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INTRODUCTION

Rankirg and selecction procedures, subset sclection
procedures in particular, provide in a reelistic manner
attractive ways of handling problems that are cormonly
treated by the 2-action procedure of a global PF-test, and
the many many-action procédure of a typical multivle range
test. <Censider the common one-way layoul situation in
analysis of variance. Usually the experimentier wants to
knew more than just whether all the treatment cffects arc
equal, but he may not want to nmake inferences concerning
all pair-wise differences of means, or all lincar contrasts
of means. One of the more freqgquently occurring gituations
for which this is so is where the experimenter simply
wishes to know which of the treatments gives the best
product. In this gituation, formulating the prcblem as a
selection problem is appropriate. Subset sclcction pro-’
cedures are often thought of as screening procedures. If
the data indicate several treatments are better than the
remaining treatments but no treatment is clearly the best,
then perhaps the experimenter ought to retain all of the

better trecatments for future consideration. O0Of cource the



concept of subset selection has a much wider scope of
application than just one-way layouts. We shall give two
examples to show how situations for which the subset
sc:lection formulation is appropriate arise in practice.

The first example is adapted from an experiment con-
ducted here at Purdue. Suppose we wish to dctermine how
people perceive various colors. For instance, would most
people perceive red as being hot? gray as being cold?
Results of this type of experiments have been applied in
practice. For example, certain fast food chain paints
all its restaurants in certain colors because studies have
shown people tend to leave the premise more guickly if the
premise is painted in those colors. So suppose n experimental
subjects are chosen and there are k available colors.
Corresponding to each adjective of interest cach subject
chooses one of the k colors that he or she preceives to
fit the adjective most closely. Then for this experiment
the underlying distribution is the multinomial distribution
with the number of observations equal to n and the number
of cells equal to k. For the type of application mentioned
one wants to select the color or colors corresponding to
the cell with the highest frequency of occurance. Hence
the subset selection formulation is appropriate.

The second example arose in the field of Bionucleonics.
This was an actual experiment that the author came across

in consulting. 1In manufacturing radioactive trace clements



carrier particles were to be made from a petroleun base
by the use of heavy pressure. When injected into the
patient's body, particles that are too large get absorbed
by the wrong organs and those too small go out of the
system. There were four possible pressure settings. To
each pressure setting there corresponds a particle size
distribution. The object here was to select the pressure
setting such that for the same total amount of radiation the
amount of radiation attached to particles in the desirable
size range is the largest. Hence the subset selection
formulation is appropriate. Notice here the parameter of
interest can be an extremely complex function of the
theoretical particle size distribution.

Heuristically proposed 'subset selection' procedures
of Gupta (1956, 1965) have been in existence for some time.
For related work and thinking along subset selection lines,
reference should be made to Paulson (1945) and Seal (1955).
However, unlike the F-test and the multiple range tests, the
use of these procedures in practice have been virtually nil.
This, the author believes, can be attributed to two main
reasons:

1) No computer packages exist to facilitate the use
of these subset selection procedures. None of the commonly
used statistical packages (e.g., SPSS, BMD) includes subset

selection procedures as part of the package.



2) Research concerning the performance of these
heuristically proposed procedures is inadequate. Potential
users can not, in general, be guaranteed any optimality
properties of these procedures.

It is generally recognized that for multivariate
problems uniformly best procedures usually do not exist.

In fact in most of the situations of practical interest,
there do not even exist uniformly best unbiased procedures.
Hence it is reasonable to look for procedures that do well
on the average, averaged over the parameter space by some
prior. This approach has been taken in the first part of
the thesis. The essentially complete class of Bayes
procedures and their limits is investigated. The concept of
Total Monotone Likelihood Ratio is introduced as the multi-
variate _analog of univariate monotone likelihood ratio.
Then a multivariate analog of the classical univariate
result of Karlin and Rubin (1956) that monotone procedures
form an essentially complete class, is proved for a loss
function which seems natural to the subset selection prob-
lem by proving that Bayes procedures are monotone.

Bayes procedures typically require numerical integra-
tions to implement and this makes them unsuitable for practical
use. Besides, the use of Bayes procedures is by no means
universally accepted. So if there is available an easy to
implement proéedure whose performance is close to that of the

Bayes procedure, then this procedure ought to be used.



This possibility is explored in Chapter 3 for the case of
normal populations problem and normal exchangeable priors.
As it turns out, Gupta's procedure is good compared to

the Bayes procedure throughout the range of the normal
prior while Seal's procedure is good only when the normal
prior is concentrated, that is, when the normal prior is
very informative. As of yet we do not know how these pPro-
cedures perform when the priors are not normal, in particu-
lar when the priors have longer tails than the normal
distribution. But from what we know Gupta's procedure
seems to be the logical choice when the observations arise
from normal distributions.

There are heuristically proposed procedurcs for many
other distributions in the exponential family of distribu-
tions. Little is known concerning the performénce of
these procedures. They really have to be investigated
case by case. But in the case where the parameter of
interest is a location parameter and the underlying distri-
bution is not entirely known there are known good robust
estimators of the parameter. Under mild regularity condi-
tions they are asumptotically normal. From the results of
Chapter 3, one would expect Gupta's procedure based on
these robust estimators to be asymptotically good. In
Chapter 4 of the thesis robust and nonparametric versions
of Gupta's procedure are proposed and their performance

studied. One procedure in particular, the procedure based



on simultaneous confidence bounds derived from rank tests,
is a truly nonparametric subset selection procedure. It
controls the infimum of the probability of a correct
selection for any sample size. Becausc it is based
essentially on the Hodges-Lehmann estimator it also has

good asymptotic performance.



CHAPTER 1

SOME DECISION-THEORETIC PRELIMINARIES AND KNOWN RESULTS

In thin chapter we give some decision-theoretic pre-
liminaries and list some known results particularly those
applicable to finite action problems. Although we shall make
use of only one of the results in this thesis, namely Bayes
procedures and their limits form an essentially complete
class, it seems desirable to have the important results
listed in an orderly fashion for the benefit of future work-
ers in the field. We want to emphasize that these results
pertain tc all finite action problems. Hence they are appli-
cable to the classification problem, the identification prob-
lem, the complete ranking problem, the treatments versus
control problem, the selection problem using the indifference
zone approach, and the selection problem using the subset
selection approach. We follow throughout the development in
Brown (1974).

We begin by describing in a mathematically precise
fashion the formulation of the statistical decision problemn.

Definition 1.1. The sample space S8 is a measurable space

with o-field BS.

Definition 1.2. A parameter space.® is a measurable

space with o-field BQ.



Notation. We denote by P(B) the set of all probability
measures on the o-field B.

Definition 1.3. A parametrized set of possible distri-

bution is a 8® measurable map from ¢ to P(BS). We denote

the value of this map at a pair ¢e®, SeB, by F(S|¢). Note

S

+) is B® measurable means:

that to say F(-

(1) For each ¢e®, F(-

¢) is a probability distribution

on BS'

(2) For each ScB F(S|°) is a measurable map of (®,B¢)

SI
into (R,B(R)). (B(R) denotes the Baire o-fieldon R, the reals.
The set of distributions {F(:|¢):¢e¢} is called the set

of possible distributions.

Remark 1.1. It is possible to parametrize any set of

distributions. Suppose FgP(B) is a set of probability dis-
tributions. One can set & = F and define Bcp to be the o~

field consisting of all subsets of ¢&. This definition of

B® guarantees that F(+<|°) is measurable.

Notation. If the family of distributions {F(:|¢):¢ee} is

dominated by some o-finite measure u, then £(-|¢) denotes a
version of the density 4dr/du, that is,

F(s|¢) = [£(s|¢)an(s).
' S

Note that if Ll(S,BS,u) is seperable then f may be
chosen to be a measurable function from (Sx@,BS xB®) to
(R,B(R)) .

Definition 1.4. The action space is a measurable space

A with o-field BA.



Definition 1.5. A decision procedure ¢ is a Bq measur -

able map from S to P(BA). We shall denote the value of § at
seS,BcBA by &(s,B). Note that & measurable means

(1) For each seS,G(s,-)eP(BA).

(2) TFor each BEBA, §(+,B) is a measurable function from

(S,Bg) into (R,B(R)).

Notation. D denotes the set of all decision procedures.

Definition 1.6. The set of available decision proced-

ures, denotes by Do’ is a subset of D.

Remark 1.2. Some examples of Do are the class of in-
variant procedures, the class of monotone procedures etc.

Definition 1.7. The loss function L is a measurable

function from (@xA,B¢xBA) to ([0,°],B{([0,>~1)).

Definition 1.8. The risk function of a procedure § is

the function R(+,8) :4+[ 0,~] defined by
R(¢,6) = [[L(¢,a)d(x,da)F(dx]¢).

Definition 1.9. Let T = {t:96>[0,= ]} have the weak

(Tychonoff) topology defined by ta+t if and only if
t (¢$)>t(¢) for all ¢ed. For VCT let V = {t:teT, Jt'ev:d-t'
< t} where t' < t means t'(¢) < t(¢) for all ¢eo.

Note: T is compact Hausdorff.

Notation. For DO C 7D let F(DO) denote the set of all
risk functions corresponding to DO.

Definition 1.10, For any non-negative measure P on

(¢,B®) and 6eD, define the integrated risk B(P,8) by

B(P,8) = [R(¢,8)P(d¢).
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Definition 1.11l. For any non-negative measure P on

(®,B®), G*EDO is said to be a Laplace procedure for P rela-

tive to DO if and only if

B(P,S8*) = inT B(P,S).
GEDO

If P is a prchability measure, that is, PEP(BQ), then ¢&*

is called a Bayes procedure.

Definition 1.12. Giwven F(-!-) and P(+) as above define

Ii' to be the measure generated by F and P on the product
space (Sx@,BSxﬁé). Thus II' is the measure generated by the
relation

M'(sxAh) = [F(S]4)AP(¢)
A

for SEBS, ACBQ. Let 1 denote the projection of II' on (S,BS);
i.e. N(S) = NI'(Sxd).

Notatioqv If it exist we denote the BS measurable

.)Q

conditional measure on B® given S relative to II' by P(-

That is, P{(-

) 1is BS measurable and P(°|-) satisfies

AEB©.

[P(A]s)TI(ds) = N'(sxAh) for all SeBg.,
S

If P(+) is a probability distribution then P(:]|+:) is called
the posterior distribution on ¢ given (S,BS).

Definition 1.13. When P(-

*) exists define for acA,

seS
B(a|s) = [L(¢,a)P(d]s).

B(a|s) may be described as the posterior risk incurred from

taking action a.
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Theorem 1.1. ({Brown, 1974). Assume P(-|°*) exists.

Let

(1.1) A*(s) = {a:aeA,B(als) = inf B(al|s)}.
ach

Suppose A*(s) is non-empty a.c. I and there exists a pro-
cedure 8§*cD such that §*(s,A*(s)) = 1 a.e. ﬁ.

Then §* is a Laplace procedure for P. If B(P)<« then any
other Laplace procedure § must also satisfy &§(s,A*(s)) = 1
a.e. II.

Remark 1.3. If A is finite then A*(s) is non-empty

a.e. 1.

Corollary 1.1. (Brown, 1974). Suppose the set A*(s)

as defined in (1.1) consists of a single point of A a.e. 1.
Suppose that BA contains all single points and that there is
a measurable function d:S + A such that d(s) = A*(s) a.e. 1.
Then the non-randomized procedure §* defined by

6% (s,0) = eg.g) (")

where Ed(s)(') denotes the probability measure which gives
probability 1 to the point d(s) is a Laplace procedure for P.
Suppose in addition F(+:|¢) is absolutely continuous
with respect to I for every ¢ed and there is a §eD such that
B(P,8) < «, Then §* defined above is the unique Laplace

procedure.

