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ABSTRACT

Let xl,...,xn and Yl,...,YN be conSecutive samples from a Dirichlet
process on (®,3) (the real line g with the Borel o-field 8) with parameter a.

Typically, prediction intervals employ the previous observations X,,...,X

1 n

in order to predict a specified function of the future sample Y,,...,Y Here

1’ N°
one- and two-sided prediction intervals for at least k of N future observations
are developed for the situation in which, in addition to the previous sample,

there is prior information available. The information is specified via

the parameter o of the Dirichlet process.

1. INTRODUCTION
Let xl,...,xﬁ be a random sample of size n from a distribution function F.
Let Yl,...,YN'be a second random sample of size N from the same distribution
function F and.let g(Yl,...,YN) be some function of these random variables.
Then, if Llcxl,...,xn) and LZ(Xl,...,Xn) are statisticsrbased on the
initial sample, [Ll;Lz] is said to be a 100y percent prediction interval

for g(Yl,...,YN) if

‘ Br{Ll(Xl,...?Xn) f_g(Yl,.,.,YN)_i L2(x1""’xn)} = v.

Key words: Prediction intervals; Dirichlet process; Bayesian nonparametric

methods; Coverage property.
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Parametric prediction intervals have been considered by many authors,
including Prbschgn (1953), Chew (1966), and Hahn (1969, 1970a,
1970b, 1972). Wilks (1942, 1962) introduced nonparametric prediction
intervals for the case in which F is an unknown continuous distribution
function and one is interested in intervals to contain at least k of N
future observations. Fligner and Wolfe (1976) have appro#ched nonparametric

prediction intervals via a sample analogue to the probability integral
transformation and to a coverage property (see Section 4). In particular,
they have reviewed the results of Wilks, developed additional prediction
intervals, and generalized prediction intervals to the case of an unknown
discontinuous distribution function. A Bayesian approach to prediction
intervals is preseﬁted in Guttman (1970).

This paper combines nonparametric and Bayesian approachés to develop
intervals which allow the use of both prior information and the data of the
initial sample, without requiring strong parametric assumptionsﬂ Our
Bayesian nonparametric prediction intervals are derived using Ferguson's (1973)
Dirichlet process prior on the space of distribution fuﬁctions. The Dirichlet
Process is introduced in Section 2. Section 3 presents the construction of
one-sided Bayesian nonparametric prediction intervals for at least k of N
fhturg observations. .The possibility of a coverage property for a 5amp1e from
a Dirichlet process is investigatéd in Section 4. Section 4 also contains
some useful resulfs'concerning the distribution of the order statistics from a
Dirichlet sample. Thé two-sided prediction interval problem with prior
information in the form of a Dirichlet process prior is solved in Section 5.
The final section confains an example which illustrates the procedure of
constructing Bayesian nonparametric prediction intervals, and discusses the

implementation of such prediction intervals.



2. PRELIMINARIES | 3

Let Zl,...,Z be independent gamma random variables w1th shape parameter

k

a; > 0 and scale parameter 1, i=1,...,k. Define Y; = 2, i/ Z ZJ If 2 a; >0,
o j=1 i=1

then (Yl,...,Yk) is said to have a Dindichlet distribution with parameter

’

(al,...,ak). If all the @, are strictly positive, the distribution of

(Ygsenes¥y ) is absolutely continuous with density
| (e, +.c.+ 0,) k-1 a.-1 k-il -
1 k i ak
E(Yyseeisy,) = (M y, " )A-1 ¥ Iglypseeey s
1 K T TG T 4oy 4 1 k-1
k-1
where S denotes the simplex Y 2 0 for i=1,...,k-1 and Z Y; < 1. The Dirichlet
i=1 .

distribution is also called the multi-beta, in that for k=2, it reduces to the

beta distribution.

th

The following expression for the TiseeesTp— moment of the distribution of

(Yl""’Yk)’ for £ < k and T, 2 nonnegative integer, will be useful in the sequel:

By r, y rz) _ F(u1+r1)...r(a£+r2)r(a) 2.1
1 ""°7e F(al)...r(az)r(a+r) ’ :
k 2 } -
where o = Z a, and T = Z rj. (For a proof of this result and a more complete
i=1 j :

treatment of the Dirichlet distribution see Wilks (1962). For further background
on the Dirichlet distribution and its generalizations, see, for example, Connor
and Mosimann (1969) and Good (1965).) Let y[k] denote the.ascending factorial

y(y+1)...(y+k-1) with yIO]El. Then the right-hand side of (2.1) can be
T T
[ 1] [ 2] /aIr] .

rewritten as a, ceey

The Dirichlet process on the real line can now be defined. Let d be a
nonnegative measure on the real line R with Borel o-field 8. Then P is a
Dinichlet process on (R,B) with parameter o if, for every m=1,2,..., and every

measurable partition B Bm of R, (P(Bl),...,P(Bm)) has a Dirichlet

17000

distribution with parameter (a(Bl),...;a(Bm)). This process gives rise to a

probability on the set of distribution functions, as shown in the landmark paper



of Ferguson (1973). By a sample from the process, it will be understood that
a distribution function F is chosen by this probability and then a random
sample obtained from F. (See Ferguson (1973) and Berk and Savage (1977) for
a more rigorous mathematical treatment.) The tractability of Ferguson's |
approach lies in part in following result (Theorem 1 of Ferguson, 1973). The
posterior distribution of the Dirichlet process P with parameter o, given a

sample xl,...,xr from P, is again a Dirichlet process with as a parameter the

T
updated measure a + ) 6y » where 6z is the measure which concentrates all its
i=1 i ‘

mass of one at the point z.

For the purposes of this paper, F is taken to be a random distribution
function from Ferguson's Dirichlet process prior. Given F, the first sample
xl,...,xn is a random sample from F. The second sample.Yl,...,YN is then a
sample from the conditional Dirichlet process, given xl,...,xn. One wishes to
predict a specified function of the second sample. In particular, several
prediction intervals are obtained to contain at least q of the N future

observations.
3. ONE-SIDED PREDICTION INTERVALS WITH THE DIRICHLET PRIOR

In this section 100y percent prediction intervals of the form (x,») are
found for at least q of N future observations. Lef-
R(x) = Pr{x < at least q of the N:Y's < ®}, ' (3.1)
Note that R(x) is decreasing in x. The problem is to find X such that
R(xo) = y, for then (xo,w) is the desired interval.

Unlike the nénparametric prediction intervals of Wilks (1942, 1962) and
Fligner and Wolfe (1976), it is possible, using the Dirichlet pfocess prior,
to form prediction intervals for the case of no initial sample of X's
(i.e., n=0); Call this problem the "no data" problem. This problem is first
solved and then exten@ed in a natural way'to obtain the solution of the "data"

problem (n > 0),



For fixed.x, let Ix’Jx’ and Kx denote the random variables for the number
of Y's that are less than, equal to, and greater than x,‘respectively. In the
"no data'" problenm, Yl,...,YN is herely a sample from a Difichlet prbcess with |
parameter «. For notational convenience, the subscript x for I,J, and K is
suppressed.

Theorem 1: For Yl,...,YN a sample from a Dirichlet process with parameter o,
Pri(LIK) = (15,00} = ¢ | a0 Hlagxn Blag, =) [k]/a(n) NI, (5.2)

Proog: For d15tr1but1on function F given, a multinomial argument yields

Pr{(1,J,K) = (i,j,k)|F} = (i,j’k) F(x7)? [F(x)-F(x™)]? [1-rFx) X, (3.3)

Integration of both sides of (3.3) with respect to the probability Qu on the
set of distribution function gives

PrU(LIK = (L3, = ¢ T ) [ PO Fe-FEO 1R 1R (6.

