(sR,6,6%) _,Y(GR,G,GZ)

E{aidir(v/w)(aidir(v/w)(mf2)+4)2§ ‘ 

5 (4.3)
i=1 (aidir(v/w)w+v) _

2
_.Zaidir(v/w)

(aidir(v/w)w+v

1

| where Zi'm.n(ei/o,h{), v=200"Z, W x£+2 independent of Z. Define

= e/a,
9;(w,2) = aidir(v/w)(aidir(V/w)(m+2)+4)s-: . (4.4)
h;(w,Z) =-(aidir(V/W)W+v)'], o -

then

v(6%,0,6%) = m f] Eg; (w,Z)W(w,2)23
'l'_‘
' ' (4.5)

2. . -
- Zaidir(v/w)hi(w,z)}>;:v
Letting xg(a) denote'a'chi-square random variable with p degrées of
freedom and non-centrality parameter o/2, we have from Lemmav2;

Appendix,



Zb

- P
H6hmo®) = m ) B0 oDl ()

EEACRNO N AR O)) (4.6)
- 2aid§r(x§(v)IW)hi(w,xg(v))},

where v = n'D—]n. We note the following: if f(x) is a function of x

only through x2, then with the possible exception of x = 0,

d d
= f(x) =0 e—, f(x) = 0.
~dx dx2

=X =
X o X Xo

‘From (4.6) it can be seen that y(SR,n,oz) is a function of n only

2

it Thus, with the possible exception of n = 0, a point

through n

g is an extreme point of y(GR,y;oZ) only if

%) =0,1<ic<p ' (4.7)

5 R
—7 v(867,v,0
an,i ’

n=n0

We now show that such a point does not exist. From Lemma 6, Appendix,

PR U R RN ENCR O G CRINS)
2 _ | _

= 4 (DN (W 5 (1)
. | _'»+ (n?/zdi)[g-i(wsxg+6(\)))h12(w,xg+6(\)))

v (4.8)
- 95 (WG (W 4 ()]
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+ (a d2>[r(xp+2(v)/w>h (Wax2yp(v))
- rlig () uh (wx2(3)) 1)
+ Efgk(w.xs+4(v))hi(we2§+4(v))}v

Notice that the sum in (4.8) does not depend on k, the index of

differentiation. _Thereforé, denoting the sum by &(w,n)

3,,2 Y(<S 3N »0 ) = E-&(waﬂ) + Egk(w’xg+4(\).))hi(wsxg.,,[;(\")) , (4.9)
K . - S

for all kK, 1< k <p. Thus, in order for (4.7) to be satisfied at some

point o # 0, it must be the case that

Eg. (W,xp+4(n))h (W,xp+4(n)) 59 (Waxp+4(n))h (st +4(v))
for all 1, j, V<1, j < p. From (4.4),

£, (w,xp+4<v))h (w,xp+4(v))

r(xp+4(v)/w)<a r(xp+4(v)/w)(m+z)+4>

(a d, r(xp+4(v)/w)w + Xp+4(“))2

and from Lemma 9, Append1x, thlS is a strictly 1ncreas1ng funct1on of
a, d Therefore, (4. 7) can be satisfied only if a, d =c vf,.but
if this is the case,_from (4.3),
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2
E{ 5 1
1 (cr(v/whtvy)

a(sR.6.02) <n E cr{v/w){cr(v/w)m+2)+4)Z

i

2cdfr(v/w)

~ er{v/wlwty J

< m By (TOLURDZL i) (410

1 1

since Z2'D'Z = v < cr(v/w)wtv. Since 2'7/7'D” 'z < AnaxD» rearranging

terms in (4.10) shows

2(trD-x__ D)
AfcR’e,oz) fﬂcm(m+2)E(EF%%§%§%%v~J(r(v/w) - c(m+2)A:::D )f (4.11)

Under the restrictions aidi=c, (4.2) can be written

ey < r(t)_f-2(trD'ZXmaxD)/(c(m+2)5maxo)“ €y

and hence the right hand side of (4.11) is negative. If p = 0, or

equivalently 8 = 0, it is obvious that

A((SR:O’OZ) < 0,

since 5R(X,s) is always closer to zero than X. Thus, if (4.1) is

replaced by (4.2), 6R(X,s) is-a minimax estimator of 6. If we define
re(t) = (1-e)r(t) + ce. _ (4.12)

where 0 < e<1 and ¢ > 0 satisfies
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2 2)/A A203;

0 < c < 2(m2)" " (trAD .