The following theorem is well known.

Theorem 1.2. (Brown, 1974). If 8%*eD is the unique

Laplace procedure for some P, then §* is admissable.
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A wide variety of statistical results are based on the

N

compactness of P(DO). We shall list three important cnes.

T N—

Theorem 1.3. (Brown, 1974). Suppose F(DO) is compact

in T. Then

(1) There exists a minimal complete class relative to

(2) There exists an admissable minimax procedure rela-
tive to DO. ’

In order to state the next result, which is the only re-
sult that will be used in this thesis, it is necessary to de-
scribe what is meant by the limit of a net of decision pro-
cedures. This is most easily done when the family of
distributions {F(+]|9¢):¢e®} is dominated by some o-~finite
measure y, and A has an appropriate topology on it for which
A is compact and BA = B(A), the Baire o-field on A. So
under these assumptions we define convergence.

Definition 1.14. Under the assumptions stated above, a

net {6a} is said to converge to & in the weak topology on D
if and only if for every stl(S,Bs,u) and %2eC(A) (C(A) is
the class of real-valued continuous function on A)

[[E(s)0(a)8 (s,da)u(ds) ~ [[£(s)2(a)d(s,da)u(ds).

Definition 1.15. Any non-negative measure on (¢1B¢) is
called a prior. A measure P on (@,BQ) is called simple if P

is a discrete measure concentrated on a finite set of ¢.

We now state the third result.
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Theorem 1.4. (Brown, 1974). Suppose the family of

distributions {F(:|¢):4e®} is dominated by som= o~finite
measure y, A is compact second countable and I.{(¢,+) is lower
semi-continuous for each ¢ed. Let DO be (wzakly) compact and
TN .
F(Do) closed and convex in T. Then the (weak) closure of the
set of Bayes procedures for simple priors relative to the set
DO is an essentially complete class in DO.

The following theorem gives a sufficient condition for
S N—

F(DO) to be compact.

Theorem 1.5. (Brown, 1974). Suppose the family of dis-

tributions {F(-

¢):¢ed} is dominated by some o-finite measure
u, and A has an appropriate topology on it for which A is
compact second countable Hausdorff, BA = B(A), and L(d,+*) is
lower semi-continuous for every ¢ed. Then DO closed in the

(weak) topology on D implies that F(DO) is compact and hence

closed in T.

Remark 1.4. If the hypothesis of Theorem 1.5 is satis-

fied, then for Theorem 1.3 to apply one has to check that Do
is weakly closed. For Theorem 1.4 to apply, one checks in
N

addition that T(DO) is convex.

Remark 1.5. Suppose the family of distributions

{F(-|4):4e0} is dominated by some o-finite measure p and A
is finite. Then by giving A the discrete topology the hypo-

thesis of Theorem 1.5 is satisfied for any loss function L.
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CHAPTER 2
DECISION-THEORETIC RESULTS FOR THE

SUBSET SELECTION PROBLEM

This chapter deals with some decision-theoretic results
for subset selection problems. 1In Sections 1 and 2 we show
that essentially nothing is lost if we restrict our atten-
tion to Bayes procedures only. In particular in Section 1
it is shown that relative to the class of all subset selec-
tion procedures, Bayes procedures together with their limits
form an essentially complete class. In Section 2 it is
shown that relative to the class of permutationally invariant
procedures, Bayes proccdures for exchangeable priors, to-
gether with their limits, form an essentially complete class.

In Section 3 the concepts of Total Monotone Likelihood
Ratio (TMLR) and Total Stochastic Monotone Property (TSMP)
are introduced as multivariate generalizations of the con-
cepts of (univariate) monotone likelihood ratio and (uni-
variate) stochastic ordering. The related concept of Proper-
ty M, first introduced in Eaton (1967), is also described.
Implications of each of the concepts and relationships be-
tween the three are studied in detail. Examples of families
of distributions having the various properties are also given.

These concepts are used in all of the succceding sections
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to obtain results concerning the form of Bayes procedurcs.

In Section 4 the form of Bayes procedures when the
densities have property M and the loss function is monotone
is investigated.

In Section 5 we describe a loss function which seems
natural for the subset selection problem. For this loss
function sufficient conditions for procedures to he Bayes ane
given. For the same loss function a sufficient condition for
the uniqueness of Bayes procedures is given in Section 6.

In Section 7 the main theorem of this chapter is proved.
It is shown that under certain conditions the class of

monotone procedures forms an essentially complete class.

2.1, Decision-Theoretic Results for the

General Subset Selection Problem

The sample space S is a measurable space with an associ-
ated o-field BS‘

The parameter space ¢ is a measurable space with an
associated o-field BQ.

We assume the set of possible distributions {F(+]|¢):
¢ed} is dominated by some o~finite measure yu.

The action space A is the set of all non-empty subsets
of {1,2,...,p} together with the power set of A as its associ-
ated o-algebra BA. The action a ¢ {1,2,...,p} is to be in-
terpreted as the action of selecting the populations
{Hi,iga}.

A subset selection procedure § is a mecasurable

function from (S,Bq) to P(BA)° The class of all subset



selection procedures is donated by D.

The loss fﬁnction L is a measurable function from
(0xA, BQXBA) to ([0,«], B([0,x])).

By Remark 1.5 and Theorem 1.5 cof Chapter 1, f?iﬁ is
compact. Now f?f) is always convex. Hence Theorem 1.3 and
Theorem 1.4 apply. However, we shall only make use of
Theorem 1.4 which is restated as

Theorem 2.1.1. Relative to D, the (weak) closure in the

tdpology on D of the procedures that are Bayes relative to D
forms an essentially complete class.

We shall assume, throughout the thesis, that the param-
etexr space ¢ is a subset of the Euclidean space Rp+r, and
that for ¢cd, the first p components of ¢ are the parameters
of interest, and the last r components of ¢ are nuisance
paramcters. When we write (8,y)ed, 6 will always be the p-
dimensional vector of parameters of interest and ¢y will al-
ways be the r~dimensional vector of nuisance parameters. The
projection of ¢ onto the first p coordinates will be denoted
by © and the projection of & onto the last r coordinates will
be denoted by ¥. Note that 0 x ¥ does not necessarily eéual
. We shall assume that B@ is the o-field inherited from
the Borel o-field on Rp+r.

We shall assume, through the entire thesis, that the
sample space S is a subset of the Euclidean space Rp+q.

When we write (x,y)eS, x shall always be a p-dimensional

vector and y shall always be a g-dimensional vector. Roughly
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speaking, x will be the part of the observation that gives
information concerning the relative ordering of the 8's

while y will be the remaining part of the obscrv.tion. The
projection of S onto the first p coordinates will be denoted
by X and the projection of S onto the last g cocrdinates will
be denoted by Y. Again, XxY need not equal S§. We shall
assume that BS is the o-field inherited from the Borel o-

field on rRP1Y:
To fix ideas, consider the following example. Suppose

n observations are taken from each of the p independent

normal populations with unknown means and unknown, possibly

unequal, variances. Say the observations are Ziu' a = 1,

ceeyn, i =1,...,p, {2. o =1,...,n}tiid N(ui,oi2). By

ia’

sufficiency we can reduce the observations to (ﬁl,...,ﬁ ,

P
S 2,...,8 2). Suppose we want to select in terms of the
1 p
- - 2 2 C = (7
means. Then 6 = (ul,...,up), Y = (0l ,...,Up Y, %X = (Zl’

= _ 2 2
...,Zp) and y = (sl ,...,sp ).

2.2. Decision-Theoretic Results for the

(Permutationally) Invariant Subset Selection Problem

Notation. Let Sp be the group of permutations on
{1,2,...,p}. (The symmetric group of order p). The eleﬁent
of S_ which interchanges i and j, leaving all other members
of {1,2,...,p} fixed, is denoted by (i,j). For (x,y)sRp+q
and ﬂesp, define m(x,y) by T(x,y) = (Tx,y) where 7x is de-
fined by ('rrx)i = Xﬂ_li' Similarly, for (6,y) eRPTT and
ﬂesp, m(0,y) is defined by 7 (6,¢) = (70,y) where (ﬂO)ij=6ﬂ-1i.
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For any set S C Rp+q,ﬁs will denote the image of S under 7.
Similarly for any set Ag;Rp+r, mA denotes the image of A
undexr T,

We assume that the sample space S is a Borel subset of
Rp+r invariant under Sp, that is, for any Wesp, S = S, We
assume that BS is the o-field inherited from the Borel

o-field on Rp+q‘

We assume the parameter space ¢ is a Borel subset of

Rp+r invariant under Sp’ that is, for any ﬂesp, ™ = ¢, We
assume B® is the o~field inherited from the Borel o-field
on RPTT,

It is assumed that the family of possible distributions
{F(*,+|6,9):(06,P)ed} is dominated by some o-finite measure .

We further assume the following invariance properties for the

densities {f(-,+|0,0):(0,Y)ed} and the measure y:

f('II’X,y!TTG,lIJ) = f(X,YIB,‘P) 7

il
i

du(nrx,y) du(x,y) .

The space of possible actions A is the set of all non-
empty subsets of {1,2,...p} together with the power set of
A as the associated o-algebra BA.

A decision procedure § is a measurable function from

(S,B to P(BA). The class of all decision procedures 1is

S)
denoted by D. For 6D and WESp, define 76 by né(:-,a) =
6(',w—la). A procedure § is said to be (permutationally)

invariant if and only if &(ms,ma) = §(s,a) VY seS, neSp, acA.

Denote the class of invariant procedurcs by DI'
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The loss function L is a measurable function from (SxA,
BSXBA) to ([0,«], B([0,®])). We assume L satisfies the
following invariance assumption:

L(wd,ma) = L(4,a) V ¢,a and 7.

Definition 2.2.1. A non-negative measurc P on (%,B

o)

is said to be exchangeable if and cnly if for any ﬂCSp,

AeB P(wh) = P(h).

(O
Clearly in the above setup the decision prchblem is in-
variant under the group Sp' The following Hunt-Stein type

thecorem gives support for considering only procedures in

DI if the prime consideration is the supremum of the risk.

Theorem 2.2.1. Given any éeD, J GIEDI-s- sup R(¢,65) <
ou P
sup R(¢,6).

¢ed
Proof. Define 61 by 6§ .(s,a) = (1/p!) b S(us,ma).
TSy X
Then & is invariant. But sup R(¢,8.) = sup (E/p!) )
I I .
¢cd ped NLSP
R(t¢,8) < (1/p!) } sup R(w$,8) = (1/pt) ) sup R(¢,6) =
nesp bed TESEH bco

sup R(¢,d).
ded

If one does restrict attention to (permutationally) in-
variant procedures only, then the following can be proved.

Lemma 2.2.1. DI is closed in P in the weak togology

on 7.
Proof, Suppose a net {6@} in DI converges to §. For
fixed aeA and Wesp, let A, = {s:8(7s,Ta)~-8(s,a)>1/i}.

Suppose u(Ai)>O. Then there exists Bf;Ai such that O<U(Bi)<m.