Then, by definition of the Dirichlet process, (F(x'),F(x)-th-),l-F(x)) has a
Dirichlet distribution. Application of the i,j,kzh‘moment of this Dirichlet
distribution yields the right-hand-side of (3.2), completing the proof.ll

Thé random variables (Il,...,Ik) are said to have a Dirichlet compound

multinomial distribution (see Johnson and Kotz, 1969, p.309) with parameters

. k
N’“l"’f’“k if, for non-negative integers il,...,lk such that ng j = N,
[i.]
, N1 k gj J
Pr{Il:ll""f1k=1k} = —x . jzl T -
[1 i) )

j=1 )
The Dirichlet compound multinomial results (as the name indicates) by placing
a Dirichlet dlstrlbutlon on the parameters of a mu1t1nomlal distribution. It

is clear that the distribution of (1,J,K), given by (3.2), is Dirichlet

compound multinomial with parameters N,a(-2,x),a({x}),a(x,=).



6.

The one-sided prediction interval problem is find Xg such that R(xo) = ¥.

This equation can be rewritten as
N

} Priexactly k of the N future Y observatlons > x4 }

k=q
Now, for the "no sample'" problem,

Pr{exactly k of N future observations > x} = P{K—k}
Slnce the distribution of (I,J »K) is Dirichlet compound multinomial, the
distribution of K has what is called a beta compound binomial distribution or
a POlya-Eggenberger distribution (see Johnson and Kotz, 1969, p.229). It

follows that

Prikek} = () a(-=,x] VKo (x,w) K]/ o) INT
Therefore, the solution is sought for the following equation in x:

N
G ateox) Kooy K1 gy NI _ 6.9
k=q

The monotonicity of R(x) from the definition ensures that, for 0 <y < 1,

there is either a solution Xp to equation (3.4) or there exists an x. such

1
that R(xl) <y < R(xi). If the Dirichlet parameter o is a nonatomic measure,
so that a(-=,t) is a continuous function in t, then the left-hand-side of
(3.4) is continuous. Further, since R(x) ranges from 1 to 0, in such a case
a solution exists (it may not be unique). In the second case, if R(xl) <y <
R(x;), thé closed interval [xl,w) is a prediction in;erval for at least q of N
future observations with prediction coefficient at least f.

The solution to the prediction interval "data" problem is now considered.
Thus, suppose that an initial sample xl,...,xn is observed from a Dirichlet
process. The development for the "data" problem is immediate in that the
Dirichlet process with parameter o is merely replaced by the Dirichlet process

n

with updated parameter o' = o + Z Gx and one proceeds as in the "no data"
: i=1 i : '

problem. Thus, (1,3,K) given (xl,...,xn) has a Dirichlet compound multinomial
distribution with parémeters N,a'(-m,x),a'({x}),a'(x,m). The prediction interval

is obtained upon the solution of



N
- . N
I @ et (omx] VMg e, T g0 oy Ny, | (3.5)
k=q
Here, a' is not nonatomic so either a solution X exists or there exists an Xy

such that [xl,w)-is a prediction interval for at least q'pf N future
observations with prediction coefficient at least y.

Tﬁere are two Speéial cases of note. When gq=N, one obfains the 6ne-sided
upper prediction interval for all N future observations; when q=1, the interval’
is the one-sided upper prediction interval for the largeét of N future

observations.
4. INVESTIGATION OF THE COVERAGE PROPERTY FOR A DIRICHLET SAMPLE

The coverage property for a continuous distribution function FO with

Yl,...,YN a random sample from FO is as follows:
Cobenage Property: 1If Y1) :,..f_Y(N) denote the order statistics of the
sample YI""’YN from Fo, then, for integers p and q such that 0 < p < q < N+1,

the distribution of FO(Y(q))-FO(Y(p)) has the same distribut?on as FO(Y(q-p))

where, by convention,Fo(Y ))=0 and FO(Y

0 (N+1)) =2 |
Fligner and Wolfe (1976) have extended the coverage property from the case

of a continuous distribution function to that of the empirical distribution
function F from the initial sample Xis+++5X , also from Fo- 1In particular,

they prove that the distribution of Fn(Y )]-Fn(Y(p)) has the same distribution

(q
as Fn(Y(q-p))'

