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ABSTRACT -

A ffamework, called u-acceptability, is'proposed‘for
evaluating a]terﬁatives to the usual least squares estimates
of regresSion coefficienfs An estimate is defined to be
‘a-acceptable if it is in the usuaij (1-u) 1007 confidenc
region. Est]mates wh1ch are o- acceptah]e for ]arge values
of «, such as .99 (correspondlng to a 1% confidence region)
are viewed as statistically indistinguiéhab]e from thes usual
ostimates and, in a sense, s1mp1v rounded off. Applications
1 to sub'ﬁt se1ect1on,'r1dge regress1on, regre551ow on pr1nc1pa1
coriponents and a ‘class of minimax procedures are djscuosed and

iTlustrated with an example.
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1. INTRODUCTION

‘Under normality assumptions, the maximum likelihood
estimators of fegression coefficients in multiple regression
prob]ems are given by the principle of least squares. Aithough_
some numerical problems can arise in the presence of multi-
co111near1ty, these est1mators are 51mp]e to evaluate and the
assoc1ated dlsterutlon theory is straightforwakd Computer
programs which- perform the necessary ca]cu]at1ons are w1de1y
available. The use of least squares estimators is so w1despread}
;today that it could be properly described as standard statistical

practice.

The edvisehi]ity of using least squares estimators was

seriously questioned by two key developments. _On'the theoretical .
'side, the fundamental werk‘of Stein [26] indicated that these
estimators were inadmissible and thus could be improved hpon.
These resu]ts.ho1d true whether or not multicollinearity is
Sresent.. Numerous papers ([2], [5] (77, 183, [11]1, [271) have
appeared which’ extend and amplify this fundamental theme On the
veppl1ed side, Hoerl and Kennard [16], [17] have proposed ridge
regression as a techn1que for coping with difficulties arising
from mu]tico]?inearity. These ideas heve,a]so been extended

and amplified by numerous authors (sce Hocking [151 for references.)
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Beaton, Rubin and Barone [6] have suygested that the numerically

accurate least squares soletion may be the right solution to the
wrong problem. .Using simulation methods, Dempster, Schatzoff and
Wermuth [101 have compared 56 different alternatives to least
squares. 'They‘found that substantial fmprovementsAcan be obtained

by such alternatives.

To the practioner, the message is clear: substantial

benefits can be gafned'by deviating from ]easf,squares procedures.
_Seme types of deviations from least squares are,.in fact, quite
common. Whenever one uses a subset selection procedure to

obtain an equat1on w1th a reduced number of var1ab]es, one
compromises the 1east squares pr1nc1p1e by sett1ng some co-
efficients equa] to zero. MWhether or not least squares is used
~for the redueed.prob]em, a deviation from the 1eest squares

estimates for the full model is present.

If-one desires tO'fake advantage of the pﬁrpofted benefits
to be gaihed By'ebandoning the standard least squares estimators,
a suiteble alternat1ve from a large collection of procedures must
be chosen. . A varlety of admissible classes of est1mators ex1st
and many ridve-typo estimators are also available. There are,-
in addition, numerous methods for se]ect1ng variables, i.e. sett1ng
some coefficients equal to zero. Hocking [15] has given an

ercellent survey of this topic.

In this paper, a framework for evaluating estimates of

regression coefficients is proposad. The idea is basically very




Simple and usésbthe standard cbnfidence regions for regression
coefficients. Similar ideas have'been suggegted by McDonald [22],
McDonald and Schwing [23] and Obenchain [25] for ridge regression
and Aitkin [I] for subset selection. Cook (9] has proposed a
related framework for detecting outliers. When applied in the
subset sefection context, interpretation in the framework

proposed by Arvesen and McCabe  [3], [4] and McCabe and Arvesen (20]

s possible.
2. PRELIMINARIES

Thefstatistica1'model underlying this discussion is the
‘standard multiple regression mode]lgiven by
Y = Xgte | | o (2.1)
where | o | A
(Yl""’yn)_

is an observable random variable,

( 3
1 Xpp oy
|1 x21 Xgp
X =) 1 : :
IXpr o X,

\ . . J .

15 a full rank design matrix of known constants, and
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. 1s an unknown parameter vector of regression’ coeff1c1ents

The error vector
€'=(€1_,---,€n)

is assumed to be norma]]y distributed with Zero mean and covariance

matr1x 02 1 where 02,15 unknown, i.e.
€ N(b,dzI).
In short, we cah write
Y n N(x8,02%0). . (2.2)

Note -that .the 1ntercept term B is included in the model.
Slnce the 1nferences to be made concern the ent1re parameter
vector, it is 1nappropr1ate to standardize and neglect this
parametervin-the Present context. For the rafe”situation whare
there is a fundamenta] a priori reason why thié'term should not
be 1nc1uded in the mode1 trivial modifications to the present

dcve]opqent can be made

The least sduares (maximum Jikelihood) estimator of B is

given by

LA

BLS=(X'X)‘1x'Y.' | o (2.3)




’It_édsily follows that
~ 2 ] ‘l ' . '
Bio ™~ N(B, o“(X'X)" 7). . (2.4)
LS
“For this estihator, the.;um of squared errors iéfgiven'by
SSE(B, <)=t"_, (V.-¥,)2 o (2.5)
LS =1 i . *

where
Yi= Bo'l_'Bl xli+"f+Bp xpi

It is easy to shqw that
SSE (B g) = ¥ [I-x(x'x)"x'av. (2.6)
~The usual unbiased estimate of the parameter 02 is given by the

sum of squared errors divided by its degrees of freedom:

s%=SSE(R () / (n-p-1) (2

For‘any-a.e'(o,l),.a (1-a) 100% confidence region for the

parameter B is given by
. _ . ~ "V , PS 2 )
Sy=(8: (Bg=8)" (X'X) (B g-B)<s™(P*1)F yy | 01y .} (2.8)

wherefpﬂ-,h-p-i;l—a is the upper o quantile of the F distribution

with p+1 and hfp“I degrees of freedom. The set Sd is the

interior of a'hypére1lipsoid'in (p+1) - dimensional space.