B.
1

Hence [ & (s,ma)du(s) »~ [ 6§(s,ma)du(s) and [ & (s,a)du(s)
o B Q

nBs. . .
Bl 1 Bl

Now I and IﬂBi eLl(S,BS,u). Both I{a} and I{ﬂa} e C{A).
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[ §(s,a)du(s). But [ & (s,na)du(s) = [ § (s,a)du(s) for all a.
B. = o B. ©

i i

Therefore [ [§(7s,ma)-8(s,a)ldu(s) = 0. But the left side
is > (l/i)ﬁ%Bi). Hence u(Bi) = 0. Contradiction. 8o u(Ai)
= 0. pf{s:8(ns,ma)-6(s,a)>0} = }im u(Ai)=O. Similarly
pi{s:8(rs,ma)~8(s,a)<0} = 0. Thé;:fore n{s:8(rs,ma) # &(s,a)}
= 0. a and T are arbitrary. Hence 6801.

Now if 6§ § EDI, then uél + (l—a)ézeDI for any ae [0,11.

1’ 72
N .
Hence F(DI) is convex. Combining this and the previous lemma
we see that Theorem 1.3 and Theorem 1.4 apply. However, we
shall only make use of Theorem 1.4 in this thesis which we

restate as:

Theorem 2.2.2. Relative to the class of (permutational-

ly) invariant procedures DI' the (weak) closurce in the
topology on DI of the Bayes procedures relative to DI forms
an essentially complete class.

Given a prior it is often easier to find its Bayes pro-
cedure(s) relative to D than to find its Bayes procedure(s)
relative to DI. The following theorem gives the needed

connection.

Theorem 2.2.3. The class of procedures that are Bayes
relative to DI ig contained in the class of procedures that
are Bayes relative to D for exchangeable priors.

Proof. Suppose 6801 is Bayes relative to DI for some
prior probability measure P on (9, BQ). Then it is easy
to see that § 1s Bayes relative to DI for the prior PO de-

fined by PO(A) = (1/p!) ) P(TA). For P relatively to D a
e s
P



Bayes procedure exists hence an invariant Baves procedure
exist. Call it &6'. But B(S,PO) < B(S‘,Po). Hence & is

Bayes relative to D for PO.

2.3. Some Orderings on Families of Distributions

In univariate statistical inference, the concept of
monotone likelihood ratio plays a central role. Therefore
it is reasonable to think that the concept of multivariate
monotone likelihood ratio should be important in multivariate
statistical inference. Unfortunately there has never been a
unified theory of multivariate monotone likelihced ratio.
In studying different problems different definitions of
multivariate monotone likelihood ratio werce preposed. In
Pratt (1956), a definition of monotone likelihood ratio on
contours was given. Karlin and Truax (1960), and later ilall
and Kudo (1968), used essentially the same definition in
studying slippage tests. In studying the complete ranking
problem, Bahadur and Goodman (1952) and Lehmann (1966) made
certain independence and permutational invariance assumptions
and used univariate MLR. It was later found by Eaton (1969)
that for the complete ranking problem a weaker condition
which he called Property M suffices. As it turns out, none
of the abdve concepts is’really adequate for the problem at
hand, namely the subset selection problem. We have therefore
chosen to give our own definition of multivariate monotone
likelihood ratio and also the corresponding definition of

multivariate stochastic ordering. It is clear that these



new concepts will be useful in studying other multiple com-
parison problems. However, it is not yet clear whether they
will be useful in other, more general, nultivariate infer-
ence problems.

Definition 2.3.1, For any fixed BRC XK = [1,2,...,p} (B

may be the empty set or the whole set), define a partial
B
ordering ' less than or equal to in B' (<) on X as follows:

AT

For X =(xl,x2,...,xp), x' = (x'l,x'z,...,x'p), x < x' if
and only if
be < X as i1 € B
. ;‘ i » 3
- ¥
B
In words, x < x' if and only if x is less than or equal
to x' in those coordinates that are in B and greater than or
equal to x' in those coordinates that are not in B.
The above definition induces a partial ordering on S
as follows:
Definition 2.3.2. For (x,y), (x'.y")eS, (x,¥y) < (x',y")

B
if and only if x < x' and y = y'.

Definition 2.3.3. A set AC S is said to be nondecreas-
B
ing in B (/B) if and only if seA, s < s'=>s'cA.

Definition 2.3.4. A function h:S » R is said to be’
B
nondecreasing in B(/B) if and only if s < s'=>h(s) < h(s').

Thus a set is nondecreasing in B if and if its indicator
function as a function is nondecreasing in B.
, : B
In exactly the same way we define < and /B on O, ¢ anad

for functions from ¢ to R.
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be stochastically smaller in B than F(«!¢?) if and only if

Definition 2.3.5. The distribution (-

is said to

for any measurable sct A C § that is nondecreasing in B,
F(Rl¢,) < F(A]9d,).

Definition 2.3.6. The family of distributions {F(-

¢):

¢c®} is said to be stochastically nandecreasing in B (SM/B)

if and only if for any measurablec set A C S that is non-
decreasing in B, F(A!¢) as a function of ¢ is nondecreasing

in B.

Remark 2.3.1. Lehmann (1955) in studying ordered

families of distributions defined and investigated families
of distributions that are stochastically nondecreasing in

K= {1,2,...,p}.

Definition 2.3.7. The family of distributions {F(-:

¢):

pecd} is said to have Total Stochastic Monotone Property (TSHMP)
if and only if it is stochastically nondecrcasing in B for

every BC X = {1,2,...,p}.

Definition 2.3.8. The family of densities {f(+|¢):

$ed} is said to have nondecreasing likelihood ratio in B
(MLR/”B) if and only if
B B
s <s', ¢ < ¢ =>r(S|)E(s|9") < F(slE(s']o").

Remark 2.3.2. In investigating multivariate one-sided

tests, Oosterhoff (1969) defined and used nondecreasing

likelihood ratio in K = {1,2,...,p}.

Definition 2.3.9. The family of densities {f(-+|¢):

ded} is said to have Total Monotone Likelihood Ratio (10 )



if andonly if it has nondecrcasing likelihood ratio in B

for every B C XK = {1,2,...,p}.

Definition 2.3.10. (Eaton, 1967). Under the symmetric
setup of Section 2.2, the family of densities {[£f(-]|¢):4ed}.
is said to have Property M if and only if for (x,y)eS, (6,y)
ed, x = (xl,xz,».-.xp), 6 = (Gl,€52,-.-,6p).

< xX., 0, < aj:§ f(x,yl0,%) > £(x,y|(i,3)6,¥)

X,
i—-73 i

In exactly the same way we define TSMP, THMLR and, in

the case of exchangeable prior, Property M for the posterior

distributions and densities {F(-]s):seS8} and {f(+|s):seS}.

Definition 2.3.11. For any subset selection procedure

§ let §.(s) = ! 8(s,a), i.c. §,(s) is the probability of
ica

selecting i having observed s. A subset selection procedure

§ is said to be monotone if and only if for each i éi(s) is

essentially /{i}, that is, there do not exist Sir S, € S,

{i} .
H(Sy) . u(S,) > 0, sy <5, for all slesl, s,eS, such that
ess sup 6i(s) > ess inf Gi(s).
seSl seS2

Remark 2.3.3. What we call 'monotone' procedures

traditionally have been called 'just' procedures in the
literature. See Nagel (1970) and Gupta and Nagel (1971).
Following Gupta and Huang (1976), we have changed the térmi*
nology to ‘'monotone' since we have in mind the analog of
the classical univariate result of Karlin and Rubin (1956)
on the class of monotone procedures.

Theorem 2.3.1. TMLR = TSMP.

Proof. Suppose {f(<]|¢):¢cd} has TMLR.



25
B
Let B C X = {1,2,...,p} be fixed. For ¢ < ¢' let $™ ana ST
be the sets in S for which f(s|¢') < £(s|¢) and f(sl]¢') >
i(sl¢) respectively.
Suppose h, a mecasurable fuﬁction from (S,BS) to (R,B(R))},

is nondecreasing in B, Let a = sup h(s) and b = igf h(s).
Then b-a > 0 by MLR/B and > >
E(t[¢') - E(h]|¢)

alF(S7]¢") - F(ST|¢)1 + bIFsT]e") - F(sT|)]

v

= (b-a) [F(ST]¢") - P(sT|e)1 > o.
This is true for all B. Hence TMLR => TSMP.

Theorem 2.3.2. Under the symmetric setup of Section 2.2,

TMLR =» Property M.
Proof. Suppose {f(~,'|8,w):(9,w)e®} has TMLR. Suppose
(XIY)ESI (6,0)ed, x = (Xl’XZ{T“’X ), 6 = (611621---16 ).

i} P {i} P

< 6j=i>x < (i,3)x, 6 < (i,3)6. By

Clearly % < Xj’ Gi <

MLRA{i} we have f(x,yl¢,¥)£((i,3)x,y|(i,3)06,¢9) >
L0, =, y]0,9) £(x,yv| (1,3)0,¥) or
fz(XIYIGIw) _>_ fz(XIYl (l,J)GIlP)-

This completes the proof.

Examples of Families of Densities Having TMLR

We first make the easy observation that if f£(x|0) =
p p p
N f.(x.]6,) and X = 1 X,, © = I ©,, then TMLR is equiva-
. ittt . i . i
i=1 i=1 i=1

lent to univariate MLR, that is, {f(+]|8):6e0} has TMLR

if and only if for each i, {fi(' ei):eis@i} has univariate

MLR. In addition, we have the following
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Theorem 2.3.3.

Any family of distributions whose
densities are of the form

(2.3.1) C(6,¥) expl §Q (O ,v)y ]g(v yyh{x,y)
i=1t
where each Qi for fixed ¢ is nondecreasing in 0

has TMLR.
i
E_rOOf' Suppose (XIY)I (X'IY)ES; (0,9), (6",¥)ed;
B B
x < x' and 0 < 8'. We need to show that
E(‘ (9 PP x EQ (6', ‘P)X' 2
1—1 i=1
nt »
jo (6, ,¥)x! j?l“ EN

or equivalently

i=1

! ) >0
1 i -
; B B
But this follows from x < x' and 6 < 6'. B is arbitrary.
Hence the densities have TMLR.
Example 1. The multlzomlal density
X g X.1lnQ,
n 1 p - n i=1"1 b
(e s )0 -0 P =T ) e
1%

10 %
is in the form of (2.3.1.).

Example 2. The Direchlet density

I'( z X, ) X, -1 x_ -1
i=1 1 p

T(xi)...P(xp) 1 P

is in the form of (2.3.1.)

Example 3.

Consider the case of taking n observations
each from p independent normal populations with unknown

means and unknown but equal variances

The sufficient sta-
tistic in this case is x

- 2
l""’Xp’S , the samplc neans and the pnoled
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estimate of the common variance. The joint dunsity

u

i = =p(n-1) 2

. 2, %4 7S

i=1 0“/n 20 —~ 2
e XS

2
C(E,a e pree ¥y )

h(§l,§
is in the form of (2.3.1.).

Examples of Families of Distributicns Having TSMP

P
We first note that if F(x|8) = ny<xi}ei) then TSMP re-
i=1] :
duces to univariate stochastic ordering, that is, {F(-

6):0e0}
hés TSMP if and only if for each i, {Fi(-|6i):eie®i} is
stochastically ordered where Oi is the projection of 0O onto
the ith coordinate. 1In addition, we have

Theorem 2.3.4. Suppose X = 0 = RF and F(X,YIG,w) =

Fo(x-e,ylw), that is, F = {F(*,+|6,¥):(0,¥)ed]) is a location
family of distributions, then F has TSMP.

