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INTRODUCTION

In many practical situations the experimenter is faced with the

1,...,nk with

..,ek, respectively, decide if (1) all T, are same,

following problem: given a set of k populations n
parameters 61,.

and if not (2) find the subset Wi ETRLN (1 <t < k) which, in
1 t

some sense, is better than the rest of the given popualtions. It is
clear that the classical tests of homogeneity are not designed for
this problem, since they fail to provide any information regarding
the second question, which may be more meaningful than the first
one. A partial answer to this question was provided by Mosteller
(1948) who proposed a test of HO: 6, = ... = Bk against the
slippage alternatives Hi: el = L., 0= ei -A= ... = ek, i=1,...,k.
Paulson (1949) probosed a multiple decision rule for testing
slippage in normal means. Since then, many authors have contri-
buted to the theory of slippage tests. Karlin and Truax {1960)

have given a decision thoeretic formulation of the single slippage
problem and have derived the class of symmetric Bayes proceedures.
Hall and Kudo (1968), Hall, Kudo and Yeh (1968), and Kudo and Yeh
(1970) have considered the slippage problem as a problem in testing
of composite statistical hypotheses. Van Ryzin (1970) has Qiscussed
the slippage problem from the Empirical Bayes approach and has

derived asymptotically optimal procedures. A discussion of some of

the availabe results is given in Doornbos (1966).



The theory of slippage tests, however, cannot be applied to
more general situations, and provides only partial answer. Bahadur
(1950) is among the earliest authors to consider a different
approach and investigate the so-called selection and ranking
procedures. References could be made to Bechhofer (1954), Gupta
(1956, 1965) Lehmann {1961} .

Generally speaking, two formulations for selection and ranking
problems have been considered. Suppose population "i has distribution
function F(x,ei), i=1,...,k, and let G[i] denote the i-th ordered
ei; the correct pairing of ei and e[j] is unknown. To fix ideas,
suppose . is better than " (J7# 1) if 6. 3Vej, and consider the
problem of selection of the best population, i.e, the population
associated with e[k].

The first formualtion is the indifference zone approach of
Bechhofer (1954), in which a procedure is defined to select one

population subject to the condition that the probability of selecting

the best one is at least p* whenever ¢ -6 > 8%, where P*
(k] “[k-1] =

(%—< P* < 1) and 6* > 0 are preassigned constants.
The second:formulation is due to Gupta (1956) in which a
random number of populations is chosen so that the probability that
G[k] is includgd in the selected subset is at least P*, where
P* ¢ (%;1) is a preassigned constant.
Selection and ranking problems have also been considered
from a Bayes approach. The problem of selecting a subset céﬁtaining

the 'best' has been considered by Deely and Gupta (1968), where it



is shown that under certain conditions the Bayes rules for a linear
loss function selects exactly one population. Guttman and Tiao (1964)
have studied some best population problems when the a priori dis-
tribution of parameters is known. Deely (1965) has investigated
emperical Bayes procedures for the problem.

Interest has recently developed in Bayesian selection rules
for nonlinear loss functions. Eaton (1967) has proved that,
under certain conditions, the natural selection rule is (i) Bayes
for any symmetric a priori distribution on (61,...,6k) (ii) has
uniformly minimum risk among symmetric rules and (iii) is
minimax and admissible. Goel and Rubin (1975), Chernoff and Yahav
(1977), Bickel and Yahav (1977) and Hsu (1977) have considered Bayes
rules for selecting a subset containing the best population. Typically,
these Bayes rules are difficult to compute. It has been observed
by Chernoff and Yahav (1977) and Hsu (1977) that Gupta-type
procedures are reasonable approximations of the Bayes procedures.

A slighly different situation arises when, in addition to the

k populations T, a control population w, is given and the goal

0
is to select a subset of populations which are 'better' than control.
Gupta and Sobel (1958), Huang (1975) and others have considered this -
problem.

The present thesis consists of investigations of multiple
decision problems mentioned earlier, and some related topics. In

Chapter I a problem in multiple slippage testing is considered, and

the clasg of symmetric invariant Bayes rules to test if all



parameters ei are the same against the alternative hypotheses that
some (unknown) subset of {61,...,6k} of a given size t (1 <t <k)
has slipped to the right by the same amount A > 0 have been
derived for location and scale type densities admitting sufficient
statistics. The t-slippage problem has also been considered in
Nonparametric sSituations, and locally best rules based on ranks
have been derived.

The rest of the thesis pertains to Bayes and Gupta-type
selection procedures. In Chapter II Bayes rules for the problem
of selecting a subset containing the t best (t known, 1 <t <k
have been investigated. For a loss function which is linear in
ei, it is shown that, under certain conditions, the Bayes rule
selects exactly t population which are associated with the t
largest observations. This generalizes a similar result of Deely
and Gupta (1968) for the case of t = 1. When the loss functions are
non-linear, Bayes rules are analytically and computationally
intractable. Some special cases, namely, normal exponential,
Poisson and gamma distributions have been considered and Bayes
rules derived for natural conjugate a priori distributions of
the parameters ei.

In Chapter III some selection problems for normal populations
have been considered and Gupta-type selection rules based on
sample medians of odd number of observations have been investigated.
Exact and asymptotic results are obtained. In the special case of

equally spaced normal means, the proposed rule is numerically comparéd



to the selection rule of Gupta (1965), which is baséd on sample

means. As expected, the sample means procedure appears to be better
than the procedufe based on medians. It is shown that the asymptotic
relative efficiency (ARE) of the rule based on sample median

relative to the rule based on sample means, when the normal means

are in a slippage configuration, is equal to 2/m. However, in

case the normal populatioﬁs are contaminated, the fule based on sample
medians shows a significant improvement over the rule based on means
in terms of the ARE.

Chapter IV consists of investigations of Bayes and Gupta-type
rules for selecting a subset which contains all populations 'close'
to a given control. A slightly different problem, in which the t
(1 <t < k) populations 'closest' to control are to be selected,

is also studied using Bayes and empirical Bayes approaches.



CHAPTER 1

TESTING MULTIPLE SLIPPAGES

1.1 1Introduction

The problem of multiple slippages can roughly be described

as follows: We are given k populations w T The goal is

170

to decide, on the basis of a sample from each population, if all

™. are same, and if not, which of the t (1 <t < k-1) m. are dif-
ferent from the remaining k-t, where t is a known integer. A

similar problem in multiple slippage testing involves an additional
control population, and the goal then is to compare the k populations

0 -»m . to the control population and decide if all the populations

17"

have parameters equal to that of the control, and if not, which t of

the k populations are different from control. The latter problem

will be referred to as the controlled case. If My a-ie,T.oare
1 t
different from {wj: j# ig, 2 =1,...,t} we say that the subset
{ni EEEELA } has 'slipped'. In this chapter we consider a special
1 t

case, in which the amount of slippage is assumed to be the same
for all the populations which have slipped.
Karlin and Truax (1960) have derived a class of symmetric

Bayes procedures for the single slippage problem, which corresponds



tot = 1. Hall and Kudo (1968), Hall, Kudo and Yeh (1968), and
Kudo and Yeh (1970) have considered the problem of single slippage
in the framework of testing composite statistical hypotheses.

In this chapter the results of Karlin and Truax (1960) have
been extended to the case of multiple slippage (t-slippage) when
t is a known integer between 1 and k-1. A discussion of some
available rules for the t-slippage problem is given in Doornbos
(1966).

In Section 1.2 definitions and notations used in this chapter
are introduced, and a decision-theoretic formulation of the problem
is given. In Section 1.3 the general form of the symmetric Bayes
procedures for the t-slippage problem is derived. Some specific
examples are considered in Section 1.4.

In Section 1.5 (1.6) the class of symmetric invariant Bayes
procedures for the t-slippage problem has been derived for location
(scale) parameter densities having a sufficient statistic.

Section 1.7 consists of investigation of sevéral related problems
in ranking and selection.

In Section 1.8 the problem of t-slippage, using the notions of
slippage introduced by Karlin and Truax (1960), has been discussed in
nonparametric situations. Some locally best tests based on ranks |
have been derived. In Section 1.9 selection of a rule from the class

of procedures obtained in this chapter is discussed.



1.2 Decision-Theoretic Formulation of the Multiple Slippage Problem

Let X = (xl,...,xk) Eﬂlk, the k-dimensional Euclidean space, be

an observed value of a random vector X = (X ...,Xk) which has

1:

...,ek) with

probability density function (pdf) f(xl,...,xk; 61,

respect to a o-finite measure py. The form of the function f is
known and ei's are unknown, ei €COCR for i = 1,...,k where the set
® has at least two points.

Let Sk be the symmetric group on {1,...,k} i.e., the group of
all permutations y: {1,...,k} » {1,...,k}. For z € Hik and y € Sk
define gw by (gw)i = Zwi’ where (_z_w)i represents the i-th coordinate
of the vector gw.

The pdf f(x;0) and the measure p are assumed to be symmetric

in the following sense:

H

£(x;0) Yy €5, x €RF, o €& (1.2.1)

£x,5 9,)

(1.2.2)

du(gcw) du(x) Vy €S, .

We assume that f(§;§) also has the property M of Eaton (1967).

Definition 1.2.1: A family of density functions {fa(§;9): a EA}

is said to have property M if for each o €A, and each i,j (i # j),.

1 <i,j <1 the following holds:

X, > X,,0. ) (1.2.3)

> 6.
i i’ i~

;= fa(gc;g) > £, (x;0

Vi

where wij € Sk is such that for 1 < ¢ <k,



wij(z) = i if 2 = j

£ otherwise.

Let 8= {J <{1,2,...,k} : |J]| = ¢}

where |J| denotes the size of the subset J. For any J e §, let

o fao k. _wtA if j e J L

OJ = {9—(61,...,6]() £ @ : 63. "o if ] iJ, j=1,...,k, welR,5>0}.
Also let @, = {8 = (8 ...e)e@k-e =w; jo=1 k, welR}

O Y l’ :k . J ] L ] .
The problem is to test
HO: 9 ¢ @O

. k .

against (t) alternative hypotheses

HJ: > ®J, Je 8.

The action space G = {aO,aJ: J € 8} consists of (i) + 1 elements.

The action 2 corresponds to acceptance of HO’ and a_ to the accep-

J

t .

ance of HJ

For J ¢ {0} U 8§, 1let LJ(Q) denote the loss incurred in taking
action aj when 6 is the true parameter value. Here L: @k x g+ IR

is a p-measurable function, and is assumed to satisfy the following:
(1) L;e) = L (9¢) VJ €0}US and y € S, where, for

yJ
Jo={is-ndh vl = {w'ljl,...,w‘ljt}

(2) Ly(8) <L (8) Voe®, I,J E€0}US, I#.J.
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(3) Ly(8) = Li(8) Ve e @ ,

I,J # L. Otherwise LI(§)=LO(Q) v I.
For the problem of comparing the k populations Tyse-+»m to a given
control population UNE the above needs some modifications. Here we

are given an observation (xl,...,xk,y) £ H2k+1 from a population with

i

density fgnctlon f(xl,...,xk,y; el,.. £(x,y; 9,60) with

’ek)eo)
respect to a o-finite measure yu; ei e @ CR, i=20,1,...,k.

The density function f is assumed to have the following symmetry:

. a . k+1 k+1
f(f,y,§,90) = f(gw,y,gw,eo) Vy € Sk,(§,Y) € R ,(Q,eo) €@
(1.2.4)
It is also assumed that the family {f (x;68) = £f(x;y;6,6,):
()’,90) . - - 0
(y,eo) € R x @} has property M.
The problem is to test
. 5 - S
Hyt (8,85) € €y = {(0),...,8,,80) €@ : 6, =8, i=1,... 5k
. k .
against (t) alternatives
k+1 B,+A if j ¢ J
. € = : A N =
Hp: (8,8)) €8 = {(8;,....8,,6) €0 .ej eg if ¢ o0 I sk,

eoenz, A>0} where J e §.

The action space G = {a_, J ¢ 8} again has (t}%l elements, The

0’ J
action a, decides in favor of HO’ and aj in favor of HJ.
The loss function L: ®k+1 x. G-+ IR is a p-measurable function, with

LJ(Q,GO) representing the loss of taking action ay, when (9,60)
is the true value of the parameter. The assumptions on the loss

functions in this case are



1

k+
(1 LJ(Q,GO) = Lw‘lJ(9¢’eo) VJIes§ ye Sk and (9,60) € e

(2" LJ(?,SO) < LI(Q,eO) v (9’60) €@, I,J €{0} US, I #J.

it

(3") LI(Q,eO) LJ(Q,G ) v (g,eo) e g, I,J # L.Otherwise

Ly (8,8)) = L,(8,8,) VI.

1.3 Bayes Solutions

We first derive the Bayes procedures for the uncontrolled t-
slippage problem. Since the problem is invariant with respect to

the group Sk’ we can restrict attention to symmetric procedures.

Definition 1.3.1: A symmetric decision function is a u-measurable

vector function ¢ = (mo, % Ie8§): sz > [O,l]m where m = (t) + 1,

such that

(1) b @1(5) =1 v x € R
1€{0}U &

() o x) =@ ; (x) VyeES, xe R, Ie(o)ys.
I

In our problem, for I € {0} U 8§, @I(§) represents the probability
of accepting HI’ given x is observed. In the terminology of Ferguson

(1967), ¢ is a behavioral decision function.

Definition 1.3.2: If § denotes the set of all possible behavioral

decision functions for the t-slippage problem, the risk function

p: & x ®k + IR is defined by

p(w8) = [ I L(®e()f(x,0) dux)
RE Tef0lu &

11



The following two results will be used in deriving the form of
the Bayes procedures; these are slight modifications of Lemma 3.1

and Theorem 3.1 of Karlin and Truax (1960) .

Lemma 1.3.1: The risk function of a symmetric decision function

is a symmetric function of 6.

Theorem 1.3.1: Any symmetric Bayes procedure for the t-slippage

problem is Bayes against a symmetric a priori distribution.

Let @ =® U ( U@&).
0 Ie &Gi

The set Q can be represented as follows:

e)
i

{(I,w,0): T ¢ {0} US we IR, A > 0}

where I = 0, A = 0 iff(I,w,A) € &> and T ¢ § A > 0 iff(I,w,n) € -

Let G be an a priori distribution on @, and

£ = { dG
&

&= 4
&

Also let Go(w) denote the conditional distribution function of w
given A = O.and GI(w,A) denote the joint conditional déstribution
given the set I has slipped.

It is easily seen that G is symmetric, i.e., G(8) = G(@n)
Ve e, me Sk’ iff all gI, I ¢ & are equal and all GI(w,A),
I ¢ § are identical. Then, since we are interested in symmetric

procedures, using Theorem 1.3.1 we can take

12



EI = &.VI ¢ & where £ ¢ [0,1],
and

GI(w,A) = G(w,d) VIe S we R, A>0.

Let f0(§;w) and fJ(g;w,A) denote the density under H_. and HJ,

0

respectively. Then comparing Bayes posterior risks we obtain

C%[g) = 11if x € RO, where RO’ a symmetric set in H{k, is given by
R = {x ¢ R: £ [TL (0)-L.(w)]£. (x;0)dG. (w)
0~ = © 50U Lo J 0 3%

+ £f[Ly(3,0,8)-L; (J,0,8) 1€ (x;0,4)dG (w, 8)

<0 VJe 8 (1.3.1)

and for I ¢ &
%) = 1if £ f[L (w) - L (w) ]£ (x;0)dG ()
+ Ef[Lp(T,0,8) - Li(J,w,8) £ (X;0,8)dG (v, 8)

+ Ef[Ly(1,0,8) - L;(I,0,8)]£; (x;0,4)d0 (w,4)

<0.VJe {0} US J#£1I. (1.3.2)

For J = 0, the second term in the expression (1.3.2) vanishes, and
(1.3.1) implies that X ﬁ RO. Using assumption (1) on LJ(Q), it can
be seen that

LI(I,m,A) -~ LI(J,w,A) = —[LI(J,w,A) - LJ(J,m,A)]

and hence taking J € S in (1.3.2) gives

13
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o () = 1A [[Lp(T0,00-L (1,001 (£ (x30,0)-£ | (xiw,8) 146 (6,8) < 0

VI A1, (1.3.3)

It follows from assumption (2) on the loss functions and the property
M of the density f that the inequality in (1.3.3) holds iff the set I

is such that

} (1.3.4)

{xi: i €1} = {X[k-t+1]""’x[k] )

where x <...< X are the ordered observations x..
[1] = "= "[k] i

Hence we have, for I ¢ §

¢p(x) = 1 if x ¢ R, and the set I is as defined by (1.3.4).

Thus we have the following theorem:

Theorem 1.3.2: 1If f(x,8) and u satisfy the symmetry conditions

(1.2.1) and (1.2.2), respectively, f has property M, and loss
functions satisfy assumptions (1), (2), (3) of Section 1.2, then

any symmetric Bayes procedure ¢ is of the following form:

qb(§) =1 if x € RO’ a symmetric set in Hlk

. c k. L _
¢p(X) =1 if x € Ry N{x € R°: {x;: i €1} = {x[k_t+1],...,x[k]} }
Remarks:

1. The form of the set RO depends heavily on the density function f,
as illustrated by the examples discussed in the next section.

2. For t =1, Karlin and Truax (1960) assume that

Li(8) = L 5(8). (1.3.5)
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It follows from Eaton (1967) that assumption (1.3.5) of Karlin and
Truax (1960) is stronger than our assumption (1) of Section 1.2.

Moreover, it may not even be reasonable to assume (1.3.5). For

123

example, suppose k = 3, 6 = (w+d, w, w) and take 7 as (2 3 1),

Then assumption (1.3.5) gives Ll(w+A, w, w) = Lz(m, w, w+d),
A result similar to Theorem 1.3.2 holds for the controlled
t-sliipage problem. The analysis involves some minor modifications,

and hence is not included.
1.4 Examples.