-2AmaXAD

then the ridge estimator Gg(x,s) given componentwise by

X'D X/ )
) = (1 - 21l ( i )X,

"
a.d.r (X'D7Vx/s)ex'p Va1
)] 'le

satisfies the theorem with (4.1) replaced by (4.2), and hence is

minimax.ve, 0 < e<1. It is clear that lim GR(X,S) = GR(X,S), and thus
. e-+0
from Fatou's Lemma

R(Xseioz)- 2 R(GS(X ,S) 96,0'2)

> Tim inf R(sN(X,s)0,0%)

€

g_E{]im inf L(GR(X,S),B,OZ)
g0 £

E L(aR(x,s)e,oz)

R(8R(X,5),0,0%)
and hence‘5R(X,s) is'mihimax.ll
Condition (4.1) is:eSsentially the same condition derived by other

authors working with certain Stein- type estimators. For example,

Bock (1975) showed that the spherically symmetric Stein- type estimator

aB(X,s) - (1 - ar(X' 01 X/s) )X
— X'D "X/s

is minimax provided

_ -1
. < . _
-0 <ar(t) <2(mt2) (trD ZﬁmaxD)/AmaxD’
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whlch is exactly the cond1t1on of Theorem 4.1 if we choose a; d =C

to make § (X s) spherically symmetric. If D = I, A= aI, then (4.1)

reduces to the familiar
0 <ar(t) < 2(p-2)(m2).

Theorem 4.1 has animmediate extension to a wider class of functions.

We state this in the following corollary.

Corollary 4.1: Lgt dR(X,s) be given componentwise by

" d.r(x'0D7'X,s) |
di(X,s) = {1 - -7 7 )Xi’ (4.13)
aidir(X'D X,8)+X'D 'X/s

where r: 122 + [0,») satisfies

i) 5 rltaty) = o(t]?)
1

2

. _ 3/2

ii) tf 'r(t],tz) = o(t V%)

[+¥]

P

iii) r(t1;t2) is non-decreasing in t] and non-increasing in ty

iv) r(t],tz)/t] is non-increasing in t;

V) r(ti,tz)tz is non-decreasing in t,.

If

2 2y/n . A%p3, (4.14)

'zxmaxAD max

0 < r(ty,t,) < 2(m2)7 (trAD

for all t], t2-3 0, then 6R(X,s) is minimax against the loss (2.5).
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The class of’funétions of Corollary 4.1 includes the ridge estimator

as(x,s), given componentwise by

adf]

65(X,s) = (1 - — ~ )} (4.15)
adi +X'D X/stg+h/s .

where a, g and h are positive constants. Strawderman (1976) showed

SS(X,S) is minimax if

i) h>0
i) g > 2(p-2)(m2)”!
i1i) a < (min d,)2(p-2)(m2)").
i |
If we define
1
R X'D "X/s
r(X'07'X,s) = - _ (4.16)
X'D "X/stgt+h/s
-2
a; = adi .

we can write (4.15) in the form given by (4.13). It is easy to check
that the function r in (4.16) satisfies the conditions of Cokol]ary

4.1 , and that the minimax bound (4.14) can be written

a < (min d;)2(p-2)(m+2)",

and that the restriction g > 2(m+2)"](p-2) is not necessary.



5. Necessary and Sufficient Conditions

In this section we treat the case of known variance (i.e.,
X ~ N(s, D)), and show that condition (4.1) is, in‘fact, necessary
and sufficient for minimaxity of the ridge estimator. The main

theorem of this section is the following.