) E 3. 'ACCEPTABLE ESTIMATES
For any (p+1) dimensional vector B, let

D (B) = (B g~ B)' (X'X) (B g-8). (3.1)
Clearly, D (8) is a distance measure which indicates how far

B is from BLs in ‘the appropriate metric. Since

Se={8: D(B)<d } | . (3.2)
where | - o

4 o= . 2 :
_ dcf— (p+1) s Fp+l,n-p-1-;1-a,
the confidence:région may'be viewed as composed qf those B's which

are not too far away from~BLS

At this‘point,'it is helpful to recall the connection
between confidence regions and hypothesis tests. Let o be fixed

and let B denote the true parameter vector. Then,

Pe(D(B)2 d;) = 1-a | | (3.3)

where PB denotes probability calculated under the assumption that

B is the true parameter vector. Values of B‘fofbwhich
' D(B)>da can thefefore be rejected or viewed as unacceptable.
Such values of B are too far from B g to be viewed as reasonable

candidates for the true parameter.




~Definition IQ'Va]uES_of B for which

0(8 )<d_

"ane called aeeccentable.
Note that_,S°I is the set of a-acceptable Bﬂsﬂ Also, for
a}af. SaCZSA..  Therefore if B is a-acceptabTe; it is also

a’'-acceptable for all o'<a,

Definition 2. For any B> the value of a for which

D(s) =d_

is ca]led its acceptance ]evel

For any estlmate B, the corresponding value of o(é), gives
an idea 6f howefar the'estimate is from least squares. The
acceptance level of the est1mate gives a dlfferent quantification
of this dlstance which can be readily lnterpreted Roughly
. Speaking, a pract1c1oner should be very re]uctant to use an ‘
estimate with an acceptance level of .001. Such an estimate is
simnly too far from ELS to be compatible with the data. Alternatively,
.one cou]d argue that if one'were to hypbthesize that this estimate
represented the true value of 8, the hypothesxs cou]d be
soundly rejected at the 001 level of 519n1f1cance; On the other

hand, consider an estimate With an acceptance level of .90. Such
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an estlmate is close to BLS (1n the appropr1ate metrlc) A

o nu]l hypothesvs ‘that this estlmate represented the true value

of 8 could not be reJected unless one were W1111ng to tolerate
‘a.90% Type I-error. In terms of . the data, such a mod1f1cat1on
of the least squares est1mate is simply a m1nor One- when viewed
relative to the natural var1at1on in the problem If the
estlmate has other (poss1b]y) desirable properties such as be1ng
m1n1max or r1dge or hav1ng a number of zero coeffmcwents, then
~one can use it whlle being confident that 1t is really not very
-dlfferent (statlst1ca11y) from the least squares est1mate.Aﬂ0f
course, undesirable propert1es can resu]t by a]ways tak1ng some
extreme point 1n ‘the confidence region. Cons1der, for example,
the simple location problem where only the term B is present.

If one always: est1mated Bo by the upper 95% confldence bound,

a substantial bias would result. However, such en estimate is
still consistent and.mioht be desirable under circumstances

which could reasonably arise in practice.

The point -of the present deve]opment is not to propose or
Justify a]ternatlve estimates to least squares The literature

abounds with such material. The aim of the present study is

simply to prov1de a reasonable framework for us1ng these alternative

procedures.




4. SOME USEFUL FACTS

Many textbooks QiVe the confidence region (3.2) and
comment that this result is difficult to use in'bractice
when'the dimensions are Iarge. 'Hhi]e~i£ is true that we cannot
easi]y-picture hyperellipsoids in high dimensional spaces, ‘an

alternative characterization of Sa is very useful in préctice;

The fol]ow1ng simple results will be used 1n subsequent
sections to eva]uate estimates. Let 8 denote any est1mate of
B and let

| (SSE(B) = (Y-XB)' (Y-X8). | (4.1)
This quantity is the sum of 'squared errors obta1ned by using

B as an estimate of 8.

Fact 1. D(B) = SSE(B) - SSE(B ). o (4.2)
Recall that SSE (B) is minimized by BLs- Fact 1, then,xroughly
‘means that E isvfairly'close to BLS if it does not increase the

error sum of squares by too-much.

Proof of Fact 1. Be definition,

L1}

(Y- xs) (Y X8)
(Y- stS+sts -XB)*' (Y- XBLS fXBLs X8)

SSE(R)
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The middle term is zerovsince
(v-sts)'(stS-xe)=(vfX(x'x)'lx-v)'x(sLs~s)
f_(X'Y-X'Y)'(BLS-B).

Therefore,
SSE(8)= (Y- stS) (Y- stS>+(sLs -8)" (x' x)(eLS 8)

‘SSE(BLS) + D(B).

and the result is proved.

For any,é,'}et}
R%(8) = 1 - sse(g)/z]l, (v,-Ty2. ~ (4.3)

For least squares estimates R2 is simply the usual squared

multiple correlation coefficient.

Fact_2. For~anyvae (0,1),

a € Sa
if and only if
SSE(R) - - | - |
- <1+ P+l Fp‘+1, n-p-1; 1'_'Ct (4.4)
SSE(8, <) n-p-1 |

or

R(2) > A2 (BLS) - (1R (BLS)) —Eil~1 Fp+1, n-p-1; 1-a

(4.5)
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The proof of Fact 2 follows directiy from the definition of
Sa and Fact 1.: Roughly speaking, Fact 2 indicates that the

relative increase in the error sum of squares is fundamental.