A question of interést is whether the coverage pr0perty holds for
Yl""’Yn a sample from a Dirichlet process with parameter a. In particular,
is it true that {a(-m,Y(q)]/a(RJ}—{a(-w,Y(p)]/a(R)} has the same distribution as

af-=,Y )]/a(R)? If the coverage property were to hold, it would aid in

(q-p
constructing two-sided prediction intervals directly from one-sided intervals
in that if (Y(q-p)’m) were a one-sided 100y percent prediction interval, then

(Y(p)’Y(q)] would.alsb be a 100y percent prediction interval for fixed integers



p and q with 0 j_p < q < N+1. In that event, one could employ the techniques
derived_in the preceding section. |

However, the coverage property does not hold for sampies from a Dirichlet
pfocess. It suffices to demonstrate this for the case N=2, p=1, and q=2 by
comparison of the mean of a(-m,Ycz)]-a(-w,Y(l) ] = a(Y(l)’Y(Z)] and the mean _
of a(-w,Y(l)]. If the coverage property were true, then, in particular,

Ea(-w,Y(l)] = Ea(Y(l),Y(Z)] or, equivalently,

2Ea(-=,Y = Ea(-=»,Y (4.1)

! @
Theorem 2 below, which gives the distribution of the rth order statistic of a
sample of size from a Dirichlet process, will be used to show that inequality
(4.1) does not hold. Since the Dirichlet process places all its mass on discrete
distribution functions (see, for example, Ferguson (1973), Blackwell (1973),

and Berk and Savage (1977)), there can be ties in the samples from Dirichlet:
processes. Nonetheless, one can order the random variables from a sample of

size n from a Dirichlet process and derive the distribution of the order
statistics. |

' Theorem 2: For 1 < r < n, the distribution Fr of the rth order statistic of a

sample of size n from a Dirichlet process with parameter o is given by

F(x) = Z D a(-e, x][ lag,m -tygmni, 4.

=r
P&oo{: Suppose F is a known distribution function with Xl,...,X the
random sample from F. Then the distribution of X(r), the rth order statistic
is:

_ n . P ) '
PriXc) s x|F} = igr (DFE)[1-Fe) 1, (4.3)

If, in fact, F is a random distribution function from a Dirichlet process, then
by definition, for x fixed, F(x) has a beta distribution with parameters a(-=,x]

and a(x,»). Then integrating both sides of (4.3) over F, one obtains



n . .
F () = PriX ) < x} izr Q/f FeT1-F)]" o ()

n ’ . X
1 Gate,x o, M1 g @ In1,
1=T

The final line above follows by the moments of the beta (Dirichlet)

distribution. || o
It is a simple matter to also derive the joint distribution of the rth and .

sth order statistics (r < s).

Theorem 3: 1If Xl',...,Xn is a sample of size n from a Dirichlet process with

parameter a, the joint distribution of the rth

st order statistic x(s), for 1 <t <s <mn, is given by:

order statistics X(r) and the

n n-i s R
) G g mogoplateex] Ha gy

Fr;s(x’Y) = . .
i=r j=max(0,s-i) N (4.4)
caly, =) @] (e
Proof§: Given the distribution function F, the joint distribution of X(r)
and X(S) is, fpr X < y:
Pr{X(r) <X, x(s) <yl=

n n-i .(4'5)

D R TPATIR  JO O 1o B JeS N A S Tl L B

i=r j=max(0,s-i) fJ’ J B .
Integrating both sides of (4.5) with respect to F, using the definition of the
Dirichlet procegs for the partition (-=,x],(x,y], (y,=), and employing the
moments of the Dirichlet distribution completes the proof.ll
| By an applicaﬁion of Theorem 2, the distributions, of the first and second
order statistics, for the case N=2, are