Theorém 5.1: Let X ~ N(g, D), D = diag(d],...,dp), and let the

ridge estimator aR(X) be given componentwise by

-1
.d.r(X'D X)
Rix) = (1 - 15"

- X, 1< <p,
a,d.r(x'D7'x)+x 01X

where a; are positive constants and r: R - [0,=) satisfies

i) tr'(t) = o(1),
ii) t3/2r"(t) =o(1), -
iii) r(t) is bounded and non-decreasing,

iv) r(t)/t is non-increasing.
GR(X) is minimax against the loss

L(s"(%).0) = (sR(X)-0)" (sR(X)-0)

if and only if
L 2 2y, a2n3
0 < r(t) 5_2(trAD -ZAmaXAD )/AmaxA D-,

for all t > 0, where A = diag(a],...,ap).

(5.1)

(5.2)
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Remark: Condition (i) is a slightly stronger requirement on the first
derivative of r than was previously need, and is only neéded for the
necessity of the theorem. The sufficiency of the theorem holds if

£= r'(t) = o(1). If'should be noted, however, that the siréngthening

of this condition merely eliminates the more pathological functions from

the possible choices of r.

Proof: The sufficiency will follow from Theorem 4.1. Define 6R(X,s)

componentwise by

] Cagd (m2) (X' Tx/s)
di(X’S)_= (] - '

= Ip— T Teiep
aidi(m+2) r(X'D "X/s)+X'D” 'X/s

where r satisfiéS‘cbnditions i) - jv) and s Xi independent of X.
From Theorem 4.1,.6$(X,s) is minimax if |
3

., vt > 0.

_ 2 2 2
. 0 < r(t) < 2(trAD" - 2}‘ma'xAD )/AmaXA D

Since lim s(m+2)'] =1 a.e., it follows that lim GR(X,S) = GR(X).
Also, from Lebesgue's Dominated Convergence Theorem it is easy to

check that

tim R(sR(X,5),0) = R(sR(X),0),
. e )
and hence the sufficiency is proved.
For the necessity, we first define A(GR,e) = R(X,6) —'R(GR(X),B),

and from (5.1) and (5.2) we have
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2
ZXi(Xi-ei)aidir(;)

- ).,
aidir(t)+t

d.r(t)X.
A(GR,O) = _E E {(a1 ]r( 1)2
=]v (aidir(t)+t)

1

where t = X'D”'X.. As in Theorem 3.1, we integrate the last term by

parts and rearrange terms to get

2

2.
; Zaidir(t)

aidir(t)+t

aidir(t)(aidir(t)+4)x

A(GR,B) = E Ef 5
=] (aidir(t)+t)

4a.d.X?tr'(t)
i1
}
)2

(aidir(t)+t

Now we apply Lemma‘3}], and noting that condition (i) insures that

the term involving r'(t) is o(!el'z), we have for sufficiently large o,

e a;d;r(7) @;d;r(x)+4)0? ] 2a.dSr(z)

Ry -
ol%0) = A

i=1 (aidir(r)+r)2

+ o(]e|7%),

where 1 = e'D']

6. Now'app]ying an argument similar to that used in
Theorem 3.1 in going from (3.18) to (3.20), we have for sufficiently

large o,

. : ) | [] 2 3 [] Y ) R
a(sR.6) = rsrl (rix)e'A ?1e+4e DS oerap?) o([0]72). (5.4)
8'D o ’ .

Define a sequence of vectors e;'as follows. Note that the matrices

2.3 2

A"D” and AD® have common eigenvectors, and Tet o* be the normed

eigenvector of AZD3 cofresponding to its largest root. o* is then also



the normed eigenvector of A02 corresponding to its largest root.