In this section the set RO is explicitly obtained for normal,

gamma and multinomial populations. Unless mentioned otherwise, it
is assumed throughout the rest of this chapter that the loss functions
satisfy assumptions (1), (2), (3) [(1'), (2'), (3')] of Seqtion 1.2
for the uncontrolled [controlled] problem. We will discuss the two
cases separately.
1. (a) The normal distribution with known variance. (Controlled case)

We are given independent observations XqseenXys Y from k+1

normal populations with means 61,...,6k,60, respectively and

variance 1. We make an additional assumption on the loss functions:

. = . /V t é
LI(61+C,...,6+C,60+C) LI(el,...,ek,eO) I €{0}lUS, ¢ €R,

(8,8,) € Q.

Using invariance with respect to the group of translations

attention can be restricted to procedures which depend only
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on the observed values of the random vector U= (Ul,...,Uk) where
U, = X —Y,...,Uk = Xk~Y. The joint distribution of Ul""’Uk’ as

given in Karlin and Truax (1960), is

k k ..
. - L 13y, - -
f(ul,...,uk,wl,...,wk) = C.exp]| > izl jzlk (ui wi)(uj wj)] (1.4.1)

where C is the normalizing constant, independent of w, = ei?eo, and

k . . .
et 1=
At
1 . . .
Tl 1A

It is easily seen from (1.4.1) that f(g;@) satisfies the assumptions
of Theorem 1.3.2 which therefore gives the class of symmetric
invariant Bayes procedures; only the set RO remains to be found.
Now, from (1.3.1), we have

Ry = {ur £ (Ly-L)E (u) + sé[LO(J,A)—LJ<J,A)]fJ(g;A)dG(A)

<0 vyJe gl (1.4.2)

where fJ(g;A) is the joint density of Ul""’Uk given that the subset
J € 8§ has slipped to the right, and fo(g) is the density when there
is no slippage. Substituting wj = A Vjed and wj =0,V i J in

(1.4.1) we obtain

2 .. ‘
fo(u;A) = £, (u).exp|- A X Z A s tan (w)] (1.4.3)
J~- 0*- 2 .86, J =
ieJ jeJ K
R )
_ - k - - _ jeJ - _ i=1
where hJ(g) =Uy -G W Uy s g, us= X



It is clear from (1.4.3) that fJ(g;A) is an increasing function of

hJ(L_x) and therefore, from (1.4.2) we have

RO = {u: hJ(g) <c,vJ e 8}
= {(x,y): max (iJ - Efiz) < c} (1.4.4)
- . k+1 .
jed
Lox
- _ jed
where Xy = —

Hence every symmetric invariant Bayes procedure has the form

g (xy) = 1 if (x,y) € Ry

}

L,X

i

g (X,y) = 1 if (x,y) ¢ R, and {xi: igl}= {X[k-t+1]"' (]

where the set RO is given by (1.4.4).

(b) The normal distribution with known variance (uncontrolled case)

The additional assumption on the loss function is

LI(61+c,...,6k+c) = LI(GI""’G ) Vece R, ITe {0} U S and

k
(6,...,8,) €@

The problem is again invariant with respect to the group of

translations and a maximal invariant is U1= Xl—Xk,...,Uk_1 =

Xk_l—xk. The joint pdf of Ul""’Uk—l is

1 .
f(ul,'--)uk__l; wl,'..’wk—l) =C eXP[" ?Q(L_l:‘i))]

where

kol k-1 ij .
Qu;w) = izl 321 R CRRICRY (1.4.5)

17



It is easily verified that f(u;w) has property M.

18

k-1 .. . .
-]—(—— if 1 =]

if i #j

< s

We now calculate

fJ(g;A), the joint pdf of Ul""’Uk—l for 9 e-@J, J £ g. There are

two possibilities:

(i) keJ
Here
0 if j€J, ]
w, =
J
-a if ¢ J
and thus
8% (k-1)t _
Qj(u;8) = Qy (W) P - tafuy -
Ly
- jed _ -
where Uy = S, s uk~ 0, u
(ii) k¢ J
Aif j
In this case wj =
0 if j

# k

(1.4.6)

)

Ly

Substituting the values of wj in the expression (1.4.5) we find

that the form of QJ(E;A) remains the same as (1.4.6).

Then, as

{u: u, - Eil~ﬁ <c . vJe

{x: X;-x<c ,VJe st

in case (a), the set R0 is given by

8}

(1.4.7)
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Hence the symmetric Bayes rule in terms of the observations XpseoesXy

are given by

qb(g) =1 if x € R

]
[

¢y (x) if x ¢ R, and {x,: i € I} =

{x[k-t+l]""’x[k]}
where RO is given by (1.4.7).

2. (a) The normal distribution with unknown variance (controlled

case)

¥ and xij(i =1,...,k; j =1,...,n) are n independent observations

from k+1 independent normal populations with meansle and ei

0
. . 2 .
(i =1,...,k) and a common unknown variance ¢“. The loss function

is assumed to satisfy

6 1+Q' 9k+a’ 60+C!

O~ _ .
LI(—_B.",-'-: ——8—’ _T’ -B_) = LI(el""’ek’QO’o_)
Va €R, B>0and I€ {0} U {8}.

The problem is invariant under groups of location and scale
transformations, and a maximal invariant for both groups is

Xl-Y xk-Y
1 g s U T 5 where

wn
i
~1
t~
fan)
>
1
>
o
N
+
It o~
N
4
]
=<
N
[N}
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The joint pdf of Ul"';’Uk’ as given in Karlin and Truax (1960),

is
kel
flusn) = ¢ f exp [- 2 5 Z Z A J(u &5 )(u s-n;)- ~—Js ds
i=1 j=1
kn . _
Ny ] if i=3j
where At o=
n .. . .
- T if 1 # 3

It is easily seen that the joint pdf of Ul""’Uk’ given the set
J € § has slipped, is given by

k+1
£(u;6) = C A(a)g(u)f exp[tsh  (u)- ——an S ds

_ A _ n(k-t+l) .2
where § = 5° A((S) = exp[—- m—— 8 ]
1
g(u) = X _n+k
@) Z Wuu, +1)2(-1)
i=1 j=1 13
k -
tn( J mu)
and hJ(g) | TTX )
( Z Z A u u, +1)§
i=1 j=1

We now verify that the pdf f(u;n) has property M.
For each fixed s > 0, the exponent of the integrand in the expression

for f(usn) can be written as

2
R | - -m1- 5o
Q(uin) = - 5 [(su-n)'A(su-n)]- =
= 0iiy 2 n
where A= (A7) =n Ik - E:T-e'e,
_ k
®lxk = (l,...,l).e R™.
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It follows from proposition (2.2) of Eaton (1967) that f(g;g)
has property M. Hence all the assumptions are met, and Theorem
1.3.2 gives the form of the symmetric invariant Bayes rules, except

for the set R,. The set R, is given by the inequalities

0 0
£ (Ly-L)E (W) + g(f)[LO(J,é)—LJ(J,A)]fJ(t_J;d)df}(é) <0 ,VJe S

Since fJ(g;G) is monotonically increasing in hJ(g) we have

- k
tn(u,- i:T-u)

_ J
R, = {u P <c,vVJe sk
| Qud®
(el ] o -~y

1=]

Changing to original observations xij,y, we have

Xty

(x,:>¥) = 1 if R = N e 5 <
(PO Xij,)’ - 1 (XIJ’Y) < 0 - (le ’Y)~ K X.+y 5 C

2 -
[s%en I Gy )l

. XY,
ny- -1 vJ e 8

¢p(x;550) = 1if (x;5.y) € Ry and
{xi: i €1} = {X[k-t+1]""’x[k]}
I,
- 5é 3 ko
where Xy = J&J , X, = Z X..
t o1 d

(b) The normal distribution with unknown variance (uncontrolled

case)

Here X; 5 (i1=1,...,k; j 1,..,n) are n independent observations

J



from k normal populations with means Gi and a common unknown variance

2

o . Additional assumption on the loss function is

8 +o 6k+a

1
LI( B,..‘.’ B;

G ——
BJ = LI(Gl,...,Gk,O)
Vo €R, 8>0, I¢{0}uUSs.

Then, as in case (a), we have

XJ - X
R = {x..: max [ ] < ¢}
0 1 JES k n ) 1
{) 7 x..-0)°)%
i=1 J:l 1)
i s
X. X
where )—( = _E-l_.___f.__ x = iEJ i
k S| t

and the Bayes rules have the form

qb(xij) =1 1f X.. € R

ij 0
@I(xij) =1 if Xi5 ¢ R, and {xi: ielI}s= {X[k—t+l]’°"’x[k]}'
3. (a) The gamma distribution {controlled case)
Here xl,...,xk,y are observations from k+1 independent gamma

22

populations with unknown scale parameters 61,...,8k,60, respectively

and a common known shape parameter p > 0.
Additional assumption on the loss function is

8 9 eo -
Li(—,..., —, C—) = LI(el""’ek’eO)r’V c >0, I¢ {0}ys.

X
The joint pdf of maximal invariants U. = 5eeeslUy = Yk-is

1



j=1 11
f(ul,...,uk; wl,...,wk) = Y s
1+ Z _ig(k+1)p
i=1 “i
o3
where ¢ is a constant, and w. = — .
1 60

It is easily verified that f(u;w) satisfies the condition (1.2.3)
and hence f has property M.

Then the set RO is given by the inequalities

Eg(LyL)Ey (@) + g[LO(J,A) - L;(J,8)1£;(u;8)dG(8) < 0, VI e §

where 6 = %—3 and

0
£, (u)
02 1
f_(u;8) = [ ].
g (1+6)Pt .8 Uy (k+Dp
148 ) ka
tu
Since fJ(g;é) is an increasing function of —, we have
1+ku

tu
Ry = {u: max ~ < ¢}
JES 1+ku
iJ
= {(x,y): max < c}
T Je8 y+kx
k
I x. P ox,
where %, = 35 ’ % = 371 ’
J t k

23



(b) The gamma distribution (uncontrolled case)
Similar analysis shows that the symmetric Bayes procedures

for the uncontrolled case are given by

!
joun

%(x) =1if x € Ry = Ix:

and

i

1 if

1

qi(§) ¢ RO and {xi: i €1} =

4. Multinomial Pdpulation

Let X = (Xl""’xk) be an observation from a multinomial

distribution with parameters N and 9 = (61,...,6k):

X,
| k eJ.J k k
M = { —— =
p(xl,...,xk, el,...,e ) = N! _? [X !], _Z Xj N, Z eJ
=17 j=1 j=1
0 f_ej <1, 1<j<k
In the notation of Section 1.2 we have
@ = (8:0, =...=6}={....0) = {63, say
o 8::8, =... K Kook ol

wth if § €J
@ ={p: 0, = }
J T ifj¢g
where A = l—iw s, 0< < %u

{X[k—t+l]’“"’x[k]}'

24



Hence p0(§) =

k (x .)

===z

and

py(xiw) = K p oo+ LK) for ¥ R (1.4.8)

It is easily verified that the multinomial distribution has property

M, and hence the set R_ is given by the inequalities

0
]
. ] |
8 (LyLPy(X) + ag [Ly(Tw)-L;(J,0)]p;(x;0)d6(w) < 0, VI €&
(1.4.9)
It follows from (1.4.8) and (1.4.9) that

Ry = {x: max ( Z x.) < c}
T Je8 j(‘JJ

and the class of symmetric Bayes procedures is given by Theorem 1.3.2.

1.5 Multiple.SIippage Problem for Location in the Presence of a

Sufficient Statistics (Controlled Case)

Here we have observations x .,xk,y from k+1 independent

1’
populations which are distributed as f(x-el),...,f(x—ek), f(y—eo)

respectively, where xi,y,ei,eo are all real. Assume that

(1) f(x) is strictly positive

(ii) f(x-9) has monotone likelihood ratio (MLR) in x and ©

25



(iii) f(x) is bounded, and f(0) = max f(x)
x €R
(There is no loss of generality in the latter part of

assumption (iii), since if f(xO) = max f(x), we can reparametrize

X
the family of densities by setting ei = ei + xO)

k+1 .
(iv) 121 £(x;-0) = r(x,¥)q(8-6), x| =¥

where 6 = 6(x,y) is the maximum likelihood estimate (MLE) of

0 under HO: ei = GOV i.

Loss function is assumed to satisfy (1'), (2'), (3') of Section 1.2,

and also the following:

LI(81+C,...,6k+c, 8p*¢) = L(61,...,8,,6,), Vc € R, I e {0} Us.

The joint pdf of maximal invariants Ui = Xi -Y, i=1,...,k is

given by
k
p(u;w) = [ 0 f(u,-w,+s)f(s)ds
B R i=1 .
where w., =6, - 6., 1i=1,...,k.
i i 0

It follows from assumption (ii) on f that p(u;w) has prdperty M,
and therefore the symmetric invariant Bayes procedures are given by

Theorem 1.3.2, with RO defined as follows:

Ry = {u € RY: £ g™y P () +6 [y (1,8)-L; (3,0) 1p; (430)43(8) < 0

¥VJes  (1.5.1)

where

py(usd) = [ T fu.-a+s) T f£(u,+s)f(s)ds
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[ £luj-b+s) K
- I [wrd———] T f£(u,+s)f(s)ds.
R o EOLESY oo T

From assumption (iii) and the fact that 6(x+c) = 8(x)+c

, Ve €R, x Eﬂlk (see Lemma 5.2.1 of Karlin and Truax (1960)),

we have
k+1 ~
I f(u,+s) = r(u)q(6(u)+s)
i=1 1 )
N k+1 -
where u = (ul,...,uk,uk+1) ¢R > W = 0

and

£(uj-005) - q(8;(w)-dvs)

I [f(uj+s)

jed

q(0 (u)+s)

where QJ(Q) is the MLE of 6 based on the subset {uj: j € Jr}.
Substituting these values in expression (1.5.1) for RO’ and inter-
changing the order of integration , we obtain

Ry = {u: W(éJ(u)+s)r(u)q(é(g)+s)ds <0,vJegl
=R 4 4

where

Y@) = (L 0,01, 0,0)] UL2) - g (Ly-1g) B ).

From Lemma 5.2.2 of Karlin and Truax (1960) we see that q(6-6)
has MLR, and therefore ¥(z) is an increasing function (see Lemma 2,
P- 74 of Lehmann (1959)).

Now
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[ 90 (u)*s)a(o(w+s)ds = [ ¥(2)q(z-[8;(u)-6(u)])dz.
R R

Since q(z~[8J(g)—e(g)]) has MLR, and ¥(z) is increasing, the above

integral is negative if GJ(g)—e(g) < ¢ for all J ¢ §, for some

c €R,
Hence
R. = {u: max [é (u)—é(u)] < ¢}
0 T JeS Jo= -
= {0oy): max [6,(0-0(x,))] < o) (1.5.2)
JES

by translation invariance of 6 (u).
(b) Uncontrolled Case

In this case assumption (iii) of case (a) is to be replaced by

£(x,-8) = T(x)q(6-6).
1 1 -

il ==

i
The loss function is assumed to satisfy (1), (2), (3) of Section 1.2

and also the following:
LI(61+C,...,6k+c) = LI(el,...,ek),v c €R Ice {0}uyuS.

A maximal invariant is U= (Ul""’Uk—l) = (Xlzxk"'f’xk—l—xk)
which is distributed as

k-1
p(u;w) = [ T f(u,-w.+s)f(s)ds where
R i=1 1 1
w, = ei-ek, i=1,...,k-1.

Using the method of Example 2 (b) of Section 1.4, we can show that
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k
i f(ui+z)dz, with u, = 0.

pylu;a) = [ 1 [;TGE:ET—“] K

q(5J+z—A) .
1 (u)g(6+z)dz
R q(6;+z) B

and
po) = [ r(wq(8+z)dz.
R
Then, as in the controlled case, we have
Ry = {u: [ ¥(8,)r(u)q(6+s)ds < 0, ¥ J € 8}
R -

with ¥(-) as defined in case (a)

= {u: max [éJ(gj—é(u)] < ¢}
J&S b

D max [0, (x)-6(x)] < c} (1.5.3)
J& § ) B

{l
.
>

We now prove that the class of Bayes rules of Theorem 1.3.2, with
RO given by (1.5.2), is minimal essentially complete if the loss

function satisfies two additional assumptions:
(i) L: 8 x @k + R is bounded
(ii) ~vy(a) = LO(J,A) - LJ(J,A) is monotonically increasing in A

(By assumption (1) of Section 1.2, y(A) is independent of J.)

Lemma 1.5.1: Let D(m) = {AO,Al,...,Am}.Given a symmetric invariant
rule ¢, we can find a symmetric invariant Bayes rule @(m) such

that
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pl@d) - p(e™,0) >0 va ep™.

Proof: In the terminology of Blackwell and Girshick (1954} consider

(m) (m)

the game (D , G, p). Since the set of states of nature D and

the action space ( are finite, the set W c;Hlp p = (§)+l) defined by

W= {w(a) = A(wo(a),---,wm(a)): w,(a) = L(a,Ai)

i=20,1,...,ma € G}

is closed. (Here L(a,Ai) represents the loss incurred in taking
action a € G when Ai € D(m) is the state of nature.)