Also, the-estimate B is close to BLS if the R2 for 5 is

sufficiently large.

Fact 2 can easily be used to find the acteptance level

for any estimate E. Rearranging (4.5) gives

Fp+1,n-p-‘,1; lv"a’ = (N-p-l) [Rz(éLSZ'RZ(g)] . (4.6)
| (p+1) [1 - RE(B )] |

Computer packages which report significance values for F statistics

have routines which solve (4.5) for a. 1In addition, many desk
"> and pocket caicu]ators'provideveither short programs or'built-in

functions for this purpose.

¢

5. APPLICATION TO SUBSET SELECTION

. Some additional notation is required to diSCUSS the subset
selection problem. whenvconsidering a subset model, it can
arbitrarily be assumed that the selected.variables are the first

K and the eliminated variables are the last p-k. Thus, the
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design matrix - X and the parameter vector B can be conformably

partitioned so that the model (2.1) can be rewritten as

R v N . -~ (5.1)

Y=X1P1:+'X2 T
where '

K= (X, X))
ahd.

g = [T1)

Note that the constant term Bo is included ih rl and hence, X1 is

A AL )

a (k+1)Xp matrix. An estimate of B, say 8=(r,,r,), is an estimate

for thé'subsep‘problem if its last p-k components are zero, i.e.
if F2=0. Let BS denote any estimator for the subset problem. The
following question naturally arises: which BS is closest to BLS in

the sense défined‘in section 3?7 The answer, although not surprising,

is interesting and useful.

~ ~l t '
BS=(r1,o )
wheré

',A_l =1y _ ' ' .
Py=(Xy X)70xg Y. | - (5.2)
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In other words, the subset estimate which is closest to the
unrestricted least squares est1mate is the one which is least

squares for restr1cted problem.

Proof of Lemma. 'From Fact 1 of the previous section,

D(8 ) = SSE(Bg) - SSE(B, ).

Therefore, m1n1m121ng D(BS) is equivalent to minimizing

SSE(B ) ' But,

SSE(B ) (Y XB ) (Y- XB )

"

=(Y-x;r

I-XZPZ) X,T ).

(Y'xlrl "t

The restriction implies r2=0, SO

SSE(BS) (Y Xy ) (Y-, l).

This expression js clearly minimized by

~ ] _1 vl
(xlxl) X1 Y

~and hence (5.2) follows.

As a result cf this lemma, subset,problems'can be studied ,
by considering least squares estimates for the sdbset problems.
In terms of acceptance levels, it is apparent from Fact 2 and the

1emwa that the most acceptable (the one with the 1arqest acceptance

level) subset estimate for any given subset-size is the one with

the largest Rz.
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There has been some interest in calculating all paossible
values of R2 or some subset of high values of these ([12]1,[131], £183).
The number of p0551ble subsets s 2P-3 which is very large even when
bp is moderate (1023 for P=10 and 1,048,575 for p=20.) Clearly,
methods for summarizing and interpreting this type of potentially
useful 1nformat1on are needed. One possible approach to thls
problem is through acceptance leve]s Subsets can be ordered
by R2 values, irrespective of subset s1ze, and the corresponding
acceptance levels given. (This order1ng IS, of course, equivalent
to ordering by acceptance Tevel ) Rules for determining the amount
of output can be constructed by bounding the number of subsets to
be printed or the acceptance value or by some combination such
as the minimum of the numbers given by these criteria. Subsets
with ]arge acceptance levels are statistically 1nd1st1ngu1shab1e
from the full model. If there are many such subsets then the data
is not providing enough direct information for efficiently |
selecting a subset and additional considerations are'required to
arrive at a practical soiution. If, on the other hand, only a i
few or perhaps even no subsets have large acceptance levels, then
the data is providing a great deal of statisticaTvinformation
~which can be used to select a subset of course, in this case
also, other cons1derat1ons may be suff1c1ent1y important to suggest
selectlng a subset with a moderate acceptance level. The important
point is to present the statistical information as clearly as

possible so that these higher level judgements can be made.




| | | 15.
For each &, the set of a-acceptable subseﬁs COnéists of
all the subsets for which the corresponding restricted least
squares estimate is in Sa. If we assume that the truermodel,
(2.1), is a subset modei, i.e. some of the Bj are zero, then
the acceptance set approach has an'additional interpretation

which is presented in the following theorem. .Let-ss denote a
parametervwith some coefficients equal to zero and Bs the

corresponding_reétricted least squares estimate Let Pevdenote
prcbabilities ca]culated under the assumption that B8 is the

true value of the parameter.
- Theorem 1. f6f §ny B=Bg»
| PBS(ES €S,) 2 l-a; '. o (5.3)
Proof. 'For any 8,
| PB (B € Sa) = l-a
§y the.construction of the confidence region Sa. From 3.2 then,
it follows that *
V'PB(D(B)AE d ) = la o (5.4)
Now since ES m%nimizgs D(B)subjéét_to;rz=0,_jt fol]ows.thét

seg) >0 sy
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In other words, the true parameter Bg must be further away from

BLS than its esttmate'BS. Therefore, the estwmate is more Iikely
to be in Sa than the Parameter. The conclusion (5.3) is implied
by (5.4) and (5.5).