*
en by
4 1 -1 4
6; = n2D2*/(a*'D” 'a*) =,
Then o*'D Vgx = and

2.2

op ADTep o*'D2 A2p2pZ,*
1 "] B a*'a*
* *
o5 D on
= a*'A203a*
_ 2.3
= AmaxA D~.
o =] 2 | |
*1 * %* * = .
Similarly, or ADen/QnD ox AmaxAD . Thus (5.4) becomes, for

g = e;,

R _ r(n) 2.3 2 o a2
a(s (x),e;) = ,,{r(")kmaxA D +4AmaxAD 2trAD"}

+ o(|e|—2)

_r(n) . ,23 ; 2 2y 2,3
Anax A°D {r(n)-2(trAD An XAD )'AmaxA D~}

n a

+ o(n-]).

Now suppose (5.3) is violated, i.e., 3 T > 0 and ¢ >_0 such ‘that

vto>T,

35

Define
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2 2y 2.3
r(t) > (2(trAD “2Apay AN/ 2y, AD%)- € > 0. | (5.5)

It then follows that for sufficiently large n

A(GR(x),e;) - féﬂl- A ADY + () (5.6)

and since (5.5) bounds r(t) from below, for sufficiently large n (5.6)
is positive and dR(X)'is not minimax. Therefore, the contrapositive

and hence the theorem is proved. | |

The proof of necessity in Theorem 5.1 did not require conditions (iii)

on r(-). We state this in the following corollary.

Corollary 5.1: Let GR(X) be the ridge'estimator of (5.1) where

r: R > [0,») is bounded and satisfies

i) tr'(t) = o(1)
i) t320(t) = o(1).

If GR(X) is minimax against the loss (5.2), then

2 2,3
xAD )/AmaxA D~.

2

lim inf ’r(t) §.2(§rAD “Ana

too

Thisted (1976) derived necessary conditions similar to the

above for the case r(t) = constant.
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6. Minimaxity and Conditioning

The crucial_condition for the minimaxity of GR(X) is that

’ 2 2 2.3
0 < r(t) < 2(trAD “20axAD)/ A ADS, | (6.1)

" and hence, it must necessarily be the case that

2 > 2A ADZ;

max (6'2)

trAD

We wish to point out the following inconsistency between ;he original goal
of ridge regression estimators and the performance of minimax ridge
regression estimators. Hoerl and Kennard saw ridge regreSsion'as a
solution to the "i]]-cdnditioning“ problem that was ment1oned earlier,

which means, in part1cu1ar that the a1 's should be chosen so that

a, 3ﬂaj when di 3-dj’ T<i,j<p | (6.3)

which will lower the condition number of the matrix inverted in the

regression situation, and lead to what Hoerl and Kennard refer to as

a more “stable" estimator.

Choosing the a s to sat1sfy (6. 3) is also intuitively appea11ng
for two reasons. One, it is Bayes1an in nature, and two, it is sensible
to add only sma]] amounts of bias to d1rect1ons with good information
(smal] d] s). An 1ncons1stency arises, however when the cond1t1on
of minimaxity is forced into the estimator. If the d 's are very spread
out (as will occur 1n an 111 -conditioned problem), the matrix D is

likely to sat1sfy

2 . .
trd® <22 DS _ 7' (6.4)
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As the number of dimensions, p, increases, it is more Tikely that the
inequality in (6.4) will feverse, but in general one would expect (6.4)
to be the case. I¥ the ridge estimator is to be minimax, (6.2) must
hold so the ai‘s must be chosen to "reverse" the inequality in (6.4),
and this cannot be done if the ai's satisfy (6.3).

The result is an incompatibility between minimaxity and the
conditioning problem. Most minimax estimators will have the constants
a, satisfying

1

a.'ia

; . when d. < dj’ 1 <1,J <p, (6.5)

j =
(see, e.g., Strawderman (1976)). Choosing the a;'s to satisfy (6.5),
however, is notvonly intuitively unappealing but, in many cases, will
aggravate the conﬁitioning problem. The‘solution seems to lie in a
compromise between the two criteria, possibly resulting in an estimator
with bounded risk whfch will improve the conditioning probTem. This

idea is developed more fully in Casella (1977) .
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APPENDIX: COMPUTATIONAL LEMMAS

Let X have a p-variate normal distribution with mean & and
covariance matrix D. Let xS(j) denote a chi-square random variable

with p degrees of freedom and non-centrality parameter j/2.