Moreover, since L is bounded, the set W is also bounded.
It follows from Theorem 2, Section 2.10 of Ferguson (1967) that

(m)

Bayes rules for the game (D > G, p) form a complete class, and

then there exists a Bayes rule @(m) such that

o) - 0(p™,8) >0 yaep™,

Theorem 1.5.1: Under assumptions of this section, the class of

procedures of form

@O(x) = 1 if max (GJ—G) < ¢
2 Jes
@I(g) = 1 if max (eJ—e) > ¢ and

Jes

{Xi: ielI} = {x }

[k—t‘*‘l] se e ,X[k]

is a minimal essentially complete class of symmetric invariant

procedures.
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Proof: We follow the proof of Theorem 5.2.2 of Karlin and Truax
(1960). Since y(D) is a monotone function of A, there exists a
O,Al,...,Am,...} with AO = 0 such that

all points of discontinuity of y(A) are contained in D. By Lemma

countable dense set D = {A

1.5.1, given a symmetric invariant rule ¢ we can find Bayes rule

(m) (m)

@7, which is also symmetric, such that ® dominates ¢ at A

O,
& ,...,A . That is
1 m

o™ ,0) - p(98,) <0 for i =0,1,...,m (1.5.5)

where, for any rule ¢

p(9',8) = Ly(0)[4)(x)p, (x)dx + L (0) Iég@&(f)Po(E)d§
= Yo @) (X)py (x)dx + L (0) (1.5.6)
where Yo = LJ(O) ~ LO(O) > 0, and for A > 0
p(9a) =

Lo (8) [ (X)py (x)dx + IégLI(A3f@i(§)'PI(E$A)d§
I#J

+ Ly (8) [l (x)py (x;8)dx

"

Ly (A J11-95 () Ip; (x5 8)dx + Ly (8)- [} (x)p; (x;8)dx
by assumption (3) of Section 1.2
= =¥ (0) [} ()p; (x;8)dx + L, (A). - (1.5.7)

By symmetry considerations the right hand sides of (1.5.6) and (1.5.7)

are independent of J.
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(m)

Since o is a symmetric invariant Bayes rule, there exists

a constant Cm such that

(m) . Ao A (m)
¢y () =1 if x € {max [6.-8] < c_} = RY" | say

0 - - Jes J m 0

M) =1ifx ¢rR™ and {x,: 1 €1} = { )
P (§) if x 0 an X;0 i € X[k—t+1]""’x[k] .

Let RS = {max [BJ—G] < c*} Hik, where c* is a constant satisfying
JES

[y ()py (x)dx = [ p(x)dx | (1.5.8)
R*
0

Define a symmetric invariant Bayes rule p* by

g5(x) = 1 if

[

*
€ R
(1.5.9)

i

@r(x) = 1if x ¢ Ry and {x.: i€ I} = {x

[k—t+1]""’x[k]}'
We show that the rule ¢* dominates ¢ for all A > 0. It suffices to
show that
p(p*,8) < p(p,A) VA €D
since any A' ¢ D is a point of continuity of v(A) from which it

follows that pp*,A") < plp,A'). Let A = Am. Then it follows from

(1.5.5), (1.5.6) and (1.5.7) that

fog™ (py (dx = | pioodx > | @X)Pg (X)dx - (15.10)
g (m)
0
and fo ™ (x)p (x;0,)dx > Jo 0Py (x;a0dx, 1= 1,...,m. (1.5.11)
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It is clear from (1.5.8) and (1.5.10) that
(m) *
Ry~ o Ry

and therefore

v

[ 00, (x50, 0dx > o™ (p, (x50, )dx

\2

fqb(g)pJ(g;Ai)df ,vyi=1,...,m.

Since the above holds for every m, the result follows.
The proof of minimality of the essentially complete class is the same

as in Theorem 5.2.2 of Karlin and Truax (1966).
Remarks:

1. If the direction of slippage is unknown, we have a symmetric
two-sided t-slippage problem. The symmetric invariant procedures
for this problem are of the following form:

qb(§) =1 if x ¢ RO = {x: mgx (IeJ—el) < c}

1 1if x § R. and ]é —él = maxlé —5].
- 0 I Jes J

2. It is clear from the proof of Theorem 1.5.1 that each symmetric

¢p (X)

invariant Bayes procedure for testing t-slippage in the location
parameter case is uniformly most powerful in the class of all
symmetric invariant procedures, having a preassigned error

associated with HO.

3. Similar results hold for the uncontrolled case.
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Illustrations-

1. Normal populations with a common known variance,

2
X
2 . o
e , = © < X < ® gatisfies

It is easy to see that f(x) = L
V2r

all the assumptions of this section, with

kx+y for the controlled case
k+1
6 = _
kx
T for the uncontrolled case
] x
-~ —jej —_
and SJ = e = xJ.

It is easily seen that the Bayes procedures obtained by substituting
the expressions for ¢ and 6y in (1.5.2) are same as the ones given

in Example 1 of Section 1.4.

2. Location parameter of the exponential density

e_(x—e) if x >0
Here f(x-8) =
0 otherwise

For the problem involving a control we have

~

8 = mln{xl,...,xk,y}

and

A~

&) min{x.}

j&J

it

J

and therefoie the set RO is given by



RO = {(x,y): max[min x, - min{xl,...,xk,y}] < c}. (1.5.4)
JES j &I

The set RO for the uncontrolled case is obtained by replacing

(x,y) = (xl,...,xk,y) by x = (xl,...,xk) in (1.5.4).
1.6 Slippage Problem for Scale Parameter Distributions

We discuss the controlled case first. Here X; i=1,...,k are

independent observations from populations with density functions

1

5 f(g-), i=1,...,k, respectively, and y is an observation from

i i :
control population which has density %—-f(%—); x > 0, ei >0,

0 0

As in location case, we assume that
(1) f(x) is strictly positive for all x > O.
(ii) f(ga has MLR in x and ©

(iii) MLE of eo exists under HO: el =...= ek = 60, and is sufficient
for 6.
Loss functions are assumed to satisfy (1'), (2'), (3') of Section 1.2

and the following:

LI(cel,..,cek,ceo) = LI(el,...,ek,eO),v ¢ >0, I€{0}US.

Analysis similar to that for the location parameter t-slippage

problem shows that every symmetric invariant Bayes rule has .the form

8. (x,)
1, max[ag—:———ﬂ < c}
JES o
(x,¥)

. k+
qb(xl,...,xk,y) = 1if (x,y) € Ry = {(x,y) € R

(1.6.1)

35
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qj(§,y) =1 if x & RO and {xi: ie€l} = {x[k—t+1]""?x[k]}'

An analogous result holds for the uncontrolled case.
Remark:

The class of symmetric invariant Bayes rules given by (1.6.1)

is minimal essentially complete.
1.7 Applications

Selection of t-best populations under slippage configuration.
Let X5 be an observation from population ™. with pdf f(x,ei)
(i =1,...,k), eilé ® c R; we assume that f(x,8) has MLR in x and

6. It is also assumed that the parameters ei (i =1,...,k) are in

the following configuration:

) = 0+4, 6 € R, A >0

(1] 77 Okeee2] € Cpreesr] 70T O

(1.7.1)
where 6 <...< B denote ordered 0., and t(1 < t < k) is a known
[1] <% Ok i (bre<b
integer. The problem is to identify the subset of populations which
are associated with {e[k_t+l],...,e[k]}.

The action space (G consists of (t) elements:

(I={aJ:JES}

where § is as defined in Section 1.2. Assume that the loss function

satisfies

B L O =L@ Ies v e



1]

(i1) LJ(@) < LI(Q) if ej B+A, ¥V j €J, T €8 (I #J)

6 for at least one i € I

i}

(1ii) L (8) = L(0) if o,

and ej 8 for at least one j € J.

Then we have the following theorem :

Theorem 1.7.1: If the above assumptions are satisfied, the symmetric

Bayes rules for the problem of selecting the t best populations, when
the parameters are in the slippage configuration given by (1.7.4),

is to select the set associated with {X[k—t+l]""’x[k]}'

2. Selection of the normal populations associated with largest

probability P(a < x < b).

Here we have k normal populations N(ui,l) i=1,...,k, and the
problem is to select the subset of populations which are associated
with the largest t values of the coverage of the set A = (a,b] c R,
- ®<a<b< o yheret (1 <t <Xk) is a known integer and the
coverage of a set A for a population with distribution function
F(x,u) is defined as [c.f., Guttman (1961)]

Y(A,p) = [ dF(x,u).
A
The problem of selecting a subset containing the population associated
with the largest coverage for A = (-x,a] has been considered by
Guttman (1961). Guttman has investigated Gupta type procedures for
normal and exponential populations. Guttman and Tiao (1964) have
considered the case A = (-a,b] and have derived Bayes rules for two-

parameter normal and exponential populations for the problem of

37
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selecting the best; the a priori distributions for the two parameters
are taken to be independent and locally uniform. We consider the
problem of selecting the t best populations.

We have

b
¥(u) = ¥((a,b],u) = [ de(x-u) = ¢ (b-u)-o(a-p)
a

where ¢ denotes the distribution function of a standard normal random

variable. It is easily seen that

1) v &2 = v @& -

. . . a+
i.e., ¥ is symmetric about UO = Zb

(ii) ¥() ~ 0 as |u| » =

.. dy .
(iii) aa-z_o if u< Ho

<0 if w i_uo.

Hence ¥(u) is monotonically increasing in (—m,uo) and monotonically

decreasing in (uo,w). It follows from (i) - (iii) that
lul-uol»é qu—uol = ¥(uy) > ¥(u,). (1.7.2)

Let ei = fui-u It follows from (1.7.2) that the problem of

ol

selecting the populations associated with t largest W(ui) is equiva-
lent to the problem of selecting the t populations which correspond

to {6[1],...,9[t]}.

Let Yi = |Xi—u ; it is easily shown that if Xi is normal with mean

ol

My and variance 1, the density of Yi is given by
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£(r,8;) = ¢(6;+y) + ¢(6,-y), 8, >0, ¥y >0
e~x2/2
where d(x) =
2m

We now show that the function f(y,8) = ¢(6+y) + ¢(6-y), y > 0, 8 > 0

has MLR in y and 9.

We have
of
3y = (0-¥)8(8-y)-(O+y) o(0+y)
and
2

i

So5y = 9O (O + gle-y) (9-y)

+ @(0-y) - o(B+y)

Iv

0 since ¢(6-y) > @(6+y), V6 > 0, y > 0,

It follows from Ex. 6 on p. 111 of Lehmann (1959) that f(y,#6)
has MLR in y and 6.
Then assuming that the loss function LJ(Q) satisfies the conditions
given in Ex. 1 discussed above, it can be easily seen that a symmetric
Bayes rule for the problem is to select the subset of populations

associated with { seees }.
Yol
3. Selection in terms of entropy for binomial distributions

Let Xi’ i =1,...,k be k independent binomial random variables

with distributions given by

n, x n- .
P(X=x,p;) = ()P} (1-p;) X x=0,1,...,n, i=1,...,k.

Let ei = H(pi)

-P; log pi—(l—pi) log (1—pi). The function
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H(pi) is the entropy function associated with the binomial population
T [c.f., Gupta and Huang (1976)].

Let 6[1] 5"'f-e[k—t+1] 5,..§_e[k] denote the ordered Bi. The
populations associated with e[k—t+1]""’e[k} are of interest. The
problem of selecting a subset containing the population corresponding
to e[k] has been considered by Gupta and Huang (1976). Here we find
a Bayes rule for selecting the t populations associated with
e[k—t+1]""’6[k]'

Let Hy = |pi - %ﬂ, i=1,...,k. It is shown in Gupta and Huang
(1976) that the function H(p) strictly decreases with p = Ip - %ﬂ,

d i ceus i i
and hence the problem of selecting {e[k—t+1]’ e[k]} is equivalent
to the selection of {u yee ey }.
(117 P e]
Assume that p = (pl,...,pk) € U 2y = Q where

JE&s

L v if jE€J, wER, A#O

2
where .= p:p.=

%-+ wrd if § €T |u|<]w+a]

The action space G = {a,: J € 8} consists of (i) elements.

J
The loss function LJ(E) is assumed to satisfy (i)and (ii) of Ex. 1

of this section and also the following:
(111) Ly(p) < L;(@),vp €@y, I,Jes, I #J
(iv) L,() =L;(-p) ,vp €Q J €8s

where 1 = (1,..,1) is a row vector in IR.
Since the problem is invariant with respect to the group

G = {e,g}, where e is the identity element and gx; = n-X;, we can
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restrict attention to procedures based on maximal invariants
n .
Y, = Ixi - 2!, i=1,...,k.
Let Q(y,ei) denote the probability distribution of the

; - SR - -1
random variable Yi = [X. 2], given ei = [pi 2]. Then Q(y,ei)

1
s

has MLR in y and ei [c.f., Sobel and Starr (1975)]1 and hence a
Bayes rule against an exchangeable prior is to select the populations
associated with y[l]""’y[t]’ the t smallest values of the observed

values of Yi'
4. Selecting the biased coin

We are given k > 2 coins, one of which may be biased. Our goal
is to decide, on the basis of n tosses of each coin, whether all the
coins are fair, and, if not, which one is biased.

Let P; = probability of getting Head for i-th coin (i = 1,...,k).
Then ei = ]pi - %J is called the bias of the i-th coin.[c.f., Sobel

and Starr (1975)]. The problem is to test

o "1 k
against k alternatives
Adif i= 3
1
H.: 6, = > J = 1,000k, 0 < A< £
iJ 61 b <3
0 if 1 # j

Let xi be the number of heads in n tosses of coin i. Invariance

reduces the problem to consideration of tests based on maximal
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invariants Yl = |X - —-,...,Yk = IXk - E{.

The random variables Yi’ i =1,...,k are independent, and Yi is

distributed as

n n
* -y -y 5ty
(l—ei) ]'

y =
n 2
(1—ei) +6

L =
RN

Qy,6;) = (" )[o
7"

Let QO(X,g) and Qj(x,g) denote the distribution of Y = (Yl,.,.,Yk)

under HO and Hj respectively. Then simple calculation yields

( )
ko5
Qly) = I [ ]
027 4o !
and Q (y;4) = Qo(z)h(yj;A)
where
n
h(y;io) = 2" a-01° [2pY + D (1.7.3)
For each fixed A, we have
dh _ .n-1 n-1 1-A.y ALy 1-A.
ay - 20 T[A(1-40)] [{(*Z—' - (szﬂ }log ]

>0 ,Vy since 0 < A < %3

Hence the function h(y;A) increases with y. Assume that the loss
function satisfies assumptions (1'), (2'), (3') of Section 1.2,
with 60 = 0, and t = 1. Then all the assumptions of Theorem 1.3.2

are met, and a Bayes rule against an exchangeable a priori distribu-

tion has the form



@) = 1if y € Ry, a symmetric set

it
foun

if y £ RO and y. = max Yi-

qﬁ(y)
15;53

Here the set RO is given by the following inequalitieé:

0y )0 () + EfF MLy G015 G,0)1Q; (75088 <0 ¥ 3 = L.k,

Substituting for Qj(X;A) we get

1 ) .
02{£[L0(j,A)-Lj(j,A)]h(yj;A)-éo(Lj-Lo)}Qo(z)'dG(A) WV i=1,...,k

where h(y;4A) is given by (1.7.3).
Since the integrand is an increasing function of yj, we have
RO = {y: max y. < c}

© 1<ic<k

1.8 Nonparametric Slippage Tests

Let Xij (j = 1,...,n) be n independent obserﬁations from
pOpulation,ni with continuous cdf Fi (i=1,...,k). Let g: [0,1]+{0,1]
be a continuoué distribution function, g(x) Z x. The subset

{nj: j € J}, where J €8, is said to have slipped if

g(F) if j€J

F if 47

43



against (k) alternatives
& t

H .

it {nj:

Karlin and Truax (1960) have considered the case t

j €J} has slipped.

following two types of slippage:

(1)

I

g(F)

F1+A

(ii) g(F) A >

b

(1-0)F + AF°

0.

>

0 <

A<l

1 for the

We will investigate the general case (1 <t <k)

g(F) = (1-A)F + AFZ.

(i)

Let rij be the rank of Xij in the combined sample, and R = (rij)’

.5

Since the problem is invariant under

monotone transformations, we can restrict attention to procedures

based on R,

Let P}A)(R) denote the distribution of R = (rij) under H

J°

It follows from a result of Lehmann (1953) that

1
nk
nk-nt

) -

( )

(m)

where U

of size nk from a uniform distribution on [0,1].

E [

I
lfﬂfp
jeJ

{(1-»)+22 U

(1.8.1) with respect to A we get

(

rjﬂ)} 1

» 1 £m < nk is the m-th order statistic from a sample

Differentiating

{(1.8.1)



_ 1
nk
(nk—nt)

(r.,)
E[ 0 {(-m+2xu %y -
1§@<n
j€T
(r.,)
7 ooy IV,

j€J 221 (Tig

511
(1-2)+2)U

n
where rj = z T,

Following Karlin and Truax (1960), we find regions CO, {CJ: J €8}

in the set of all possible ranks such that

po(co)'= l-a, 0<ac<1

P}A)(CJ) is maximum over 8 for small A

and the procedure is symmetric. It follows that CI has the form

max { Z . } = Z r. > s (1.8.2)

Jes  jeg I jer I

where Yq is given by

i
—
i
Q

P _(max Z r. <vy.)
Oges s 3-— 1
(1) gF) = F* A s 0.

As before, we will consider procedures based on ranks only.

(1.8.3)

45
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Let Wy <e.ls< Wk be the sequence obtained by ordering the combined

sample {xij: i=1,...,k, j =1,..,n}. For each J € &, we define
3 J)

( .
a new sequence Z1 ,...,an as follows:

1 if w. comes from {nj: j eJ}
20 -
i

0 otherwise

Let Pﬁk)(g) denote the probability of a rank order z under HJ.

Then from a result of Savage (1956) we have

nt
p§x) ;) = (k-nt)(nt) ! (1+2) (1.8.4)

(2) = 1
1] e ey
=1

i=1

Differentiating (1.8.4) at A = 0 we get

. (J)
d (), - (nk-nt) ! (nt)! i i
P77 (z) (k)1 [nt 121 Qzl(

(A)
()

Then, as in case (i), the symmetric rule ¢ which maximizes PJ

for A in the neighborhood of zero among the class of rules satisfying

PO(CO) = l-a
is given by .
F el
(z) =-1 if min >y (1.8.5)
Yo' Jes i=1 =1 2
nk 1 (J) nk 1 zél)
(PI(E) = 1 if min Z z = Z Z (-——i———) < YZ (18.6)
Jeg i=1 =1 i=1 g=1



47

1.9 Computation of the Constant c

The Bayes rule derived in this chapter are of the form

I

% ()

1 if x € {x: max UJ(x) < c} = RO, say,
J&S - v

1if

7 (x)

1

FRos Up(0) > U,(x), ¥J # 1

where UJ(f) is é symmetric function of X; the constant c depends

on the a priOri distribution G. Following Karlin and Truax (1960), c¢
may be determined so that E(qb,HO) = l-o; this distribution of

gzg UJ(§) isvneeded for this purpose. For normal and gamma populations,
the distribution of UJ are given in Doornbos (1966). For nenparametric
slippage tests, the constant c can be computed from direct calculations.
In general case the distribution has not been worked out and approxima-

tions are needed.
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CHAPTER II

A BAYES APPROACH TO SELECTION OF t BEST POPULATIONS

2.1 Introduction

Let L be k independent populations, which have pro-

1’
bability densities f(x,ek),...,f(x,ek), respectively; with respect
to a o-finite measure p. Let 0 < ... <9 be the ordered 6. .