Arvesen and McCabe [31, [4J and McCabe and Arvesen [20] have
applied the subset selection framework of Gupta and Sobel [14] to
the problem of selecting subsets of variables in regression
analysis. 1In the Gupta and Sobe) context. a subset refers to a
collection of solutlons, in this case each solution is n subset
of regression variables. The basic idea s to construct a
collection of subsets which include the true . (best) subset with
a given prespecified probability. In Arvesen and McCabe [3], [4]
and McCabe and Arvesen[20], a procedure for constructing such
collections is given for the case in which the number of variabies
to be included 1n each subset s prespecified. This rule includes

all subsets in the collection for which

_SSE (85) < ¢! . (5.6)
| SSE(E;)

where SSE(BS) is as deflned -above, SSE(BS) is the smaliest of the

SSE(BS) values for the given subset size and ¢ is a constant
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which depends en n;,p,,the subset‘size, the design matrix X, and
the bound for'the probebility of'ineluding the true subset in
collection.‘»fhe detefmihation of ¢ 1is based on asymptotic
approximations aﬁd requires Simu]ation for each different design

matrix.

The theorem above can be used in the present context
Consxder the following se]ectlon rule: '1nc1ude all subsets in

the coll=action for which

 _$$£(85). i,l + %;%;1 Fp+1,n‘p'1;1-a (5.7)
SSE(8 ¢)

This is, of course, equivalent to 1nc1ud1ng all subsets for. wh1ch

~ the correspond1ng parameter estimates are in S

Let CS denote the event that the true model is included in

the collection. Thus,
PBS(CS) = PBS (BS € Sa).

The fo]]owiné corollary foT]ows_immediafe]y from Theorem 1.

- Corollary. If 8 = BS’ i.e. if a subset model is the true model, then

P(CS) > l-a. | (5.8)
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It is interesting to contrast the rules given by (5.6)
and (5.7). -AdVantageslof the latter include applicability to
all subset sizes simulataneously and the ease of computation for .
~the critical yélues; On the other hand, since (5.6) restricts
attention to a given subset size, the number of included subsets
of a given size should be less with (5.6) than with (5.7). In

other words, the results should be more precise. Since
' a0 - *
SSE(BLS) < SSE(BS),

the left hand side of (5.6) will be less than or equal to ihat

of (5.7). Thus, a direct_comparison of the critical va]ués given
on the rightéhénd sides is not complete]y.informative. In the
‘particular examplés which have been examined, one finds the
~expected resuli —.the righf hand side of (5.7) is lafger than that
of (5.6). - | | | N

It should be noted that (5.7) (or equivalently (4.5)) is very |
close to Aitkin's [1] definition of an Rz-adequate(a) subset.
‘He deines a subset to be Rz-adequate(a) if
iiEﬁgil 2 1# ng;l | Fo.n-p-1; l-d. 7._ (5.9)
SSE(BLS)
The degrees of freedom in the numerator of.the Fdistribution,
and hence the factor multiplying the F 1is p rather than p+i |
as in (5.7). Hence, ‘the collections of subsets obtained by (5.9)

- are not larger than those obtained using (5.7).
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The theorem and coro11ary of this section prov1de a means
for 1nterpret1ng the concept of a- acceptability applied to the
subset selection problem. It should be noted that an inference
of the type contained in the corollary is not the primary purpose
for introducing this concept. The inference in the corrollary
pertains to which subsets of variables predict well rather than
addressing toe'question of how well they predict with the
particular estimote available. This consideration is essentially
the basis for the preference- for (5.7) over (5. 9) in this context.
By includIng the extra degree of freedom for the 1ntercept term,

the inference is extended to the entire parameter vectcr.
6. APPLICATION TO RIDGE REGRESSION

The standard ridge estimates promosed by Hoerl and Kennard [16]
[17] are of the form

B (k) = (X' x+k1)" 1 x'y (6.1)
| where k 5s-nonnegative. The case k=0 corresponds to the
~ usual Teast squares estimete This type of estimate may be viewed
~as the solution to the problem of minimizing D(B) subject to the |
constraint that B B<B where B is same fixed positive number. In

the solution, the ridge parameter k is a function of the bound B¢

~The relationship between k and D(g(k)) is given by following.
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Fact 3. D(g(k)) is an'ihcreasing fundtion of k..
Proof. From Fact 1,
D(B(k)) = SSE(B(K)) - SSE(B, ).

'Since_SSE(ELS) does not depend'on k, it is sufficient to show
that the deriva;ive of SSE(E(k)) with_respect to k (which is the
same as thaiiof'SEE(a(k))) is positi?e for k>0.

Now, |

© SSE(B(K)) = Y'IM(K)I2Y
#here o |

M(K)= I-X(Xx+kD)" N

~Therefore,

3SSE(B(K)) =Y' [nriy BM(K) . BM(K) oy

But, an(k) = X(x'x+k1)'l [ng'x+k15] (x'x+k1)'1x'
9k ' ok '

X(X!X+k1)"2x" .

Combining the above gives

_ aD(E(k) = 2Ky X(X' X+kI) 73Xy | T (6.2)
ak | o
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To show that the derivative is positive we first note that- the
matrix (x X+kI) is positive definite for k>0 since both X'X
and kI are pps1t1ve def1n1te. Finally, the derivative in (6.2)

can be written as

Z'(X'X+k1)Z
with

Z=/2k (X'x+kI1)"2 x'v
Thus the derivative is positive for k>0 and the result is

established.

Using Fact 3. the ridge estimates in the sets S are easily

character1zed as follows.

Fact 4. For each ae(0,1) there is a positive number k= k(a) such

that B(k) € S (1 and only if k<k(a)

Eroqf. Fact 4 fd]]ows immediately from Fact 3 and the definition

of S .
a

‘Fact 4 may'be‘viewed as a means for setting a reasonable
upper bound on the ridge parameter k. Alternatively, one may
consider the ridge trace or the numerous other criteria which have

been suggested as guides for determining k. If the acceptance level




1s high, then the est1mate\may be used with the knowledge that

it is really not very far from the usual estimate in a statistical
sense. If the acceptance ]evel is small, however, con51derably
more faith is required in the r1dge technology to justify the

chosen value of k.