Lemma 0. If K v Poisson(a/2) and Z|K ~ x2

L2
p+2K’ then Z ~ xp(a).

In particular, if E h(xg(a)) exists,

EIOS ()] = Bk HIhGE, 50 (K],
- X

Proof: This is.a relatively well-known result, statedrhére simply
for completeness (See, e.g. James and Stein (1961)).
The next five lemmas are from Bock (1975), and are.stated

without proof.
Lemma 1: Let h: [O;w) + (-»,=). Then
'E{h(X'D;IX)X} -8 E{h(x§+2(6'0_16))}.
Lemma 2: If D =_diagonal (dl,...;dp), and h: [0,) + (-w,=), then
'E{h(X#Dflx)xi} - d E{h(x§+2(e'D;le))}

* of Eh(x, ,(0'016)))



Lemma 3: Let prp be symmetric positive definite, and let

h: [0,0) + (-=,©). Then
| -1 2 1.

E(h(X'D X)X'WK) = tr WDECh(x,,(6'D7'8)))

+ 8'WeE{h (x>, (6'D 10}

p+4 '

Lemma 4: Let h: [0,2) » (-»,=). Then, if the expected values on

both sides exist,

2
P hix ,,)
B O = Bi—y B2
Xp+2
Lemma 5: Let S: [0,®) + [0,«») and t: [0,~) » [0,») be monotone
non-decreasing and non-increasing functions, respectively. Let W

be a non—negative random variable. Assume E(W), E(S(W)),

E(WS(W)), E(t(W)) and E(Wt(W)) exist apd are finite. Then
E{S(W) (E(W)-W)} < 0 < E{t(W)(E(W)-W)}.

Lemma 6: Let h: [0,®) » (-»,), If E{h(xé(e'e))} exists, then

] 2 ' _ 1 2 ' 2 Ry
;?— E{h(,xp(e 9))} = > [E{h(xp+2(_9 8))} - E{h(xp(e 8))1]
1

for 1 < i < p.

Proof:
2. bl atg.k o 29'0 R%h'l ly
. . e _; 2 -2)’
B (000033 = [ ] h0) 65" Sy Cp by e gy,

10
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, p+2k
where C 212592 2 )_1. Interchanging the order of summaticn

pr2k - (T
and integratipn yields

"

2 Y ek -e20'®
E(h (x;, (0'0))) = kg )" S Eh(xp+2k)
o -k log 2
- 78'6 k(log 8'8) e g 2
- < o
- kgo e e — Eh(xp+2k).

From Lehmann (1959), Theorem 9, page 52, we can differentiate the

above expression, with respect to log 6'6, inside the summation.

Thus,
3 2
) log_ETE'E{h(xp(e'e))}
» ' -k log 2
~ d - 26'0 k log 8'6. e
-_k§0 d Tog 6'6 (¢ e T )T bh(xp 2k
. E (o™ %88,k log 00, 1 36 18 ok 10g :
"o e ' 23 log 6'6
h(xp+2k)
Since
3 0'0 oy
3 log 6'¢ 6'e,
reérranging terms Yiélds
© _ 1g'g
d 2., _8'0 e’ *9Y 919k 2
1
® . 509
6'0 “ 9"
- IS O Eh(xp+2k)
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© . 38'9
_0'0 e 6'0.j 2
e _598'6
e * 0'0.k 2
- k§0 ki Oz BhOg,p0]

0'0 2 \ 2.,
= =5 [Eh(xpr(e 8)) - Eh(x.P(B 6))].
From fhe chain rule,

: 2,04
9 Eh(xp(e 8})

) 2 3 log 6'0
— E{h(¥(8'6))} = ( : ),
aez p 3 6? Jd log 9'6

and since

9 log 6'6 _ 1

[ ]
202 6'e
1

the Tesult is proved. ||

“Lemma 8: Let D = diagonal (dl""’dp)' 1f E{h(xé(e'D_le))} exists,

then

3 2., -1 1 ‘ 2 S )
;—g E{h(xp-_(e D 8))} = _2di [E{h(xp+2(e D "8))}

i , .