(1] - — [k] i
For a given integer t, 1 < t <k, the subset of populations associated
with e[k—t+1]""’e[k] will be referred to as the set of t-best
populations. In many practical situations the set of t-best
populations is of interest. Multiple decision (selection and ranking)
rules for the problem have been considered in the literature by
Bechhofer (1954), Carroll, Gupta and Huang (1974), and others. Gupta's
approach, which is commonly known as the subset selection formulation,

is to select a subset S of random size S| (t < |s] < k) such that

S contains the set of t-best populations with probability at least

P*, where P* is a preassigned constant. In Bechhofer's
indifference zone formulation, a subset of size t is chosen so that
the probability of selecting the t-best populations is at least P*

_ * N .  fied
whenever e[k—t+l] e[k_t] > &%, where 6* > 0 is a constagt specifie

in advance.
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In this chapter, the problem of selecting a subset containing
the t-best populations has been considered from Bayes approach. Deely
and Gupta (1968) have considered the problem of selecting a subset
containing the best, which corresponds to t = 1. It is proved there
that under certain assumptions on f(x,8) the Bayes rule selects exactly
one population associated with the largest observation, provided the
loss is linear in ei, and the a priori distributions of ei are inde-
pendent. The problem for general t is formulated in 2;2 and it is
shown in Section 2.3 that if the joint distribution has property M of
Section 1.2,and the a priori distribution g(@) on on @k is exchangeable,
then for a loss function which is linear in ei, the Bayes rule will
select exactly t populations corresponding to the t largest observations.
For t = 1 Bayes rules for non-linear loss functions have recently been
considered by Goel and Rubin (1975), Chernoff and Yahav (1977), and
Bickel and Yahav (1977). In Section 2.4 we derive some Bayes rules for
selection of a subset containing the t best populations, when the
loss functions are non-linear in Gi; normal, exponential, Poisson

and binomial populations have been discusséd.
2.2 Formulation of the Problem

Let LORRRREL be k independent populations with densities
f(x,el),...,f(x,ek), respectively, with respect to a o-finite measure
I, ei €@ CR (i=1,...,k). The goal is to select a subset containing
the t best populations, i.e., the populations associated Withwe[k—t+l]""’

%k]’ where 9[1] < e 5_e[k] are ordered ei.
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k
The action space. U consists of X (;) elements:

m=t

b= {5 c{l,...,k}: |S] > t}

where |S| denotes the size of the selected subset S. -

The loss function L(Q,S): @k X U~ IR gives the amount of loss

incurred in selecting a subset S € G, when Q € @k is the true value

of the parameter.

The following loss functions will be considered:

k -
) e[i] be.
. ‘— * . J
L, (8,5) = c|s| « [ l‘k‘t:1 - %r_] (2.2.1)

where ¢ > 0 is a known constant.

k
) e, b e,
. [i] . j k
=k-t+l je€Ss
L,(6,8) =c|s| + g | 22X 77 _J€S + ] '

(2.2.2)

where 8 and ¢ are given non-negative constants, IA represents the

indicator function of a set A, and

S'" = {6.: i €8}
i

t
(1i1) L,(8,8) =c|s| + [ [o,, . -6 1+ ¥ (o - 8.)
3 jop  Lk-ivd] {St—i+l} jEB (k] J
(2.2.3)
where e{sl} f'.f' f_egt} are the t largest ei in the subset S, c

is a known nonnegative constant and

B={i €8: Oi # G{S 3o 2=1,...,t}
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We assume that

(i) £(x,6) has monotone likelihood ration in x and 6

(ii) g(6), the a priori distribution on @k, is exchangeable or

permutation symmetric. That is,

g(el:---yek) = g(e‘bl’“"e\!}k)

for all permutations y: {1,...,k} - {1,...,k}.

(iii) the measure p is also symmetric, i.e.,

du(x) = du(gw)-

Since only Bayes rules will be considered in this chapter,
attention can be restricted to the class of non-randomized rules
(see Ferguson (1967), Section 1.8). |

It is easily verified that the loss functions Ll’ L2 and L3
satisfy monotonicity and invariance properties of Eaton (1867), and
hence, in each case, the Bayes rule d* for selecting a spbset

containing {e[k—t+1]""’6[k]} is given by

r(d*,x) = min r(d.,x) : (2.2.4)
- tysk )
where r(d,x) is the Bayes posterior risk, given x, of a rule d,
and dj in the rule which selects the subset of populations associated

< X[k] denote thg ordered

with {x{k—j+l]""’x[k]}; X[l] < ... <
observations.

In the next two sections we derive Bayes rules for the loss

functions given above.
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2.3 Bayes Rule for the loss Function Ll'

Assume that the loss in selecting a subset S when 8 is the
parameter is LI(Q’S)’ where L1 is given by (2.2.1).

Deely and Gupta (1968) have considered the case t = 1 with

loss function given by

L(S,8) = qéS 5 - 8y a, > 0

It is shown that under certain mild conditions on the.density f and
the constants aq, the Bayes rule selects only one population. In this
section we prove a similar result for the general case;

Let xi € R be an observation from ﬂi’ i= 1,...,k.u The posterior

risk of a decision §: XF > U 1is given by
k

. ) 6. PP
8,x) = c|s| « p| izk=t*l - jes I
r(x = clsf+ G B

where rule § selects the subset S with probability one.

It follows from (2.2.4) that the search for a Bayes rule for
the problem can be restricted to the rules dj(j = t,...,k).

Let 8(1) denote the parameter values associated with X[i]’

i=1,...,k. Then
' k
b1 P Cem) ]

o N a=k-m+1
r{d.; X -7(d,x) =c+E [ e 1) |x

We need the following Lemma:



Lemma 2.3.1: 1If a density h(§;g) has property M, as defined in Section

1.2, and g(e) is exchangeable, then

E(e(i)jg) z_E(e(j)lg) vio>j.

Proof: Let B = {e € @k: e(i) z-e(j)}' Then

f@k[e(i) " 05y lh(x;0)g(8)de = fB [Osy = 857 Ih(x;8)g(0)do

*ch[e(i) " 005 1P s e)E(0)de

+ { [o,.. -6,. Jh(x;6. )g(e)ds
B (J) (1) - 'le - -
where wij is the permutation which interchanges coordinates
i and j of a vector g = (61,...,6k), keeping other components

fixed, and C] is as in Section 1.2. Thus
ij

E(e(l) - B(J)')-() = (B [6(1) - 9(3)][h(>§,§)-h(§,9w13)]g(9)d§ _>_ 0.

It follows from Lemma 2.3.1 that

E[ - e(k_m)lg] 2 0 for a = k-m+l,... k.

% (o)

Hence

T(dm+1,§) 3_r(dm,§) for m=t,t+1,...,k - 1.
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Theorem 2.3.1: If f(x,8) has MLR in x and 8, and the a priori dis-
tribution on @k is exchangeable, the Bayes rule selects exactly t
populations associated with the largest t observations.

k
Proof: Let h(g;@) = z f(xi,ei).
i=1

It is clear from definition that h(x;6) has property M, and

the result follows from Lemma 2.3.1.
2.4 Bayes Rules for the Loss Functions L2 and LS'

The Bayes posteriori risk for rule dj’ when the loss function

is LZ(Q,S) given by (2.2.2), is

k .
- - B .
r(dj,§) =HG) + ¢ i=k§t+1 E(e[i]fg) t<j<k (2.4.1)
where
8 k k kij ]
H(j} = ¢j - = E(6,.,|x) + . P8 = Q x)
) J J 1=k§_’]+l (1) I" p=kzt+1 q=1 (Q) [P] -
(2.4.2)

It is clear that the Bayes rule d(z) in this case is obtained by

minimizing H(j), t < j < k. Hence

d® -4 if H@) = nin H(j) - (2.4.3)

. t<j<k

When the loss function is LS(Q,S) given by (2.2.3), the Bayes

posterior risk in using dj is
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Tn) el E[}i=k§t+1 eV i%S ) (j_t)e[k]l§:]

v : (2.4.4)
and therefore

bp F Tl 15X) - r(d ,x) =c + E[6

n k]~ % ckemy X1

>4, t<m<k, and

It follows from Lemma 2.3.1 that A
m+1 m

hence the Bayes rule d(s) is given by

d if A= {j: Aj > 0} is null set

a® (2.4.5)
dz, where £ = min{i:i €A} if
A is non-null

2.5 Specific Examples.

In this section, we compute Bayes procedures for the loss functions

L2 and L3 in several specific cases.

1. Selection of t best normal means.

Let population L be normal with mean ei € (-»,~} and a known
variance 02 (i =1,...,k), and let ii be the mean of an
independent samplé X, ,...,x, of size n from n,; m, and .

i i i’ i j
(i, j = 1,...,k, i # j) are assumed to be independent. We compute
the Bayes rule when the loss function is Lz(e,S) given by (2.2.2) and
the a priori distribution on ®k is k-variate normal with mean

. . 2 ’ .
vector u = (u,...,u)' and covariance matrix I = 71 Ik where Ik is

the identity matrix of order k, i.e.,
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8. - W
o)

g(8.,...,8.)
1 k 1 T

1
o~

i
where ¢(x) is the density of a standard normal random variable.

The posterior distribution of 8 = (61,...,8k) given the ob-

servation vector X = (xl,...,xk) is

k 1 ei - mi
g @lx) = 1 [z ¢(D)] (2.5.1)
i=1
where
%‘ * ’—‘iTZ
m. = 5 , 1 =1, »k
1 o) 2
—+ T
n (2.5.2)
a
. 2
- n
v =
2, o°
T n

Let i[l]""’i[k] be ordered sample means, and let 6(1)

be the (unknown) population mean associated with i[i]’ i=1,...,k.

Then
(2.5.3)

where m[1] < ... f-m[k] are the ordered posterior means.

We also have

P(e(q) = e[p][xl,...,xk)



57

={ P [ max 9. . < Y, min®.sy Wi ,...,i }cK(q)]
& * lcacp-1 (Ta) jer(; I ! p-1
o 6, (y)

@
(2.5.4)

where

K(q) = {1,...,9-1,q+1,...,k}

. _ . . B . . c
R(la) = R(ll,...,lp_l) = K(q)n{ll,...,lp_l}

PX is the joint conditional distribution of @ given x, and G (:) is

the posterior cumulative distribution function (cdf) of 6(2).

From (2.5.1) we have

Yy - m
()’)’—'@( "‘*V—['Q'—]—), L = 1,...,k (2.5.5)
(2)

G

where ¢(+) is the cdf of a standard normal random variable.

From (2.5.4) and (2.5.5) we obtain

P(G(q) = e[p]lxl,...,xk)
- p-1 “al )
= o(u + T )
{w {i,, g } < K(q) agl %o 6?2
1 p-1 —(—+ )
Xpaq - Xo.
[1 - @(u + Z[q% 5 [J] ‘Tz)]
FJER(1) T g (gﬁ_+ TZ)%
. ¢(uw)du (2.5.6)
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Using (2.5.3) and (2.5.6), the function H(j) given by (2.4.2)
can be computed for each j, t < Jj < k and then the Bayes rule d(z)

can be obtained from (2.4.3).

2. Selection of normal populations associated with t smallest
variances

Here Myseee,M are independent normal populations each with

. 1 . .
mean zero and variances %"""§" respectively. We wish to select
1

a subset containing e[k—t+1]""’e[k] when the loss function is
given by (2.2.2) or (2.2.3).
Let Xij (i=1,...,k; j =1,...,n) be an independent sample

from Wi' Then

is sufficient for ei.

Assume that %ﬁ‘

conjugate gamma-2 priori density[see p. 54, Raiffa and Schlaifer (1961)].

..,%1 are independent, and ei has natural

Then the joint a priori distribution of 6 = (61,...,6k) is

L dat
-%0.a'b' za'-1 k
{Ae * a, S A ALY (2.5.7)

g(8) =
1 1 i=1 2

n ==

i
where A is the normalizing constant for fY (‘lb',a'), the pdf of a
2
gamma-2 distribution.

From Raiffa and Schlaifer (1961) we have the posterior dis-

tribution of P as
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k
2 2
* - "
g (el,...,eklsl,...,sk) o £, (ei[bg,a ) (2.5.8)
i=1 2
where
a = a'+n
a'b' + ns? (2.5.9)
"o 1
bi an
. 2
Let 6 . be th t ted with . h
e (k-j+1) e the parameter associated wi s[J] where
S%l] < el f-sik]' Then
2 2 a' +n
E(e(k_j+1)]sl,...,sk) = (2.5.10)

2
a'b' + ns’.
[i]

We now have

j k k-j
HG) =¢j -8 5§ 2L, 5 %
I i=1 a'b' + nsig p=k-t+1 g=1
2 2
P(6 = 6 yeees
€@ [pllsl 5K

2 2 ..
We can compute P(@ = 9 S, 5ee.3S by the method indicated
pute PO(q) = Oppylsyo-asy) by the m
in example 1.

The Bayes rule d(z) for the loss function Lé(Q,S) is given'by
(2.4.3).

When the loss function is L3(Q,S), we need to compute

2 29 . .
E(e[k]{sl,...,sk). Let G[k](e) denote the cdf of e[k], glvgn

2

2
Sl""’sk' Then
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e

Gryp () = izl FYz(elbg,a")

where FY stands for the cdf of a gamma-2 population. The function
2
G[k](ei can be evaluated by using either of the following relations

given in Raiffa and Schlafer (1961):
FY (z|b,a) = I(bzVEa , 2a - 1) = Gp(%aféabz)
2

where I(+,.) is the gamma function tabulated by Pearson (1934) and
Gp is the cumulative Poisson function.

Now, since e[k] is a positive random variable, we have

2 2 v
E(e[k]lsl,...,sk) = f: [1 - Gppp (8)]d

Substituting the values of E(e[k]lsi,...,si) and E(e(k_m)[sf,...,si)

in the expression for Am’ we can compute the Bayes rule d(s) given

by (2.4.5).
3. Binomial populations

Let LS ERRREL be k independent binomial populations with
probabilities of success ei,...,ek, respectively, 0 < Gi < 1.
Assume that ei are independent, and have a priori distribution

fB(-|a,b) where fs(-!a,b) is the beta pdf given by

£,(6]a,b) = 02 11-0)P1, 4, b > 0 L (2.5.1)

B(a,b)

Let x. be the number of successes in independent trials from ™.

1)

1
(i'=1,...,k). Then the posterior distribution of 6 = (61,...,8k)

given x = (xl,...,xk) is
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k
* -y = _
g*(6]x) o fB(eilxi *a,n+b-x)
i=1
Thus
X + a
- _[i]
E(e(i)|§) "nm+a+b

The Bayes rule d(®) (d(®)) for the 1loss L,(8,5) (Ls(8,5)) can

be obtained as in Example 2 discussed above.
4. Poisson populations

Here ﬂl,...,wk are independent Poisson distributions with

parameters 8 ..,ek, respectively, 6i >0, i=1,...,k. Assume

1’

all ej are independent, and ei has the natural conjugate a priori

distribution fY (+]a',b"), where
L

—8h' 4'_
o 6b ea 1

fY (6la',b') = B , 08>0, a',b' >0 (2.5.12)

1
Let X, be an observation from ™ Then the posterior distribution

of 6 = (61,...,6k) is given by

h=ax

g*(8]x) = (£, (Silxi +a', 1+b")

i=1 1

and

X + a'

(i]

E(e(i)lg) ) 1+b

The Bayes rule d(z) and d(s) can be computed as before.



5. A selection problem in life testing.

Let LEEREETL be independent exponential populations with scale

parameters 8 .,ek, respectively. Suppose n items from each of

177

the k populations are put on a life test, and the experiment is con-

1

tinued until the first r failures from ei (i 1,...,k) are observed.

This scheme of sampling is called Type II censored sampling.
Let xil""’xir denote the first r naturally ordered obser-

vations from T and set

r
T. =T._ = } x.,+ (n - rx, ., 1=1,...,k (2.5.13)

r

Ti represents the total accumulated life at the termination of

the test on population .- The sample likelihood for w_, conditional
i

on 6., is

* Tir

n! ei

- e , 1 =1,...,k

(2.5.14)

2(x vy X,

i1’ 1rlei

) = 0

n - r)!eﬁ

Assume that 6 = (61,...,ek) has the following a priori

distribution:
u v+l
5 .
k eel (éi)
= il » 0 <6, <o, uy, v>20
g(9) 2 T i u

Then the posterior distribution of 6 = (61,...,6k) given T = (Tl,...,Tk)

is
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u + T,
- 1 A
61 .
k[° (=)
i
g*(8|™ = 1
i= w+ T, ) (T +v)
and
Y
E(e(i)lp= rrv-1 > T+v>l1
where T[l] < ... f-T[k] denote the ordered accumulated 1ife times,

and € .. is the parameter associated with T....
(1) [i]

The Bayes rules d(z) and d(S) can now be computed as in

earlier examples.
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CHAPTER I1II
ON SOME RULES BASED ON SAMPLE MEDIANS

FOR SELECTION OF THE LARGEST NORMAL MEAN

3.1 Introduction

Many of the classical statistical procedures which are super~
ior to their competitors under the normal model have one drawback:
their behavior is seriously affected if a few gross errors are
present in the sample. For example, consider the problem of point
estimation of the mean 6 of a normal population. It is well known
that the sample mean is a uniformly most powerful unbiased estimate
of 8, but is not a very good estimate if some wild observationms are
present in the sample. Hodges and Lehmann (1963) have proposed a
class of estimates which are based on rank test statistics; these
estimates are approximately normally distributed for large samples.
Gupta and Huang (1974) have investigated selection procedures
based on one-sample Hodges-~Lehmann estimates of location for the
problem of selecting a subset containing the largest t (1<t<k)
location parameters, when the sample size is large. Gupta and
Leong (1977) have discussed a selection rule based on sample
medians for double exponentials. In this chapter we consider
selection procedures based on sample medians for normal populations.