It is important to note that the r1dge procedure is general]y.
. performed on a standardlzed vers1on of the regre551on problem.
Hoerl and Kennard use X'X in correlation form and eliminate the

0
these results depend essentially only on SSE(E(k)) which is invariant

B, term. Such_modjfications have no effect on Facts 3 and 4 since

under this type of transformation.

‘Obenchain[25] has def1ned the associated probab111ty of a

r1dge estimate as the value of a for which

D(8(k)) = FP,n-p-l; 1-a. : . . o |

He also considers'hore general classes of ridge-type estimators.
‘Note that the question of p+1 versus p degrees of freedom arises
heresas in the ease of subset selection. The‘same comments apply.
Moreover, in hany cases it would appear to be just as reasonable

to apply r1dge techn1ques to models including a B term as to those
w1thout one. Problems with arbitrarily chosen dummy var1ables
appear to be reasonable candidates for this type of approach
although some sort of standardlzat1on of the - other var1ab1es may

be desirable.
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7. APPLICATION TO REGRESSION ON PRINCIPAL COMPONENTS

Various estimation procedures based on the eigenvector-eigen-
va}ue structure of the regression variable correlations have been
proposed. In some cases the structure for only the X variables
is used. Webster, Gunst and Mason [28], on the other hand,
‘recommend using this structure_for all the variables including

the one to be predicted.

Let v
(X'X) = PAP', | . (7.1)
" Where tﬁe rows of P are the eigenvectors of‘(X'X) and the
elements of the diagonal matrix A are the correspond1ng eigenvalues.
The decomp051t10n is unique up to permutat1ons and it is customary
to impose the following ordering on the elements of A: A ALPARR <Aé.
With this notation, the model (2.1) can be rewritten as
Y=Wr+e - : , o (7.2)
Qhere W=XP and r=p'sg,

Using this parameterization, the form of D(B) can be

simplified as’ fo]]ows

©D(8)= (B, 5-8)" (X"X) (B, -8)

=(I‘LS—I') 'A(I‘LS-I‘
" ~ .= .A s s . -
Where rLS P BLS' Since A is diagonal,

)2 A,

D(8)=xf_ (ry 4T ; (7.3)

i
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’,
b o]

~where T, ¢ and T, denote the jth components of the vectors
I s and I, reSpgctiver{
, -~ First, consider the principaT component'gﬁtimators of T
(and hence of B=PT) obtained by setting some components equal to

;iLS and others equal to zero. Let H denote the set of values

of i corresponding-to the zero coefficients.. Then

2

IO NS PO | (7.4)

From this éxpression; it would appear natural to order the
components on the basis of T?LS A; rather than Ay Suppose
now that this ordering has been accomplished, f.e.

"2' “2 . A2
FiLs 21 2 Taps A 2 -2 T g A
A class 6f pfincipa] component estimators indexed by an

integer h (lihﬁﬁ) and a number q (0<q<l) is described by

for i=1s---’h-1
T.= qr S for i=h

0 for i=h+1,.:.,p.
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Let r=h+q. Cleafly, 0<r<p and given r, the numbers h and q
.can be determined. The estimate of B correspond1ng to P dsing
h and gq will be denoted by B(r) The distance functuon is
glven by |

D(B(")) (1 Q)z hLS Xh"'E!:: =h+1

2
I'H.S A1 (7.6)

-The following lsve direct consequence of (7.6).

Fact 5. D(8(r)) is a nondecreasing function of r. (O<r<p).

Using Fact 5, the set of a-acceptable principal component

est1mates of the form (7 5) is easily characterwzed as fol]ows

Fact 6. For each ae(O,l) there is a value of r=r(x) such that

'B(r)eSd if and only if r<r(a).

of ceurseiother procedures'for setting components of T :6
zero ere available. A rule which is of the form of (7.5) but
with the orderihg Alikzi...ikp is discussed by Hocking. Using
7.3, the distance from éLS and'hence the acceptance level are

~easily calculated for any estimate given in terms of this

parameterization.

A procedure which uses components with large )i and discards
"those w1th small A attempts to eleminate instabilities in the
‘regre551on coeff1c1ents resulting from linear combinations of
the X's which have small varlances (A ). On the other hand it

is possible that thnse part1cu1dr lincar comblndtvons are good

predictors of Y and should not be discarded. These ideas are
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related to theléoncepts of predictive and nonpredictive near
singularities discussed'by Webster, Gunst and Mason [28]. By
basing inclusion on the ordered values bf ;fLSlA » both the
'Avariance of the component and 1ts predwctlve ‘value are taken

1nt0 account
8. APPLICATION TO A MINIMAX FAMILY

The advisabi]ity of using the usual estimators for multi-
variate normal. estimation prob1ems was serlously questloned by
the work of Steln [26] This paper generated substantial interest

in the problem and stimulated much research.

To see how the idea of a-acceptability can be used as a
practical guide for applying theoretf;a] results, attention will
be focused on the family of minimax estimators of the mean of a

normal distribution proposed by Baranchik [5].

Suppose the.q-dimensiona] vector V is nokhal with mean 0 and
covariance matrix 02 I; and s2 is 02 times a X2 variable with
v degrees of freedom, independent of V. The Toss function for

estimating © is assumed to be
L(6; 0,0%) = (6-0)' (6-0)/02. - (8.1)

Let f=V'V/52. Baranchik's result is the following.
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Theorem [Baranchik]. The estimator

A

0 = (1- r(f)/f) V o (8.2)
is minimax reIétive to (8.1) if (i)r(-) is monotone nondecreasing

and (11)0<r(+)<2(q-2)/ (v+2).