Proof. Suppose AEBX is nondecreasing in B, (0,¢),
(6',v)ed and © z 8'. Then Ay = {(x,y):(x+6,y)eA} C

Ay, = {(%,y):(x+6' ,y)eA} and hence F(A|0,y) = FO(Ae|w) <

FO(Ae.lw) = F(a]|6',y).

Examples of Families of DensitieS'Having Property M

It is easy to see that under the symmetric setup of.
Section 2.2, if f(x|0) = _ﬁlf(xilei) then Property M is
equivalent to univariate QER. In addition the following
theorem concerning elliptically contoured families of distri-

butions was proved in Eaton (1967):

8):6€Rp}

Theorem 2.3.5. (Eaton, 1967). Suppose {f(-

are densities with respect to the Lebesque measure on rY.
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Suppose further

fF(x]|0) = C(A) gl (x-0) A(x-0)"
where A is a pxp positive definite matrix, g is strictly de-
creasing, and C(A) is a positive constant. Then the follow-
ing are equivalent:

8):0eRP} has Property M;

(i) {f(-
(i1) A = ;I - ¢,

Clearly in the symmetric setup there are families of

11, Cy” 0, —w<C2/Cl < 1/p.

distributions having TSMP but not Property M since univari-
ate stochastic ordering does not imply univariate MLR. On
the other hand Property M does not imply TSMP either. The

following example shows this.

*2
2?31\\ (5,6) | (6,5)
(1,2) 0.9 0.1 (5,6)
(2,1) 0.1 0.9
(3I4) 0-6 0.4 (6"5)
(4,3) 0.4 0.6
%2

This family of four distributions clearly has Property
M. But it does not have TSMP. For instance, P{(5,6)|(1,2)}
= 0.9 > P{(5,6)|(3,4)} = 0.6.

The following diagram summarizes the relationship
between TMLR, TSMP and Property M.

TSMP

TMLRiiZ j£$¥

Property M



The following is a generalizaticn of a rcuvlet in
Lehmann (1955).

Theorem 2.3.6. Supposc F(-

¢) is stochasticallv smaller

than F(+|¢') in B. Then for any measurable fuiction b that
is nondecreasing in B, if E¢[h(X,Y)] and E¢r[h(X,Y)} exist,
then E¢[h(X,Y)] < E¢,[h(X,Y)].

Proof. Let nt and h~ be the positive and negative parts
of h respectively. We shall approximate h+ by a sequrence of

simple functions. Let
(i-1)/2" for (x,y)ss(?)

hn(X’Y) =1 n for (X,Y)ESN

where

s = ey -1 /2" <0y < 12t

i=1,2,...,n2",
(n +
S(N) = {(x,y):h (x,y) >n}, N = n2™ + 1.
? n
Then h = ) 1/27 (I.,(n) + I (n) + ... + I (n)) =
noidp 54 i+l SN
N
yoa2h o N oo
i=2 U s’y
j=i -
+ N (n) .
and hn > h'. Now for each i, |J S'.’ is nondecreasing in B

j=i
since h+ is nondecreasing in B. Hence E¢[hn(X,Y)} <

Eyo [y (X,¥)].

Using the Monotone Convergence Theorem, we have

+ — N 1 < ) =
E¢[h (X,v)] = iig E¢[hn(X,Y)] < iig E¢r[hn(X,Y)]

+
E¢:[h (X,Y)].

Similarly we can prove that E¢[h~(X,Y)] < E,, [h (X,Y)]. Thus

¢)I
if Eg[h(X,¥)] and B/ [h(X,¥)] exist then L, [h(X,Y)]<E

5 ),[h(X,YH.

¢ !
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The result that we will actually use is contained in the

following corollary.

Corollary 2.3.1. Suppose the family of distributions

{F(-|¢):4e®} has TSMP. If h:S - [0,»] is measurable and
nondecreasing in B, then E¢[h(X,Y)] as a function of ¢ is
nondecreasing in B.

Even though Property M does not imply TSMP, it docs
imply a sort of orne-dimensional stochastic ordering which we
shall prove through a scries of lemmas. So for the remain-

der of this section, we assume the family of densities

{f(.,.

0,9):(6,y)ed} has Property M.

Lemma 2.3.1. For fixed i,j(1<i,j<p) let Cg =
Hx,y) s (x,y) €S, %, < xj}. Then for any set C C Cg reasur-

able with respect to Bq and any (6,y¢)c¢,

v

F(cle,y) £F((i,5)clo,y) as 0, 3 0.

Proof. Suppose ei < Oj. Then

F(cl6,9) = [£(x,y|0,9)du(x,y)
C
< ff(x,y|(i,9)8,9)du(x,y)
(o

= | feylep)de(x,y)
(i,3)¢C
= F((i,3)C|6,9).
Similarly for Gi > Gj.
Lemma 2.3.2. Suppose C C S is measurable with respect

to By and nondecreasing in {i}. Then

F(C]0,0) S F((i,9)C|0,9) as 0. = -
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Proof. Let c, = {(x,y:(x,y)eC, ((i,3)x,y)eC},
C;, = {(x,y):(x,y)eC, ({i,3)%,y)£C} and cy = {(x,y): (x,¥)¢C,
((irj)er)EC} = (irj)ci- Then

F(ClB,4) = F(C,l8,4) + F(C;[0,¥),
F((i,3)¢le,v) = F(C [e,v) + F(Cyl0,9).

But (x,y)ecj::>xi < %x. for X; > %x. and ((i,3)%x,y)eC would

J J
imply (x,y)eCsince C is nondecreasing in {i}. Hence Cj -
Cg. Therefore by the previous lemma

, F(clo,9) = F((i,9)cle,y) as o, 0.

Theorem 2.3.7. Suppose h:S + [0,»] measurable with re-

spect to BS is nondecreasing in {i}. Then Eq [h(X,Y)] <
, =

v

Ee’w[h((l,j)X,Y)] if Gi < Gj.
f. h((i,j) X, = . ' .
Proof {i?G'W[ ((1i,9)%,Y)] E(l,j)@,w[h(x Y)] But
ei < ej:¢ 6 < (i,j)6. Hence by Corollary 2,3.1.

Bg,y [NOGYIT < By )0 (X, D] = B (h((4,3)%,1)].

2.4. Form of Bayes Procedures Under The Symmetric Setup

When The Densities Have Property M and

the Loss Function is Monotone

The results of this section were essentially obtained
in Goel and Rubin (1975). We assume the setup of the problem
is the symmetric setup of Section 2.2. To refresh our
memory, we review briefly the setup.

The sample S is a Borel subset of grP+d invariant under

S the symmetric group of order p. The associated o-field

pl
BS is*the o-field inherited from the Borel o-field on Rp+q.
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) ) +r
The parameter space ¢ is a Borel subset of RP'T in-
variant under Sp. The associated o-~field B@ is the o~field

inherited from the Borel o-field on Rp+r_

The femily of possible distributions {F(-,+|0,9):
(6,¢)e¢} is dominated by some o-finite measure j. The den-

sities {f (-,

6,¥):(60,9)ed} and the dominating measure u

satisfy the following invariance assumptions: For any ﬂesp

f(x,y]0,y)

it

f(mx,y|m6,¥)

du(rx,y) = du(x,y).

The action space A is the set of all nonempty subsets
of K = {1,2,...,p} together with the power set of A as
the associated v-algebra By-

A decision procedure is a measurable function from
(S,BS) to P(BA). The class of all decision procedures is
denoted by D. A procedure §eD is said to be (permutation-
ally) invariant if and only if & (ms,ma) = 6(s,a)¥s,a. The
class of all invariant procedures in D is denoted by DI.

The loss function L is a measurable function from (SxA,
BSXBA) to ([0,~],B([0,«])) satisfying the invariance condi-
tion

L(n¢,ma) = L(¢,a).

All the assumptions made in the above setup are invari-
ance assumptions. We now make in addition two ordering as-
sumptions.

We assume that the densities {f(x,y|6,¥):(8,9)ed}

have Property M as defined in the previcus scection., That is,



for (x,y)eS, (6,¢)c¢, x = (xl,xz,...,xp), 8 = (06,,8

12
0,0) > £(x, vy (1,3)0,4).

Lo, . e 4
X, > xj, Ol > O] f(x,y

We assume the loss function L in addition to being
invariant has the following monotonicity property:

For (6,y)e®, 0 = (0,0 6 6, > ej, iea, jfa

2!"" U), i

&

imply

L(0,¢),a) < L{(6,9),(i,3)a).

For each acsA let Ba = {(x,y):(x,y)eS, Xy
ica, jgal.

For each P, (x,y) and a consider ra(x,y) defined by
ro(xyy) = JLOO,y),a) £(x,y]|e,¥)aP(8,y).
4]
Note that ra(x,y) is proportional to the posterior risk

B(al|x,y).

Lemma 2.4.1. (Eaton, 1967). Under the assumptions

made in this section, for any aeA, ica and jga imply

ro(x,y) < (x,¥) Y(x,y)eB_.

“(i,9)a

Proof. Let & _ = {(€,y):(0,P)ed, 6, = 0.}, ¢, = {(e,y

0
(0,9)ed, 0, >ej}, o

i j
{(o6,v):(6,P)ed, 0, <8j}. Then

2

(2.4.1) r(i,j)a(xry) - r (x,y)
2
= ) [ Lo,y , (i, §ra) - L((e,v),a)l
m=0 @m

£(x,y|6,¥)dP(0,y).

., 0

> xj for all

The invariance assumptions imply that L((6,y), (i,j)a)

= L{(6,y),a) for (G,W)EQO and

P

)y



[ IL(8,0), (i, 5)a) - L8, ¥),a)1£(x,v]0,)aP(0,y)
d
2

= [ [L((68,9),a) = L((6,¥),(i,3)a)]

.

f(x,y[(1,3)0,¥)aP(a,y).

Thus we can write (2.4.1) as

(2.4.2) (x,y) - r (x,y)

Y(i,3)a

= [IL((8,9),(i,3)a) - L((8,y),a)]

%

[£(x,y|6,9)-£0e,y| (3,3)0,9)1aP(0,¥).
Now (0,¥)ed;, (x,y)eB_ imply £(x,y|0,¥)-£(x,y|(1,3)0,¢)
> 0. Also (6,¢)e®l, icea, jfa imply L((6,¥), (i,3)a) -
L(ie,w),a) > 0. Hence (2.4.2) > 0 and (2.4.1) > 0. This
completes the proof;

For each seS, let H_(s) = {a:aed,seB_,|al = m} where |a|

p
denotes the number of elements ina and H(s) = u Hm(s) .
m=1

Theorem 2.4.1. Under the assumptions made in this

section, for any non-negative measure P on (@,B® ) which is
*
invariant under S_, a sufficient condition for a procedure §

to be Laplace for P relative toi& is

§*(s,T(s)) =1 where
T(s) = {a:aeH(s),B(a|s) = min B(als)}.
acH{s)

Proof. By Theorem 1.1 a sufficient condition for é* to

be Laplace is §*(s,S8(s)) = 1 where S(s) = {a:aEA,B(als) =

5) =

mjﬂ B(a[s)). By the previous lemma aeHm(s = B(a
acA
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min B(a|s). Hence B(als) = min B(als) = B(als) =
{q|=m ccH(s)
min B(olg), that is, W{sg) C S(s).
acA -
2.5. An Intuitive Loss Function

In interpreting subset selection proceduvures as screen-
ing procedurcs, we want the selected subset to contain the
true 'best', but we do not want the subset to be too large.
It secms reasonable then any symmetric loss function should
contain at least the following three components:

1. Incorrect Selcction (ICS8) = 1 - Z I{G A 5}
ica LY j
3=1, ...,

2. The size of the selected subset a, denoted by |al;

3. Some measure of the average 'goodness' of the

selected sect, e.g. max 0. - ] o;/]al.
i=l,...,p J ica
The gquantity max 0. - max 6. can be considered as
3=1,...,p iea

a combination of 1. and 3.