For the problem of selectimg a subset containing the largest
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normal mean, when the means are equally spaced, a rule based on
medians is éompared to the rule proposed by Gupta (1965), which is
based on sample means. It appears from the numerical work done that,
as expected, Gupta's rule is superior. This may be due to the fact
that the tails of a normal distribution are not very thick, and
hence the probability of getting extreme observations is small. In
case the underlying distributions have thicker tails, e.g.,
logistic, double exponential [see Gupta and Leong (1977)], extreme
observations are more frequent and have a serious effect on the
sample means, but not on the sample medians. In these situations,
sample median should be a better estimate of location than the
sample mean, as indicated by the fact that for a double exponential
population, the sample median has smaller variance than the sample
mean, if sample size n é=7 [see Chu and Hotelling (1955)].

Apart from having a simpler form for its densiﬁy function, the
sample median as an estimate of location has gsome other advantages
over the sample mean. Intuitively any reasonable estimate of location
should have a distribution which, in some sense, 1s eentered on the
true location parameter value. It is shown by Hodges and Lehmann
(1963) that the sample median has a distibution which is symmetric
about the true value if the underlying distribution is symmetric,and
in case the underlying distributioﬁ is not symmetric, the'sample
median is a median unbiased estimate of location,i.e., the median of

its distribution coincides with the true location parameter.
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In Section ‘3.2 we introduce the notations to be used in this
chapter. In Section 3.3 we investigate procedures based on sample
medians for selection of a subset containing the largest normal mean.
In Section 3.4 the problem of selecting a subset containing all nor-
mal populations better than a control is discussed, and a rule based
on sample medians is proposed. In Section 3.5 the selection rule pro-
posed in Section 3.3 is compared to Gupta's procedure based on sample
means [c.f., Gupta (1965)], when the means are equally spaced.

In Section 3.6 gelection rules based on medians of large samples
are discussed. In Section 3.7 asymptotic relative efficiency (ARE)
of the proposed rule with respect to Gupta's rule for selecting
a subset containing the largest normal mean is computed, when the
means are in slippage configuration. It is also ghkown that, in case
the normal populations are contaminated, the proposed rule based on
sample medians improves on the rule based on sample means in terms
of ARE.

In Section 3.8 a test of homogeneity based on sample medians
is proposed, and a relation between the test and selection rule of
Section 3.3 is established. In Section 3.9 the distribution of a

statistic useful in some selection and ranking problems is derived.

3.2 Preliminaries and Notations

X be independent observations from a population

Let Xl""’ ombl
with cumulative distribution fwmction (cdf) F(x,6) and probability
density function (pdf) f(x,0), x,6 € IR, the real line and m>l.
Then the sample median X is given by

n
X = X[m+l]



where X[l]é="°=; X[2m+l] are ordered X

The pdf of ¥ is
g(x,0) = c [F(x,8)]" [1-F(x,08)]™ £(x,6) (3.2.1)

2m+1) !

where ¢ = 5
(ml)

and its cdf is given by
G(xp) = c_ £ 7 [F(u,0)]" [1-F(u,0)]™ £(u,8) du

- F(x,6) m .. .m _ O<y<1
=c Jq u (l-u) " du = IF(x,e) (wtl, m+l) p,>8 (3.2.2)

where Iy (p,q) is the incomplete beta function:

Iy (psq) = f%é?%%%y _ﬁg up-1 (l—u)q—l du (3.2.3)

The following result from Karlin (1968) will be needed:

Lemma 3.2.1: If f(x,8) has monotone likelihood ratio (MLR) in x and

6, then g(x,6) given by (3.2.1) has MLR in x and 6.

3.3 A Procedure Based on Sample Medians for Selecting a Subset Con-
taining the Largest Normal Mean

Let Tyseees M be k independent normal populations with means
61,..., ek;and a common known variance 02. Let ki be the sample

median of n = 2mtl (m>1) observations from ™ The pdf g and the
cdf G of ki are obtained from (3.2.1) and (3.2.2) by substituting
x-8, x-8

- i gi,‘,' 2 i
F(x,ei) = Qcé—.c“")' , f(x,6) =§‘¢( = )y » and are given by

c 3 — S -
8,0 = 3 81 [1-e (21" &2 (3.3.1)
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Glx, 8;) = I, x-;ei) (ort1,mHl) (3.3.2)

where ¢(°) is cdf and &(#) 1s pdf of a standard normal random
variable.
Let 8[l]§=,..§:8[k] be the ordered 6,. For the problem of select-

ing a subset containing the population asseélated with e[k], consider

the following rule R

1
. L")
Ri: select 1, 1ff X > Xeg — 40 (3.3.3)
vhere k[l] L eel ﬁ[k] are ordered sample medians, and dr; 0 is a
% %k
constant deperding on a preassigned P (%< P < 1) such that
*
P(CSl Rl) > P (3.3.4)

Let k(i) be the sample median associated with G[i] (i=1,...,k).

Then

p(cs| R = P(Sf(k) _;_?([k] -4, 0

o . _
= P(%(j) < Xy +dp 371,00k

=P(§ < §

@ 015w T O O T Oy 4% 3L kD)
¢ o — k=1 ¢} - 0., .—‘
-5 L _jlzll I (wilﬂ__c___b_l +dy) (wrkl,mbl)

+ 8% (u) [1-¢ (@]1” ¢ (v du

It is clear from the above expression that the infimum of P(CS ]Rl)
*
occurs when all 64 are equal, and hence constant dl =(d1 k,n,P ) is

obtained by solving
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{ee]

rall I e (wrd )y @LEDTT ) [1-o(w ™

"$(u) du = P~ (3.3.5)

Expected Size of the Selected Subset

The rule R1 defined by (3.3.3) and (3.3.4) selects a random
number of populations and it is desirable that the size of the select~
ed subset be small, and also the ranks of the selected subset be
large, where the population associated with B[i] is given rank
i, (i=1,...,k). Gupta (1965) has proposed the expected size of the
selected subset and expected sum of ranks of selected populations
as criteria of effieiency of selection rules.

Let S and SR be random variables denoting the size of the
selected subset and the sum of ranks of the selected populations,
respectively. Then following Gupta (1965) we have

k
E (s]R) =] Py (1) (3.3.6)
8 i=1 -
and

k
By (SR'Rl) =i§1 i gg(i) (3.3.7)

where Pe (1) is the probability that the rule R1 selects the popu-

lation associlated with G[i], i=1,...k, and is given by

Lol 01 4 (Lm)

«o"(u)  [1-8(uw)]® ¢(u) du (3.3.8)
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Some Properties of Rl

(1) Upper Bound on Ee(S'Rl)
It follows from Lemma 3.2.1 that g(x,8.) given by (3.3.1)

has MLR in x and 6. Hehce, from Theorem 1 of Gupta (1965), we have

*
Max Ee(s!Rl) = Max Ee(SlRl) = kP
fed — g0 —
- 0
where 60 = {(61,.,.,6k) e O: 61 = L., = Gk}.

(1i) Property of Monotonicity
It is clear from expression (3.3.8) that the rule Rl

is strongly monotone [see Santner (1975)1, i.e., Pe(i) is non-

decreasing (nonincreasing) in S[i] (te]’ j#i), when other compo-

nents of 6 remain fixed. The following two properties of R1 are
immediate consequences of strong monotonicity:

=33

(a) Monotonicity: Pe(i) > Ps(j) ¥ 1g<izk
(b) Unbilasedness: Pe(k) > Pe(i) ¥ 1<i<k
(ii1) Mimimaxity with Respect to the Expected Subset Size

A selection rule R* is said to be minimax with respect

to § if

sup Ee(S}R*) = inf sup Ee(SlR)
8] - R 0 -

where Inf is over all selection rules which satisfy the P*—condition
[see Berger (1977].

The density function g(x,ei) given by (3.3.1) is clearly
of location type, and it has MLR in x and 61 by Lemma 3.2.1. It fol-

lows from Theorem 1.4.2 of Berger (1977) that the selection rule
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Rl is minimax with respect to § among all rules based on sample

medians.

3.4 Selection of a Subset Containing All Normal Populations
Better Than a Control

Here we have k+1 independent normal populations no,wl,...,nk,

wheré T has mean 6i and a known variance 02 (i=1,...,k).
The population ™ is a standard or control population; 60 may or
may not be known. The population L is said to be better than control
if 61 ;ﬁo. Our interest is in the subset of all popuiations which are
better than control. Gupta (1965) has investigated a rule based on
sample means which selects a subset that contains all normal popula-
tions better than control with probability at least P*. We propose

a rule based on sample medians. Two cases are possible:

A. 60 known

We are given medians ki of n=2m+ 1 (m> 1) independent
observations from ™ (i=1,..,k). Consider the rule R.A defined as

follows:

RA: select " iff %i ;=60 - ac (3.4.1)

" .
where a is chosen so as to satisfy the basic P condition. Let kl, k2
denote the true (unknown) number of populations with er; 60 and
Gi < 80, respectively. Then kl + k2 = k. Also let primes refer to the

kl populations which are better than control. Then

P(cs|R) = 1 p(¥
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= T |11 o (mrHl,mHl) (3.4.2)
(—= - a)

It is clear from (3.4.2) that the minimum of P(CS[RA) under the
restriction ei;ﬁo occurs at Gié 60 s i=l,...kl, and therefore a

lower bound on P(CS[RA) is obtained by setting 6i= 60 and kl=k:

P(CSIRA) > [1 - L4 (-a) (ar+l,mt1) ¥

k
= [Ty (@Hl,mtl)]

Hence a is obtained from the equation

w1/ |
I¢(a) (okl,m+l) = (P ) (3.4.3)

The expected subset size for the rule RA is given by

k
E(S|R,) = ) P(m, is selected)
A 421 i

k
=) [1-1 (m+l,m+1) ] (3.4.4)

B.Goluknnwn
In this case 2mt+l independent observations are taken
from nO. Let Xb be the median of this sample. We propose the follow-
ing rule

R,: select m  iff X > 3(0 - bo (3.4.5)

i

*
where constant b is chosen to satisfy P condition. We have, as in
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Case A,
Ry =B = F1
P(CSIRy) =— [ " 1" [1-1 6, ~6! (wtl,m+1)]
W 73 1=1 & (ut I_p)
<& (u) [1~6(u) 1™ ¢ (u) du (3.4.6)
CIn © k
22— [ [1—1®(u_b) (w1, m+l) ]

0™ (u) [1- o(u)1™ $(u) du (3.4.7)

The constant b ig obtained by equating right hand side of (3.4.7) to
*

P . The expected subset size for the rule RB is obtained as in Case A.

Remarks:

(1) It is clear from expressions for P(select 61) for rules

RA and RB that, in either case

P(select ei) > P(select ej) if 8, > o

(1i) 1f ei > Vi = lys..,k and 60 is finite, then E(S8) + K

in each case.

3.5 Comparison between Rl and Gupta's Procedure Based on Sample
Means when the Normal Means Are Equally Spaced
Let nl,...,nk be k independent normal populations with means
8,6 + 60,...,0 + (k-1)80 and a common known variance 02;6> 0 is a
known constant. Let Xij (3=1,....n) be a sample of size n=2m+1 (m>1)
from m (i=1,...,k), and let ki’ E} be the median and the mean of

observations from ni:



ﬁi = X[ —y where x[l]=;'°'§=x[2m+l]
2m§l
5 _ il X .
i 2mtl

For the problem of selecting a subset containing the largest mean

8+(k~1) 80, Gupta (1965) has proposed the following rule R:

R: select =, iff X > X4 - _dg - (3.5.1)

where d>0 is given by

f_m &L (utd) ¢ (u) du

o]

It
+g

(3.5.2)

We will compare the rule R to the rule R1 defined by (3.3.3) and
(3.3.5).

Let P(i,k,P*,é ,an') denote the probability with which
a rule R' selects the population associated with the i-th largest

mean (i=1,...,k). Then from CGupta (1965) we have

* *
P(i,k,P ,8 ,n|R) = P(1,k,P ,8 vn |R)

w

=71 @ (x+d- (3-1) V) 14 (%) dx] (3.5.3)

b

i=1
jF

*
The expression for P, (i,k,P ,§ ,n|Rl) is obtained from (3.3.8)

by substituting e[i] = 6+(i~1)6¢ , 1=1,...,k:
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P(i,k,P",6,n|R . |
P 0RIDT G LT Ty unmgyg g ) @D
j#1
<™ (u) [1-¢(u) I™ ¢ (u) du (3.5.4)

For the rule R, the probabilities P(i,k,P*,a,anl) given by
(3.5.4) have been computed for k=2(1)5, n=3,5, §=0.5 (0,5) 5,0
and P*= +90,.95. The numerical integration was done by the Gauss-
Hermite integration formula. Tables are given at the end of this
chapter.Tables of P(i;k,PTS,nIR) are available in Gupta (1965).

Next, let W(k,P*,G,nIR') and Wl(k,Pf6,an') denote the
expected sum of ranks and expected average rank of the selected

populations for a rule R', respectively. Then

K
*® *
¥(,27,8 ,n[RY) = ] 1 P(4,k,P,6,nR") =k¥, (k,P)8,n[R")
1=1

(3.5.5)

For the rule R, tables of values of Wl and the expected
proportion of the population retained in the subset (= % E(S[R) )
are available in Gupta (1965). We have computéd the values of
these functions for the rule Rl’ for values of k,n,§ and P* men-
tioned above. For instance if P*=. 90, k=5, n=3, §=1.5//3 .
then the rule R based on sample means selects the second best and
third best populations with probabilities .781 and .357, respective-
ly. The corresponding probabilities for the rule R1 areﬁp822 and

.467, in that order. The probability of correct selection

(selecting the best) has to be greater than .90 for both the
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rules and is actually equal to .998 for the rule R, and .997
for the rule Rl'

It appears from these tables that the rule R based on sample
means is superior to the rule R1 based on sample medians, and that,
as expected , the performance of R relative to R1 improves &% sample

size is increased.
Remarks:

(1) It is shown in Gupta (1965) that the rule R has the
following desirable properties:

(1) For fixed P* and k
P(1,k,2",6,n) v & /a
and
P(k,k,P ,6,n) + & Vo

(2) For fixed P*,i,G and n
P(i,k,P*,G,n) + k, 1<i<k

(3) For fixed k,P* and (i-j)6
lim ¥ (2",k,6,0) = k
N

It is clear from expression (3.5.4) that the rule R1 has similar

properties.

(i1) It follows from (3.5.4) and (3.5.5) that

* cm k o . .
(A W(P sks8,n|R.)> — i . (I :t[ - -
%> 5% L L Yata - omyo)

(artl,ortl) ]

<" (x) [1-2(x) 1™ ¢ (x) dx



k(k+l)cm

&
(B) v(P ,k,a,n;R1)> 5=

o k-1
| [I¢(x+d1-(k—1)a) (w1, 1) ]

@) [1-0(0) 1™ ¢ (o) dx
3.6 A Selection Rule Based on Medians of Large Samples

Let f(x) be the pdf of a continuous random variable X and let
£ be its unique median. Let % be the sample median of n=2m+l obser-
vations on X. The distribution of % under certain conditions on
£(x) is known [see Cramer (1946)] to be asymptotically normal with

mean £ and variance 1

4IEET7 (2wt
The above result will be used to investigate a rule for selecting
a subset containing the largest normal mean.
Let %i be the sample median of (2m+1) independent observa-
tions from ™ (i=1,...,k), where ﬂi is normal with mean Qi and
a known variance 02. Then, for large n, %i is asymptotically

normal with mean ei and variance "o

2(2m+1)
For the problem of selecting a subset containing e[k], we propose

the following rule:

R2: select T iff kf; %[k] —dzc V;_ ) (3.6.1)

vV 2(2mt+l)
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*
where d,20 is to be determined from the basic P condition.

o=
We have
P(CS|R,) = P(¥ >X. . -d o /n
k-1 8 -8
=00 1 e(ur —IKI 111 4,) 1 ¢(w) du
i=1 ovYw
v2(2m+l) (3.6.2)
It follows from (3.6.2) that the equation for d2 is
J o o)) 8w au = 2 (3.6.3)

%
Tables of values of d2 satisfying (3.6.3) for selected values of P
are available in Bechhofer (1954) for k = 1(1)10 and in Gupta (1956)

for k = 1(1)50.

Expected Size of the Selected Subset

k
Z P(population associated with e[iJ 1s selected)
i=1

E(S]Rz)

=

- 1178
o(ut —=d LI d,)
1 ovr

7t V2 (2mHl) B
(3.6.4)

o (u) du

]

K
I 1.2
i=1

(SN
S0
.

3.7 Asymptotic Relative Efficiency (ARE) of the Rule R2 Relative
to Gupta's Rule R

(i) Normal Populations

Let 7w > M be normal populations with means~61,...,ek,

12

. 2 .
respectively and a common known variance o°. Assume that ei(1=l,..,k)

are in following slippage configuration:
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6+oA if i=io; A>0 is unknown
) if 1#10
The population ", has the largest mean and is called the 'best'

o
population; the index io is not known.