Fl(x) = [{2a(-=,x]alx,=)} + a(-=,x] 2] /a@@ 2],

F,(x) = a(-=,x] 2 ja(ey [2],
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It suffices to consider the special case of a(-=,x] = x for x € [0,1] with

a([0,1]) = 1 and a(®-[0,1]) = 0. Then,

1
Ea(-w,x(l)] = E(X(y) = fo xdF, (x)

1 1 |
=f (1-F (x))dx = [ {1-x(1-x)-3x(x+1)}dx = 5/12.
0 0

In a similar fashion,
_ 1
Ea(-w,x(z)] = E(X(z)) = fo xdF,, (x)

1 1
=] Q-F,00dx = [ {1 - $x(x+1)}ax = 7/12.
0 0

Thus equation (4.1) does notrhold for this special case. Therefore, the

coverage property is not valid for a sample from a Dirichlet process.
5. TWO-SIDED PREDICTION INTERVALS WITH THE DIRICHLET PRIOR

The problem of generating two-sided 100y percent prediction intervals of -
the form (x,y), for x < Y, to contain at least q of N future observations from
a Dirichlet process, requires more notational development, Let I, J, K, L,
and M (all dependent on x and/or y with the notational dependences suppreésed)
be random variables for the number of Yl""’YN that-are less than ﬁ, equallto
X, between x and y, equal to Y, and greater than y, respectively. (Note that
I, J, and K have been redefined and should not be confused with their use in
Section 3.) |
-Theonem 4: 1If Xl;.;.,Xn is a sample from a Dirichlet process P (say) with
parameter « and Y Yy is a second sample from the conditional process P

17000y

given xl,...,xn, then for x and y with x < y:

PRL(LIKLM = (,,k,0,m) X, .00 X )

= (i,j,:,z,m)a'('“’x)[i]a'({x})[j]a'(X,Y)[k]a'({y})[zl (5.1)
‘a'(y,w)[m]/a'(ﬁ)[N],
n
where a' = o +' X

6Xi'
i

i=1



1

Proof: The cénditional probability distribution of (I,J,K,L,M) given
Xl,...,xn and F is obtained by a multinomial argument. Integration over F
and application of the mean of the Dirichlet distribution for (F(x"), F(x) -
FOx), FO) - FO), F(y) - F(y), 1 - F(y)) yields (5.1).]]

The distribution of (I,J,K,L,M) given xl,...,xn is Dirichlet compound
multinomial with parameters N, a'(-=,x),a’'({x}), a'(x,yLd'({y}), a'(y,=).
Note that if n = 0 and x = y so that K = 0 and J and L are combined, Theorem
1 is obtained as a special case. | |

For x < y, défine

R(x,y) = Pr{at least q of the Y's are in the interval (x,y)}

N
I Prlexactly p of the Y's are in the interval (x,y)}.
- P=q ‘

Note that for x fixed, R(x,y) is increasing in y and that for y fixed,R(x,y)
is decreasing in x. The prediction interval problem i; to find (xo,yo) such
that R(xo,yo) = Y. However, from Theorem 4 and the fact that the marginals of
the Dirichlet compound multinomial are beta compound binomial,vK has a beta

compound binomial with parameters N, a'(x,y),a'(R-(x,y)). Thus,

N N '
R(x;y) = Z Pr{K:p} = Z (g) av(x’y)[P]a'(R_(x’y))[N-P]/a'(ﬁD[N].(S'Z)
. P=q pP=q : .

A trial-by-error solution to find (xo,yo) such that R(xd,yo) = y is oﬁe way of
proceeding. The solution (if it exists) need not be unique and in fact an
ﬁncountably infinite number of pairs is possible. - Note that as x or y is
shifted, a'(x,y) may change, so that a computer in many cases is an invaiuabie
aid in the determination of such prediction intervals for even small valﬁes
of n and N. |