First we must transform this resuit into the regressioﬁ

context. From (2.4) recall that

Bys " N(B.0Z(x X))
and from (7.1)

o {X*X)=PaP". |
Now Tet 6=A%P'B and similér]y for 5LS and;g.
It follows that '

"

Sps™ M&.0?1) . (8.3)

and we can apply Baranchik's results with V=6LS and 0=§. The 1loss

function is
L(836,02)=(5-6)" (6-8)/02

=(B-8)" (X'X)(B-B)/a®.
Therefore, if an estimator 3 is minimax for & under the loss

function L(S5;6, 02) then the estimator

-%

Bpa § - e
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is minimax for 8 under the loss function

L(838.07)=(8-8) " (X'X) (3-8) /. (8.5)

The random variable s is given by (2.7) and the degrees of

freedom correSpbndehcesAare 9=p+1 and v=n-p-1. The expression for

f becomes
f=B, ' (X'X) B, /s2 | | (s
LS - PLS . : )

Note that f=D(0)/sz. Now, suppose the function r satisfies

Baranchik's conditions. Consider the minimax estimator
- 8=(1-r(£)/F)5 ¢

Since

~

=p¥prp
GLS-A P'BLS_,

it follows that |
6=(1-r(f)/f)A%P'BLS.

Using the transformation
B=PA™ %5

we obtain

LV T (8.7)
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as a minimax estimator under the loss function given by (8.5)

It will now be shown that the criterion of « acceptability
can be used as a guide in selectlng the funct1on r{(«). 1If

B is of the form given by (8.7) then
D(8)= (B g=8)" (X'X) (B, s-)
| RGN FERATIR
So,
IO TG . | (8.8)
The estimate B will be a-acceptable if

o 2
D(B)<(P+1)S F sy nop-131-a.

Equivalently,
Y

r(f)<(f(p+1)Fp+1 nep-liloa)’ - (8.9)

Since f s unbounded as a function of B, the condition (8.9) is,
in one sense, less restrictive than conditions (i) and (ii) of
Baranchik's theorem. Thus, if r(+) is a nonnegat1ve monotonic

nondecreas1ng funct1on satisfying

| r(f):min(Z(p-l)/(n-P+1):(f(P+1)Fp+1;n;p_1;1-a)%)’ (8.10)

then botﬁlthe conditions of the theorem and (8.9) will be
satisfied. To summarize these results, two additional definitions

are needed.
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Definition 3. An estimator is a-acceptable if the maximum

acceptance Tevel for any rea11zat1on is greater than or equal

to a.

Definition 4. "~ The acceptance level 6f-an estimafor is the

infimium of the values of o for which it is-a-ecceptable.

Note that Definitions 1 and 2, given in sect1on 3 were for
.particular numerical values of B and could be app11ed to
estimates whereas Definitions 3 and 4 apply to estimators

which are random variables.
The resu]ts above are summarfzed in the'following theorem.
Theorem 2. Let a(0<a<1) be fixed. The estimator |
B=(1-r(£)/£)B
where

f=B,¢' (X'X)8, o/s?
and r(f) is a nonnegative monotonic nondecreas1ng function

satlsfylng

r(f)<min(2(p-1)/(n-p+1), (FP+IF ) Lo )
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has acceptance level « and is minimax relative to the loss

~function
;.. 2 - > ' ' o 2
L(e,_e.o )~(e-s) (x X)(B-B)/o .

Now let B(a) be defined by letting the 1nequa11ty in the theorem

be an equa11ty, 1 e.

r (f)-mm(z(p l)l(n ~p+1), (f(p+1)F k)

p+1 n-p-1;1- o)

and

Bla)=(1-r, (£)/)B, s T e

Since Ty (+) c]ear]y satisfies ‘the conditions of the theorem, the

f0110w1ng corol]ary is evident

gprollarz. Let a, (o§§<1) be fixed. The estimator B(u) given
by (8.11) has acceptance level « and is minimax with respect

to (8.5).
8. PREDICTED VALUES

Let x denote a (p+1) dimensional vector with first component
one. Each row of the design matrix X s the transpose of such
a vector. To construct an estimate of the expected value of Y

for a conf1guratlon of pred1ctor values correSpondlng to x, we
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simply take the appropr1ate 11near comb1nat1on of ‘the estimated

regression coeff1c1ents These est1mated expected values are

-~

called predicted values. Thus, for the estImate B8 and the

| vector Xgs the. predlcted value is
.;o=x6 E. _ . . .(9.1)
The-vector‘of predicted ya]ues for the'rowe of Xlie
- Y=XB. - d | ;. - (9.2)

Components of Y are denoted by Y for 1-1 «++oN. HWhen the least
squares estimate BLS is used, the corresponding predicted values

are denoted by YOLS and YLS

Since regreSSIOn equatlons are o'ten used for predicition
it is important to consider the effects of d1fferent choices
of B upon (9.1) and (9.2). Flrst, the effect of B upon the
predicted values in the original data is considered Second, a
type of s1mu]ataneous view is developed for treating all Xoe
From the definition of D(B).
D(B)=(B 5-8)" (X'X) (8 (-8)
=(XBLS'XB)'(XBLS'XB)f
—(Y S Y) (YLS'Y)

- RERY
Ot (YiLS ')
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Recall that |

BeSa
iff

D(8)<d,

where

: o 2
: da (p+1)s Fp+1,n-p-1;1-a

Therefore, BeSa if and only if the sum of squares of the
differences between the least squares and the alternative prediéted
values is sufficiently small, i.e. if

n o0 2 | .
Zia1(Vius¥y)" 2 4y (9.3)