Our interest is in the relative performance of the following

two selection rules:

" dzc /r
R,: select m, 1ff X; 2 max X, -
1<j<k Y2n
R : select ™. iff ii > max X, - do

/\J o
where Xi is the median and Xi the mean of n=2mtl observations
from ™o i=i,...,k, m>l. The constants d and d2 are given by

equations (3.5.2) and (3.6.3), respectively. It is obvious that

d2=d (3.7.1)

Let S* be the number of non-best populations in the selected subset.
Then small values of S* are desirable, and therefore, consistent
with the basic P*—condition, we would like to keep the expected
value of S* as small as possible.

It is intuitively clear that the performance of any reasonable
selection rule R' should improve as the sample size is increased.
For a given 0<e<l, let NR,(e) be the number of observations needed

so that

*
E(S |R") = ¢
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We will use the following definition of ARE [see McDonald

(1969)1]:

Definition 3.7.1: The ARE of the rule R2 relative to the rule R

is defined to be
N, (e)
ARE(R,,R;6 ) = lim ——— (3.7.2)
ev0 NR (e)
2

We have
k-1
E(S*IRZ) = .Z P(?((i) ;i‘[k] -d, o/ )
=1 V/on
k-1
= 7 P(%c. <X, +d o/ T 5 i=l,...,k, §#1)
4 =T
/2n
=(k-1)/ © a(u- S+ #(urdy)  §(u)du
e -
V20

By definition of NR () we have
2

Il
™

W&-1)f " o(u- +d,) 0% (wrd) $(w) du

A
i
/Ry

2 (3.7.3)

Similarly

* e A k~2 -
EGSTIR) = (-1) [_7 o(u- === +d) 0°7% (u+d) ¢(u) du
- V1/n :
and therefore



G-1) [ 7 e(u- —P— +) 72 (ukd) o(u) du =
Vl/NR(e) -
(3.7.4)
Since d2=d, (3.7.3) and (3.7.4) lead to
i ® [ o(u - A +d) - o(u - A + d)]
2
. K2 (utd) ¢(u) du = 0 (3.7.5)

Using the fact that ¢ is strictly increasing, it can be seen from

(3.7.5) that

and hence

ARE (R,,R) = 1lim N_(e)/N_ (¢)
2 ev0 R RZ

= .64 (3.7.6)

=5 inN

(ii) Contaminated Normal Populations

Suppose in the course of sampling from population s
(i=1,...,k) something happens to the system and gives rise to
wild observations. In these situations the pdf of ™, can be written

as

f(x,ei) = afl(x,ei) + (1-a) fz(x,ei), O<a<l (3.7.7)
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This means that the experimenter is sampling from a population with
pdf fl(x’ei) 100 o percent of the time, and from fz(x,ei) with
100 (1-a) percent of the time (i=1,...,k). The presence of obser-

vations from fz(x,ei) is termed as contamination. For our discussion

we will assume that

x-8
_1 1
fl(x’ei) - o ¢( o )
x-6
1 ,
£y(x,0,) = —1- o1 (=1, .50
o hbo
8 + Ac if 4=i (4 1s unknown),A> 0 unknown
o o
where 6, = {
g if 1AL

Given n dindependent observations from

T 1et ki be the median and Xi the mean from Tis i=1,...,k,
where n>3 is an odd integer. It is known [see Rohtagi (1976)]
that %i and ii both are asymptotically normal, each with mean Gi and

n2 —2
variances ¢ and 0, respectively, where

2
v 2. 19 L (3.7.8)
n g2
{0.+ "—""}
— 2 02
o} = o fa +(1- a)b] (3.7.9)

For the problem of selecting a subset containing the (unknown)

best population L consider the following two rules:

o

R% : select iff ¥ > ¥ -4y
% ¢ select m, 1 2% 9

* — — * —
R : select « iff X, > X - d

i i="[k]

82
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It is easy to see that dg and d* both satisfy the equation

(3.5.2) and hence

% *

d2 = d d, say.
Then

BGTIR) = Gel) [0 e 224 a) 652 (ura) ou) du

ag
(3.7.10)

and

EGSTIRYD = (D) [ 2 o= 2% 4 @) o2 (ura) 4u) du

8]

(3.7.11)

Equating the right hand sides of (3.7.10) and (3.7.11) to e and

solving for NR*(e) and NR*(G) we get

2
ncz 1 - 02 [at+ (1-a)Db]
) N, (e)
2NR§(E> (o + 1-o } R
J
or
Nex(8) 2 et (1-0) b] [o+ %E%ﬂz
Np# <€) b
2
> © 3as b -+ o ,

*
This shows that for large values of b the rule R2 based on medians
N ,
is much better than the rule R based on sample means. In fact,
*
it can be seen from a result in Rohtagi (1976) that the ARE (RZ’R)

is close to 1 when b=9 and 4 =.915, and as the differences b-9>0
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*
or .915 -o> 0 increase the rule R2 shows a significant improvement

%
over R in terms of the ARE.

"

v
3.8 A Test of Homogeneity Based on X[k]~X[l]

Let Misnees e be k independent normal populations with
: . 2
means 61,..., ek, respectively, and a common known variance o°.
As before, let §i denote the sample medians of n=2mtl (m>1)
observations from " (i=1,...,k), and %[l]""’k[k] be their

ordered values. For the hypothesis

consider the following test:

Reject HO if R=§[k]_§[l] 7Y (3.8.1)

We find the constant 7y so that

PH(R>Y); o
o]

where o is the size of the test.
The following result gives the constant y, and also establishes a
relationship between the test given by (3.8.1) and the selection

rule R1 of Section 3.3.

Theorem 3.8.1

For O<a<l, let v .gapisfy

o

PHO (%k 2 §[k] - Y) Ed 1- 2

Then
P (R>y) < a.
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Proof: The proof is similar to that of Theorem 6.1 of Gupta and

Leong (1977), and hence omitted.

3.9 On the Distribution of the Statistic Associated with Rl

when the Underlying Distributions Are Normal

n
Let Xi (i=0,1,...,k) be k+l sample medians of n=2m+l (m>1)
independent observations from a standard normal population.

Define
7z, =% - % (i=1,...,k)

The r.v.'s Zi are correlated and the distribution of Z = max Zi is
1<i<k

needed in some ranking and selection problems. For standard
double exponential population the distribution of Z has been
computed by Gupta and Leong (1977) for selected values of k,n, and a.
In this section we give an expression for the distribution of Z,
and also provide a short table for its upper percentage points
for P'=q =.75,.85,.90,.95,.99, k=2(1)5, n=3(2)11.
Let F(-) be the cdf of Z. Then F(2) =P(2g 2)=P(X <X +z,1~1,..,k)

It is easy to see that
F2)= ey [0 [Ty (g LoD TE 6700 (1m0 1™ () ax

(3.9.1)
Computations for upper percentage points of F were done using

Gauss—~Hermite quadrature based on 20 nodes for the numerical

integration.
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For the rule R, and the configuration ( 0, 8 + §5 ,..., 8 + (k-1) §c)

this table gives the probability of selecting the normal population
with rank i when the population with mean 6 + (i-1)§g has rank
i, i=1,2,...,k;the common variance g2 is assumed to be known.

8/n 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k i

21 .83 .749  .643  .524 404  .291 .196 .123  .072  .039

2 .94 971  .986  .994  .997  .999 1.000 1.000 1.000 1.000

31 .778 .585 .359 .171 .061 .016 .003 .000 .000 .00C

2 .882  .828 .745 .640  .521 400  .288  .194 .121  .070

3 .959  .983  .993 .,997 .999 1.000 1.000 1.000 1.000 1.000

41 .704  .381 .,118 .019 .001 .000 .000 .000 .000  .000

2 .818  .648  .423  .217  .084  .024 .005 .001 .000  .000

3 .907 .865 .793 .697  .583  .462  .344  .240 .156 .09

4 .969  .989 .996 .998 .999 1.000 1.000 1.000 1.000 1.000

51 .612 .193 .019 .001 .000 .000 .000 .000 .000  .000

2 .740  .425  .142 024  .002 .000 .000 .000 .000  .000

3 .845 .688  .467  .251 .102 .031 .007 .001 .000  .00O

4 .923 .887  .822 .733  .624  .504  .384  .274  .183  .113

5 .975 .992  .997  .999 1.000 1.000 1.000 1.000 1.000 1.000

TABLE TIA

For the rule and the configuration ( 6,8 + seees B8 4+ (k-1)

R
this table give% the expected average rank of the selected subset (top)

)

and the expected proportion of the populations selected in the subset

(bottom) when the normal population with mean 6 + (i-1) has rank
i, i=1,2,...,k;the common variance is assumed to be known,
P =.90 ,n=3

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

N R

1.361 1.345 1.307 1.256 1.199 1.145 1.098 1.061 1.036
.890 .860 .814 .759 .701 .645 .598 .562 .536

3 1.806 1.730 1.610 1.481 1.367 1.272 1.193 1.129 1.081
.873 .799 .699 .603 .527 472 430 .398 .374

4 2.234 2.057 1.831 1.634 1.479 1.358 1.261 1.180 1.117
.849 .721 .582 483 417 .372 .337 .310 .289

5 2.639 2.323 1.995 1.745 1.561 1.422 1.311 1.220 1.146
.819 .637 489 401 346 .307 .278 .255 237

1.019
.519

1.047
.357

1.071
274

1.091
.223
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TABLE IB

For the rule R, and the configuration ( 6, 6 + &5 ,...,6 + (k-1)8¢ )
this table gives the probability of selecting the normal population
with rank i when the population with mean 6 + (i-1)8c has rank

i, i=1,2,...,k;the common variance g2 is assumed to be known.

8/n .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
i

21 .910 .850 .768  .665 .548  .427  .312  .213  .136  .080
2 .974  .988  .995 .998 .999 1.000 1.000 1.000 1.000 1.000

31 .871 .718 .500° .277 .118 .037 .009 .001 .000 .00O
2 .938 .902  .842 .758 .653  .535 .414  .301  .204  .129
3 .982  .993  .998 .999 1.000 1.000 1.000 1.000 1.000 1.000

41 .78  .477  .173 .033 .003 .000 .000 .000 .000  .000
2 .875 .732 .517 .292 .126 .041 .010 .002 .000  .000
3 .90 .909 .851 .770 .668 .551  .430 .315 .216 .138
4 .982  .994  .998 .999 1,000 1.000 1.000 1.000 1.000 1.000

51 .742 .306 .043 .002 .000 .,000 .000 .000 .000 .0OO
2 .842 .565 .235 .052 .006 .000 .000 .000 .000 .000
3 .914 .798 .602 .369 .176 .063 .016 .003 .000 .000
4 .961  ,938 .89%  .828 .739 .631 .512 .391 .281 .188
5 .990 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE IIB

For the rule R. and the configuration ( 8, 8 + 80 ,..., 0 + (k-1)6g )
this table give; the expected average rank of the selected subset (top)
and the expected proportion of the populations selected in the subset
(bottom) when the normal population with mean © + (i-1)8s has rank
i, i=1,2,...,k;the common variance o“ is assumed to be known.

%
P = .95 ., n=3

&nm .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2 1.429 1.413 1.379 1.330 1.273 1.213 1.156 1.107 1.068 1.040.
.942 .919 .881 .831 74 .713 .656 .607 .568 .540

3 1.898 1.834 1.725 1.597 1.474 1.369 1.279 1.201 1.136 1.086
.930 .871 .780 .678 .590 .524 474 434 401 .376

4 2.321 2.161 1.938 1.731 1.565 1.434 1.327 1.237 1.162 1.103
.895 .778 .635 .523 449 .398 .360 .329 304 .284

5 2.792 2.514 2.178 1.904 1.699 1.543 1.419 1.315 1.225 1.150
.890 .721 .555 450 .384 .339 .306 . .279 <256 .238
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TABLE Ic

For the rule R_ and the configuration ( 8, 8+ 860 ,...,80 + (k-1)60 )
this table give; the probability of selecting the normal population
with rank i when the population with mean 6 -+ (i-1)65 has rank

i, i=1,2,...,k;the common variance o~ 1s assumed to be known.

P = .90 .n=5

&/n 5 1.0 1.5 2.0 2.5 3.0 3.5 4,0 4,5 5.0

k i

21 .838 .754  .653  .539  .422  ,312  .216 .139  .084 .047
2 .943  .969  .985 .993  .,997  .999 1.000 1.000 1.000 1.000

31 .782  .596 .379 .191  .073 .021 .005 .001  .000 .000
2 .88z .832 753 652  .538 .422  .311 .215 .139  .084
3 .958  .982  .993  .997  .999 1.000 1.000 1.000 1.000 1.000

41 .710  .400  .134  .024 .002 .000 .000 .000 .000 .000
2 .822  .657  .442 .239 098 .031 .007 .001 .000 .000
3.907  .868  .799 .708  .599  .483  .368 .264 .177  .110
4 .967  .988  .995  .998  .999 1.000 1.000 1.000 1.000 1.000

51 .620 .214  .025 .00l  .000 000 .000 .000 .000 .000
2 .746  .444 161,031  .003 .000 .000 .000 .000 .000
3 .848  .698  .486  .274  ,119 .039 .010 .002 .000  .000
4 .922 .890  .828 .743  .639 .525 .408 .299  .205 .131
5 .974  .991  .996  .999  .999 1.000 1.000 1.000 1.000 1.000

TABLE IIC

For the rule R. and the configuration ( 8, 8 + §g yeaer8 + (k=1)80 )
this table give% the expected average rank of the selected subset (top)
and the expected proportion of the populations selected in the subset
(bottom) when the normal population with mean © + (i-1)§c has rank
i, i=1,2,...,k;the common variance c is assumed to be known.

*
P =.9,n=2>5

s/n .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

.361 1.346 1.311 1.262 1.208 1.155 1.107 1.069 1.042 1.023
.890 .862 .819 .766 .710 .655 .608 .569 <542 .523

3 1.807 1.735 1.621 1.495 1.382 1.288 1.209 1.144 1.093 1.056
.874 .803 .708 .613 .537 481 439 .405 .380 .361

4 2.236 2,068 1.850 1.654 1.499 1,378 1.280 1.198 1.132 1.083
.851 .728 .593 .492 425 .378 344 .316 .294 .278

5 2.643 2.342 2.019 1.770 1.583 1.443 1.332 1.240 1.164 1.105
.822 647 499 .409 .352 .313 284 .260 L2417 .226

N
o)
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TABLE ID

For the rule R, and the configuration (8, 8 + 80 ,...,8 + (k~1)ég )
this table gives the probability of selecting the normal population
with rank i when the population with mean 8 + (i-1)8c has rank

i, i=1,2,...,k;the common variance ¢ is assumed to be known.
P = .95 ,n=>5

5/n 5 1.0 1.5 2.0 2,5 3.0 3.5 4.0 4.5 5,0

k i

21 .912 .854 .776 .678 .566 449 .337 .236 .155 .095
2 .974 .987 .99 .998 .999 1.0060 1.000 1.0006 1.000 1.000

31 .875 .729 .521 . 304 .137 .047 .012 .002 .000 .000
2 .939 .905 .848 .769 .670 .557 441 .328 .230 . 150
3 .981 .993 .997 .999 1.000 1.000 1.000 1,000 1.000 1.000

41 .824 .543 .230 .053 .006 .000 .000 .000 .000 .000
2 .901 .778 .582 .359 174 .064 .018 .004 .001 .000
3 .953 .928 .881 .811 .721 .615 499 .383 .277 .187
4,986 .995 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000

51 .753 .335 .054 .003 .000 .000 .000 .000 .000 .000
2 .849 .585 .264 .065 .009 .001 .000 .000 .000 .000
3 .917 .809 .622 .399 .202 .078 .023 .005 .001 .000
4,962 941 .899 .837 .754 .652 .539 422 .311 .215
5 .989 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 1D

For the rule R, and the configuration ( 8, 8 + 85 ,...,8 + (k=1)6c )
this table gives the expected average rank of the selected subset (top)
and the expected proportion of the populations selected in the subset
(bottom) when the normal population with mean 8 + (i-1)85 has rank
i, i=1,2,...,k;the common variance 02 is assumed to be known.

ot
Fiy

P = .95 ,n=0>

5/n .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

N R

1.429 1.414 1,382 1.336 1.282 1.224 1.168 1.118 1.078 1.047
<943 .921 .885 .838 .783 724 .668 .618 .578 <547

3 1.899 1.839 1.736 1.613 1.492 1.387 1.298 1.220 1.153 1.100
.932 .876 .789 .690 .602 .535 484 bk 410 .383

4 2.357 2.216 2.007 1.801 1.629 1.493 1.383 1.289 1.208 1.140
.916 .811 .673 .556 475 420 .379 347 .319 .297

5 2.799 .536 2.208 1.935 1.728 1.569 1.445 1.340 1.250 1.172
.894 .733 .568 461 .393 .346 .312 .285 L2627 VAR

o



. TABLE IIT
Upper 100(1 - P ) percentage points of Z = max ( Xi - XO ) where

1813k
XO,Xl,...,Xk are iid sample median random variables in samples

of size n = 2m+1 ( m z 1 ) from the standard normal distribution.