It is clear that one could easily construct prediction iﬁtervais of thé
form [x,y], or (x,y] instead of (x,y). For example, for the interval [x;y],
one employs the fact that J + K + L has a beta compound binomiai distribution

with parameters N, a'[x,y],a'(R-[x,y]) and proceed as above,
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In the event that a(R) is smali, there may be no solution to R(x,y) = ¥.
In that case, one could find X4 and yl'such that R(xl,yl) < vy i.R(xI,yI).
Then [xl,yl] is a prediction interval for at least q of N future observations

with prediction coefficient at least Y.
6. AN EXAMPLE

In this section, two-sided non-Bayesian nonparametric and Bayesian
nonparametric (Dirichlet) prediction intervals for at least q of N future
observations are illustrated using a numerical example originally introduced
by Hahn (1970a). He gives the following data, on the readings of a
new type of generator, recorded for five prototypes: 51.4, 49.5, 48.7, 49.3,
51.6. To illustrate our procedure we suppose that there is prior evidence
(from past experience relating to a similar machine) which suggests that the
underlying 1ife distribution can be approximated by a normal distribution with
a mean of 50 and a standard deviation of 1.25. Thus, to.apply the two-sided
Bayesian nonparametric prediction interval introduced in Section 5, we will
set {a(-=,x]/a(R)} = ¢({x-50}/1.25) where ¢(+) is the standard nérmal
cumulative distribution function. We must also specify a value for a(R). This
specification hinges on the dogree of confidence or belief that one invests in
this choice for the measure o: For this case, suppose we set a(R) = 5.

Roughly speaking, this corresponds to é prior sample size of 5 observations.
Since n also equals § here, the prior and the initial sample of size 5 are
equally weighted in their contribution to the predictionkinterval. Rather than
to construct the different prediction intervals (which may not be unique) for

a fixed prediction coefficient, for simplification we let the prediction
intervals (x(l),x(s)) and [X(I),X(Sj] be chosen and the prediction coefficients
computed; (Note that any order statistics could have been chosen for the sake
of comparison of Dirichlet and nonparametric prediction intervals, but that
unlike the Dirichlet intervals, the nonparametric ones demand that only order

statistics of .the initial sample serve as endpoints.)
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Consider the two;sided prediction interval for a single future observation
(N=1). The non-Bayesian nonparametric-prediction coefficient for the interval
(x(l),xcs)) = (48.7, 51.6) based on the n=$ initial observations is as follows
[see Wilks (1942) or Danziger and Davis (1964) for details]:

Pr{exactly N0 of N future observations fall in (X

»X
(1) Xy

= n(n—l)(N-N0+1)N!(N0+n-2)!/{N0!(N+n)!} , (6.1)
Substituting into (6.1) with n=5 and N=N0=1 yields the value 2/3 for the
prediction coefficient. Contrast this with the Dirichlet prediction coefficient,

for the.same intervél, as given by (5.2):

S N 1], 4oy 1]

{5(.7505) + 3}/10 = .675.
However, if the interval is expanded to include the endpoints, the nonparametric
prediction coefficient does not change, but the discreteness of the Dirichlet
process causes an increase in the Dirichlet coefficient tq {a'[x(l),xcsj]/u'(ﬂﬂ} =
{5(.7505)+5}/10 = .875.
To illustrate the crucial nature of the choice of a(ﬁD, suppose a(R) = 20,

Then the Dirichlet prediction coefficient of (48.7, 51.6) is (20(.7505)+3)/25 =
.720. - The limit as a(R) tends to infinity can also be easily computed. As a(R)
increases, greater confidence is placed on the prior af the expense of the initial
sample. In this case that is reflected by the result that in the limit the
Prediction coefficient for (48.7, 51.6)(and also for [48.7, 51.6]D)is .7505.
This value is of course Pr(48.7 < X < 51.6), where X is normél with mean 50 and
standard deviation 1.25.

 Note that the nonparametric and‘Dirichlet‘prediction coefficients also do not
agree as a(R) tends to zero (corresponding to less and less confidence in the prior).
In our example, the nonparametric coefficient for (48.7, 51.6) remains 2/3,

whereas the Dirichlet coefficient approaches .6 as a(R) tends to zero.
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