Traditicnally ICS and |a| have received the most atten-
tion. Goecl and Rubin ({(1975) considered cl(wii Gj -
max 0,) + c, |a] and using essentially Theoiem'é:§:g ob-
i;?ned results concerning the form of Bayes procedures.

Chernoff and Yahav (1977) considered cl(max Oj'~
9=1,...,P -
max 0;) + c,(max Gj - 3 6j/|a|) and performed Monte

ica j=1,...,p ica
Carlo studies assuming normal populations and normal ex-

changeable priors. They found that in terms of Bayes risk
Gupta type procedures are extremely good compared to Bayes

procedures but could not offer any explanation as to why this



is so. Bickel and Yahav (1977) considered cl(JCS) +

cz(mix Oj - .Z Oi/!al) and studied the auzvaptolic
=1, ...,p iea

behavior of Bayes procedures as p + o assuming normal popu-

lations.

‘As it turns out the form of the Bayes procedures is
fairly sensitive to what is used for 3. As “he inclusion
of the compenents 1. and 2. seem to be in general agrecment,
it seems reasonable to consider loss functions of the form
L(¢,a) = cy(ICS) + c, |a].

Some care must be taken in defining ICS when several of
the 8's are tied for the maximum. Traditionally when this
happens one of the 6's tied for the maximuin is arbitrarily
'tagged' as the 'best'. This makes PO,w{ICS} a continuous
function of (0,y) in the usual case, namely, when the secup
of the problem is symmetric, the procedure considered is
permutationally invariant, and the family of possible distri-
butions is in the exponential family of distributions. 1In
this thesis we shall use a slightly different definition of
ICS which is equivalent to the traditional definition (in
terms of risk functions) in the usual case described above
but not equivalent in genecral.

p
Definition 2.5.1. ICS(¢,a) =1 - J ) (1/m)I,  (¢)
icea m=1 im

where

o, = {¢:¢e®, 6, = max ., E



Remark 2.5.1. 1In words, ®im is the subset of ¢ whore
?i iz tied with m-1 other 68's as the maximum.
To fix ideas, suppose three of the ¢'s are tied for
ithe maximom, if 'a' selects two of the three, then ICS (¢ ,a)
= 1/3.

We shall use throughout the thesis the following short-

hand notation.

p
Notatjon. I, _ .o 5.1 (®) 2 Z (1/m)I,  (¢)
1 . J m=1 im
]‘lr---lp
Note that defined this way I .o _. . 6 }(¢) is i},
iTLe j
ij=1,...,p

We now describe a Bayes procedure.

Theorem 2.5.1. If the loss function is Cl(ICS) + czla[,

then for any prior, the procedure

Gl(s,a*) = 1

where
* = 1 . — » / « £ *
a {1.}?{6i max les} > cz/cl} if a* # ¢
j~l,...,p
and
§, (s, {i}) = 1/N(s)
where
P{0., = max 0.|s} = max P{6_ = max 0. lslt,
1 g=1,...,p " =l,...,p ™ §=1,...,p 7
p
N(S) = lglI{P{elzmaX ej's} =
i=1l,...,pP
max P{6 = max Gjls}}(sh
m=l,...,p j=ll' 'p
if a* = ¢

is Bayes.
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Proof. The posterior risk B(a|s) = c[1- ) P{o, =
ica
max Gjls}] + c,lal.  The result follows from Theorem 1.1.
j=ll"‘lp

Corollary 2.5.1. If c2/cl < 1/p then 61 reduces to

62(s,a*) = 1

where
a* = {i:p{e, = ?2§'...’pej|s} > c,/cq}.
Proof.
.E P{Oi = max ejls} =1,
i=1 j=l,...,p
Yo}

c,/c; < 1/p=a* # ¢.
Suppose the setup of the problem is symmetric, then 61
is permutationally invariant for any exchangeable prior. Inde-

scribing §. one can therefore assume for any s = (Xl'

1
x2,...,xp,yl,y2,...,yq) that Xq S Xy S el < xp.

Corollary 2.5.2. Suppose the densities {f(-,-IO,w):

(6,9)ed} have Property M and the prior is exchangeable. For
s = (xl,xz,...,xp,yl,yz,,..,yq) assume without loss of gener-

< ... < xp. Then 6§, can be written as

ality x 1

< %,

1
63(s,a*) = 1 where a* = {i:i>i*} 1if i* < p,

65(s,{i)) = 1/N(x)

P
i z = = Y i i * =
for each i such that x, X N (x) .z Tig.=y } £ 4 p
: j=1 73 'p
where
i* = largest integer i such that P{6, = max Oj|s}

< CZ/Cl'
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Proof. This follows from the fact that the posterior

densitics with respect to the prior have Property M and so

by Theorem 2.3.7. x, < x.=>P{6, = max 6.]s} <
i -7 i . J -
j"l,.uo,p
P{6, = max les}.
J J=1l,...,p

2.6. Unigqueness of Bayes Procedures

The following gives a sufficient condition for the
uniqueness of Bayes procedures.

Theorem 2.6.1. Suppose that the setup of the problem is

the symmetric setup of Section 2.2, £(x,y|6,¥) = C(6,V)

exp [ E Q(ei,l,b)xj + ? R.(Y)y.lh(x,vy), and the dominating
i=1 - §=1 ) J ot

measure p is the Lebesgue measure on R Suppose also the

loss function is ¢, (ICS) + c2|a| with ¢,/c; < 1/p. Then for

any exchangeable prior, 62 is the unique Baves procedure.

Proof. For any SeB,, F(S|¢)=0 for some ¢e¢ implies

S’
F(S|¢)=0 for all ¢e¢. Hence for any prior, F(-

$) 1is absolute-
ly continuous with respect to I for every ¢e®. Since the

loss function is bounded, for any prior P and any 8eD, B(P,§)
< o, Hence for Corollary 1.1 to apply we need to show A*(s)
as defined in (1.1) consists of a single point of A a.e..ﬂ.
Without loss of generality assume h(s) > 0 for all seS. The

posterior density with respect to the prior has the form

C(e,w)exp['g Qi(e,w>xi + _?

R.(6,P)y.]1h'(x,y)
i=1 ’ J ) )

1
and S$ is in the natural parameter space of the posterior.
Considex the‘set E of (recal) solutions of P{Oi = max

j=1,...,p
ejls} = ¢,/c; in D where D is the interior of the natural
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parameter space. For fixed (xz,...,x ,yl,...,yq),

P
{0, = max 6.|s} is analytic in x,. Likewise for every
; j=l,...,p
other component of (x,y). This fact implies p(E) = 0 or

E = D. We will show this for p=2, g=0. The proof for the
general case follows by induction.

Let Dy and El be the projections of D and E onto the

first axis respectively. For each XlED let DX =

1’
1
{xzz(xl,xz)eD} and Exl = {xzz(xl,xz)eE}. If u(E) > 0, then
there exist €>0 and Ei Q-El such that u(Ei)>0 and u(EX ) >e
1
- nij s ] 3

for each Xy £ hl. In particular for each xleEl, Exl is
uncountable and hence is the whole of DX .  But then there

1

exists an interval (a,b) such that for each xze(a,b), the
set {xl:(xl,xz)eE} is uncountable for otherwise Ei would
be countable. Illence {(xl,xz):(xl,xz)eb, xze(a,b)} C E.

By analytic continuation we have D = E.

Suppose D = E. Then P{ei = ?ET pejls} = c2/cl

- ’- e ®

a.e. II. By symmetry P{6, = max | } = ¢c,/c, a.e. I

i . C27¢1
3=l,...,p

for each i, i=1,...,p. But then E p{6, = max 6.]s} =
L i L j
i=1 j=1l,...,p

p(cz/cl) < 1 a.e. I. Contradiction. Hence U(E) = 0
which implies A*(s) as defined in (1.1) consists of a

single point of A a.e. I.

The following figure might clarify the proof.
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Figure 1. The Sets D and E.

2.7. Torm Of Bayes Procedures When The Densities

Have TMLR and the Loss Function is c,(IC8) + c,lal

We have seen earlier that the concept of Property M is
important in the study of Bayes procedures partially because
the densities of (x,y) given (6,y) having Froperty M implies
for any exchangeable prior P the posterior densities of
(6,¥) given (x,y) with respect to P have Property M and hence
the posterior distributions have the one-dimensional stoch-
astic monotone property stated in Theorem 2.3.7. Likewise,
the concept of Total Monotone Likelihood Ratio (TMLR) is
important because the densities of (x,¥) given (0,y) having
TMLR implies for any prior P the posterior densities of {(6,9)
given (X,y) with respect to P have TMLR and hence the poster-

ior distributions have Total Stochastic Monotone Property



(TSMP) . We state (L0 loitior fact formally.

&gzmgﬁz:z;l_ Suiod o the dengities {f(x,y§9,¢):(0,¢)v®}
have TMLR. Then {or ery prior P the posterior densities
of (0,]) given (x,y) with respect to P have TMLR and hence
the posterior distribuiions have TSMP.

Prooﬁ. The posterior densities with respect to P are

{£(x,y|0,0)/[E(x,y|0,¢)AP(0,0) s (x,y)eS} a.c. I. They have
4 &

TMLR because of the symmetry in (x,y) and (0,%) in the

definition of TMLRT. The rest follows from Corollary 2.3.1.

Theorem 2.7.1. Suppose the densities {£(x,ylo,w):

(6,9)ed} have TMLR and the loss function L(¢,a) = cl(lCS)
+ cZ[aI is such that CQ/Cl < 1/p. Then the nonrandomized

Baves Procedure §., defined in Section 2.5: 'Gz(s,a*) =1

2
where a* = {i:P{6.=max 0.|s} > c,/c,} is monotonc.
: 1 =1 D J — 72771

1,...,

Proof. y is A{i}. By the previous

I{Oizmax ej,

‘ , 3=1l,...,p _

lemma and Corollary 2.3.1, P{Oi=max ej[x,y} is  f{i}.
j=1l,...,p

Hence 62 is monotone.
However, if the setup of the problem is symmetric, then

the condition that cz/clil/p is not needed.

Theorem 2.7.2. Suppose the setup of the problem is

the symmetric setup of Section 2.2, the densities {f(x,yfo,wh
(6,y)ed} have TMLR and the loss function is cl(ICS) + czlal.
Then for any exchangeable prior, the Bayes procedure,63
defined in»éection 2.5,

§,(s,a*) = 1 where a* = {i:P{0.=max - B.|s} >
3' - 1 1] J -
],__. "“"p

Cz/Cl} 1if a* # ¢,
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64(s,{i)) = 1/8(x)

where

is monotone.
We have the following trivial

Corollary 2.7.1. If the hypothesis of Theorem 2.7.1.

(Theorem 2.7.2) is satisfied, and if for a prior (exchange»
able prior) there is a unique Bayes procedure, then that
Bayes procedure is monotone.

We are now in a position to prove the following essen-
tially complete class theorem.