K 3 5 7 9 11
.638 .511 445 409 .393
.980 .784 .676 614 .582
1 1.213 .969 .832 751 .710
1.558 1.245 1.065 .956 .900
2.208 1.766 1.522 1.398 1.491
.959 .768 .667 .610 .579
1.276 1.019 .876 .792 A
2 1.493 1.192 1.019 .915 .855
1.816 1.452 1.239 1.105 1.030
2.429 1.943 1.676 1.533 1.606
1.125 .901 .783 .715 .675
1.432 1.142 .980 .884 .828
3 1.642 1.310 1.117 1.000 .931
1.854 1.563 1.333 1.184 1.099
2.551 2.040 1.761 1.609 1.671
1.235 .989 .859 784 .738
1.536 1.223 1.048 945 .883
4 1.742 1.389 1.182 1.057 .982
2.049 1.639 1.396 1.238 1.145
2.634 2.106 1.819 1.661 1.715

For given k, n and P = .75 (top), .85 (second), .90 (third),

.95 (fourth), .99 (bottom), the entries in this table are the
values of d which satisfy

J‘ k k3

G (x+d) g(x) dx = P

where G(.) 4is the cdf and g(.) the pdf of the median of a
sample of size n from a standard normal population ; n : 3
is an odd integer.
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CHAPTER IV

ON SELECTION OF POPULATIONS

CLOSE TO A CONTROL

4.1 Introduction

Let Myp T ogoeees™ be (k+l) independent populations with

k
densities f(x,eo), f(x,el),...,f(x,ek), respectively, 6; € 0 C IR
(i=0,1,...,k). The population T is a control population. Let
E= [a(eo), b(eo)] be an interval in IR, and let D={el,...,ek}

Then the set D can be partitioned as follows:

D= DlL) D2 , where D1 = D(IE , D2 = DN ES
The subset of all populations with parameters in Dl is of interest
in many practical situations. The problem of selection of a
subset containing all populations better than a standard corresponds
to E=(60,w). Gupta and Sobel (1958) have considered this problem for
normal, gamma and binomial populations and have investigated a
procedure for selecting a subset which contains all populations
better than a standard with probability at least P*, where O<P*<l
is a preassigned constant. W.T. Huang (1975) has derived a Bayes
rule for the problem of partitioning a set of k normal populations

with respect to a control.
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In Section 4.2 we consider the case E=[A+60, B+eo] where A
and B(-=<A<B<») are known constants. The problem of selecting
a subset containing populations with parameters in [A+60, B+60]
arises in many situations. For example, in dealing with matching
parts, one is interested in populations which are close to a
control. A Bayes procedure has been derived for the
above problem when the underlying distributions are normal. The
problem has also been considered from the subset selection approach
and modified forms of rules proposed by Gupta and Sobel (1958)
for selection of normal and gamma populations have been investigated
in Section 4.3.

In the next two sections we discuss a slightly different
problem. The goal in this case is to select the subset of a given
size t (1<t<k) of populations associated with d[l]""’d[t]’
where di = d(el,eo) is a distance function and d[l] Seeo< d[k]
represent the ordered di' In Section 4.4 , we have derived Bayes
procedures for selection of t populations associated with t
smallest values of d(ei-60)=(61-60)2; normal, binomial, Poisson
and exponential populations are discussed.

In Section 4.5 the problem of selecting the t populations
closest to control has been considered from the Empirical Bayes
approach; Poisson, geometric and binomial populations have been
discussed. Empirical Bayes subset selection rules for the problem

of selection of largest or smallest parameter have been investigated

by Deely (1965).
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4.2 A Bayes Rule for Selecting All Normal Populations Close to
Control

Let w ,Wk be k+l independent normal populations with

O,ﬂl,...
means 60,60,..,6k (ei € © IR) and a common known variance 02.
We say that m, is "close" to Ty if A+905§15~B+90’ where A and B
(-=<A<B<w ) are given constants. The goal is to select a subset
containing all populations close to HO.

The action space consists of all subsets of {1,...,k},

including the null set. Assume that the loss function L:05T+ X QAIR

is given by

L(8,8)= I (.) + )
- igs [A460,B+05) 17 7 4bg Trave,,Bre 1¢ Oy

(4.2.1)
where ID(-) is the indicator function of a set D.
The mean eo of population Ty WAy O may not be known. We
consider the two cases separately.
¢y 60 known
ces i f
Let Xil’ ’Xin be an independent sample of size n
from ﬂi(i=l,...,k). Suppose the a priori distribution g(8) of
gy(ﬁl,..., ek) is given by

ei—u )

[ (

1
T ] ’

= &

g(8)=
T =1 T

where ¢ is the density of a standard normal random variable.
Then the posterior distribution of § is

k 8, - m
g @ = 1 [L 4

i=1
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where m, and v are given by (2.5.2).

For a = A + 6 b=3B4+6 let

O’ O’
R 1
Sl ={i:m ¢ [a,b], W(mi) 3_5& (4.2.2)
where ¥() = 6D - 9@, <y <« (4.2.3)

Let dl be the rule which selects Sl with probability one. We show
that dl is a Bayes rule for the problem. As we are considering

only Bayes rules, it suffices to show that
r(dl{§) < r(d,x) for any nonrandomized rule d (4.2.4)

where r(d,x), the Bayes posterior Trisk in using the rule d, is

given by

r(d,x) = g ¥(m,) + ) [1 - ¥(m,)] (4.2.5)
1¢8 T des

Let a rule d choose a set S (S#Sl) with probability one. We show
that r(d,x) i_r(d1t5)° The following cases need to be considered:
(1) There exist i and j (1 <1i, j <k) such that

. c . c

i S mSl, j eSﬂSl
Let

S' = (i,3) s

where (1,3j)S denotes the subset obtained from S by replacing
j by i. Letting d' denote the rule which selects the set §' with

probability one, we have

r(d,x) - r(d',x) = 2 (¥(m,) - (mj))



where ¥(*) is given by (4.2.3).

We can see, as in Section 1.7, that the function ¥ (y)

. ; + . .
1s symmetric about 252-, and strictly decreases with fy—

Since m, € [a,b], mj ¢ [a,b], we have

ny = 52 < o, 228

and hence W(mi) > W(mj). Thus

r(d,x) - r(d',x) = 2 (W(mi) - W(mj)) >0

Since Sl can be obtained from S by the operation used in (1), the

inequality (4.2.4) follows.

(ii) s C Sl

It is easily seen from (4.2.5) that

r(d,x) ~ r(d,,x) = )
1 ies?wsl

by definition of Sl.

(iii) s D Sl

In this case we have

[2 ¥(m) - 11 > 0

r(dx) - T = ] o I1-2¥@)] > 0

ie5rs,

by definition of S.. It follows that dl is a Bayes rule for the

1

problem.
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(2) 60 unknown

Here we are given samples x SaX, from all

11°°°

k+1 normal populations. L (A= ,1,...,k); 02 is assumed to be

known. Suppose that the a priori distribution of 6= (60,91,...,6k)

is -
k 1 ei—u
g(eO’el"'.’ek) = E [? ¢ ( T )] (4.2.6)
i=0
%
Then g (60,81,...,8k), the posterior distribution of 8 given

the observations, is

* = £ S X
g (60’613“'36 ) = H [V ¢( v )] (4-2~7)

where v and m, are given by (4.2.2).

We wish to find a Bayes rule for the problem of selecting
a subset containing all population for which eie[A+GO,B+80],

when the loss function is

ChY;

L(6,8) = I (8.) + [1-I
2z 1§s [a+6,,B+0,] i ! [A+ed,B+eO]

ieS

Let S,={irm -me [4,8] , ¥ (m - m)) Z 1/2} €.2.8)

*
where ¢f is same as ¥ given by (4.2.3),with v replaced by /2.

Also,let d2 be the rule which selects the subset 82 defined by
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(4.2.8) with probability one.Then. using the fact that the poster-
ior distribution of 61—80 is N(mi—mo,sz) we can show, as in Cage (10,
that

r(d2 »X) < r(d,x)
i.e., d2 is the Bayes rule in this case.

4.3 Selection of All the Populations Close to Control from
Subset Selection Approach

Let nl,...,nk be k independent populationé with densities
f(x,el),...,f(x,ek) (xeIR; sieo C IR, i=1,...,k), respectively.
Also let T be a control population with density f(x,eo). Let
d:0» IR be a function which measures the distance of a point 60 from
6p+ We will say that the population L is close to LN if 05§(ei)§_a.
In this section we will propose and study procedures to select a
subset which contains the set {ni:d(ei)fg} with probability

*
at least P .,

Location Parameter— Normal Populations with Common Known Variance

2
Let T be normal with mean ei and variance o (i=0,1,...,k),

and define

d(e;) = [8,-6,]

Case A. 60 known

A sample of size n, is taken from ™y (1=1,...,k). Let Ei

be the sample mean from e For selecting a subset containing all

populations TS with lei—eolfg, consider the following rulé‘RA:

select T iff 60— doa § §..§ 60 + doa (4.3.1)
AT A



The constant d is chosen to satisfy

0<P<1

b

P(CS|R.) > P

where CS stands for correct solution, i.e. the selection of
all ™, with lei—eolfg. Let kl and k2 denote the true number of
populations with Iei—eolfg and Iei—60]>a, respectively, so that

k +k2=k. If we let primes refer to values associated with k

1 1
populations with lei—eoljg, then
K
P(cs|r,) = 1 P(o - L2 <xp<o, + 22 (4.3.2)
i=1 /o, /o
k ~AQ! 1 -nt ]
I ei)A{; (8,-91) /E; ,
= I [§¢————=1+ ad) - ¢( ———= - ad)]
1=1 g (¢

where §(*) represents the cdf of a standard normal random variable.

Consider the function

—u) /o'

(6 1

-u) fn—:'{ (8
Y(u) = &(

+ ad) -~ o( = 0

0
= ad)

(4.3.3)

We can verify that

(1) 1im ¥(u) = 0 = 1im ¥(u)

y-> u> -
{41) W(60+u) = W(eo~u), i.e., the function ¥(u) is symmetric

abqut u=60.

. Al (85mu)/ap (8g-w)/np
i) Svw = =L - ad) p Lk a)]
> 0 if u<6O
= 0 if u=60
<Q if u>8O
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Hence the function Y(u) is increasing if u < 90 , decreasing if

u >-60 and attains its maximum at u=6.. It

0 follows that
inf Y(u) = ¥(0,~a) = ¥(6,.+a)
0] 0

lu—e <a

0 —

Hence
k Vo' vn!

ian(CSIRA) = 1

i i
; l[®(a(~5_ + d)) - ®(a07;— -d))]

k Vo, Vo,

> 1 [eal—E +d) - sla—E - )]
i=1

The constant d is obtained by equating the right hand side of the

%
above inequality to P . For unequal sample sizes, computation of

d is difficult. If n,=n ¥ i=1,...,k, we have

P(cs[R) > [@(a(iﬁ 0) - o - ayk

and hence d can be found by solving

2@(—2+ 1) - s@a( LB gy ~@HE (4.3.4)

Case B. 60 unknown

In this case observations from all the k+l1 populations are

taken. Let §i be the sample mean of n, observations from w

i
(i=0,1,...,k). Consider the following selection rule:
Ryt select 7, iff x, - Doa X, <%, 4+ Doa
ay i ¢ (4.3.5)
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Simple calculation gives

w Kq YRV
P(CSIRB) = [ T [e(—1y+ —= (8,=8}) + Da)
-0 - l
i=1 n,
Ay /ap
-0 =y +—= (8- 6;) - Da)] ¢(y) dy
o) ¢ (4.3.6)
where Gi, ni (i=1,...,k) and kl are as in case (a).
Define
/ni s
¥(8,y) = ¢( — [ ——y + 8, - 6] + Da) 4.3.7)
- o(—2 [ Ly + 6,-0] - Da)
g n

0

We can easily verify that, for a fixed y € IR
(i) ¥(y,8) is continuous ¥ 8¢ IR and hence attains its minimum
in the compact set {lei - eol < al.

(1i) 1im VY(y,8) =0

8> +e
g o
(iii) ¥( — vy + 80 +8) = ¥( — vy + ao -~ 6)
) "o
that is, for each fixed y, ¥(y,0) 1s symmetric about 6= = v + 90.
%o
L)
i) Lovey,0) =1 My [e‘l/z(:‘i 2y + 8y - 6] - Da)”
V) 38 Y g —= /Ha
/o T 2
-1/2 ( i, 0o v+ 60 - 8] + Da)
-e o ” ]
0
> <
=0 1f 0 = —-"——y+60
< > ’/n; ‘
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It follows from (1) to (v) above that, for fixed y € IR,

the form of ¥ is as shown in Figure 1.

(y<€0) -~ : (y>8)
Figure 1. The -Fanction Y¥(9)
It is clear from Figure 1 that
W(60+a) if y<« O
inf vég!) = . '
6'6{]6'—6 [<a} <1 Y(8 .%a) if y>» O
i i 0'— 0
(4.3.8)
From (4.3.6) and (4.3.8) we have
k
01
inf P(cs]RB) = j_m T ¥(eyta,y)é(y) dy +
{|e!-6,|<al i=1
i 70— k
N - l .
+ [, T ¥(8,-as¥)$(y) dy
-0 4=1 0



v

[0 ko /g g
oI o[ —y + a(D- —3))
1=l Yy °
o s /iy

Jgg y-al®+-—=)1 ¢ dy

.k T o
+fo Ll =y+a@@+—)

i=1 n ¢

0

"y /g
“i=y-a®@=-—==))1 ¢(» dy

iy ‘

(43309)

Since the function on the right hand side of (4.3.9) increases

%
from 0 to 1 as d ranges from 0 to «, the equation for D=D(F ) can

%
be solved for any 0 < P < 1,

Scale Parameter—- Gamma Populations with Known Shape Parameters

Here T, (i= 0,1,;.;,k) has density

where ax;:Qi, ai’5 0, and a, are known constants. Let G(x: 61, ai)

denote the corresponding cdf. In this case we say that L

is close to w. if

0

6
1 i
s 5B

0

102



103

where B > 1 is a given constant.

Case A. 60 known.

. Bo
i 1. - 1 0
Consider the rule RA. select ms iff 5;—& [—E-, Beoc],
where §i
- T, = X, .
i j=1 ij
v; = n o, , 1=1, ,k

and ¢ > 1 is chosen so as to satisfy the P*-condition.

T.
Using the fact that the cdf of ai- is G(t) = G(t;1,v,) we obtain
k '
1 Beocvi Beovi
! = e - et
P(CSIRY) = 1 [G( o7 1v;) - Gz 1,v,)] (4.3.11)
i=1 i 1
1%
Here, as before, k1 is number of populations " with B ey < B,
]

and the primes refer to values corresponding to the populaitonsbclose

to no. Define
. go cv! , g6 v!
0771 0°1
! = s ® - .
Hi(ei) G( ei ,1,vi) G(—EEI—31,vi) (4.3.12)

It is easy to verify that the function Hi(ei) is increasing in 6£ if

1
ei 5.380, and hence

k) 0,
inf P(CS|R!)) = T H,(—)
A . 1 B
60 i=1
5 <0499 ke,
i=1

Hence the constant ¢ is given by the following equation:
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2
k 2 B8 Vi
I [G(B cvi;l,v.) - G( 51,v.)] = p* (4.3.13)
. i i
i=1 c
Case B. 60 unknown.
In this case, consider the rule Ré
8T T. BT .C
select w. iff 0 <« i <0
i v.C — v. — vy
0 1 0

where Ti (i = 0,1,...,k) are as defined in case A, and C > 1 is a
constant,

Then, as in case A, we have

2 2

fw : ! B vy

P(CSIR! ) 2> n [G6( u;1,v.) - G(——— u;1,v.)]

%5 0 i=l Yo i vy 1
.g(u;l,vo)du {(4.3.14)

The constant € can be obtained by equating the right hand side of

(4.3.14) to P*,

Application to Selecting Variances of Normal Populations

. . . : . 2
Let ™ be a normal population with mean My and variance ay

(1 =0,1,...,k). We will say that ﬂi is close to w_ if

0
18 2 .
g <3~ < B where 6, = 20, (i = 0,1,...,k) and B > 1 is a known
B 90 i i
constant.
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For the case whege the My (i =0,1,...,k) are known, we consider
i

a rule based on S? = Z (X.. - u.)z/n. which is sufficient for 0?,
i j=1 ij i i i

If % is known, the rule is : select ™ iff

2
280
3 0 E_Si 5_28d05 1<d
niS.Z 12
Using the fact that L s distributed as 5Xp random-variable, we
i i

can show that the equation for d is the same as (4.3.14) with v, =D,
If the means My (i=0, 1,...,k) are unknown and n, > 1H1=1,...,k,
then we use ii in place of H, and n{ - 1 for n.. The constant d is

given by (4.3.14) with v, =n, - 1,
4.4 Bayes Rules for Selection of t Populations Closest to Control.

Let Tas MyseeesTy be k+1 independent populations with density
function f(x,eo), f(x,el),...,f(x,ek), i=0,1,...,k. The goal here
is to select a subset S of a given size t (1 <t <k) from {1,...,k}

such that

2 ¢ (o, - 692

o) = (8 - 8, VigS

max (6., - 6
Jj€S
The action space. (, consists of (i) elements:

= {s c{1,...,k} : |s| =t}

where [S| denotes the size of a subset S.
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A reasonable loss function L: @$+1x G - R in this situation is

L) = § [y - 007 - min (o, - 807 (4.4.1)

j€s l<i<k 1t
We will derive Bayes rules in several examples.
1. Normal populations with common known variance.

Let,vri be normal with mean ei and a known variance 62 s
i=0,1,...,k. The mean 60 of the control population Ty may

or may not be known. We discuss the two cases separately,

A. known

%

Let Xij (j = 1,...,n) be an independent sample of size n from

m (1 =1,...,k), and ii the mean of the sample, i.e.,

where ¢(x) is the pdf of a standard normal random variable. Then the

posterior distribution of 6 given (il,...,ik) is

k
gr(elxn) = 1 [ oD

where m, and v are given by (2.5.2)



The Bayes posterior risk in choosing a subset S € G is given by

2 . 2. -
r(S,x) = E{{(6, - 60" - min (6. - 8.)°}|%
- jEE:S ;0 1<i<k  + O &
o (4.4.2)
where x = (il,...,ik).

It follows from (4.4.2) that a Bayes rule for the problem is to

select the subset S* defined by

§* = {j: ] . E{(o; - eO)ZI{c} = min ) E{(6; - eo)zlg}

jE€sS* S€uL jES
(4.4.3)
Simple calculation gives
E[(8. - 8.)%[x] = D, + v2 (4.4.4)
-] 0" = j
where D, = (M, - © )2
J ] 0
Let D < ... <D denote the ordered D,. It is clear from
1] - — [k] j

(4.4.3) that Bayes rule will select the subset of populations associated

with {D .,D }.