In terms of the root mean squared deviation, (9.3) becomes

V/ -1 (Y A].)2 Ssho‘/n!i | (9.4)

where

= b
h o ((p+1)Fp+l,n-p-1;1—a)2

On one hand, an expression such as (9.4) may be viewed as
providing insight and aiding the interpretation 6f.a-acceptability.
If o 1is preselected, the rlght hand side of (9.4) provndes a

measure of how much deviation from Yls is be1ng al]owed by
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limiting the search for 8 to Sa. The inequality (9.4) can
be relativized by dividing through by s. 1In this form, the

right hand 51de can be calcu1ated before any data is examined.

v On the other hand, an expression such as (9.4) can be
used as a gu1de in choosing a reasonable for . If one
dec1des upon a reasonable bound for the relative root mean
square dev1at1on, then a value of o which w11] satisfy th1$
goal is easijly _found. ‘Attention can then be focused on S

for alternatives to BLS

Suppose now that o has been fixed. What can be said about

the predlcted values x0 B for a given value of x0 when B is B
restricted to be in.S - The following fact provzdes an answer,

Note that the former restriction that the first component of

Xo be equal to one is irrelevant in the remainder of this section.
Fact 7. If BeS then

| L
OBLS-Sh (x (X X) 1 0) <‘<06<x0 LS+sh (x (x'x)" 1 )2 (9.5)
for any XQ-
| Proof. The extrema of XO BsubJect to the constralnt
D(B) d, o o (9.6)

are needed. 'This‘problem is easily solved using Lagrange multipliers.
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Let

] ~ _ 'A ~ _
f(B)=xgB8+r(D(B)-d ),
then
-af(e)/ae=x°-zx(x'x)(BLS-B).
Setting this expression edua] to zéro gives
(B 5-B)=(x'X) "x /21,
which when substituted into the definition of D(8) and
combined with (9.6) yields
- (] "1 ;5
A—i(xb(x.x) x0/4da)
Thus, the values: of E giving extrema are
B=By s+ (X' X) ™ x gl / (xp(x'X) "1k )"
and the extreme values of X B are
O'A +h( l(xlx)'l, )!i
*0 BLst shyixg S Xo)
since
-2

2_,
S ha dd'

The result isAproved by noting that ha is a monotonic decreasing

function of_a.




' 36.
In the sense!that Sa'is viewed as a confidence region

for 8, regionsiof the type given in (9.5) can be viewed as
simultaneous cénfidence;intervais for all values of X,- This

\ )
idea is made priecise in the following fact.
Fact 8. Llet o and B be fixed. _Then
l .
. g} 3 “Y=1.
~P8(x0 BeH(xO) for all x0)~1 a - (9.7)
where
H(x )=[x'§ <-Sh (x'(x'x)-lx ))5 'y g +sh (x'(X'X)'lx )]
0’ X0 Ls TSN X 0’ *Xo PLsTSMgl%g 0’" (9.8)
Proof. Since
PB(BeSa )=1-a
it suffices to show that the events
BeSa _ B | (9.9)
and
beeH(xo)'for all Xo | | (9.10)
are équivalent. Since Fact 7 states that (9.9) implies (9.10)
it remains only to show that (9.10) implies (9.9).
Suppose (9.10) holds. Then it holds for
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which gives
 xp(B -B)= D(8)
and also;
xp(X*X)" xq=0(p)
ot* 0
Therefore, from (9.10) and (9.8), it follows that
L ank < | %
sh,(D(8))* < D(B) < sh_(D(8))
Hence,

- b(8) < s

+which is equivalent to (9.9).

The intervals H(xo) are, of course, substantially larger
than the conventional intergals which use the critical value
tn-p-l;l-alz in place of ha. With the larger intervals, however,
the confidencefStatement is much stronger since it pertains

simultaneously to all Xo*
10. EXAMPLE
To il]ust}ate the ideas presented in the preceeding sections,

the air pollution data from McDonald and Schwing [23] is examined.

This data is also discussed in Hocking's [15] paper. Sixty
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observationsA(n=66) were taken on total mOrtality and fifteen
potential predittorS (p-lS) It is important to keep in mind
that although 60 seems like a large number of observations, the
- regression coefficient est1mate depends on estimated values for
16 means, 16 variances and 120 covariances. Thus, a total of

152 parameter estimates are required.

The Rz for the unrestricted least squares estimate is 0.764.

There are a very large number of subset estimates which are very
close to BLS For example, the 50th best subset of size 10 has an
R2 of .749 with an acceptance level of 0.9997. ”In’other words, this

estimate is in the 0.03% confldence reglon around BLS’ rejection

of this value as a hypothesized value of g would require a Type 1
error rate of 0, 9997 Slm11ar1y, the 50th best subsets of sizes
6,7,8, and 9 are 80%, 94%, 98% and 99% acceptable respectively.

These results should not be viewed as negative or dlscouraglng;
With 152 parameters to estimate from 60 observations, these results
are not even partlcu]arly surprising. The po1nt is that there are
a large number of subset models which fit the data almost as well
as the unrestricted least squares fit. From a statistical point

of view these alternatives are essentially indistinguishable from BLs-
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If selection of a8 subset model is deSIrable, additional
criteria need to be Imposed upon the prob]em In some cases,
it may be deslrable to minimize the number of variables included.
.For this problem, one might be willing to cons1der subsets of
size srx_ Even with this restriction, however, ‘there are 14
subsets wh1ch are 90% acceptable with Rz's ranging from .717 to
.735. Another alternative would be to impose Some'cost structure -
on the predictor variables as has been d1scussed by Lindley[19]

and McCabe and Ross [21]

McDona]d and Schw1ng use several methods which lead to
consideration of models with variables (1,2,3,6,9,14) and
(1,2,6,8,9,14). These fits have R2's of .735 and .724 and are
98% and 94% acceptaB]e, respectively. From a_c]éssica]vvizwpoint,

these estimates éré very acceptable.