Theorem 2.7.3. Suppose the setup of the problem is the

symmetric setup of Section 2.2, f(x,y|0,¥) = C(8,y) exp
P 9
[ ) oo, v)x.+ ) R.(Wy.lh(x,y) where, for fixed v, Q is
=1t ty=1 )T ,
nondecreasing in ei, and the dominating measure p is the
Lebesque measure on Rp+q. Suppose also the loss function is
cy (ICs) + c,lal with ¢,/c¢y < 1/p. Then relative to D, the
class of monotone invariant procedures forms an essentially

complete class;

Proof. Since the setup of the problem is symmetric,

Theorem 2.2.1. implies the closure of Bayes procedures rcla-
tive to D for exchangeable priors forms an essentially com-
plete class felative to DI. By Theorem 2.6.1, for each ex-
changeable prior, 62 is the unique Bayes proccdure. 62 is

of course invariant. By Theorem 2.3.3. {f(~,-!0,W):(ﬁ,w)r¢l
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has TMLR. So by Theorem 2.7.1, 62 is monotone. Thus it
remains to prove that limits of monotone procedures arc
monotone.

_ a
Suppose a net {§"} of monotone procedures converges to

§. Suppose that § is not monotone, that is, there exists i, S

{i} | v
3253, u(Sl), u(SZ) > 0, sli s, for all slesl, S qu, and
ess sup §, (s) > ess inf 6. (s ). It is easy to check that
ss:Sl S ES

this 1mpllg° there ex1stg wl g.Sl, w2 C Sl; 0 < u(wl),

“(wz) < = such that Gi(s > di(sz) + € some €>0 for all

1

slewl, 52€w2¢ Now [wfﬁa( )dn(q)]u(uz) < :gw sup 6g(s)p(wl)

. 1
n(lw,) < ess inf 61( )u(t’ Jullly) <[ ch (s)dw(s)lu(w,).  Eince

1
‘ seW-, wz
f(S(;(S)du(S) + [8,(s)au(s) anad [6?(8)(3}1'(5) » [ (s)du(s)

Wy wy W, W,
we have | f5.(s)du(s)]u(w y < fG.(s)du(s)]p(w ). But

1. 27 — i 1

wl wz .
Gi(sl) > Si(s2) + & for all slewl, szewz :;zs; inf 6i(s) >
1

ess sup 61(‘) + £. Hence | fd du(s)}u(w2) > ess inf 5i(s)
sel scw1
u(w )u(w ) > [ess sup §. (s) } c]u(w YU (. ) > ]6 Ydu(s)]

selU
u(wl) + eu(wl)u(w2). Contradiction. Therefore 618 monotone

and the proof is complete.

Our essentially complete class theorem is not entirely
satisfactory in two ways. First, permutational invariance
was used. The theorem ought to be true even if the setup is
not symmetric. Two, the theorem is an essentially complete
class theorem rather than a complete class theorem. By us-

ing the strict versions of Total Monotone Likelihood Ratio



and Total Stochastic Monotone Property it may be possible to
givce a constructive proof of a complete class theorcm. 1In

this connection see Brown, Cohen and Strawderman (197G).
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CHAPTER 3

SIMULATION RESULTS ON SUBSET SELECTION PROCEDURES

In the last two chapters our search for procedures that
perform_well on the average led us to the investigation of
Bayes procedures. But Bayes procedures typically require
numerical integration to implement and sometimes this makes
them unsuitable for practical use. Besides, the use of
Bayes prdcedures is by no means universally accepted. So
if there-are easy to use classical procedures that have per-
formance close to those of Bayes procedures, then these
classical procedures ought to be used. This‘possibility is
explored in this chapter for the case of normal populations
with normal” exchangeable priors. The classical procedures
of Gupta type and of Seal type are compared with Bayes pro-
cedures in terms of integrated risks. Though the Monte
Carlo studies were done for the case p=8 only, indications
are for each loss function and prior pair, there is always
a procedure of Gupta type that performs almost as well as
the corresponding Bayes procedure, while this is true for
Seal type procedures only when the normal prior is very in-
formative compared to the observations. In this connection
Chernoff and Yahav (1977) earlier made similar studies for

the loss functions c. (max 0,-max 0.) + c,(max 0.-

1.7 J i . 3
i , 3=1,...p ica i=l,...,p

) Oi/lal). They also found that Bayes proecedures can be
lea -



47

approximated closely by Gupta type procedures. Though we
do not yet know whether Gupta type procedures are robust
against priors, we can recommend their use in the case of
normal populations as procedures that have at lcast some
optimality properties.

Notation. 1In this chapter as well as the next, we

shall adept the following convention. Let < ...

° 1) Ay

be the ordered components of 6. If there is exactly one Gi

suct - = : o = 7
ch that Oi 8[p] then we shall denoto‘ei G[p] by
mas; .. If more than one 0. are tied for © , then
5=1 b J i [p]
e ey ’
eaactly one of these Gi is tagged as max : Gj. For any
ji=l,...,p

subset selection procedure R, let Pe{CS]R} denote the
probability of a correct selection under 6 when procedure
R is used.  More precisely, if §(s,a) is the probability

assigned to the subset a of {1,...,p!}

by R when s is ob-
served, then Pe{CSIR} is the expected value of

ZAI{max ejc{ﬂi,iea}}s(s’a) under 6, where I denotes

j=1l,...,p - _

the indicator function. Also we shall denote by EO(S;R) the
expected subset size under 8 when the procedure R isg used.
If we let PG(iIR) be the probability of selecting i under

0 when procedure R is used, that is, Pe(i}R) is the expected

value of ) I
acA

= §P (i|R).
i=1 ¢

{ica}8(s,a), then it is easy to see that EO(S!R)

Consider the following model:
(X]n) ~ N(u,I),

PO V4 —_ - ‘,4-' }?.
where X_(hl""'xp)' M (ul,...,up) are vectors in R and



I is the pxp identity matrix,
M ~ N(ml, rI + sU) where m, r, s are constants, r > 0,
-r/p < s<r, and U= 1'1 where 1 = (1,...,1).

The above model is eguivalent to

(l+r)T + sU rI + sU

(X, 1)~ N((ml,ml), ( )) .

rI + sU rI + sU
Hence a posteriori

(ulx) - N(u,Z,, 1) where

”~

Ho=ml + (rI + sU) [(1+r)T + sU]_l (x-ml)
= (r/l+r) x + a multiple of }
and o
Lyp 1 = (xI 4 sU) = (rI + sU) [(1+x)I + ksU]‘l (rI + sU)
S
= (rI + sU) - (rI + sU) (l+r) t[1- -E.is-—u} (rI+sU)
MPyy

I

rl - (r2/1+r)I + a multiple of U

(r/1+x)I + a multiple of U.

i

Bayes Procedure.

Recall that the Bayes procedure , denoted by RB' is as

follows: Select i if and only if X; = max Xj and/or
j=1,...,p
P{u =max ujlx} > c,/cy. -
J"'l,uo.,p

Gupta's Procedure.

The classical procedure studied in Gupta (1956,1965),

denoted by R is as follows: Select i if and only if

GI
Xi > max X. - dG(P*) where dG(P*) is just large enough such
Jj#FL
that inf P“{CSIRG} > P* where P*(l/p < P* < 1) is pre-
HeRP

determined.
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Seal's Procedure.

One particular procedure in the class of procedure

studied in Seal (1955), denoted by R is as follows:

SI
Select i if and only if X, > } Xy/(p=1) = dg(P¥)
j#L
where dg(P*) is just large enough such that inf P“{CS[RS} >

peRP
P* where P*(1/p < P* < 1) is pre-determined.

We shall try to show that both Gupta type procedures
and Seal type procedures are intuitive first‘approximationﬁ
to Bayes procedures. First we state a well known lemma.

| Lemma 3.1. Suppose V . N(b, I + 8u), - 1/p< ¢ <1,

1xp 1xp pxp jobgn
Then there exist X and a such that if

A ... X
A
g = (v - . I s (T Al
W (WO,Wl,...,Wp) N((O,?), : pxp |, then (hl aWO,...,
‘ A

Wp—awo) has the same distribution as V.

As a consequence of this lemma, the expected value of
any measurable translation invariant function of V can be
computed under V - N(p,I) rather than V - N(?,I+6U). We

prove this formally.

Theorem 3.1. Suppose V -~ N(b,I+8U),-1/p < 6 < 1. If
h is measurable and translation invariant, that is, h(v+c})

= h(v) for all ceR, then

[p(v)a0 1 oy (V) = [ h(v)de, (V)
R < R =

where ®a B denotes the normal cdf with mean vector a and
14 ) -~

~

variance-covariance matrix B.
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Proof.

ébh(v)d¢@'1+6 (v)

= [ o h(w, =i, ..., W v - ;
£p+l (W Vg Wm0 gy L L (9
20y
. I
. Tpxp
A

h ey ; W
£p+l (Wyreeenw)d gy g5, g (W)
A I N

PXp
A

!

f h(v)ae (
RrP b,I

V).

Let us examine the Bayes procedure more closely. We

first note that the set {ui = max uj} is both trans-
i=1,...,pP

lation invariant and scale invariant in u. So

P{y. = max u. | x}

i X
j:l, ‘Ip j
= [1 _ de . . . .
{ui = max uj} (r/l+r)x + multiple of 1,
j=l,...,p

(r/1+xr)I + multiple of U(“)

- fI{u = max u }d®
i 5=1 D | (r/l+r)x + multiple of 1,
- 2L B R | ~
(r/1+1) I (u) by Theorem 3.1
= (1 _ do '
thy = iy p“j} (x/1+r) %, (/1+r) 1M DY
- F o ey
translation invariance
= [1 _ do
{ui = max uj} -(r/l+r)l/2x,1(u) by scale
J—l,c.-'p
invariance
=T -y e e 20, 3223900,

(3.1)
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Hence the Bayes procedure selects i if and only if the
p~1 dimensional vector (Xi—Xj,j#i) is reasonably large. As
a first approximation we may replace (Xi~Xj,j#i) by
(X,-max X.) 1 or by (X. - ) X./(p-1)) 1. Now

B R 1 50073 ~
J#1 j#i

Z II{uiwu.+(r/]+r)l/2(xi—max x.),j#i}d®0,l(u)
(3.1) ’ j#1 i

< o M2 0= 1 /1) 5230800, 1)

J#L

wbere the first inequality is obvious and the second in-
equality follows from the result of Marshall and Olkin
(1974). So more realistically we would approximate
(xi-xj,j#i) by (xi—?;i X’+CG)% and (xi—jgixj/(p—l)—cs)%
where CG and CS are positive numbers. In any case, the first
approximation leads to the procedure of selecting i if and
only if Xi~ﬁag X. is reasonably large which is Gupta's
procedure. j?ﬁe second approximation leads to the procedure
of selecting i if and only if X, - .X. Xj/(p—l) is reasonably
large which is Seal's procedure. 7

Monte Carlo studies were performed to determine how
good thesé abproximations are in terms of integrated risks.
The three types of procedures being considered--Bayes pro-
cedures, Gupta type, and Seal type, all are translation in-
variant procedures. The loss function L(u,a) for fixed a is
both translation and scale invariant in upu. In computing the

integrated risks the following sequence of reductions

shows that the integrated risk of any translation invariant
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procedure ¢ is independent of m and s.

B(G,N(m}, rI + suU))

I

ffL(u,é(x))d¢(r/l+r)x + multiple of 1,

(r/14xr)I + multiple of U(U)

dao (x)

ml, (1+r)I + sU

I

JIutu8GIa0 (L piry s, (e/1ary 1)

ad (x) by Theorem 3.1

ml, (1+x)I + sU

it

[fL(u,G(x))d®(r/l+r)l/2X,I(u)d¢m%’(l+r)1 + sul¥)

I

ffL(”fa(X))dé(r/l+r)l/2x,I(U)d®9,(l+r)I(X)

by Theorem 3.1

it

ffL(u,é((r/l+r)‘1/3@)d¢z’I(u)d@0, ().