Bt (0'D710))3),

for 1 < i < p.

Proof: Similar td_that of Lemma 7.;'
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Lemma 9: Lletp > 3andr: R » [0,=) satisfy
i) r(t) is non-decreasing

ii) r(t)/t is non-increasing.

Let v = X§+4(e'e)/ié, where X§+4(e'e) and Xi are independent. The

function

%ta) - t ar(v)(ar(v)m+4)
. (ar(V)xehi,4(0'0))°

is stricly increasing in a if either 0 < ar(t) < 2(p-2)/m,

vts> 0, or‘p > 4.

Proof: By an arguhent similar to that in Lemma 7 we can differentiate

inside the.expectation; and after some algebra we obtain

3 _ __2r(v)(ar(v)m+4) 2 , 2ar(v |
= f(a) = E{ (x,4a(0'8)- —(—yi—)?—)}.
Ja 2, 2 ' 3 +4 amr{v) +
(ar(v)xmtxp,q4(0'0)) P |
Adding + 2amr(v)(amr(v)+2)_] inside the parentheses yields

2r(v)(ar(v)m+4)

d ' 2 \ -éamr v)
— f(a) = E{ (xa(0'e) - )}
aa v 2, 2 f 3 +4 - -amr(v)+2
(ar(v)igxs q(000))° P |
4ar2(v)b 2, .
+EA{ (m-xm)}.

(ar(V)x$+xs+r(6'6))3

From condition ii;ﬁthe'definition of v, and Lemma 5 it follows that the
second expectation above is non-negative. Now from Lemma 1, the first

expectation is equal to:



44

2r(w)(ar(w)m+4) 2 2amr(w)
e {(ar(W) 2, 2 )3 (Xp+r+2K_ amr{w)+ )|K}, (1)
"/Xm" Xp+4+2K

. . _ 2 2 .
where K ~ Poisson(6'6/2) and w = Xp+4+2K/xm' Now applying Lemma 4 three

times shows that (1) is equal to

s(K)r(u)(ar(u)m+4)

' 2, 2
(ar(u)xm+Xp_2+2K)

2 3
3 (Xp_2+2K) ) (2)

EKE{

2 2amr(u) |
x(Xp-2+2K N amr§u5+2)IK}’

_ -1 . . 2 2
where s(K) = 2(p*+2+2K) "(p+2K) ' (p-2+2K)”" > 0, and u = xp-2+2K/Xm'

Define

( 2, _ St (ar@ma) (2,503
q\Xp. *X = ’
p-2+2K>Xm (ar(u)X$+X§;2+2K)3

which is non-decreaéing in X§—2+2K from the conditions on r. Adding

+(p-2+2K) inside the parentheses shows that (2) is equal to

2- 2y, 2
EKE q(Xp_2+2stm)(xp_2+2K-(p-2+2K))

(3)

2amr(u )

2 2
tEE q(Xp-2+2K’Xm)(p-2+2K ~ amr{u)+2

The first expectation is non-negative from Lemma 5, and if p-> 4, the

second expectation is strictly positive since

p-2+2K > p—2 >2 > 2aﬁr(u)(amr(u)+2)-].
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If p =3, since 0 < ar(t) < 2(p-2)/m, the only concern is ifar(ty) =

2(p-2)/m = 2/m, for some ty- But then it follows from condition
(i) that ar(t) = 2/m , vt > tye and a simple argument will show
that the first expectation in (3) is positive. Hence the derivative of

f(a) is always positive so f(a) is strictly increasing. ||
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