McDonald gnd Schwing and Hocking have also investigated
fhis-data-using ridge methods. The first authors suggest a value
of k=.2 for the full model and the subset models (1,2,3, 6 9,14)
and (1,2,6,8,9,14). The R? values are .724, .711 and .708.

These fits are 94%, 84% and 81% acceptable. (Note that the
definition of R2 used here is given by (4.3) which agrees with that
used by Hoéking. McDonald and Schwing use a different definition
and so the values given here differ from those given in their paper.
As giveh by (4.3), the quantity R2 will be negafive for a E vhich
does worse than Y). Since the-ééceptahce 1evéls fork =.2 are dnly

moderately large, some confidence in the ridge procedure which led -




"On the other hand,Hocking gives a ridge estimate for the
subset (1,2,:3,4,.5,6,8,9,12,13.14) With k=.06.  For this estimate
R2¥.734'and it is 98¢ accebtab]e. Since this estimaie is so
close toigLS, ohe,might_consider using it even if one were very

skeptical aboUt'the vaTidity of ridge procedures; The pOSsibi1ity.

Two principal cOmponent-type'estimates are also given by
Hocking. For one component, R2=.742; for two R2=.743.' These

estimates are both 99% acceptable.

The Baranchik-type minimax estimator given by (8.11) is
.9957 ELS' This is, ofvcourse, 99% acceptable also. It should
be noted that if calculations are done With the correlation matrix,
then Y shouid also be multiplied by the shrinkage factor to

obtain the correct transformed estimate.

Inspection of the above estimates has Ted the author to
consider the fo]lqwing as candidates for reasonable regreséion

equation estimates:

.Y=.25(Xl#x2~X3-X4-X5-X6) + .6X9-X12+X13-.1X14
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and
Y=.25(x1-x2+x14)-,1(x3+x +x5+x6-x8+x12-x13) +.6X9.

22,742 and .725. They are 99% and

For these equgiions R
95% acceptabTe; respectively. The equations gfven are in

standardized form and hence the estimates are directly comparable .

to the estimates giveﬁ in the McDonald and Séhwing and Hockiﬁg papers.
In many problems, useful linear combinations of variables which

:méy be fitted with a single coefficient can be constructed

either before dr after studying ;he»data. Mosteller and Tukey [24]

have discussed this idea and use the term "judgement composites"

to describe these combinations.

' Finafly. the quantity ha/n% used in (9.4) is 0.30 for a=.99
and 0.35 for a=.95. Thus, the average (in the root mean square
'sense) change in pred%cted value obtained by using any 99%- |
acceptable estimate is not more than about .3 standard deviations.
For 95%-acceptable estihates the corresponding value is .35

standard deviations.
11.  IMPLEMENTATION

The'idea'of a-écteptability Has been presented as a tool
fbr evaluating vérioﬁs alternatives to least squafed regression
coefficient eétimates. Several spécia] topics relating to the
construction and éva]uationbof these alternatives are discussed in

this section.
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In the sections on subset selection and ridge regression
the question regarding P Vs p+1 arose. This question actual]y
arises when considering most alternatives to least Squares and
'essentially,is equivalent to the choice of working with a
correlation matrix or with the full x'x matrix When working
with a correiation matrix, there js usually an impiiCit
assumption about the estimate of the intercept term. Let the
‘standardized form of the prediction equation be given by

J-Y =P 4 ;_Lﬂfﬁ_

i=] i | S

Then, in terms of the unstandardized form,

A ~

Bi ‘.j(! .

i SY/Si’ i=1’o-',po

For the two forms to match, the intercept is estimated by

2 =7 P v 11
B0V “Iia1 ey Xy/s,. | (11.1)

-~

Most of the least squares alternatives focys upon (al,éz,...,ap)
and neglect V. Thus, the dimenSionaliLy s reduced from P+l to

P. Although this reduction may be appropriate under certain
circumstances, ‘there does not seem to be any a priori Justification
for aiways negiecting Y. The minimax procedure in section 8

corresponds to multiplying the o's and Y by a speCified quantity
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The est1mat10n constraint given by (11. 1) may be viewed
in another way. " With this constra1nt, all estimates will give
the same predicted value (Y) at (XI’XZ”"’xp)’] Again, this may
or may not be a reasonable condition to impose. Alternatively,
one cbu]dvimpbse the EOndition that all estimates give the same

predicted value at some other (hopefully meaningful) point.

The choice of an appropriate « is a complex problem. For
large a, such ae.a=.99, the entire process of_seIecting an
alternative may be'viewed as a sbecial kind of rounding off.
-Conswderat1on of the case p=0 can provide some ins1ght For

.992, the set of a- acceptable estimates is the 0.8% confidence
interva] Y +~SY/100' Relative to the statistical variation
represented by 5#, all values in this interval are somewhat

equivalent.

| ~Lower values of a give estimates which may be further
from QLS and therefore, requ1re some external justification.
Small values of o give estimates which border on being incompatible

with the data.

Estimation'of regression coefficients by integers or simp]e
fractions and grouplng terms together,as suggested in the example,
deserves rurther study. In most cases, the use of some un-

standard1zed form (which was not done in the ‘example) is most
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likely to be hrofitable. ~Ideally, such estimétés should be
constructed.by‘an individual who is familiar with the variables
and can give some interpretation to the results. An interactive

computing environment-would_be idea] for this Purpose.

The determinat1on of a useful set of estlmated regre551onv
~coefficients for problems with corre]ated predlctors and a

. moderate amount of data requires a substantial amount of
statistical manipulation coupled with sound judgement. In many
situations, a. comb1nat1on of methods, such as Hock1ng S [15]
ridge-select procedure are appropriate. By restrwctlng attention
to estimates in an q- acceptable ‘set, reasonab]e constraints on

the search for useful estImates are. Imposed
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