~

ri
For each (r, cz/cl) pair, r and CZ/Cl indexing the
priors and the 1oss functions respectively, the best Gupta
type procedure and the best Seal type procedure are found
by simulation and their integrated risks are compared with
the Bayes risk by simulation. As it turns out, throughout
the range‘of r and CZ/Cl studied, for each (r,cz/cl), there
is always a Gupta type procedure that perform almost as Qell
as the Bayes procedure, while this being true for Seal type
procedures only when r is roughly less than or eéual to 1,
i.e. only when the prior is very informative compared to the
observations. For each (r,c2/cl), Table I gives the ap-

proximate value of the optimal dG' the constant asscociated
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with the'best Gupta type procedure. Table I1 gives for
each (r,c2/cl) the simulated integrated risks using the Bayes
procedure and the best Gupta type procedure. In this con-
nection Chernoff and Yahav (1977) made similar studies for
the loss fuhction cl(mix O.—max 6.).+ cz(mfx ej—
3=1,....,p ica 3=1l,...,p
.Z Oi/lal). They also found that Bayes procedures can be
éiisely approximated by Gupta type procedurcs. Notice that
the values in Table II depend moderately on 02/0l but for
fixed cz/cl are relatively insensitive to r. For the loss
fﬂnction they studied, Chernoff and Yahav (1977) also found
this phenomenon. »

The qﬁestion that has to be answered before Gupta type
procedures can be recommended as 'the' procedures to use in
all normal populations situations is how they perform under
priors other than the normal, i.e. are they robust against
priors? Simulation studies in these cases became more diffi-
cult and have not yet been done. But until they are done we

can still recommend the use of Gupta type procedures. They

have at least some optimality properties.



6z0" TE€O0° ZEO® vEO0T Lg€O0" 9V0"T  PEO
¢z0o" 0€0° CEO0° %EOT  LEOT YVPO"© VPO
GzZ0" ZEO® EEOT 0OPO°  TPO"T 9¥0° LSO
Gz0" TEO0° E€€0° 6£0° TPCT 9F0° LSO
€€0° 9€0° 9%€0° 9¥G° 9¥0* L¥PO"  TSO
Z€0" SE€0°  9€0° SPO° S¥OT  9¥0" TGO

* T90° G90° 980° €L0° 880" ¢&60°
- 190° §90° S80° €LO0° 880" ¢te60°
* 090° 80" 8L0" 60T G60° 8OTL"
* 6G0° 780" 8L0° BOT" G607 LOT®
* ¥L0° €80 LTIT® 960" 80T" ¥CT°
*ogZLot €80 ZTTT 9607 LOTT  Tct”

0¥G* 9%0° TG0° 6¥0° 8H0OT LG0T L80° LLO® 980" LZT® 0ETT C¥I" L8T°
0y0° v¥0° TS0° 6%¥0° 8¥V0° LSO° 980° 9LO0O° S80° ¥CT® 8CT° CPIT E8T°

¥y0° 8G0° €S0° TLOT 6907 TLOT P60
€EY0° LSO ¢SO0 890" L90° TLO® Te0

* 8607 9¥TT Z€T" 9¥IT 69T 68T°
* L60° ZPIT ZeTt  ¥PIT G9T°  98T°

TL0® L90° 680° TIs0° TOT" 80T° LZT® ¥%CT° TST" 291" ©¥eTl"~ SSC° 8c¢<-

690° 990° 280" 680" 660° SO0T° &1
ZIT® LIT® 6€T° SPT° ¥9T° 081" 86T
TIT- ¥®IT° TET® 6€T° TOT™ 9LT" OCeol
zZT° LET® SPT° 6¥TT L8T" CgZ® &ZZ
6TT" O€T° TPT® 8%T" ¢€LT° 022" 91¢

DET" 6FT° 09T 9LT" G6T1° 6T¢° LS
62T <Cv¥I® GSST° 06T° ¢61° ¥IC° 8¥%C

* 6TT° 9%1° 6ST" L8T° LPT® TZC°
* ygZt 06" TeTT S0E°  eBEELT  G9ET
*0gZT T9TT S8C° 66" E£E€LT 9GL”
g9z 8TET QGET  LLET 89t CvY”
*9¢gT  STET 8gegT 99¢€T  ¥9ET  0¢E¥”

8¢T" 6€T° 8¥VI" TLT® 88T° G&IZ° <CVc*
82T° 6€T° L¥VT® O0LT® &8T° <CIZ" <cve’

veZ" LZE® 0LE® SO0P°  LEDT  S97°
16C° ¥Zg€" 09%€° 96C” eV 09V°

* T0E° 6GE° 9LET  LEVT Z8%°  ELIST
96T rsct  L9Er LTyt TLVT 8067

LYTT
LyT®

et
44N

4%
CET”

961"
€QT"

LTC”
60C°

06Z-
A

9¢€P”
vevs

087v°
VLY

L9G"
6vG"

8LS "
G696~

‘0T

09 &S 0s &b 0V ¢ 0€

sz - 0¢ 8T 9T T T .

294

7

o

0T

I9pI0 3RUL UuT sanpedoxg odAL eidno 3sag 9yl pur aanpssoxd ssieg syl o

SYSTY po3lexbsiul pelzRINWIS 3yl ITed

uoT3oung SsOT pue JIO0TId yded I0F S3ST]

‘II STqeEL



56

CHAPTER 4
SOME ROBUST AND NONPARAMETRIC

SUBSET SELECTION PROCEDURES

The search for good procedures generally has to be
carried out individually for each distribution. 1In the last
chapter we found that in the case of normal populations with
variances known, Gupta type procedurés have some near-
optimality properties. Now consider the following location

model. Suppose X i=l,...,p,0=1,...,n are random variables

; » n

such that their joint distribution is 1 i F(xia-ei) where
i=1 o=1

F is only partially known oI totally unknown and 6=(81,...,

ia’

Gp) is- an unknown vector in rY . Suppose we want to select
in terms of the 0,. There is a large body of literature
dealing with robust and nonparametric estimation of the
location parameter. All the good known estimators are asymp-
totically normal under reasonable regularity conditions.
Hence, intuitively, Gupta type procedures based on these
estimators should have good performance. Tn this chaptér

we propose two procedures to be used in the e—-contaminated
normal populations case. These two procedures asymptotically
control the probability of a correct selecﬁion. We also

propose a third procedure to be used in the case where F is

absolutely continuous but otherwise unknown. This procedure



controls the probaliility of a corraect selection for any
sample size n. Since it is bascd cesentially on the Hodges-
Lehmann estimator, it inherits tha high asymptotic relative
efficiency of that estimutor. Tt should be pointed out that
vthe problem of nonparametric subset selection is an old one.
Some of the earlier references are Lehmann {1963c), Puri and
Puri (1969, 1968), McDonald (1969) and Rizvi and Woodworth
(1970) . The approach here differs firom the earlier ones in
that direct estimators of the paramecter are employed in con-
sfructing the procedures.

4.1. eg~Contaninated Normal Populations

With Scale Known

Let Xim’ i=l,...,psa=1,...,n be random variables

having the joint distxribution

p n
i=1 g=1 % 1
where F = (l1l-¢)é + cH, (0 < ¢ < 1) is avknown constant, ¢

is the standard normal cdf, H is an unknown symmetric dis-
tribution, and 0 = (91,...,6p) is an unknown vector belong-
ing to RP.

Let C be the class of all e~contaminated distributions,

C = {F:(1l-¢)% + e€H, H symmetric distribution function}.
We shall propose two asymptotically‘equivalent pro-
cedures, one based on Huber's maximum likelihood estimator,
- the other oﬁ the trimmed mean. One way to introduce these

estimators is as follows:
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The distribution F in C having the smallest Fisher
information has the density

£ = (2m 2 (-e)e ™o X

where 2
1/2 x for |x| < k

Py (x) ={klxi - 1/2 X*  for x| > k

with k depending on € through
e/l-e = 2¢(k)/k - 2¢(-k),

where ¢ = ¢' is the standard normal density. Let
' x for |x] < k

Vo () = o (x) ={y sign (x) for |x| > k

We shall denote the maximum likelihood estimator of 6,
with respect to the above F by M, . It is the solution of
n

E Vo (x4,79;3) = O.

a=1

The (asymptotically) best estimator of Gi based on
linear combinations of order statistics is the trimmed mean

n
leh(B/(n+l))Xi(B
from x. B=1l,...,n,

iR’
constant for FO(~k)<t<Fo(k)

)/n where X3 ( is the Rth order statistic

B)

h(t) ={
‘ 0 otherwise

n
such that Zh(B/(n+l))/n = 1. We shall denote the trimmed
B=1 .
mean estimator of 6, by L._ .
i in
The following results are well known. Sece Huber (1964),
Brickel (1967), and Jackel (1971).

Theorem 4.1.1. Under the sole assumption that H is

l/Z(I\/.T.:.maei) is asymptotically normal with mean 0.

symmetric, n



v
0

Let Oi,F;be the asymptotic variance of nl/z(ﬁin—ci) under T,
then ;:5 O;,F = Oé'Foz 002 where 002 = [(l~£)ng§ + ek2}/
[(l—e)Eéwé]z. Under the additional assumpticon that H has a
continuous derivative, nl/z(Lin~6j) is asyuntotically normal
with mean 0. Let Oi,F be the asymptotic variance of nl/z
(Lin—Gi) under F, then under the additional assumption on I,
;gg Oi,F = Oi,FO = 002 also.

Remark 4.1.1. Tables of 002 are available. See for
ekample Huber (1964).

Let P*(l/p < P* < 1) be the desired minimum probebility
of a correct selection. Let d be the positive numboer such
that

JoP™d (x+d)de (x) = P* .

We now describe the two proposed procedures.

Procedure RL(n) Based on the Trimmed Mean

Select i if and only if L._ > max L. -do /nl/2
in — =1 o in O
PR &

Procedure Rb(n) Based on Huber's Makimum I.1kelihood

ut

Estimator

Select i if and only if M. > max M, ~-do /nl/2
in — 5=1 £ n o) .
pee ey

Theorem 4.1.2. Under the assumption that H is sym-

metric, sup lim inf P{CSIRM(n)} = PpP*, Under the addition-
Fel n»>w 0ecRP
al assumption that H has a continuous derivative,

sup lim inf P{CSIRL(n)} = P*,
FeC no= ocRP
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Proof. Let F_ be the common distribution of Ly =050

'",...,p, under . Suppose 6. = max 8., then
i B ]
j=1l, .00, -

- _ /2
PF,Q{CSIRM(H)} = fj;an(x+doo/n foj)drn(x~ei)

vhich is nondecreasing in Oi and nonincreasing in every
other component cf 6. Hence

égﬁp PF’O{CS[RM(H)} = PFIO{CSIRM(n)}.

where 0= (0,...,0), Now
lim P .dcs|r (n)} = [oP L (x+do /o )ao(x)
- F,0 M- o’ "M,F '

But sup 02 =(B2. Hence

FeC M, F

inf lim inf P, ,{CS|R, (n)} = f@p”l(x+d>d¢(x) = P*,
1 ( 10 b pe NI )
FeC n»*» OcR*

The proof for RL(n) is exactly similar.