(11777777 ]

B. 90 unknown

Let ii be the mean of n independent observations from ™
(i=20,1,...,k) and assume that the a priori distribution of
(60, 91""’6k) is

ko ei-u
g(e()’ 61:'--:ek) = I:.g {,? ¢( T )

1=
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As in Case A we have

2, - -
E[(ej - 8,) lxo, Xpseo

J

and therefore the Bayes rule selects the populations associated with

{Dil]""’Dit]}'

2. Selection in terms of variances of normal populations

Here m is normal with mean zero and variance %—-(i =0, 1,...,k).

i
A. eo known
Here Xips+++5X; is an independent sample from ™. (1=1,...,K.

Let

Assuming that 6 = (61,...,ek) has a priori distribution g(8) given
by (2.5.7) we have, as in example 2 of Section 2.5,
2 2
- "
+1) - 6,bY] 26,

+
2 2+a"
am U

2
2, . (5
k 2

CON

2, 2
E{(Bj - 60) Isl,...,s

where a'', b; are given by (2.5.9)
Hence the Bayes rule will select the populations associated with

t smallest Dj’ where

- 2 2
- 1 ' o= -
.,xk] Dj + 2v” where Dj (m _ mo)
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B. 60 unknown

Innthls case a sample xOl""xOn is taken from Tg» and let
2 2 PR . .
Sg = jzl XOj' Let the a priori distribution of (eo, 61,...;ek)
be
k
g(8,, 6.5...,0 ) = n £ (e.|b', a")
0% "1 k i=0 Yo i
Then, as in case A, we have
" 2 tr
E[(6 - 60)2 sg, sf,...,si] = Z_j;§~2 - 2 + ta )
12 tt it 1) 11
J a (bj) bjbO a (bo)
2 + a" 1.2 .
G - 5] 2+al _an
j 0 a" 2 + a"
2 + a" (b')
—a 0

Thus the Bayes rule will select the populations associated with t smallest

Dj, where

_ 2+ a" 1
i T lamr T T oBn
J

(]

3 Binomial Populations

Here we are given Tor T ,M, with probabilities of success

12

60, 61,...,ek, respectively. As before, we consider two cases:

A. 60 known.

Let X5 be the number of successes in n independent trials from



110

™ (i =1,...,k). Assume ei are independent, and each has the natural
conjugate beta prior with parameters a and b, given by (2.5.11). Then,
conditional on X = (xl,...,xk), 6's are independent, with ei having a
beta distribution with parameter (xi +a) and (n + b - xi), and it is

easy to show that

(x. + a)(xj +a + 1) 260(xj + a) 2

2y (1 = 3
E[(ej h 60) ’51 - m+a+b)n+a+b+1) " nta:p * %

"Dy rari-mearbr1o ]’ s measb e 1)6,(1 - 8.) - 3

(n+a+b)n+a+b+1)

Setting Dj = [xj +a+ 4 -(n+a+b+ 1)90]2, we see that the

Bayes rule selects the populations associated with t smallest Dj'

B. 80 unknown

In this case, n independent trials are performed on 7 also;

0

let X be the number of success from 7 Then, if eo, 61,...,8 are

0’ k
assumed to be independent, each with natural conjugate beta prior

£ (-|a,b), we have, as in case A,

2 (xj + a)(xj +a+ 1) 2(xj+a)(x0+a)
E[(ej - 8p) lxO’ Xpsee X ] = (n+a+b)n+a+b+1)

(n+a+ b)2

(xo + a)(xO +a + 1)
+(n +a+b)(n+a+bdb+1)

1 x0+a
) Di + (2 + wFarp (Xt - T+ a b’

(n+a+b)y(n+a+b+1)
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_nN+a+b+1 ( . a)]2
n+a+>o XO

ol

where D} = [x. +a +

Hence the Bayes rule selects populations associated with the

t smallest Dj.
4. Poisson populations
Here s is Poisson with parameter ei (i=0,1,...,k.

A. GU known

Assume 91,...,ek are independent, and each has the natural conjugate

a priori distribution fY (-ia',b') defined by (2.5.12). Then, if X5
1
is observed from ™o we have, as in examples 4 of Section 2.5,

8
2 1 0
E[(6, - 6,)7|x] =D, - - 7
] 0" = j 401 + b')2 1+bDb
X+ a' 1 2
where D = T o - Oy ImEey)

and the Bayes rule is to select the populations corresponding to

..,D .

[t]

B. 60 unknown

Here we observe X; from ™ (i =0, 1,...,k). Then assuming

(60, 61,...,6k) has a priori distribution
! 1
fyl(ei[a ,b")

we have,
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X, - (xg - D
where D' = [ i +Ob, ]

The Bayes rule in this case selects the populations corresponding

to the subset {D' ,,...,D' .}.
! [1] [t]

5. A problem in life testing

Let To? Mysesesmy be k independent exponential populations with

parameters 60, 61,. .,ek respectively, i.e., the density of the i-th

population is

CDIX

e T, x >0,6,>0,i=0,1,...,k

f(xlei) = i

D

i
Here, 60 may or may not be known. As before, the two cases will be
discussed separately. We will assume, in each case, that ei are
independent, and each has the same a priori density h(-). The

following a priori distributions, used by Bhattacharya (19673, will

be considered:

-1
. _ (a-1)(aB)?
(i) h(e) = L AT Ifg,g] (8> 0 <a<B, a>l (4.4.5)

where I[a B](-) is the indicator function of [o,B].

>| @

(ii)  h(o} = %—e , 850, A>0 (4.4.6)



B %~(E_v+1
6

(iii) he) =%——= [ 65>0, u, v>0 (4.4.7)

Ul (v)

The prior density (4.4.7) is the natural conjugate prior density

for 6,

A. eokmwm

Here n items from . (i =1,...,k) are put on a life test, and
the experiment continued until the first r failures are observed.
Let Ti be the éccumulated life at the termination of the test on
T defined by (2.5.13). Then the probability density of Ti is
given by (2.5.14). Suppose the a priori distribution of 6 =

(61,...,6k) is

g(8) = h(e,)

1

==

i
where h(*) is one of the three a priori denisties given above.

The posterior density g*(@]?) of 6 = (61,...,6k), given

T = (Tl,...,Tk), in each case is obtained from results of Bhattacharya
(1967)
When h(8; is given by (4.4.5) we have
T.
1
#oln = 1 Lt a7 (95)]
T i=1 ei ? -

That is, ei are conditionally independent and have truncated inverted

gamma posterior distributions (see Raiffa and Schlaifer (1961)). It

follows from Bhattacharya (1967) that

113
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E(6;ID) =~y 7y i
Y i
*
2 Y (1‘ +a - S,Tl) 2
E(ei!T) T oy (r + a - l,Ti) Ti
where v*(n,y) =y(n, §> - v(n, g)
x -5 n-1 ‘
and y(n,x) = [ & s""'ds 1is the incomplete gamma
0
function defined for x > 0.
2 _ (D 2
Hence E[(ej - 8,) [T] = Dj + 84
where
* - 3,T. * - 2,T.
Ne Y*(r + a J) 2 2 Y*(r + a TJ) T
j Y*(I‘ +a - l,TJ) J 0 Y*(I‘ +a - ]-,TJ) J
For h(6) given by (4.4.6) we have T 5
i i
k Y
g*(e|T) « m [1?- et 1,6. >0 vi
i=1 e, t
T.
I
. .. 1 0 A -1
The normalizing constant no[f ar © de]
i=1 0

is evaluated by using an integral representation of Kv(z), the
modified Bessel function of the third kind of order v, given in
Erdelyi et al (1953) [see Bhattacharya (1967} ].

Then
K. ,(2/T,/%)

K, (/T /%)

E(eilf) = /ATi

, E(85|D) =T,

Kr_3(2/T;7X)
1
Kr_l(z/Ti/x )
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and hence
) 2 (D 2
E[(ej 0,) 'T] = Dj + 8,

where

@ My K._3(2VT,/2) - 20 AT, K, o (2VT.70)
]
K,y (/7D

In case h(p) is given by (4.4.7), we have

u o+ Ti o+ T..r+v+]

- —_ (_____EJ
k o ei ei
g*(8|T) = 1 [ 1,08,>0
i=1 (n + Ti)F(r +v )
It follows from Bhattacharya (1967) that
2
T )
210 ML 2 t4+v -2 0
EL(6; - 8p) 1= - 87 = v-o1 Tryv Tl

Hence the Bayes rule in the first two cases is to select populations

associated with the corresponding t smallest D-statistics, and
U+Ti

in the last case, is to select the t populations for which P—

is closest to 60.

B. eO unknown

Here items from L also are put on the same life test.Let TO

be the total accumulated life until r failures. In this case, we

assume that the a priori distribution of 9 = (60, el,...,ek) is



880> B1,---28,) = T h(e.)

==

i=0

where h(*) is one of the density functions considered above.

Then, proceeding as in case A, we can show that the Bayes rule

is to select t populations associated with t smallest values of
Y*(r + a - 3,Ti) 2 2y*(r + a - 2,Ti)y*(r +a - 2,7

. O)
(1) y*(r + a - l,Ti) Ty - Y*(r + a - 1,Ti)Y*(T +a -1 :TBT

'Y*(I' +a - S;To) 2

+ VT Car 1’To TO when h(-) is given by (4.4.5)
K (2VT./X) K (2YT. 70K (2T, /X)
(ii) ATi r-3 i _ ZX/T;TE‘ T-2 i T-2 0
Kr_l(ZVTi/A) Kr_l(ZVTi/A)Kr_l(ZVTO/A)

Kr_S(ZVTO/A)
+ ATO when h(-) is given by (4.4.6)
Kr_l(ZVTO7A)

It can also be seen that, for h(:) given by (4.4.7), the Bayes
rule selects the t populations for which (p + Ti) is closest to

T+ v - 2
T + v - 1 G TO)'

4.5 Selection of the Population Closest to Control-an Emprical
Bayes Approach

In this Section we derive empirical Bayes rules for selecting

the population closest to control.
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We are given k+1 (k > 2) independent populations = T

0’ nl,..
with densities f(x,eo), f(x,el),...,f(x,ek), respectively, with

k

respect to a o-finite measure yu. Our interest is in the population

with the smallest value of d(ej;eo) = (ej - 60)2.

We now formulate the problem in the empirical

Bayes framework of Robbins (1964).

We are given:

(i) a parameter space ®k+l C:ﬂ{k+l, where @ is a subset of R,

the real line.
(ii) an action space U = {al,...,ak}, where a; is the action
which selects ™

(iii) a continuous loss function L: ®k+1x(¢ -~ R, with

L(Q,aj) denoting the loss incurred when 0 € @k+1 is
the state of nature and action aj is taken. For our

discussion

'

2

Lig,ag) = (85 - 00)" - i (o, - 90)2, 1<j<k

l<i<k *

N (4.5.1)
k
(iv) an a priori distribution G(6,, 6,,...,8,) = 1 F(6.)
0’ "1 k s=0 3
k+1 .
of (60, el,...,ek) on‘b , where F is an

absolutely continuous (a.c.) distribution function on @.

(v) an observable random variable Xj € gzj, j =0, 1,...,k
on which o-finite measure u is defined; for ej € e, Xj
has probability density f(-]ej) with respect to u.
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We wish to find a decision function

k
t @ =Xg. + G
G 3=0 b
such that
R(t.,G) = L(t~(x),8)h(x|6)du(x)dG(8) (4.5.2)
®
= min R(%t,G)
t
k
where h(§|§) = jzo f(xj]ej), X = &O,xl,...,xk), 6 = (60,61,...,8k)
and du(f) = dp(xo) X du(xl)x...xdu(xk)

Since we are interested in rules which are Bayes with respect
to a priori distribution G € {, attention can be restricted to
nonrandomized rules .

We assume that a Bayes rule t ., for each G € (, exists. Then,

G
R(tg,6) = [ min Hi(a,,x) du(x) < R(t,6), ¥t (4.5.3)
@ 1<j<k Jo- -
where H.(a,x) = [ L(a,8)f(x|6)dG(0) (4.5.4)
G- o+ S

Knowing G, we can select according to the rule tG, and incur

the minimum Bayes risk R(tG,G) defined by (4.6.3). In many



situations G is unknown and tG cannot be computed.
Suppose now that the above probelm occurs repeatedly and
independently, with the same unknown G throughout. Thus we

have
(ejl’le), (ejz,sz):"

a sequence of pairs of random variables from ﬂj (3 =0, 1,...,K)

each pair being independent of all the other paris, where X,
J

given Ojn = ej follows the distribution f(-lej). A decision about

n = Opns 81

[Nen)

""’ekn) is to be made after observing

{§i = (in, Xli""’xki)’ i=1,...,n}. Following Robbins (1964)

we will use some function t_(x,,...,Xx_3;-) of x,,...,X_ so that
n--1 -n -1 -n

tn(.) will be close to tG(~) in the sense of Bayes risk. To make

this more precise, we state a definition from Robbins (1964):

Definition 4.6.1: An empirical decision function T = {tn} is

said to be asymptotically optimal (a.o) relative to G if

R, (T,6) jngHG(tn(g),z)du(g) > R(tg,0)

where HG is given by (4.6.4).

We wish to find a sequence T = {tn} of decision rules such

that T is a.o. relative to every G € (. To this end, set

bglas,x) = Ik+l[L(aj,9) - L(a;,8)n(x[6)dG(6)
© 4.5.5)
2 2
= fk+l [(65 - 280050 - (07 - 2000 Tn(x]®)
@ dG(8)

from (4.6.1)
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Let Ain(f) = Ain(gl,...,§n;§) (1=1,...,k; n > 1) be a

sequence such that

p
8, () > A(as,x)

Define

tn(§) = a,, where £ (1 < % < k) is such that

A2n= min{O,Azn(g),...,Akn(§)} (4.5.6)

’Aln =0
It follows from Corollary 1 of Robbins (1964) that the sequence
T = {tn} is a.o. relative to G.
We will find the sequence Ain for some discrete distributions.

Following Robbins (1955), let

f.(x.) = [ f(x.]8) dF(8), j =0, 1,...,k (4.5.7)
j & j
ok
[..f e? T [£(x;]6,)dF(6,)]
E[eplx X X, ] = © @ 1=0
j'tor 1%k [ K ,

o m f(x.|e.)dF(e.)

@ @ i=o * 1 .

P
é ej f(xj[ej) dF(ej)
= (4.5.8)
fG(xj)

We consider several examples.
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(i) Poisson populations

%"
Here f(x[6) = = , x =0, 1,..., 6 > 0

Let x. . ,...,

il be a sample of size n from ﬂj, i=0,1,...,k.

X.
in
Also let & be the family of all a.c. distributions on the positive

real line, and define a family of distributions G on B{k+1 by

k
G = {G: G(eo, el,...,ek) = .g P(aj), F €3l (4.5.9)
j=0
From (4.6.8) we have, for p=1, 2,
.+p) ! f .+
E(GPIXO, xl,...,xk) = (Xi ?) GEX%XP§
) j chah
Let
number of X'l""’x'n = X
P () = i J (4.5.10)
Set
(x.+p)! p. (Xx.+p)
hgp)(X)z - ] e >3 =0, 1,....k
jn = X.! p.n(x.)
J Jjn-J (4.5.11)

Since the empirical frequence function pjn(x) converges in probability

to the (unknown) marginal density fG('), we have

(P) (P p |
hoy Oz E(Gj|§) VG Eg (4.5.12)

o
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It follows that the sequence Ajn defined by

Ajn(§l,.--,§n;§) = [h§§)(§) - 2h§i)(§)h§i)(§)]
(4.5.13)
- P - 2§ conll) o

coverges in probability to AG(aj’§) given by (4.6.5).

(ii) Geometric Distribution

Let x. e

j10 be a sample size n from ﬂj which has a

X.
n

geometric distribution given by

f(xle.) = (1 -0.0%, x=0,1,2,...,0<06<1, j=0,1,...,k.
j i3 ;

Here & is the family of a.c. distributions on (0,1) and ¢ is
defined by (4.6.9).
From (4.6.7) and (4.6.8) we have

fG(xj+p)

E(eglf) = *?Ezigj—u p=1,2

In this case we define

number of X'l""’xjn which equal xj+p

hP)(x) = .
jn = number of le""’Xjn which equal xj

and A.

Jn(§l" .,§n;§) by (4.6.13).

(iii) Binomial populations
Here f(x|0) = (1) 0*(1-0)" |, x =0, 1,...,r, 0 <06 <1

The family (is same as in example (1i) discussed above.
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In this case, no asymptotically optimal solution seems to
exist. Following Robbins (1964) we propose a rule which will do
about as well as the (unknown) Bayes rule tG for large samples.

It is easily seen that

r
{
p _‘Xj) fG,r+p (Xj+p) X, =0, 1,...,t , (r>2)
E(ejlg) = =7 j ;
( )£ (x:) -
xj+p G,r *7j p=1, 2
=3 {PG(I:; (Xj) ,Say
where 1
- Ty oY i oy Ty
fg O = g (,) 87 (1-6)""" dG(o)
Let x§§),.,.,x§§),... denote the sequence of number of successes

in 1st r-p out of the r trials (which provided le""’xjn"")’

with x(9= x .
ji ji

Define
‘_‘(_’...

(X.

Py (@)

) h: 7 (x.+p)
WPy o3 2
jn

X.*tp Jjn J
- (p) (P) .-
where hFr p)(x) ) number of le"“"xjn which equal xj
. Jn - n

s (r-p) P -
Since hjn x) 5 fG,r—p(xj) as n » «, we have

FRYy £ (x.+p)
H(p] r ) P xj G,r J = (P) ( )
in X 7 Po pepy s
x;+p’ “G,r-p ]
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It follows that the sequence Ajn‘defined below converges in probability

to AG(aj’§):

R )
S5X_3X) = LHjn x) - ZHjn(g) HOn(g)]_

2 (4.5.14)
H 7 (x) - H, (OH) (0]

For large r, throwing away two observations does not sacrifice
much information, but it is not at all clear that the sequence

Ajn defined by (4.6.14) is the best sequence.
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