4.,2. T Absolutely Continuous Unknown Case

In this section we consider the case where F is
absolutely continuous but otherwise unknown. Let Xia’ a=1,

2,...,n, i=1,2,...,p be independent random variables such
, p n
that their joint distribution is I 11 F(xia~6i) where F
i=1 a=1l
is asbolutcly continuous but otherwise unknown, and 6

l,...,Op) as before is an unknown vector in rRP,

Let us'denote the rank sum of {le,sz,...,x.n} when

(0

J
! ~ 4 -~ 3 | 7 (j)
they are compared with {Xil,hiz,...,xin} by K'3".

Let
(3i) _ o(31) PENGER
e D
D1y” = P2y (n2)
denote the n2 ordered differences Xiu~XjV,(x,ﬁ:l,2,...,n.
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Since P is absolutely continuous we can assune these differ-
encos to be distinct. Let wji(A) denote the number of pairs
(a, ) for which

Xj’8.< Xi(:é - A.

In accordance with tradition, we write Wji(O) simply as wj..

The following theorem, stated as Theorem 2.4 in Lehman
(31)
(%)
Theorem 4.2.1., {(Lehmann, 1975). Suppose the differ-

(1975), gives the relationship between D and wji(A).

ence Xia— XjB are distinct. Then for any intcger m bhetween

J and n2 and any real number A,

(j1) , . , 2
(4.2.1) D(m) <A 1f and only 1if Wji(A) < n -m
and
4 o (31) . . A 2_
(4.2.2) D(m) A if and only if Wji(A) > n"-mtl.

Gupta's procedure RN(n) for the case where F is the
normal distribution with unknown variance is as follows:

Select i if and only if Xi > X, - dnS/nl/2

J
for all j, J#i

where Xi' i=l,...,p are the sample means, S is the pooled
estimatevof the standard deviation and dn is just large
enough such that inf P_{CS

0eRP ¢ o
Notice that this procedure ig equivalent to the following:

Ry(n)} > P*, p* pre-determined.

Select i if and only if the 100P*% simultaneous con-
fidence intervals {Oi—Gj < Ximij + dnS/nl/vaor all j, j#i}
cover 9 = (0,...,0)

Theorem 4.2.1. enables us to construct nonparametric
simultaneous confidence intexrvals for (Oi~0j; a4i) as

follows:
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(4.2.3) PF,O{Gi_ej < DE;;) for all 3, -#1} 

P {n’-a < W.. for all j, j#i)
60 ji

- P, nl-a < R(g) -1/2 n(n+l) for all j, j#i)
. ;

where 6 _ is such that 6, = 6, = ... = 6_. Hence (4.2.3)
o} 1 2 P
can be computed exactly by enumerations.
We are now in a position to propose procedure RR(n),

the nonparametric analog of Gupta's procedure RN(n) based

on the Hodges-Lehmann estimator.

Procedure QR(n) Based on the Hodges-Lehmenn Estimator

(j1)
(a_)

n

Select i if and only if 0 < D for all j, j#i

or, equivalently,

2 (3) _ ]
a, < R i 1/2 n(n+l)

Select i if and only if n

for all j, j#i
Where an.is,the smallest integer such that

P, {n2~an < R(g)-l/Z n(n+l) for all j, j#i}l > p*,
o

We now show inf P, {CS|Rp(n)} > P* for any sample
. r

6eRP
. . . max .
Size n. Suppose without loss of generality 6. = . - ..06.
i i=l,...,pj
Then
. . (31) .
inf Pp JCs|R,(n)} = inf P {0<D,2") for all j, j#i}
perp 179 R oerP FrO (ay)
. (3i) . .
= inf P {6.-0.<D for all j, j#i}
peRP F’eo tJ (an)
= v o {00V £or 211 3, 5413
F’Go (an) o
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il

Pe {nz*an<R(i)~l/2 n(n+l) for all j, Jj#i}
o ,

> P * .
The asymptotic value of a, is given by the following
theoren.

Theorem 4.2.2.

lim (nZ/Z—‘an)/(n?‘(2n+1)/12)1/2 = -d/v/2 where d as before is

n-rw

determined by

[P (x+d)de (x) = p*

2 . g
PO {n -a, < Wji for all j, j#i}

= p_ {(n°/2 - an)/(n2(2n+l)/l2)l/2 <y - n’/2y/

(n2 (2n+1)/12)Y2 for all §, S#il.

It is well known that the random vector ((wji—nz/Z)/
2
(n2(2n+1)/12)l/“, j#*1i) under 60 is asymptotically distri-
; 2
buted as N(0,1/2(I+171)). Hence lim (n”/2-a )/(n”(2n+1)/

12?2 = —ayvE. .
The following generalization of Lemma 4 of Lehmann
(1963b) enables us to compute the asymptotic relative
efficiency of procedure RR(n).
Lemma 4.2.1. Under the condition ffz(x)dx<m, for fixed

/2 ,,(31) _ oy L
(D(an) (Bi

nultivariate normal distribution with mean vector {4/

. 1 . .
i, as n»o the random vector n Oj),j#l) has a

(12)1/2

2 ; . . .
[£9(x)dx) 1 and variance-covariance matrix

1/6([£% (x)dx]?

..
11

§ ,
1 /12 (1% () ax]?

M

G, .
i7j
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Froof. Assume without loss of generality that Oi—3j=0

for all j, j#i. TFor any constant vector v = (vj,j#i),
o 1/2.(53) s o 2 ~1/2 e
P{wj~n D(an),]%l} = P{n an<Wji(n vyl J#1 )

by Thcorem 4.2.1. DBy Lemma 1 of Lehmann (1963a), the random
..(ﬁl/zv.)], j#i) 1s asymptoti-
Jjt 3

cally normal with mean 0 and variances equal to 1/6 and

o =3/2 -1/2 R
vector n (wji(n Vj) E[wW

covariances equal to 1/12. Now for any j, Jj#i
li1m‘n_3/2
n->o

1T -1/2 2
{L[vvji(n vj)]-n /2}

= lim n_3/2 nz[P{Xj--Xi > ﬂl/zvj}—l/2]

n--o

= Llim n'/? f[p<x—ﬁl/2vj)~F(x>]dF<x>

n-+o
- »vjjfz(x)dx
where the last step in justified because ffL(X)dX<m. See

Olshen (1967) and Mehra and Sarangi (1967). Hence the random

3/2

vector n ((W..(ﬁl/zvj)—n2/2), j#1) 1s asyrnptotically

ji
; 2 : - .
normal with mean -[f°(x)dx v and variances 1/6 and covari-

ances 1/12. By Theorem 4.2.2., we have

1lim P{v. < nl/ZD(Jl)r j#1}
n->e J ( an)

2 2 —
= 1im P{n?-n?/2-(n? (2n+1) /12) ¥ M Fro (n37?) <
n-o
1/2

(n~"%v.), j#i}

W .
j i 3

= lim P{~d+[(12)l/2ff2(x)dx]vj+o(n3/2)/n3/2 <

n->e

(12) 22073/ 2 1y w2y y-n?/2)
ji ]

+ {(lZ)l/sz2(x)dx]vj,j#i}

Py taking limit we get the desired rcsult.
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E_(n)

JUSAL e ASLEM

Asyrptotic Relative Efficiency of Procodure

Congidcex Gupta's normal means procadura RN(N) described
earlier:
.2 L : vl 7 X o }/2
Select 3 if and only if Xi~Aj + Qnu/ﬂ > 0
for all j, 3#i
where Xj, i=l,...,p are the samnple means, S is the pooled
estimate of the common standard deviation, and dn is deter-

mined by

7 )p—l = ~
_i g (x.sdn)dé(x)de(s)

o~ g

where GV is the cdf of Xv/v with v = p(n=1).
Denote by 02 the variance of F. We shall assume thnt 02<w.

C . 2 ~
Under {the additional assumption ff (x)dx<w, we sce fron

O
Lemma 4.2.1. that for any i, ni/2[(12) %/ 2[£% (x)dx] (Dé

, N 1/2 -1, 5 /2 .. ]
(oi—aj), j#i) and n / ") (Xi—Xj + dnS/n / , 3#1) have

the same limiting distribution. Hence if n'(n) is such that

, ) |
lim n'(n)/n = l/lZo?[[fz(x)dx]ﬂ then lim P 0{CS|RR(n’)}/

n-row n—+eo !

PF,G{CSIRN(n)} = 1 and lim EF’G[SIRR(n')]/EF’e[SIRN(n)] = 1

n-o
for any F,8. Therefore if we define asymptotic relative

efficiency eR,N of RR to RN as the limit of the reciprocal

of the sample sizes required such that the two procedures
have the same asymptotic performance, where performance

is measured in terms of E(S{R) for controlled P{CSIR},

P{CS|R} for controlled E(S|R), or a linear comhination of
P{CS|R) and E(S|K), then eR,N==l202[[f2(x)dx]2. It is well
known that 1202(ft% (x)ax1%»0.864 for all £, and 120°[[F7 (x)dx]”

3/ - 0.955 when £ is the normal density.

o
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Usuially the experimenter wants to know more than just whether all the treat-
ment effects are equal, but he may not want to make inferences concerning all

DD , 5™, 1473  E€DiTioN OF 1 NOV 65 1S OBSOLETE

JAN T S/N 0102-014- 6601 | UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data BEnterad)




UNCLASSIFIED

L CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

linear contrasts of means. One of the more frequently occuring situations for
which this is so is where the experimenter simply wishes to know which of the

treatments gives the best product. In this situation, formulating the problem
as a selection problem is appropriate. Subset selection procedures are often

thought of as screening procedures. If the data indicates several treatments

are better than the remaining treatments but no treatment is clearly the best,
then perhaps the experimenter ought to retain all of the better treatments for
future considerations.

It is generally recognized that for multivariate problems uniformly best
procedures do not exist. Hence it is reasonable to look for procedures that 5
do well on the average, averaged over the parameter space by some prior. This |
approach has been taken in the first two chapters. The essentially complete
class of Bayes procedures and their limits is investigated. The concept of
Total Monotone Likelihood Ratio is introduced as the multivariate analog of
univariate monotone likelihood ratio. Then a multivariate analog of the -
classical result of Karlin and Rubin (1956), that monotone procedures form an-,
essentially complete class, is proved for a loss function which seems natural
to the subset selection problem by proving that Bayes procedures are monotone.

Bayes procedures typically require numerical integrations to implement
and this makes them sometimes unsuitable for practical use. Besides, the
use of Bayes procedures is by no means universally accepted. So if there is
available an easy to implement procedure whose performance is close to that of
the Bayes procedure, then this procedure ought to be used. This possibility
is explored in Chapter 3 for the case of normal populations problem and normal
exchangeable priors. As it turns out, for each prior and loss function pair
there is always a Gupta type procedure that performs almost as well as the
Bayes procedure, while this being true for Seal type procedures only when the
normal prior is very informative. As of yet we do not know how these pro-
cedures perform when the prior is not normal. Nevertheless we recommend the
use of Gupta type procedures when the observations arise from normal distri-
butions as procedures that have at least some near optimality properties.

In the case where the parameter of interest is a location parameter and
the underlying distribution is not entirely known there are good robust esti-
mators of the parameter. Under mild regularity conditions they are asymp-
totically normal. From the results of Chapter 3, we would expect that
Gupta type procedures based on these estimators to have good asymptotic
performance. In Chapter 4 robust and nonparametric Gupta type procedures
are proposed. One procedure in particular, the procedure based on simul-
taneous confidence bounds derived from rank tests, is nonparmatric. It
controls the probability of a correct selection for any sample size.

Since it is based essentially on the Hodges-Lehmann estimator, it inherits
the high asymptotic relative efficiency of that estimator.
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